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Nature provides many examples of active matter, rang-
ing from flocks of birds1, fish2 and insects3 to sheets of 
cells4–6 and swarms of bacteria7–9. In the laboratory, vari-

ous attempts have been made to develop biomimetic and synthetic 
active materials, from self-propelled colloids10,11 and mechanically 
agitated flocks12 to dense phases of biopolymers driven by molecu-
lar motors13–23. This is a rich field of research, and so far much theo-
retical work has been dedicated to understanding the fundamental 
physics of these fascinating and diverse systems24,25. Active materi-
als are non-equilibrium systems, and thus they cannot be described 
in the framework of conventional thermodynamics. The unify-
ing theme of active matter is that collections of subunits consume 
energy locally, translate this energy into movement and ultimately 
produce large-scale flows. This large-scale motion can produce rich 
emergent structures, including phase boundaries and topological 
defects, where local order breaks down.

The central theme of this work is the introduction of concepts 
from chaotic advection26,27 to the physics of biologically active 
fluids. These concepts include topological entropy and Lyapunov 
exponents, which are well known measures of chaos in the theory 
of chaotic advection but have been thus far largely overlooked in 
studies of active matter. Roughly speaking, the Lyapunov exponent 
measures the rate at which nearby fluid parcels separate from one 
another. The topological entropy, on the other hand, measures the 
asymptotic (in time) exponential growth rate in the length of a 
material curve as it is stretched within the fluid. We use spatially 
(and temporally) averaged local measurements in the fluid to esti-
mate the Lyapunov exponent. To estimate the topological entropy, 
we use larger-scale measurements, including the global braiding 
motion of topological defects about one another.

In experimental studies of chaotic advection in passive flu-
ids at low Reynolds number28, fluid motion is often driven at the 
boundary, either by tangentially sliding the boundary, for example 
rotating a cylindrical boundary wall29–31, or by directly stirring the 
fluid with inserted rods28,32–34. The resulting chaotic flow produces 
exponentially stretching material curves. In stirring experiments, 
chaos is observed when three or more rods are inserted into the 
fluid and moved around one another in a braiding motion28,32–34. 
The mathematical braid can be visualized by interpreting time as 

the vertical dimension. Figure 1a shows an example braid, with the 
initial effect of this braid on a line of dye shown schematically in 
Fig. 1b. Repeated applications of this stirring pattern generate an 
experimental image such as Fig. 1c, taken from ref. 28. The over-
all mixing efficiency depends on the stirring pattern, particularly 
on the topological braid type of the motion, and can be quantified 
by the topological entropy, that is the growth rate of material lines 
as fluid elements are stretched apart from each other. One remark-
able mathematical fact is that a given braid type of the rod motion 
guarantees a specific minimal amount of topological entropy in the 
dynamics; for example, the Fig. 1a braid generates an entropy of 

+ ∕ = .log[(1 5 ) 2] 0 4812 for each swap of two strands. In fact, any 
collection of passively advected orbits in the fluid, not just those 
next to the stirring rods, generates a braid type, with an associated 
minimal topological entropy; such trajectories have been described 
as ‘ghost rods’ in the literature33,34. Though the mathematics is more 
rigorous when such trajectories are periodic in time, recent work 
has generalized the analysis to open, aperiodic trajectories35–38.

Our experiments use an extensile-active-nematic fluid confined 
to a quasi-two-dimensional (2D) layer15,16,18 (Fig. 1d). The fluid 
consists of purified microtubules and kinesin-1 molecular motor 
proteins (Fig. 2a and Preparation of the 2D active nematic). In bio-
logical cells, these molecules exist in the cytoskeleton, where the 
microtubules form highways for the motors. The motor proteins 
step stochastically along a microtubule in a net direction defined 
by the microtubule’s structural polarity, a process that consumes 
energy from the hydrolysis of ATP. This force-generating action is 
essential for a variety of cell functions, including organelle trans-
port39, cell division and cytoplasmic streaming40.

In our laboratory set-up, microtubules condense into bundles, 
cross-linked by clusters of streptavidin-bound kinesin motors  
(Fig. 2a and Methods). If two motors in a cluster bind to adjacent 
microtubules of opposite polarities, the opposing forces produce a 
sliding motion between these microtubules. Thus neighbouring bun-
dles of opposing polarities extend away from each other to generate 
local fluid stretching. Under the dense confinement of a 2D oil–water 
interface, the bundles enter the nematic phase, with a well defined 
director field recording the local bundle orientation (Figs. 1d and 2b).  
In the presence of ATP, the bundles continually move, extend, 
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bend, buckle and break15,16,18. This continual motion advects indi-
vidual tubulin monomers throughout the fluid in a chaotic fashion 
(Supplementary Video 1). As a result, pairs of +1/2 and −1/2 topolog-
ical defects (Fig. 1d) in the director field are continuously created and 
annihilated. Between their birth and death, topological defects move 
around one another in a complicated braiding pattern, as shown in 
Fig. 3. (See also Supplementary Video 2.)

The pattern of microtubule bundles surrounding the +1/2 
defects (Fig. 1d) strongly resembles the pattern of dye surround-
ing stirring rods (Fig. 1c) in passive advection. The active nematic 
fluid described here differs crucially from a conventional passive 
fluid in that internal flows and chaotic advection in a passive fluid 
must be driven externally. In this report, we show that braiding by 
topological defects in the active fluid produces macroscopic chaotic 
advection, and thus the defects act as virtual stirring rods. In addi-
tion, we demonstrate that mixing on the macroscale by virtual rods 
arises spontaneously as a consequence of the molecular-level slid-
ing action. This relationship is quantified by the topological entropy 
and Lyapunov exponent.

One consequence of topological mixing theory is that exponen-
tial stretching cannot exist within the fluid without some non-trivial 
braiding of defects, as quantified by the topological entropy. It is 
particularly interesting that this self-driven fluid spontaneously 
creates a set of defects that must then move in a particular way to 

produce exactly the topological entropy needed to accommodate 
the local stretching. This observation sheds new light on previous 
studies of defect dynamics. For example, in the numerical work of 
Shendruk et  al.22, the authors demonstrated a particular braiding 
pattern resembling a ceilidh dance, in which defects braid around 
one another in two counter-propagating lines in a channel. In fact, 
this particular braid has been studied in the chaotic advection lit-
erature, where it is known as the ‘silver braid’34; interestingly, it has 
been proved to be optimal, in that it provides the largest amount 
of topological entropy per time step for any linear arrangement 
of defects. Thus, if one were to compute the stretching rate for  
this flow a priori, one could reasonably conjecture that the ceilidh 
dance pattern was topologically mandated to accommodate all the 
topological entropy.

We measure both the topological entropy and the Lyapunov 
exponent of the active flow; we measure the topological entropy 
using three distinct methods, designed to probe the system across 
different length scales. The Lyapunov exponent is obtained from the 
velocity-gradient tensor field, itself computed from particle image 
velocimetry (PIV) using fluorescence microscopy images of the 
microtubule bundles. The topological entropy is measured directly 
using beads attached to the microtubules. As two beads pass and 
separate after a close approach, the exponential growth rate of the 
nematic contour connecting them is measured. Alternatively, the 
same measurement is made using the separation of neighbour-
ing topological defects. The third independent measurement of 
the topological entropy derives from the braiding motion of the 
topological defects about one another. We find that the positive 
topological defects act as virtual stirring rods, generating all of the 
topological entropy from their braiding motion; negative topologi-
cal defects add very little, if any, additional entropy. The three mea-
sures of topological entropy are consistent with one another, which 
is remarkable given that braiding is a manifestly global and topo-
logical technique, independent of geometric details, whereas the 
stretching techniques depend inherently on length measurements. 
Furthermore, the topological entropy is slightly larger than the 
Lyapunov exponent, reflecting a fundamental theorem in 2D cha-
otic dynamics41. Measurements are repeated at progressively higher 
ATP concentrations. Increasing the ATP concentration raises the 
system activity, increasing the overall fluid speed. The Lyapunov 
exponent and topological entropy generally also increase with 
increasing fluid speed. We non-dimensionalize these quantities to 
isolate the purely topological effects on mixing efficiency when we 
increase system activity. Across all methods we obtain a fascinat-
ing result: the dimensionless Lyapunov exponent and dimension-
less topological entropy are constant with ATP concentration. This 
result suggests that these dimensionless quantities may be universal 
features of the fully developed ‘turbulent’ state of the active nematic.

Topological entropy from bead and defect separations
We first describe the measurement of separation rate in the nematic 
contour joining two beads. Biotin-coated silica beads of 2 μm diam-
eter were bound to the microtubule bundles through free binding 
sites on the streptavidin molecules that form the kinesin clusters 
(Fig. 2a and Methods). This approach differs fundamentally from 
recent work on a similar system in which beads were passivated to 
avoid microtubule attachment, thus acting as passive tracers for the 
surrounding aqueous flow15,16. In contrast, bound beads track the 
microtubule network itself. The beads move within the nematic 
plane, where they are imaged with bright-field optical microscopy 
(Fig. 2c and Supplementary Video 3). Bead trajectories directly map 
the motion of microtubule segments throughout the system, includ-
ing through bundle fracture and annealing.

After bead trajectories were extracted from a bright-field 
microscopy video, they were searched for close approaches of bead 
pairs (within 2–10 μm of each other). Following a close approach, 
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Fig. 1 | Topological stirring of fluids. a, Braid diagram representing three 
rods as they stir a 2D fluid in a pattern known as the golden braid. Time 
moves up in the vertical direction. Each strand represents the world line  
of one rod. The times denoted (i)–(v) correspond to the schematic in  
b. b, The impact of passive stirring generated by the braid in a on an initial 
line of dye. As the rods sequentially exchange positions, the dye stretches. 
c, Experimental image of lines of dye stirred by three rods after several 
iterations of rod exchanges according to the stirring protocol shown in  
a. The rod positions are highlighted in white. d, Fluorescence microscopy 
image of the active nematic fluid with topological defects marked.  
White circles denote +1/2 defects; a yellow triangle denotes a −1/2 defect. 
Panel c adapted from ref. 28, Cambridge Univ. Press.
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the pair of beads moves apart, with a nematic contour, that is an 
integral curve of the nematic director field, stretching between 
them. Physically, the nematic contour represents the microtubule 
bundles connecting the beads; it grows and bends with the fluid as 
the bundles extend. For each image frame, the nematic contour was 
manually traced (Fig. 2d and Supplementary Video 4). The slope of 
the natural log of the separation contour length versus time yields 
the separation rate r (Fig. 2e). The result shows clear exponential 
growth over nearly an order of magnitude in contour length. A total 
of nine pairs of beads were analysed (Supplementary Fig. 1). r is 
remarkably similar across bead pairs, with mean 〈r〉 = 0.0143 s−1 
and s.d. σ = 0.0016 s−1 (Supplementary Fig. 2). To estimate the 
topological entropy, we perform a weighted average as discussed in 
Supplementary Section 1, resulting in hbead = 0.0145 (±0.0001) s−1.

In a second approach, we measured the separation rate between 
topological defects, instead of beads. Pairs of nearby +1/2 and 
−1/2 defects were identified in fluorescence microscopy videos. 
Fluorescence microscopy enhances the microtubule structure while 
eliminating the non-fluorescent beads (Supplementary Video 1). 
We then identified the nematic contour between the defects as a 
function of time (Fig. 2f) (Supplementary Section 2). This contour 

length increased exponentially (Fig. 2g), yielding the exponential r. 
A total of 10 defect pairs were analysed, resulting in hdefect = 0.0142 
(±0.0002) s−1 (Supplementary Fig. 3). Results from defect and bead 
separations are remarkably consistent, implying that the separa-
tion rate between defects is a good proxy for the growth of material 
curves anywhere in the fluid.

Topological entropy from defect braiding
Whereas the first two computations of topological entropy used 
the growth in Euclidean contour length, our third approach is 
purely topological and independent of the first two. This approach 
views the topological defects as stirring rods, and computes the 
topological entropy by the braiding pattern of these rods around 
one another (Fig. 3a). As such, the method is insensitive to the 
exact positions of the defects. However, the original defect tra-
jectories must be extended to exist for all times, as described in 
Supplementary Section 3.

We use the recently developed E-tec algorithm38 to extract topo-
logical entropy from defect trajectories. This algorithm uses a com-
putational geometry approach to propagate an initial piecewise 
linear elastic mesh (Fig. 3b) forward in time. As trajectories evolve, 
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the mesh is stretched and folded over itself, creating an exponen-
tially growing number of line segments. Figure 3c shows the final 
stretched mesh and Fig. 3d shows the growth in the number of seg-
ments as the fluid is ‘stirred’ by the defects. The exponential growth 
rate is the topological entropy generated by the stirring rods, which 
in general is only a lower bound to the true topological entropy of 
the fluid. In Navier–Stokes simulations of stirring a 2D fluid, there 
can be significantly more entropy than predicted by the motion of 
the rods.

In principle, any ensemble of trajectories passively advected in 
the fluid can be viewed as virtual stirring rods, and the correspond-
ing topological entropy computed using E-tec. Again, such ensem-
bles typically provide only a lower bound on the true entropy of the 
flow—the greater the number of trajectories included, the greater 
the lower bound. In some special cases, a small number of specifi-
cally chosen trajectories generate all of the topological entropy38.

Figure 3d shows three results, corresponding to stirring by just 
the +1/2 defects, by just the −1/2 defects and by both +1/2 and −1/2 
defects. The entropy from the +1/2 defects, 0.01043 (±0.00080) s−1, 
is significantly larger than that of the −1/2 defects, 0.00626 
(±0.00032) s−1. Most remarkable, however, is that the entropy from 
all the defects, 0.01045 (±0.00053) s−1, is essentially the same as 
from just the positive defects. The negative defects introduce no 
additional stretching. This is a surprisingly strong result, and shows 
that the positive defects are the special points for generating topo-
logical mixing and that they alone can account for all the topological 
entropy in the fluid.

Finally, the E-tec computation must be corrected for the finite 
size of the image domain. This correction is estimated by the escape 
rate of trajectories (Supplementary Section 4), which is computed 
from the bead data to be 0.00291 (±0.00003) s−1. Adding this to the 
E-tec result yields a final entropy hbraid = 0.0133 (±0.0008) s−1.

The fact that the separation-rate and braiding methods agree 
so well is by no means trivial or expected. Several assumptions 
are needed to justify why either of these methods should yield 
the true topological entropy (Supplementary Sections 1 and 4). 
Such assumptions are only verified through an analysis of the 
experimental data. Thus, the agreement of these two measures is 
a significant experimental finding. For example, solid-state topo-
logically ordered systems may have defect translation without any 
stretching or motion of the underlying material. In the microtu-
bule active nematic system, the strong coupling between motion 
of the microtubules themselves and motion of the defects is nec-
essary to see the agreement reported here. (This coupling only 
breaks down near the creation and annihilation of defect pairs; 
Supplementary Fig. 1e,f.)

Finally, we computed the Lyapunov exponent directly from the 
microtubule velocity field as λ∇v = 0.0120 (±0.0006) s−1 (Lyapunov 
exponent from velocity field). Figure 4 shows all four measures 
of chaos at 50 μM ATP concentration. The Lyapunov exponent is 
slightly less than the three measurements of topological entropy. 
This is consistent with a general result from dynamical systems the-
ory, which states that the topological entropy is always greater than 
or equal to the metric entropy (also known as the measure-theoretic 

500

a b

c d

400

300

200

100

T
im

e 
(s

)

0

0
200

0
x (µm) y (µm)

200400 400

12

All defects

Positive defects

Negative defects

In
(n

o.
 o

f s
eg

m
en

ts
) 10

8

h = 0.01045 s
–1

h =
 0.01043 s

–1

h = 0.00626 s
–16

4
0 200 400

Time (s)

600

Fig. 3 | E-tec computation of topological entropy. a, A sampling of positive defect trajectories braiding around one another. b, Initial mesh between  
defects inside the black bounding box. Filled circles are actual defects. Open circles are ‘extinct’ defect trajectories, as discussed in Supplementary 
Material. c, Final stretched mesh and defect positions. The intensities of the red segments indicate their weights. d, Plot showing topological entropy,  
h, calculated using the E-tec algorithm for positive defects only, 0.01043 (±0.00080) s−1, negative defects only, 0.00626 (±0.00032) s−1, and all defects, 
0.01045 (±0.00053) s−1. Errors on the E-tec growth rates were computed as the difference in the slopes fitted over two distinct time intervals: interval 
215–537 s and interval 322–537 s.

Nature Physics | VOL 15 | OCTOBER 2019 | 1033–1039 | www.nature.com/naturephysics1036

http://www.nature.com/naturephysics


ArticlesNATuRe Physics

or Kolomogorov–Sinai entropy)41. In 2D area-preserving flows, the 
metric entropy is equal to the positive Lyapunov exponent, imply-
ing the relative ordering seen in Fig. 4. The fact that the Lyapunov 
exponent is only slightly less than the topological entropy reflects 
the statistical homogeneity of the active nematic flow. If the local 
Lyapunov exponent were constant in space and time, the topologi-
cal entropy would be exactly equal to the Lyapunov exponent.

Variation of ATP concentration
To investigate the effects of increasing activity on chaotic advection, 
we ran a series of experiments at different ATP concentrations (50–
1,000 μM). Because ATP concentration controls the kinesin step-
rate at the molecular level, we expect the topological entropy and 
Lyapunov exponent to increase with increasing ATP concentration.

When single microtubules glide on a kinesin-decorated glass 
surface, their gliding velocity as a function of ATP concentration is 
generally well described on a local level by Michaelis–Menten kinet-
ics42–44. Similarly, we observed that the average root-mean-squared 
velocity vrms (see ‘PIV analysis’) for our attached beads also follows 
Michaelis–Menten kinetics under ATP variation (Fig. 5a).

Henkin et al. used passive unattached tracers to measure the aver-
age bead speed in a similar, three-dimensional microtubule network 
as a function of ATP concentration (0.5–3 mM)16; they observed a 
monotonic increase to 2 μm s−1 at saturation. Our attached-bead 
method, however, contains richer and more direct information on 
the motion of the microtubules themselves.

We calculated topological entropy hbead for bead pairs at differ-
ent ATP concentrations (50–1,000 μM) (Fig. 5b). Separation rates 
were measured for about 10 bead pairs at each concentration. (See 
raw data in Supplementary Fig. 2.) Though Fig. 5b shows a general 
upward trend, it is not strictly monotonic. For context, we consider 
the relevant physical scales. An inverse-time scale τ−1 for hbead can be 
obtained by combining the characteristic velocity vrms with a char-
acteristic length ℓ. Following refs. 23,45, we chose ℓ to be the length 
at which the velocity–velocity correlation function, computed from 
PIV velocities, decays to half its maximum value (Fig. 5c) (PIV 
velocity analysis). ℓ varies only modestly with ATP concentration, 
consistent with the work of Lemma et al.23 for ATP concentrations 
larger than 10 μM. References 23,45 establish that ℓ arises from bal-
ancing the elastic bend energy of the microtubule bundles with 
motor activity. Thus, if only the activity were increased, ℓ should 
decrease, and indeed, except for the 250 μM data, our results are 
consistent with a small downward trend. The outlier at 250 μM ATP 
concentration could be understood in terms of a slight change in 
the microtubule lengths, which would affect the correlation length. 
Microtubule bundle length is very sensitive to sample preparation, 
such as pipette shearing.

We obtain the dimensionless topological entropy τ=′h hbead bead 
by rescaling by the characteristic time τ=ℓ∕vrms (Fig. 5d). This 
scales out any fluctuations in either ℓ or vrms due to experimental 
factors, resulting in a measure of topological entropy that depends 
only on the flow geometry. Surprisingly, the dimensionless entropy 
′hbead is nearly constant with ATP concentration; although the sys-

tem moves faster with increased ATP, the underlying geometric 
complexity of the mixing remains constant. This suggests that the 
dimensionless topological entropy may be a universal quantity for 
the fully turbulent state of active nematics.

For each ATP concentration, we also computed the other mea-
sures of chaos. The two separation-based entropies are in close 
agreement (Supplementary Fig. 5). Figure 5e thus shows just the 

0.016

0.020

0.012

0.008

0.004

0
hbead hbraid λ∇vhdefect

To
po

lo
gi

ca
l e

nt
ro

py
, L

ya
po

no
v

ex
po

ne
nt

 (
s–1

)

Fig. 4 | Comparison of the four measures of chaos at 50 μM ATP 
concentration. The error bars for hbead and hdefect are the s.e.m., when 
averaging over the set of separation rates. The error on hbraid is essentially 
just that of the fit described in Fig. 3. The error on λ∇v is based on the error 
of the PIV analysis, estimated at 5%. See Supplementary Section 5.

3

a b

c d

0.8

1.0

0.6

0.4

0.2

0

2

1

0

100 1.5

1.0

0.5

0

80

60

40

20

0
200 600

h′
be

ad
h 

be
ad

 (
s–1

)

1,000 200 600 1,000

v r
m

s 
(µ

m
 s

–1
)

200 600
[ATP] (µM) [ATP] (µM)

[ATP] (µM) [ATP] (µM)

1,000 200 600 1,000

e 1.5

1.0

0.5

0
100 1,000

h′ h′

To
po

lo
gi

ca
l e

nt
ro

py
, L

ya
po

no
v 

ex
po

ne
nt

[ATP] (µM)

λ’∇v

bead braid

(µ
m

)

Fig. 5 | Non-dimensionalized topological entropy and Lyapunov exponent 
are insensitive to motor activity. a, Average vrms of beads as a function of 
ATP concentration. This relationship follows Michaelis–Menten kinetics 
(solid curve), v = (vmax[ATP])/([ATP] + Km), with fit parameters Km = 120 
(±20) μM and vmax = 3.57 (±0.19) μm s−1. b, Topological entropy computed 
from bead separation as a function of ATP concentration. c, ℓ as a function 
of ATP concentration. d, Dimensionless topological entropy ′hbead versus 
ATP concentration. This was obtained by multiplying the original entropy 
′hbead in b by the characteristic time derived from a and c. e, All four 

dimensionless measures of chaos as a function of ATP concentration. 
Error bars on the dimensionless measures include the errors on the 
characteristic length and velocity, which combine to give an error on the 
timescale Δτ τ Δ Δ= ℓ∕ℓ + ∕ ∕v v[( ) ( ) ]2

rms rms
2 1 2. The error on ′hbead, for example,  

is then ′ ′Δ Δ Δτ τ= ∕ + ∕ ∕h h h h[( ) ( ) ]bead bead bead bead
2 2 1 2.

Nature Physics | VOL 15 | OCTOBER 2019 | 1033–1039 | www.nature.com/naturephysics 1037

http://www.nature.com/naturephysics


Articles NATuRe Physics

bead-separation entropy compared with the other two measures. 
Again, each dimensionless measure varies little with ATP. The aver-
age of the bead entropy is = .′h 0 684bead , with braiding entropy 
somewhat lower at = .′h 0 614braid . As expected, the Lyapunov 
exponent, λ = .′∇ 0 526v , is below all measures of topological 
entropy. There are two main reasons why ′hbraid  may be lower 
than ′hbead . First, the estimate of the finite-size effect of the image 
domain may fail to account for the full complexity of braiding near 
the boundary. Second, the extinct defects that exist before and after 
defect creation and annihilation events are passively advected by the 
PIV velocity field, which has some error in the velocity component 
along the director.

Active fluids have emerged as an exciting frontier in soft-mat-
ter physics, but until now their flows have not been examined in 
detailed experiments from the perspective of chaotic dynamics. 
Using this approach, we have investigated the spontaneous ‘self-
mixing’ of an extensile active nematic.

It is well appreciated that energy injected by molecular motors 
into active nematics at the molecular scale produces large-scale 
flows. Our results support the complementary view that fluid 
stretching is also injected into the flow of an active nematic at the 
molecular scale. This stretching can be quantified by the Lyapunov 
exponent. The fluid flow must respond on the macroscale in a 
manner consistent with this local stretching. Consistency requires 
that the +1/2 defects, which drive the stirring, braid around one 
another in a manner sufficiently complex to produce topological 
entropy greater than the Lyapunov exponent. The number, density 
and speed of the defects are not sufficient, in themselves, to produce 
topological entropy. The braiding pattern is critical. Our data dem-
onstrate that the topological entropy of the moving defects is greater 
than the stretching injected through kinesin-motor-driven filament 
sliding; the excess entropy, that is the difference between topologi-
cal entropy and the Lyapunov exponent, is shown to be quite small, 
reflecting the homogeneity of the fluid motion.

In total, four different chaotic mixing measurements are taken 
across a range of activity levels (tuned through ATP concentration) 
to calculate the topological entropy and Lyapunov exponents. The 
results are consistent across all four techniques. Remarkably, when 
non-dimensionalized, these quantities do not depend significantly 
on ATP concentration. This suggests that the dimensionless topo-
logical entropy and/or Lyapunov exponent of this system may be a 
universal feature of the turbulent state of such systems. It would be 
interesting to probe this hypothesis by varying other parameters, 
such as kinesin density or oil viscosity. It would also be interesting 
to probe the topological entropy as the system evolves across the 
transition from the non-turbulent to the fully turbulent state. For 
example, is the rise in topological entropy sharp or gradual?

Finally, we propose that this microtubule–kinesin system can 
be considered as a chemically driven self-mixing fluid, opening 
the door for a potential new class of non-equilibrium energy-
dissipative solvents.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0600-y.
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Methods
Flow-cell preparation. Flow cells for the experiments are constructed from a 
hydrophilic coverslip and a hydrophobic glass microscope slide as described by 
Sanchez et al.15. This treatment facilitates formation of the oil and water layers 
necessary for sample preparation. The two surfaces are treated differently so 
that we can pass oil and water into the flow cell (Supplementary Fig. 6). First, 
the coverslips are treated with a polyacrylamide brush that allows the surface 
to be hydrophilic and prevent non-specific binding of proteins15. The coverslips 
are washed with soap and hot water, then rinsed with water three times. The 
coverslips are submerged in ethanol, rinsed with water, and submerged in 0.1 M 
NaOH and rinsed with water. Once the coverslips are cleaned, they are placed in a 
solution containing 98.5% ethanol, 1% acetic acid and 0.5% silane-bonding agent 
3-(trimethoxysilyl)propylmethacrylate (Acros Organics) for 15 min. The coverslips 
are rinsed with water before immersion in an acrylamide solution containing 2% 
(w/v%) acrylamide, 35 μl per 100 ml of tetramethylethylenediamine (Bio-Rad) 
and 70 mg per 100 ml of ammonium persulfate. This helps polymerization of the 
polyacrylamide brush on the surface of the coverslips. The coverslips are stored 
in this acrylamide gel. Before immediate use, the coverslips are rinsed with water 
and air-dried. The glass slides are washed with acetone, methanol and ethanol. 
The slides are then treated with Aquapel to create a hydrophobic surface. About 
50 μl of Aquapel glass treatment is dropped onto a glass slide. A second glass slide 
is placed on top perpendicular to the first slide to spread the solution evenly onto 
both surfaces and left to sit for 1 min. The slides are then dried with compressed air, 
rinsed with water and air-dried before use.

Preparation of the 2D active nematic. Microtubule polymerization was carried 
out and kinesin–streptavidin clusters prepared as previously reported by the 
Dogic laboratory15. Biotin-coated 2-μm-diameter silica beads (Nanocs) are diluted 
to 5,000 beads μl−1 in M2B buffer (80 mM PIPES at pH 6.8, 2 mM MgCl2, 1 mM 
EGTA) and bath sonicated for 30 min to 1 h to break up bead aggregates. An 
active premixture containing biotin–kinesin, streptavidin, PEG (poly(ethylene 
glycol)) and PKLDH (an ATP-regenerating system) is prepared as previously 
described by Sanchez et al.15. Two antioxidant mixtures are used along with Trolox 
to avoid photobleaching during the imaging. Antioxidant solution AO1 contains 
150 mg ml−1 glucose and 250 mM dithiothreitol. Antioxidant solution AO2 contains 
10 mg ml−1 glucose oxidase and 1.75 mg ml−1 catalase. The kinesin–streptavidin 
motor clusters (KSA) are made by combining 0.31 mg ml−1 K401 kinesin motors, 
0.18 mg ml−1 streptavidin and 2.2 μg ml−1 dithiothreitol and incubated on ice for 
30 min. This mixture is diluted with M2B in the ratio 1:8.6. A high-salt buffer 
(MIX) is prepared containing 69 mM MgCl2 diluted in M2B. The ATP-regenerating 
system is prepared with 917 units ml−1 pyruvate kinase and 913 units ml−1 lactate 
dehydrogenase in aqueous buffered glycerol solution (PKLDH). The final 
premixture is produced by adding 1.33 μl AO1, 1.33 μl AO2, 1.7 μl PKLDH, 2.9 μl 
MIX, 4 μl KSA, 6 μl 20 mM Trolox, 8 μl 200 mM phosphoenolpyruvate and 8 μl 6% 
(w/v) 20 kD PEG. The premixture is separated into 6.64 μl aliquots. To form the 
active network, we take one aliquot of the premixture and add ATP (50–1,000 μM) 
and fill to 10 μl with M2B. Then 2 μl of 6 mg ml−1 Alexa-647-labelled GMPCPP 
microtubules (~3% labelling) is added to 10 μl of the premixture. The mixture is 
incubated for 5–30 min at room temperature to allow the network to form. The 
network takes longer to form for lower ATP concentrations. Finally, 0.5 μl of 
the silica bead solution is added to the microtubule network and gently tapped 
to mix. A 6 μl volume flow cell is created by first placing strips of double-sided 
tape about 3 mm apart on a hydrophobic Aquapel-treated glass slide. Then, an 
acrylamide-coated coverslip is placed on top to create a channel open at both 
ends (Supplementary Fig. 6). To create the active microtubule layer, we first 
pass an oil–surfactant mixture (HFE7500 with 1.8% (v/v) PFPE–PEG–PFPE 
(perfluoropolyether) surfactant) into the channel. Then we immediately exchange 
the oil–surfactant mixture by introducing the aqueous component containing the 
active microtubule network including the biotin beads. The flow cell is sealed with 
ultraviolet-curable glue (RapidFix). To confine the active network into a quasi-2D 
layer, we place the filled flow cell in a swinging bucket rotor (Sorvall Legend RT+ 
centrifuge, four-place swinging bucket rotor), and spin the material down for 
42 min at 350 r.p.m. This step allows the active fluid to assemble at the oil–water 
interface inside the flow cell.

PIV analysis. PIV analysis was carried out with the MATLAB PIVlab 1.43 
package46, using the default graphical user interface settings. PIVlab uses sequential 
images to calculate a velocity vector field for each frame. We analysed both 
bright-field and fluorescence microscopy videos at every ATP concentration. For 
each experimental run, vrms was computed in the centre of the velocity frame. We 
calculated the average velocity vector in each frame and subtracted it from every 
velocity vector in the frame to obtain the velocity field in the centre of the velocity 

frame. We then calculated the resulting root-mean-squared velocity for each frame, 
and averaged over all frames for the final vrms value.

We also used the PIV velocities to compute the velocity–velocity correlation 
length for each data run, as in refs. 23,45. The velocity autocorrelation function 
was computed as δ=∑ ̂ ⋅ ̂ −C r r rv v( ) ( ),ij i j ij  where the indices i and j range over all 
frames and all grid points within a frame, ̂ = ∕∣ ∣v v vi i i  is the unit velocity vector and 
rij = |ri − rj|, for grid points ri and rj. Numerically, the delta function is approximated 
as a rectangle. The correlation length was taken to be the distance at which C(r) 
decayed to half its value at r = 0.

Imaging and analysis. The active nematic is imaged using a (Leica DMP) 
fluorescence microscope and a QImaging Retiga Exi camera. Fluorescence 
microscopy videos are recorded with a 500 ms exposure time per frame and a 
100 ms time interval between frames. The bright-field microscopy videos of 
the beads are recorded using a 10 ms exposure per frame with 100 ms intervals 
between frames. We used a MATLAB-adapted tracking algorithm to track bead 
trajectories47. The bead attachment was very stable over the timescale of a typical 
experiment. Any unbound beads were easy to distinguish and eliminate from the 
analysis due to their characteristic Brownian motion and tendency to sediment to 
the glass surface when centrifuged. Any bead clusters were also eliminated from 
the analysis. To measure the separation distance between beads with diverging 
trajectories, we used the segmented line tool in ImageJ to measure the nematic 
contour length between beads for each successive frame throughout the video.

Computation of director field and topological defect locations. We wrote 
MATLAB code to compute the director at each grid point using a windowed 
Fourier transform. A Gaussian filter was first applied to the image, centred on the 
selected grid point. The Fourier transform of the filtered image was then applied, 
followed by a second Gaussian filter on the radius in Fourier space. The covariance 
matrix of the resulting distribution in Fourier space was then computed, and the 
director was taken to point along the largest eigenvector.

Topological defects were identified from regions of rapid rotation of the 
director field. Specifically, we identified isolated patches of grid points in the 
image domain in which the change in the director was large (δθ ≥ π/4) between 
neighbouring grid points. The topological charge for each such patch was 
computed from Δθ/(2π), summed along the loop surrounding, but just outside,  
the patch, thereby guaranteeing that δθ < π/4 between successive grid points.

Lyapunov exponent from velocity field. We computed the Lyapunov exponent 
directly from the microtubule velocity field. We used PIV (specifically the 
MATLAB PIVlab package46) to compute the velocity as a function of position 
and time from the fluorescence microscopy video. A local Lyapunov exponent 
can then be computed at each point in space and time as the parallel derivative of 
the parallel component of velocity (parallel with respect to the nematic director) 
(Supplementary Section 5). Averaging over space and time yields λ∇v. (recent 
work17,21,23 has also used the PIV velocity gradient as a system diagnostic to detect 
vortices using the Okubo–Weiss field −det(∇v)). In practice, the PIV analysis 
produces a more reliable component of velocity in the direction perpendicular to 
the nematic director than parallel to it. We thus compute λ∇v = 0.0120 (±0.0006) s−1 
as the average of (minus) the perpendicular derivative of the perpendicular 
component of velocity v. These two averages are equal as long as the system is area 
preserving (on average).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors on reasonable request.

Code availability
The MATLAB code for computing nematic director fields and topological defects is 
available on request from K.A.M. The E-tec code is available in Python from S.A.S. 
(smiths@mtholyoke.edu) on request.
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