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Topological chaos in active nematics
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Active nematics are out-of-equilibrium fluids composed of rod-like subunits, which can generate large-scale, self-driven flows.
We examine a microtubule-kinesin-based active nematic confined to two dimensions, exhibiting chaotic flows with moving
topological defects. Applying tools from chaos theory, we investigate self-driven advection and mixing on different length
scales. Local fluid stretching is quantified by the Lyapunov exponent. Global mixing is quantified by the topological entropy,
calculated from both defect braiding and curve extension rates. We find excellent agreement between these independent mea-
sures of chaos, demonstrating that the extensile stretching between microtubules directly translates into macroscopic braiding
of positive defects. Remarkably, increasing extensile activity (through ATP concentration) does not increase the dimensionless
topological entropy. This study represents an application of chaotic advection to the emerging field of active nematics and
quantification of the collective motion of an ensemble of defects (through topological entropy) in a liquid crystal.

ing from flocks of birds', fish* and insects’ to sheets of

cells** and swarms of bacteria’~. In the laboratory, vari-
ous attempts have been made to develop biomimetic and synthetic
active materials, from self-propelled colloids'®'' and mechanically
agitated flocks'? to dense phases of biopolymers driven by molecu-
lar motors"*~. This is a rich field of research, and so far much theo-
retical work has been dedicated to understanding the fundamental
physics of these fascinating and diverse systems***. Active materi-
als are non-equilibrium systems, and thus they cannot be described
in the framework of conventional thermodynamics. The unify-
ing theme of active matter is that collections of subunits consume
energy locally, translate this energy into movement and ultimately
produce large-scale flows. This large-scale motion can produce rich
emergent structures, including phase boundaries and topological
defects, where local order breaks down.

The central theme of this work is the introduction of concepts
from chaotic advection>”” to the physics of biologically active
fluids. These concepts include topological entropy and Lyapunov
exponents, which are well known measures of chaos in the theory
of chaotic advection but have been thus far largely overlooked in
studies of active matter. Roughly speaking, the Lyapunov exponent
measures the rate at which nearby fluid parcels separate from one
another. The topological entropy, on the other hand, measures the
asymptotic (in time) exponential growth rate in the length of a
material curve as it is stretched within the fluid. We use spatially
(and temporally) averaged local measurements in the fluid to esti-
mate the Lyapunov exponent. To estimate the topological entropy,
we use larger-scale measurements, including the global braiding
motion of topological defects about one another.

In experimental studies of chaotic advection in passive flu-
ids at low Reynolds number?, fluid motion is often driven at the
boundary, either by tangentially sliding the boundary, for example
rotating a cylindrical boundary wall®=*, or by directly stirring the
fluid with inserted rods®***~**. The resulting chaotic flow produces
exponentially stretching material curves. In stirring experiments,
chaos is observed when three or more rods are inserted into the
fluid and moved around one another in a braiding motion®*2-**,
The mathematical braid can be visualized by interpreting time as

N ature provides many examples of active matter, rang-

the vertical dimension. Figure 1a shows an example braid, with the
initial effect of this braid on a line of dye shown schematically in
Fig. 1b. Repeated applications of this stirring pattern generate an
experimental image such as Fig. Ic, taken from ref. *. The over-
all mixing efficiency depends on the stirring pattern, particularly
on the topological braid type of the motion, and can be quantified
by the topological entropy, that is the growth rate of material lines
as fluid elements are stretched apart from each other. One remark-
able mathematical fact is that a given braid type of the rod motion
guarantees a specific minimal amount of topological entropy in the
dynamics; for example, the Fig. la braid generates an entropy of
log[(1++/5)/2] = 0.4812 for each swap of two strands. In fact, any
collection of passively advected orbits in the fluid, not just those
next to the stirring rods, generates a braid type, with an associated
minimal topological entropy; such trajectories have been described
as ‘ghost rods’ in the literature’**. Though the mathematics is more
rigorous when such trajectories are periodic in time, recent work
has generalized the analysis to open, aperiodic trajectories® .

Our experiments use an extensile-active-nematic fluid confined
to a quasi-two-dimensional (2D) layer'>'®'® (Fig. 1d). The fluid
consists of purified microtubules and kinesin-1 molecular motor
proteins (Fig. 2a and Preparation of the 2D active nematic). In bio-
logical cells, these molecules exist in the cytoskeleton, where the
microtubules form highways for the motors. The motor proteins
step stochastically along a microtubule in a net direction defined
by the microtubule’s structural polarity, a process that consumes
energy from the hydrolysis of ATP. This force-generating action is
essential for a variety of cell functions, including organelle trans-
port®, cell division and cytoplasmic streaming.

In our laboratory set-up, microtubules condense into bundles,
cross-linked by clusters of streptavidin-bound kinesin motors
(Fig. 2a and Methods). If two motors in a cluster bind to adjacent
microtubules of opposite polarities, the opposing forces produce a
sliding motion between these microtubules. Thus neighbouring bun-
dles of opposing polarities extend away from each other to generate
local fluid stretching. Under the dense confinement of a 2D oil-water
interface, the bundles enter the nematic phase, with a well defined
director field recording the local bundle orientation (Figs. 1d and 2b).
In the presence of ATP, the bundles continually move, extend,
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Fig. 1] Topological stirring of fluids. a, Braid diagram representing three
rods as they stir a 2D fluid in a pattern known as the golden braid. Time
moves up in the vertical direction. Each strand represents the world line
of one rod. The times denoted (i)-(v) correspond to the schematic in

b. b, The impact of passive stirring generated by the braid in a on an initial
line of dye. As the rods sequentially exchange positions, the dye stretches.
¢, Experimental image of lines of dye stirred by three rods after several
iterations of rod exchanges according to the stirring protocol shown in

a. The rod positions are highlighted in white. d, Fluorescence microscopy
image of the active nematic fluid with topological defects marked.

White circles denote +1/2 defects; a yellow triangle denotes a —1/2 defect.
Panel ¢ adapted from ref. %, Cambridge Univ. Press.

bend, buckle and break'>'', This continual motion advects indi-
vidual tubulin monomers throughout the fluid in a chaotic fashion
(Supplementary Video 1). As a result, pairs of +1/2 and —1/2 topolog-
ical defects (Fig. 1d) in the director field are continuously created and
annihilated. Between their birth and death, topological defects move
around one another in a complicated braiding pattern, as shown in
Fig. 3. (See also Supplementary Video 2.)

The pattern of microtubule bundles surrounding the +1/2
defects (Fig. 1d) strongly resembles the pattern of dye surround-
ing stirring rods (Fig. 1c) in passive advection. The active nematic
fluid described here differs crucially from a conventional passive
fluid in that internal flows and chaotic advection in a passive fluid
must be driven externally. In this report, we show that braiding by
topological defects in the active fluid produces macroscopic chaotic
advection, and thus the defects act as virtual stirring rods. In addi-
tion, we demonstrate that mixing on the macroscale by virtual rods
arises spontaneously as a consequence of the molecular-level slid-
ing action. This relationship is quantified by the topological entropy
and Lyapunov exponent.

One consequence of topological mixing theory is that exponen-
tial stretching cannot exist within the fluid without some non-trivial
braiding of defects, as quantified by the topological entropy. It is
particularly interesting that this self-driven fluid spontaneously
creates a set of defects that must then move in a particular way to
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produce exactly the topological entropy needed to accommodate
the local stretching. This observation sheds new light on previous
studies of defect dynamics. For example, in the numerical work of
Shendruk et al.”?, the authors demonstrated a particular braiding
pattern resembling a ceilidh dance, in which defects braid around
one another in two counter-propagating lines in a channel. In fact,
this particular braid has been studied in the chaotic advection lit-
erature, where it is known as the ‘silver braid™**; interestingly, it has
been proved to be optimal, in that it provides the largest amount
of topological entropy per time step for any linear arrangement
of defects. Thus, if one were to compute the stretching rate for
this flow a priori, one could reasonably conjecture that the ceilidh
dance pattern was topologically mandated to accommodate all the
topological entropy.

We measure both the topological entropy and the Lyapunov
exponent of the active flow; we measure the topological entropy
using three distinct methods, designed to probe the system across
different length scales. The Lyapunov exponent is obtained from the
velocity-gradient tensor field, itself computed from particle image
velocimetry (PIV) using fluorescence microscopy images of the
microtubule bundles. The topological entropy is measured directly
using beads attached to the microtubules. As two beads pass and
separate after a close approach, the exponential growth rate of the
nematic contour connecting them is measured. Alternatively, the
same measurement is made using the separation of neighbour-
ing topological defects. The third independent measurement of
the topological entropy derives from the braiding motion of the
topological defects about one another. We find that the positive
topological defects act as virtual stirring rods, generating all of the
topological entropy from their braiding motion; negative topologi-
cal defects add very little, if any, additional entropy. The three mea-
sures of topological entropy are consistent with one another, which
is remarkable given that braiding is a manifestly global and topo-
logical technique, independent of geometric details, whereas the
stretching techniques depend inherently on length measurements.
Furthermore, the topological entropy is slightly larger than the
Lyapunov exponent, reflecting a fundamental theorem in 2D cha-
otic dynamics*'. Measurements are repeated at progressively higher
ATP concentrations. Increasing the ATP concentration raises the
system activity, increasing the overall fluid speed. The Lyapunov
exponent and topological entropy generally also increase with
increasing fluid speed. We non-dimensionalize these quantities to
isolate the purely topological effects on mixing efficiency when we
increase system activity. Across all methods we obtain a fascinat-
ing result: the dimensionless Lyapunov exponent and dimension-
less topological entropy are constant with ATP concentration. This
result suggests that these dimensionless quantities may be universal
features of the fully developed ‘turbulent’ state of the active nematic.

Topological entropy from bead and defect separations
We first describe the measurement of separation rate in the nematic
contour joining two beads. Biotin-coated silica beads of 2 pm diam-
eter were bound to the microtubule bundles through free binding
sites on the streptavidin molecules that form the kinesin clusters
(Fig. 2a and Methods). This approach differs fundamentally from
recent work on a similar system in which beads were passivated to
avoid microtubule attachment, thus acting as passive tracers for the
surrounding aqueous flow'>'®. In contrast, bound beads track the
microtubule network itself. The beads move within the nematic
plane, where they are imaged with bright-field optical microscopy
(Fig. 2c and Supplementary Video 3). Bead trajectories directly map
the motion of microtubule segments throughout the system, includ-
ing through bundle fracture and annealing.

After bead trajectories were extracted from a bright-field
microscopy video, they were searched for close approaches of bead
pairs (within 2-10 pm of each other). Following a close approach,
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Fig. 2 | Measurement of separation rates in the active fluid. a, Schematic showing elements of the microtubule network, consisting of microtubules cross-
linked by kinesin clusters. The microtubule bundles of opposite polarities extend away from each other as the kinesin motors walk. Biotin-coated silica
beads are used to bind onto free streptavidin-binding sites in kinesin clusters to attach onto the microtubule network. b, Fluorescence microscopy image
of microtubule network in two dimensions at an oil-water interface with marked topological defects. White circles are +1/2 defects and yellow triangles
are —1/2 defects. Scale bar, 100 pm. ¢, Bright-field microscopy image of beads attached to the microtubule network. Beads are numbered automatically

for tracking. Scale bar, 50 um. d, Bright-field microscopy time lapse showing contour length growth between two beads moving away from each other at
50 uM ATP concentration. Scale bar, 30 um. e, Semi-log plot of contour length, d (pm), as a function of time for the bead pair shown in d with times (i)-(iv)
marked by arrows. We make a linear fit with slope r. f, Time-lapse fluorescence microscopy images tracking the separation of a +1/2 defect (white) and
—1/2 defect (yellow), shown by the cyan curve. Scale bars, 100 pm. g, Semi-log plot of defect separation distance d (um) as a function of time for a defect
pair. A linear fit with slope r was made after the transient rise. The marked times (i)-(iv) correspond to the images in f.

the pair of beads moves apart, with a nematic contour, that is an
integral curve of the nematic director field, stretching between
them. Physically, the nematic contour represents the microtubule
bundles connecting the beads; it grows and bends with the fluid as
the bundles extend. For each image frame, the nematic contour was
manually traced (Fig. 2d and Supplementary Video 4). The slope of
the natural log of the separation contour length versus time yields
the separation rate r (Fig. 2e). The result shows clear exponential
growth over nearly an order of magnitude in contour length. A total
of nine pairs of beads were analysed (Supplementary Fig. 1). r is
remarkably similar across bead pairs, with mean (r)=0.0143s"!
and s.d. 6=0.0016s"" (Supplementary Fig. 2). To estimate the
topological entropy, we perform a weighted average as discussed in
Supplementary Section 1, resulting in k.., =0.0145 (+0.0001) s™".
In a second approach, we measured the separation rate between
topological defects, instead of beads. Pairs of nearby +1/2 and
—1/2 defects were identified in fluorescence microscopy videos.
Fluorescence microscopy enhances the microtubule structure while
eliminating the non-fluorescent beads (Supplementary Video 1).
We then identified the nematic contour between the defects as a
function of time (Fig. 2f) (Supplementary Section 2). This contour
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length increased exponentially (Fig. 2g), yielding the exponential r.
A total of 10 defect pairs were analysed, resulting in h . =0.0142
(£0.0002) s7! (Supplementary Fig. 3). Results from defect and bead
separations are remarkably consistent, implying that the separa-
tion rate between defects is a good proxy for the growth of material
curves anywhere in the fluid.

Topological entropy from defect braiding

Whereas the first two computations of topological entropy used
the growth in Euclidean contour length, our third approach is
purely topological and independent of the first two. This approach
views the topological defects as stirring rods, and computes the
topological entropy by the braiding pattern of these rods around
one another (Fig. 3a). As such, the method is insensitive to the
exact positions of the defects. However, the original defect tra-
jectories must be extended to exist for all times, as described in
Supplementary Section 3.

We use the recently developed E-tec algorithm® to extract topo-
logical entropy from defect trajectories. This algorithm uses a com-
putational geometry approach to propagate an initial piecewise
linear elastic mesh (Fig. 3b) forward in time. As trajectories evolve,
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Fig. 3 | E-tec computation of topological entropy. a, A sampling of positive defect trajectories braiding around one another. b, Initial mesh between
defects inside the black bounding box. Filled circles are actual defects. Open circles are 'extinct’ defect trajectories, as discussed in Supplementary
Material. ¢, Final stretched mesh and defect positions. The intensities of the red segments indicate their weights. d, Plot showing topological entropy,

h, calculated using the E-tec algorithm for positive defects only, 0.01043 (+0.00080) s, negative defects only, 0.00626 (+0.00032) s, and all defects,
0.01045 (£0.00053) s7". Errors on the E-tec growth rates were computed as the difference in the slopes fitted over two distinct time intervals: interval

215-537s and interval 322-537s.

the mesh is stretched and folded over itself, creating an exponen-
tially growing number of line segments. Figure 3c shows the final
stretched mesh and Fig. 3d shows the growth in the number of seg-
ments as the fluid is ‘stirred’ by the defects. The exponential growth
rate is the topological entropy generated by the stirring rods, which
in general is only a lower bound to the true topological entropy of
the fluid. In Navier-Stokes simulations of stirring a 2D fluid, there
can be significantly more entropy than predicted by the motion of
the rods.

In principle, any ensemble of trajectories passively advected in
the fluid can be viewed as virtual stirring rods, and the correspond-
ing topological entropy computed using E-tec. Again, such ensem-
bles typically provide only a lower bound on the true entropy of the
flow—the greater the number of trajectories included, the greater
the lower bound. In some special cases, a small number of specifi-
cally chosen trajectories generate all of the topological entropy™.

Figure 3d shows three results, corresponding to stirring by just
the +1/2 defects, by just the —1/2 defects and by both 4+1/2 and —1/2
defects. The entropy from the +1/2 defects, 0.01043 (+0.00080)s™",
is significantly larger than that of the —1/2 defects, 0.00626
(+0.00032) 5. Most remarkable, however, is that the entropy from
all the defects, 0.01045 (+0.00053)s7}, is essentially the same as
from just the positive defects. The negative defects introduce no
additional stretching. This is a surprisingly strong result, and shows
that the positive defects are the special points for generating topo-
logical mixing and that they alone can account for all the topological
entropy in the fluid.
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Finally, the E-tec computation must be corrected for the finite
size of the image domain. This correction is estimated by the escape
rate of trajectories (Supplementary Section 4), which is computed
from the bead data to be 0.00291 (+0.00003) s™'. Adding this to the
E-tec result yields a final entropy h,,,;q=0.0133 (+0.0008) s™".

The fact that the separation-rate and braiding methods agree
so well is by no means trivial or expected. Several assumptions
are needed to justify why either of these methods should yield
the true topological entropy (Supplementary Sections 1 and 4).
Such assumptions are only verified through an analysis of the
experimental data. Thus, the agreement of these two measures is
a significant experimental finding. For example, solid-state topo-
logically ordered systems may have defect translation without any
stretching or motion of the underlying material. In the microtu-
bule active nematic system, the strong coupling between motion
of the microtubules themselves and motion of the defects is nec-
essary to see the agreement reported here. (This coupling only
breaks down near the creation and annihilation of defect pairs;
Supplementary Fig. le,f.)

Finally, we computed the Lyapunov exponent directly from the
microtubule velocity field as 1y,=0.0120 (+0.0006)s™" (Lyapunov
exponent from velocity field). Figure 4 shows all four measures
of chaos at 50pM ATP concentration. The Lyapunov exponent is
slightly less than the three measurements of topological entropy.
This is consistent with a general result from dynamical systems the-
ory, which states that the topological entropy is always greater than
or equal to the metric entropy (also known as the measure-theoretic
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Fig. 4 | Comparison of the four measures of chaos at 50 pM ATP
concentration. The error bars for h,,4 and hy... are the s.e.m., when
averaging over the set of separation rates. The error on h,,4 is essentially
just that of the fit described in Fig. 3. The error on Ayv is based on the error

of the PIV analysis, estimated at 5%. See Supplementary Section 5.

or Kolomogorov-Sinai entropy)*. In 2D area-preserving flows, the
metric entropy is equal to the positive Lyapunov exponent, imply-
ing the relative ordering seen in Fig. 4. The fact that the Lyapunov
exponent is only slightly less than the topological entropy reflects
the statistical homogeneity of the active nematic flow. If the local
Lyapunov exponent were constant in space and time, the topologi-
cal entropy would be exactly equal to the Lyapunov exponent.

Variation of ATP concentration

To investigate the effects of increasing activity on chaotic advection,
we ran a series of experiments at different ATP concentrations (50—
1,000 uM). Because ATP concentration controls the kinesin step-
rate at the molecular level, we expect the topological entropy and
Lyapunov exponent to increase with increasing ATP concentration.

When single microtubules glide on a kinesin-decorated glass
surface, their gliding velocity as a function of ATP concentration is
generally well described on a local level by Michaelis-Menten kinet-
ics*~*. Similarly, we observed that the average root-mean-squared
velocity v,,,, (see ‘PIV analysis’) for our attached beads also follows
Michaelis-Menten kinetics under ATP variation (Fig. 5a).

Henkin et al. used passive unattached tracers to measure the aver-
age bead speed in a similar, three-dimensional microtubule network
as a function of ATP concentration (0.5-3 mM)'®; they observed a
monotonic increase to 2pms™! at saturation. Our attached-bead
method, however, contains richer and more direct information on
the motion of the microtubules themselves.

We calculated topological entropy hy,,q for bead pairs at differ-
ent ATP concentrations (50-1,000 M) (Fig. 5b). Separation rates
were measured for about 10 bead pairs at each concentration. (See
raw data in Supplementary Fig. 2.) Though Fig. 5b shows a general
upward trend, it is not strictly monotonic. For context, we consider
the relevant physical scales. An inverse-time scale 7! for h,,4 can be
obtained by combining the characteristic velocity v,,, with a char-
acteristic length #. Following refs. 2>**, we chose £ to be the length
at which the velocity-velocity correlation function, computed from
PIV velocities, decays to half its maximum value (Fig. 5¢) (PIV
velocity analysis). £ varies only modestly with ATP concentration,
consistent with the work of Lemma et al.** for ATP concentrations
larger than 10 pM. References **** establish that # arises from bal-
ancing the elastic bend energy of the microtubule bundles with
motor activity. Thus, if only the activity were increased, £ should
decrease, and indeed, except for the 250 pM data, our results are
consistent with a small downward trend. The outlier at 250 uM ATP
concentration could be understood in terms of a slight change in
the microtubule lengths, which would affect the correlation length.
Microtubule bundle length is very sensitive to sample preparation,
such as pipette shearing.

NATURE PHYSICS | VOL 15 | OCTOBER 2019 | 1033-1039 | www.nature.com/naturephysics

a b
1.0
— 0.8 ¢
- =
@ ‘v 0.6 L
g 3
é < 0.4 .
0.2 .o‘
. . 0
200 600 1,000 200 600 1,000
[ATP] (uM) [ATP] (uM)
€ 100 d s
80
= 60 . 1.0 ;
= " ‘ 2 ¢
~ 40 kS
. * 0.5 % ¢
20
0 0
200 600 1,000 200 600 1,000
[ATP] (uM) [ATP] (uM)
€ 15
c
[
c
o
Q
3
>
2 10t
o
g
g } ¢
=
oy PS T
o (_) )
5 o5l Y Y v ? v
g
g
g ® oo ¢ Praia
O 3
= v Ay
0 . .
100 1,000
[ATP] (uM)

Fig. 5 | Non-dimensionalized topological entropy and Lyapunov exponent
are insensitive to motor activity. a, Average v, of beads as a function of
ATP concentration. This relationship follows Michaelis-Menten kinetics
(solid curve), v= (v, [ATPD/([ATPI1+K.), with fit parameters K, =120
(+£20) pM and v,,,,,=3.57 (£0.19) pm s~ b, Topological entropy computed
from bead separation as a function of ATP concentration. ¢, £ as a function
of ATP concentration. d, Dimensionless topological entropy hy.,4 versus
ATP concentration. This was obtained by multiplying the original entropy
hieaq in b by the characteristic time derived from a and c. e, All four
dimensionless measures of chaos as a function of ATP concentration.
Error bars on the dimensionless measures include the errors on the
characteristic length and velocity, which combine to give an error on the
timescale Ar=1[(Ae2)? + (Av.. A )21 The error on hieaq: for example,

rms” rms

is then AR ..y = M eadl(AhyeoaMpead)” + (AT /2T,

We obtain the dimensionless topological entropy hy,q = thpe.q
by rescaling by the characteristic time z=¢/v,  (Fig. 5d). This
scales out any fluctuations in either £ or v,,,, due to experimental
factors, resulting in a measure of topological entropy that depends
only on the flow geometry. Surprisingly, the dimensionless entropy
iy eaq is nearly constant with ATP concentration; although the sys-
tem moves faster with increased ATP, the underlying geometric
complexity of the mixing remains constant. This suggests that the
dimensionless topological entropy may be a universal quantity for
the fully turbulent state of active nematics.

For each ATP concentration, we also computed the other mea-
sures of chaos. The two separation-based entropies are in close
agreement (Supplementary Fig. 5). Figure 5e thus shows just the
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bead-separation entropy compared with the other two measures.
Again, each dimensionless measure varies little with ATP. The aver-
age of the bead entropy is (hy.4) =0.684, with braiding entropy
somewhat lower at (k) =0.614. As expected, the Lyapunov
exponent, (l¢,)=0.526, is below all measures of topological
entropy. There are two main reasons why (h; ;) may be lower
than (h},,4). First, the estimate of the finite-size effect of the image
domain may fail to account for the full complexity of braiding near
the boundary. Second, the extinct defects that exist before and after
defect creation and annihilation events are passively advected by the
PIV velocity field, which has some error in the velocity component
along the director.

Active fluids have emerged as an exciting frontier in soft-mat-
ter physics, but until now their flows have not been examined in
detailed experiments from the perspective of chaotic dynamics.
Using this approach, we have investigated the spontaneous ‘self-
mixing’ of an extensile active nematic.

It is well appreciated that energy injected by molecular motors
into active nematics at the molecular scale produces large-scale
flows. Our results support the complementary view that fluid
stretching is also injected into the flow of an active nematic at the
molecular scale. This stretching can be quantified by the Lyapunov
exponent. The fluid flow must respond on the macroscale in a
manner consistent with this local stretching. Consistency requires
that the +1/2 defects, which drive the stirring, braid around one
another in a manner sufficiently complex to produce topological
entropy greater than the Lyapunov exponent. The number, density
and speed of the defects are not sufficient, in themselves, to produce
topological entropy. The braiding pattern is critical. Our data dem-
onstrate that the topological entropy of the moving defects is greater
than the stretching injected through kinesin-motor-driven filament
sliding; the excess entropy, that is the difference between topologi-
cal entropy and the Lyapunov exponent, is shown to be quite small,
reflecting the homogeneity of the fluid motion.

In total, four different chaotic mixing measurements are taken
across a range of activity levels (tuned through ATP concentration)
to calculate the topological entropy and Lyapunov exponents. The
results are consistent across all four techniques. Remarkably, when
non-dimensionalized, these quantities do not depend significantly
on ATP concentration. This suggests that the dimensionless topo-
logical entropy and/or Lyapunov exponent of this system may be a
universal feature of the turbulent state of such systems. It would be
interesting to probe this hypothesis by varying other parameters,
such as kinesin density or oil viscosity. It would also be interesting
to probe the topological entropy as the system evolves across the
transition from the non-turbulent to the fully turbulent state. For
example, is the rise in topological entropy sharp or gradual?

Finally, we propose that this microtubule-kinesin system can
be considered as a chemically driven self-mixing fluid, opening
the door for a potential new class of non-equilibrium energy-
dissipative solvents.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, statements of code and data availability and
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Methods

Flow-cell preparation. Flow cells for the experiments are constructed from a
hydrophilic coverslip and a hydrophobic glass microscope slide as described by
Sanchez et al.””. This treatment facilitates formation of the oil and water layers
necessary for sample preparation. The two surfaces are treated differently so

that we can pass oil and water into the flow cell (Supplementary Fig. 6). First,

the coverslips are treated with a polyacrylamide brush that allows the surface

to be hydrophilic and prevent non-specific binding of proteins'®. The coverslips
are washed with soap and hot water, then rinsed with water three times. The
coverslips are submerged in ethanol, rinsed with water, and submerged in 0.1 M
NaOH and rinsed with water. Once the coverslips are cleaned, they are placed in a
solution containing 98.5% ethanol, 1% acetic acid and 0.5% silane-bonding agent
3-(trimethoxysilyl) propylmethacrylate (Acros Organics) for 15min. The coverslips
are rinsed with water before immersion in an acrylamide solution containing 2%
(w/v%) acrylamide, 35 pl per 100 ml of tetramethylethylenediamine (Bio-Rad)
and 70 mg per 100 ml of ammonium persulfate. This helps polymerization of the
polyacrylamide brush on the surface of the coverslips. The coverslips are stored

in this acrylamide gel. Before immediate use, the coverslips are rinsed with water
and air-dried. The glass slides are washed with acetone, methanol and ethanol.
The slides are then treated with Aquapel to create a hydrophobic surface. About
50 pl of Aquapel glass treatment is dropped onto a glass slide. A second glass slide
is placed on top perpendicular to the first slide to spread the solution evenly onto
both surfaces and left to sit for 1 min. The slides are then dried with compressed air,
rinsed with water and air-dried before use.

Preparation of the 2D active nematic. Microtubule polymerization was carried
out and kinesin-streptavidin clusters prepared as previously reported by the
Dogic laboratory'. Biotin-coated 2-pm-diameter silica beads (Nanocs) are diluted
to 5,000 beads pl~" in M2B buffer (80 mM PIPES at pH 6.8, 2mM MgCl,, 1 mM
EGTA) and bath sonicated for 30 min to 1h to break up bead aggregates. An
active premixture containing biotin-kinesin, streptavidin, PEG (poly(ethylene
glycol)) and PKLDH (an ATP-regenerating system) is prepared as previously
described by Sanchez et al.””. Two antioxidant mixtures are used along with Trolox
to avoid photobleaching during the imaging. Antioxidant solution AO1 contains
150 mgml™ glucose and 250 mM dithiothreitol. Antioxidant solution AO2 contains
10mgml™ glucose oxidase and 1.75 mgml~" catalase. The kinesin-streptavidin
motor clusters (KSA) are made by combining 0.31 mgml~' K401 kinesin motors,
0.18 mgml streptavidin and 2.2 pgml™" dithiothreitol and incubated on ice for
30min. This mixture is diluted with M2B in the ratio 1:8.6. A high-salt buffer
(MIX) is prepared containing 69 mM MgCl, diluted in M2B. The ATP-regenerating
system is prepared with 917 units ml™' pyruvate kinase and 913 units ml™ lactate
dehydrogenase in aqueous buffered glycerol solution (PKLDH). The final
premixture is produced by adding 1.33 ul AO1, 1.33 ul AO2, 1.7 ul PKLDH, 2.9 pl
MIX, 4 pl KSA, 6 pul 20 mM Trolox, 8 pl 200 mM phosphoenolpyruvate and 8 pl 6%
(w/v) 20kD PEG. The premixture is separated into 6.64 pl aliquots. To form the
active network, we take one aliquot of the premixture and add ATP (50-1,000 pM)
and fill to 10 pl with M2B. Then 2 pl of 6 mgml™" Alexa-647-labelled GMPCPP
microtubules (~3% labelling) is added to 10 pl of the premixture. The mixture is
incubated for 5-30 min at room temperature to allow the network to form. The
network takes longer to form for lower ATP concentrations. Finally, 0.5 pl of

the silica bead solution is added to the microtubule network and gently tapped

to mix. A 6 pl volume flow cell is created by first placing strips of double-sided
tape about 3 mm apart on a hydrophobic Aquapel-treated glass slide. Then, an
acrylamide-coated coverslip is placed on top to create a channel open at both

ends (Supplementary Fig. 6). To create the active microtubule layer, we first

pass an oil-surfactant mixture (HFE7500 with 1.8% (v/v) PFPE-PEG-PFPE
(perfluoropolyether) surfactant) into the channel. Then we immediately exchange
the oil-surfactant mixture by introducing the aqueous component containing the
active microtubule network including the biotin beads. The flow cell is sealed with
ultraviolet-curable glue (RapidFix). To confine the active network into a quasi-2D
layer, we place the filled flow cell in a swinging bucket rotor (Sorvall Legend RT+
centrifuge, four-place swinging bucket rotor), and spin the material down for
42min at 350 r.p.m. This step allows the active fluid to assemble at the oil-water
interface inside the flow cell.

PIV analysis. PIV analysis was carried out with the MATLAB PIVlab 1.43
package®, using the default graphical user interface settings. PIV]ab uses sequential
images to calculate a velocity vector field for each frame. We analysed both
bright-field and fluorescence microscopy videos at every ATP concentration. For
each experimental run, v,,,, was computed in the centre of the velocity frame. We
calculated the average velocity vector in each frame and subtracted it from every
velocity vector in the frame to obtain the velocity field in the centre of the velocity

frame. We then calculated the resulting root-mean-squared velocity for each frame,
and averaged over all frames for the final v, value.

We also used the PIV velocities to compute the velocity-velocity correlation
length for each data run, as in refs. **°. The velocity autocorrelation function
was computed as C(r) = ¥ ¥ ¥6(r—r;), where the indices / and j range over all
frames and all grid points within a frame, ¥,=v,/|v] is the unit velocity vector and
r;=r,— )|, for grid points r, and r;. Numerically, the delta function is approximated
as a rectangle. The correlation length was taken to be the distance at which C(r)
decayed to half its value at r=0.

Imaging and analysis. The active nematic is imaged using a (Leica DMP)
fluorescence microscope and a QImaging Retiga Exi camera. Fluorescence
microscopy videos are recorded with a 500 ms exposure time per frame and a
100 ms time interval between frames. The bright-field microscopy videos of

the beads are recorded using a 10 ms exposure per frame with 100 ms intervals
between frames. We used a MATLAB-adapted tracking algorithm to track bead
trajectories””. The bead attachment was very stable over the timescale of a typical
experiment. Any unbound beads were easy to distinguish and eliminate from the
analysis due to their characteristic Brownian motion and tendency to sediment to
the glass surface when centrifuged. Any bead clusters were also eliminated from
the analysis. To measure the separation distance between beads with diverging
trajectories, we used the segmented line tool in ImageJ to measure the nematic
contour length between beads for each successive frame throughout the video.

Computation of director field and topological defect locations. We wrote
MATLAB code to compute the director at each grid point using a windowed
Fourier transform. A Gaussian filter was first applied to the image, centred on the
selected grid point. The Fourier transform of the filtered image was then applied,
followed by a second Gaussian filter on the radius in Fourier space. The covariance
matrix of the resulting distribution in Fourier space was then computed, and the
director was taken to point along the largest eigenvector.

Topological defects were identified from regions of rapid rotation of the
director field. Specifically, we identified isolated patches of grid points in the
image domain in which the change in the director was large (60 > 7/4) between
neighbouring grid points. The topological charge for each such patch was
computed from A6/(27), summed along the loop surrounding, but just outside,
the patch, thereby guaranteeing that 66 < z/4 between successive grid points.

Lyapunov exponent from velocity field. We computed the Lyapunov exponent
directly from the microtubule velocity field. We used PIV (specifically the
MATLAB PIVlab package™) to compute the velocity as a function of position

and time from the fluorescence microscopy video. A local Lyapunov exponent

can then be computed at each point in space and time as the parallel derivative of
the parallel component of velocity (parallel with respect to the nematic director)
(Supplementary Section 5). Averaging over space and time yields Ay,. (recent
work'”?"* has also used the PIV velocity gradient as a system diagnostic to detect
vortices using the Okubo—Weiss field —det(Vv)). In practice, the PIV analysis
produces a more reliable component of velocity in the direction perpendicular to
the nematic director than parallel to it. We thus compute 1y, =0.0120 (+0.0006) s!
as the average of (minus) the perpendicular derivative of the perpendicular
component of velocity v. These two averages are equal as long as the system is area
preserving (on average).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding authors on reasonable request.

Code availability

The MATLAB code for computing nematic director fields and topological defects is
available on request from K.A.M. The E-tec code is available in Python from S.A.S.
(smiths@mtholyoke.edu) on request.
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Sample size For bead pair stretching n varied between 5 and 10 (See Supplementary figure 1) For defect stretching n varied between 10 and 11 (see
Supplementary figure 2) where every measurement is recorded for different ATP values. Comparing these results to the standard deviation
we determined that the number of data points was sufficient (s.d. also show in SI Figs 1 and2).

Data exclusions  All bead separations and defect separations collected for each active nematic sample are included in the paper and detailed in the SI.

Replication The measurements of topological entropy as calculated from bead stretching and defect stretching were very reproduceable (See Sl Figs 1
and 2) with minimal outliers.
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Randomization  Thisis not relevant to our study. The active matter systems were prepared in the lab for study under different experimental conditions and
directly studied using our experimental and computational techniques. No allocation of groups is used.

Blinding This is not relevant to our work since there are no experimental groups.
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