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engineering or centrifugal processes, as well as to the less traditional applications of the porous 44 
medium approach. 45 

The fundamental equations and assumptions applicable to single-phase convective heat 46 
transfer were presented by Dagan [8], Acharya [9]. A review of the effects of rotation on heat 47 
transfer in general was presented by Wiesche [10].  48 

Reviews of the fundamentals of flow and heat transfer in rotating porous media were 49 
presented by Vadasz [2, 3, 4, 11, 12, 13, 14, 15].  50 

No reported results were found on isothermal flow in rotating porous media prior to 1994. 51 
Research of a pioneering nature on natural convection in rotating porous media were reported by 52 
Rudraiah et al [16], Patil and Vaydianathan [17], Jou and Liaw [18, 19], and Palm and Tyvand [20]. 53 
Nield [21] found that the effect of rotation on convection in a porous medium attracted limited 54 
interest in a comprehensive review of the stability of convective flows in porous media. 55 

The fact that isothermal flow in homogeneous porous media following Darcy law is 56 
irrotational and hence the effect of rotation on this flow is insignificant contributed to the limited 57 
interest for this type of flow. However, for natural convection in a non-isothermal homogeneous 58 
porous medium or for a heterogeneous medium with spatially dependent permeability the flow is 59 
not irrotational anymore, and therefore the effects of rotation become significant. More recent 60 
interest in this type flow, during the past three decades, led to an increased number of publications. 61 
For example, Nield [22], Auriault et al [23, 24], Govender [25, 26], Havstad and Vadasz [27], Vadasz 62 
and Havstad [28], Govender and Vadasz [29, 30, 31, 32], Vadasz [2, 3, 4, 11, 12, 13, 14, 15, 33, 34, 35, 63 
36, 37, 38, 39, 40, 41, 42], Vadasz and Govender [43, 44], Vadasz and Heerah [45], Vadasz and Olek 64 
[46], Bhadauria [47], Malashetty, Pop, Heera [48], Vanishree and Siddheshwar [49], Agarwal et al 65 
[50], Bhadauria et al [51], Agarwall and Bhadauria [52], Malashetty et al [53], Malashetty and 66 
Swamy [54], Rana and Agarwal [55], Yadav et al [56], Rashidi et al [57], Makinde et al [58], 67 
Straughan [59], Lombardo and Mulone [60], Falsaperla, Mulone and Straughan [61, 62], Falsaperla, 68 
Giacobbe and Mulone [63], Capone and De Luca [64], Capone and Rionero [65], Capone and De 69 
Luca [66]. 70 

 71 

2. Governing Equations 72 
The equations governing the flow and heat transfer in rotating porous media are presented in a 73 

dimensionless form subject to the assumptions of constant angular velocity of rotation, Boussinesq 74 
approximation (Boussinesq [67]), and local thermal equilibrium (LTE or Lotheq). The latter implies 75 
that the difference in the local temperature between the solid and fluid phases in the porous 76 
medium is insignificantly small and can be neglected. Boussinesq approximation [67] applicable to 77 
buoyancy flows states that the density id constant in all terms of the governing equations except the 78 
buoyancy terms in the momentum equation. The notation being used refers to symbols having an 79 
asterisk as dimensional, while symbols without an asterisk represent dimensionless quantities, 80 
except symbols carrying the subscript “c” representing characteristic values, or the subscript “o” 81 
representing reference values, both being dimensional. The continuity equation is presented in the 82 
form 83 
 ∇ iV = 0  (1) 84 
where  V = u êx + v êy + w êz  is the filtration velocity vector presented in Cartesian coordinates, 85 

 u,v, w  are the components of the the filtration velocity vector in the x, y, z  directions, 86 
respectively, and êx , êy , êz  are unit vectors in the x, y, z  directions, respectively. The operator  ∇ i  87 
is the divergence operator defined in the form  ∇i ≡ êx ∂( ) ∂ x + êy ∂( ) ∂ y + êz ∂( ) ∂ x[ ] i .  88 

The momentum transport in porous media is governed primarily by the Darcy law, which is 89 
presented in the rotating frame of reference of the solid matrix in the following dimensionless form 90 

 
V =−Np∇p+ Fr ρ êg −Cn ρ êω × êω ×X( )−

ρ

EkΔ

êω ×V  (2) 91 
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where four dimensionless groups emerged, i.e. a pressure number Np  (equivalent to a porous 92 
media Euler number where µ*lc K*  replaces ρouc ), a porous media Froude number Fr , a 93 
centrifugal number Cn , and a porous media Ekman number EkΔ  defined in the form 94 

Np =
K*Δpc
µ*uclc

 , Fr =
g*K*

ν*uc

 , 
 
Cn =

K*ω *

2lc
ν*uc

 , 
 
EkΔ =

φν*

2ω *K*

  (3) 95 

and where K*  and φ  are the permeability and the porosity of the porous matrix, respectively, µ*  96 
is the dynamic viscosity, ρo  is a constant reference value of the fluid density used to convert the 97 
density into a dimensionless form, ν* = µ* ρo  is the kinematic viscosity of the fluid, ω *  is the 98 
constant angular velocity of rotation, p  and ρ  are the dimensionless pressure and density, 99 
respectively, êg  is a unit vector in the direction of the gravity acceleration, êω  is a unit vector in 100 
the direction of the angular velocity of roation, and X = x êx + y êy + z êz  is the position vector 101 
measured from the axis of rotation. Also lc ,uc , pc  are constant dimensional characteristic values of 102 
length, filtration velocity, and pressure, respectively, used to convert the space variables, the 103 
filtration velocity, and the pressure into dimensionless forms. The gradient operator in equation (2) 104 
is defined in the form ∇ ≡ êx ∂( ) ∂ x + êy ∂( ) ∂ y + êz ∂( ) ∂ x[ ] .  105 
The third term in the brackets in equation (2) represents the centrifugal force while the fourth term 106 
represents the Coriolis acceleration.  107 

When fast transients or high frequency effects are of interest there is another extension to the 108 
Darcy equation that is applicable. Then, the time resolution obtained by assuming a very fast 109 
reaction of Darcy flow to changes and therefore the quasi-steady approximation which is inherent 110 
in the formulation of the Darcy law is not sufficient and a time derivative of the filtration velocity 111 
needs to be incorporated leading to the following dimensionless form of the extended Darcy 112 
equation in a rotating frame of reference 113 

 

DaReM f

φ
ρ
∂ V  

∂ t  
+V =−Np∇p+ Fr ρ êg −Cn ρ êω × êω ×X( )−

ρ

EkΔ

êω ×V   (4) 114 

where the additional dimensionless groups that emerged are the Darcy number Da , and the 115 
Reynolds number Re  116 

Da =
K*

lc
2

 , Re =
uclc
ν*

  (5) 117 

and M f  is a ratio of heat capacities that its the definition will follow later. The corresponding 118 
length scale is a macro-level length scale, not the pore-size, despite the fact that it is the porous 119 
media filtration velocity that emerged in the definition of the Reynolds number. However the 120 
Reynolds number appears in equation (4) in a product combination with the Darcy number, 121 
bringing therefore the pore-scale effects into account too.  122 

Following the definition of the dimensionless temperature in the form 123 

T =
T* − To( )
ΔTc

 (6) 124 

where T*  is the dimensional temperature, To  is a reference value of temperature, and ΔTc  is a 125 
characteristic temperature difference, the dimensionless form of the energy equation subject to local 126 
thermal equilibrium (LTE or Lotheq) is presented in the form 127 
∂T

∂ t
+ V ⋅∇T =

1

Pe
∇2T   (7) 128 

where Peclet number emerged as an additional dimensionless group, defined in the form 129 

Pe =
uclc
α e*

= Pr Re   (8) 130 

where the porous media Prandtl number Pr  is defined by 131 
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Pr =
ν*

α e*

  (9) 132 

The effective thermal diffusivity of the porous medium appearing in (8) and (9) is defined as 133 
 !α e* = ke* γ e*  and M f = γ f * γ e*  is the heat capacity ratio, i.e. the ratio between the effective heat 134 
capacity of the fluid phase and the effective heat capacity of the porous medium, where  135 
γ e* = γ s* + γ f * , ke* = ks* + k f *  are the effective heat capacity and effective thermal conductivity of the 136 
porous medium and subscripts “s” and “f” refer to the solid and fluid phases, respectively. Then 137 
the adjusted effective thermal diffusivity is defined as follows  α e* = !α e* M f = ke* γ f * . 138 

To complete the governing equations one needs a relationship between the density, 139 
temperature and pressure (and solute concentration when the fluid is a solution of soluble 140 
substances, e.g. salt in water, alcohol in water, etc., in which case an additional species equation 141 
needs to be added to). A linear approximation for this relationship is usually sufficiently accurate if 142 
the temperature and pressure differences are no excessively high. The dimensionless form of the 143 
linear approximation of the equation of state can be obtained by using the definition of the 144 
dimensionless temperature from equation (6) and the dimensionless pressure in the form 145 
p = p* − po( ) Δpc . Then the equation of state becomes 146 
ρ = 1− βT T + β p p[ ]  (10) 147 
where ρ = ρ* ρo  is the dimensionless density, and βT = βT * ΔTc , β p = β p* Δpc  are the 148 
dimensionless thermal expansion and pressure compression coefficients, respectively. For most 149 
fluid flows and especially for incompressible flows, i.e. flows of liquids,  β p ≪ βT . Therefore the 150 
common approximation of the dimensionless equation of state is 151 
ρ = 1− βT T[ ]   (11) 152 
There are some identities relevant to flows in a rotating frame of reference and in buoyancy flows 153 
that are useful in the following derivations. These identities are  154 
êg = ∇ êg ⋅X( )   (12) 155 

êω × êω × X( ) = −∇
1

2
êω × X( )⋅ êω × X( )⎡

⎣⎢
⎤
⎦⎥

 (13) 156 

êω × êω × X( ) = êω ⋅X( ) êω − X  (14) 157 
Their proof can be found in Vadasz [3].  158 

Although for a significantly high number of practical instances Darcy’s model (or its extension) 159 
for a rotating frame of reference is sufficient for representing the effects of rotation, non-Darcy 160 
models have been used as well. Their relevance and limitations are subject to professional discourse 161 
(e.g. Nield [68, 69, 70] and Vafai and Kim [71]). 162 

 163 

3. Taylor-Proudman Columns and Geostrophic Flow in Rotating Porous Media 164 
By using equations (12) and (13), considering isothermal conditions (no heat transfer) and 165 

consequently the density is constant ρ* = ρo  hence ρ = 1 , Darcy equation (2) becomes  166 

 
V =−∇ Np p−Fr êg ⋅X( )−Cn 1

2
êω ×X( )⋅ êω ×X( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

1

EkΔ

êω ×V  (15) 167 

The term under the common gradient operator is a reduced pressure pr , defined as 168 

pr = Np p − Fr êg ⋅X( ) − Cn
2
êω × X( )⋅ êω × X( )   (16) 169 

By using (16) and choosing the direction of the angular velocity of rotation to be aligned with the 170 
vertical axis, i.e. êω = êz , the Darcy equation (2) can be presented in the following rearranged form 171 

 EkΔ + êz×[ ]V =−∇ EkΔ pr( )  (17) 172 
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For typical values of viscosity, porosity and permeability the range of variation of Ekman number 173 
can be evaluated in some engineering applications. Consequently, the angular velocity may vary 174 
from 10 rpm to 10,000 rpm leading to Ekman numbers in the range from EkΔ = 1  to EkΔ = 10−3 . 175 
The latter value is very small, pertaining to the conditions considered here. Therefore, in the limit of 176 
EkΔ → 0 , say EkΔ = 0 , equation (17) takes the simplified form  177 
êz × V = −∇ EkΔ pR( )  (18) 178 
and the effect of permeability variations disappears. Taking the "curl" of equation (18) leads to  179 
∇ × êz × V( ) = 0  (19) 180 
Evaluating the "curl" operator on the cross product of the left-hand side of equation (19) leads to 181 
êz ⋅ ∇( )V = 0  (20) 182 

Equation (20) is identical to the Taylor-Proudman theorem for pure fluids (non-porous domains); it 183 
thus represents the proof of the Taylor-Proudman theorem in porous media, and can be presented 184 
in the following simplified form 185 
∂V

∂ z
= 0  (21) 186 

The conclusion expressed by equation (21) is that V = V x, y( ) , i.e. it cannot be a function of z , 187 
where z  is the direction of the angular velocity vector. This means that all filtration velocity 188 
components can vary only in the plane perpendicular to the angular velocity vector. This result 189 
leads to the existence of Taylor-Proudman columns in rotating porous media as presented in detail 190 
by Vadasz [3]. The consequence of this result can be demonstrated by considering a particular 191 
example that was presented by Vadasz [36] (see Greenspan [72] for the corresponding example in 192 
pure fluids). 193 

A further significant consequence of equation (21) is represented by a geostrophic type of flow. 194 
Taking the z -component of equation (21) yields ∂w ∂ z = 0 , and the continuity equation (1) 195 
becomes two dimensional 196 

 

∂u  

∂ x  
+
∂v  

∂ y 
= 0  (22) 197 

Therefore the flow at high rotation rates has a tendency towards two-dimensionality and a stream 198 
function, ψ , can be introduced for the flow in the x − y  plane in the form 199 

 
u = −

∂ψ

∂ y
 ;     v =

∂ψ

∂ x
 (23) 200 

which satisfies identically the continuity equation (1). Substituting u  and  v  with their stream 201 
function representation given by equation (23) into equation (18) yields 202 
∂ψ

∂ x
=
∂ EkΔ pR( )

∂ x
 (24) 203 

∂ψ

∂ y
=
∂ EkΔ pR( )

∂ y
 (25) 204 

As both the pressure and the stream function can be related to an arbitrary reference value, the 205 
conclusion from equations (24) and (25) is that the stream function and the pressure are the same in 206 
the limit of high rotation rates ( Ek→ 0 ). This type of geostrophic flow means that isobars represent 207 
streamlines at the leading order, for Ek→ 0 . 208 
 209 

4. Natural Convection due to Centrifugal Buoyancy 210 
Natural convection is the effect of flow and convection heat transfer due to the existence of 211 

density gradients in a body force field (such as gravity or centrifugal force field). As density 212 
depends on temperature as demonstrated in the derivation of the equation of state, temperature 213 
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gradients may create natural convective flows when a body force field is present. What 214 
characterizes natural convection is the lack of a known value of characteristic filtration velocity that 215 
can be applied upfront in a problem. No characteristic velocity can be specified because the latter is 216 
dictated by the temperature gradients and their resulting buoyancy rather than being known 217 
upfront. Therefore a sensible choice of uc  would be uc = α e* lc . With this choice of uc  the 218 
Froude number Fr , the pressure number Np , and the centrifugal dimensionless group Cn  in 219 

equations (12) and (14) become Fr = g*K*lc ν*α e* , Np = K*Δpc µ*α e* ,  Cn = ω *

2lc
2K* ν*α e* . Without 220 

loss of generality for the same reason as for the filtration velocity one can chose the characteristic 221 
pressure difference to be such that the pressure number Np  becomes unity, i.e. Δpc = µ*α e* K*  222 
leading to Np = 1 . Also the Reynolds number in equation (5) renders into the reciprocal Prandtl 223 
number Re = α e* ν* = 1 Pr  and the Peclet number in equations (7) and (8) becomes equal to one by 224 
definition Pe = uclc α e* = α e*lc lcα e* = 1 . One may define the effective Prandtl number in terms of 225 
the effective thermal diffusivity  !α e*  (see the equation and the text following equation (9) )226 

 Pre = ν*
!α e* = Pr M f . Then the coefficient to the time derivative term in equation (4) becomes227 

 DaReM f φ = DaM f φPr = Da φPre = 1 Va  a new dimensionless group that Straughan [73] named 228 
the Vadasz number (Va ), or the Vadasz coefficient named by Straughan [73] (see also Sheu [74] and 229 
Govender [26]). By using equations (11), (12) and (13) leads to transforming equations (2) and (4) 230 
into the following form 231 

 
V =−∇pr + RagT êg − RaωT êω ⋅X( )êω −X[ ]−

1

EkΔ

êω ×V   (26) 232 

 

1

Va

∂ V  

∂ t  
+V =−∇pr + RagT êg − RaωT êω ⋅X( )êω −X[ ]−

1

EkΔ

êω ×V  (27) 233 

The product of βT  by Fr  and Cn  produced two new dimensionless groups in the form of the 234 
gravity related Rayleigh number and the centrifugal Rayleigh number, respectively in the form 235 

Rag = Fr βT =
βT *ΔTc g*K*lc

ν*α e*

 (28) 236 

Raω = CnβT =
βT *ΔTcω *

2lc
2K*

ν*α e*

  (29) 237 

The particular cases when êg = − êz  and êω = êz  will be considered later. Subject to this orientation 238 
of the gravity and angular velocity of rotation equations (26) and (27) take the form 239 

 
V =−∇pr + RagT êz − RaωT x êx + y êy( )− 1

EkΔ

êz×V   (30) 240 

 

1

Va

∂ V  

∂ t  
+V =−∇pr + RagT êz − RaωT x êx + y êy( )− 1

EkΔ

êz×V   (31) 241 

The vector r = (x êx + y êy )  in equations (30) and (31) represents the perpendicular radius vector 242 
from the axis of rotation to any point in the flow domain. 243 
Three dimensionless groups emerged in equation (30) when fast transients or high frequencies are 244 
not of interest. These dimensionless groups control the significance of the different phenomena. 245 
Therefore, the value of Ekman number ( EkΔ ) controls the significance of the Coriolis effect, and the 246 
ratio between the gravity related Rayleigh number ( Rag ) and centrifugal Rayleigh number ( Raω ) 247 
controls the significance of gravity with respect to centrifugal forces as far as natural convection is 248 
concerned. This ratio is Rag Raω = g* ω *

2lc . When fast transients or high frequencies are of interest 249 
equation (27) is to be considered. In such a case one additional dimensionless group emerged, the 250 
Va  number representing the ratio between two characteristic frequencies, i.e. the fluid flow 251 
frequency ων* = φν* K*  and the thermal diffusion frequency  ωα* = !α e* lc

2 , i.e. 252 
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 Va = ων* ωα* = φν*lc
2 K*

!α e* = φPre Da , or alternatively the ratio between two time scales, i.e. the 253 
thermal diffusion time scale  τα* = lc

2 !α e* , and the fluid flow time scale τν* = K* φν* , i.e. 254 

 Va = τα* τν* = φν*lc
2 K*

!α e* = φPre Da . In addition to such cases equation (27) should be used also 255 
when the effective Prandtl number is of the order of magnitude of Darcy number, i.e. Pre = O Da( )  256 
i.e. a very small number (as Da << 1  in most porous media). Such small values of the Prandtl 257 
number are typical for liquid metals. In such cases too the time derivative term in equation (27) 258 
should be retained.  259 

Considering the Darcy regime subject to a centrifugal body force and by neglecting gravity 260 
effects ( Rag Raω << 1 ) equations (1), (7) and (26) with Rag = 0  and Pe = 1  represent the 261 
mathematical model for this case. The objective in the first instance is to establish the convective 262 
flow under small rotation rates, then Ek >> 1 , and as a first approximation the Coriolis effect can 263 
be neglected, i.e., Ek→ ∞ . Following these conditions the governing equations become (by using 264 
identity (14) ) 265 
∇⋅V = 0  (32) 266 
V = − ∇p − RaωT êω × êω × X( )[ ]  (33) 267 
∂T  

∂ t  
+ V ⋅∇T = ∇2T  (34) 268 

There are three cases corresponding to the relative orientation of the temperature gradient with 269 
respect to the centrifugal body force as presented in Figure 1. Case 1(a) in Figure 1 corresponds to a 270 
temperature gradient, which is perpendicular to the direction of the centrifugal body force and 271 
leads to unconditional convection. The solution representing this convection pattern is presented by 272 
Vadasz [34, 3, 4]. Cases 1(b) and 1(c) in Figure 1 corresponding to temperature gradients collinear 273 
with the centrifugal body force represent stability problems and hence our present focus. The 274 
objective is then to establish the stability condition as well as the convection pattern when this 275 
stability condition is not satisfied. 276 
 277 

 278 
Figure 1. The effect of the relative orientation of the temperature gradient with respect to the body 279 
force on the setup of convection.  280 

 281 
An example of a case when the imposed temperature is perpendicular to the centrifugal body force 282 
is a rectangular porous domain rotating about the vertical axis, heated from above and cooled from 283 
below. For this case the centrifugal buoyancy term in equation (33) becomes RaωT x êx  leading to  284 
V = −∇p − RaωT x êx  (35) 285 
An analytical two-dimensional solution to this problem (see Figure 2) for a small aspect ratio of the 286 
domain was presented by Vadasz [34, 3, 4]. The solution to the non-linear set of partial differential 287 
equations was obtained through an asymptotic expansion of the dependent variables in terms of a 288 
small parameter representing the aspect ratio of the domain.  289 
The convection in the core region far from the sidewalls was the objective of the investigation. To 290 
first order accuracy, the heat transfer coefficient represented by the Nusselt number was evaluated 291 
in the form 292 

(a) (b) (c)

Unconditional 
  Convection

Conditional 
Convection No Convection

B∇T B∇T B
∇T
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 293 
Figure 2: A rotating rectangular porous domain heated from above, cooled from below, and insulated on its 294 
sidewalls. (courtesy Elsevier Science Ltd.) 295 
 296 

Nu = − 1+
Raω

24
+O H 2( )⎡

⎣⎢
⎤
⎦⎥

 (36) 297 

where Nu  is the Nusselt number and the length scale used in the definition of Raω , equation (54), 298 
was lc = H * . Vadasz [37] used a different approach to solve a similar problem without the 299 
restriction of a small aspect ratio. A direct extraction and substitution of the dependent variables 300 
was found to be useful for de-coupling the non-linear partial differential equations, resulting in a 301 
set of independent non-linear ordinary differential equations, which was solved analytically. To 302 
obtain an analytical solution to the non-linear convection problem we assume that the vertical 303 
component of the filtration velocity, w , and the temperature T  are independent of x , i.e., 304 
∂w ∂ x = ∂T ∂ x = 0  ∀x ∈ 0,L( ) , being functions of z  only. It is this assumption that will 305 
subsequently restrict the validity domain of the results to moderate values of Raω  (practically 306 
Raω < 5 ). Subject to the assumptions of two-dimensional flow  v = 0  and ∂ (⋅) ∂ y = 0  and that w  307 
and T  are independent of x  the governing equations take the form 308 
∂  u

∂  x
+

dw

dz
= 0  (37) 309 

u = −
∂ p

∂ x
− Raω xT  (38) 310 

w = −
∂ p

∂ z
 (39) 311 

d2T

dz2
− w

dT

dz
= 0  (40) 312 

The method of solution consists of extracting T  from equation (38) and expressing it explicitly in 313 
terms of u, ∂ p ∂ x  and x . This expression of T  is then introduced into equation (40) and the 314 
derivative ∂ ∂ x  is applied to the result. Then, substituting the continuity equation (37) in the form 315 
∂u ∂ x = − dw dz  and equation (39) into the results yields a non-linear ordinary differential 316 
equation for w  in the form 317 
d3w

dz 3
− w

d2w

dz2
= 0  (41) 318 

An interesting observation regarding equation (41) is the fact that it is identical to the Blasius 319 
equation for boundary layer flows of pure fluids (non-porous domains) over a flat plate. To observe 320 
this, one simply has to substitute w(z) = − f (z) 2  to obtain 2 ′′′f + f ′′f = 0 , which is the Blasius 321 
equation. Unfortunately, no further analogy to the boundary layer flow in pure fluids exists, 322 
predominantly due to the different boundary conditions and because the derivatives [ d(⋅) dz ] and 323 
the flow (w ) are in the same direction. The solutions for the temperature T  and the horizontal 324 

TC*

TH*

x

∂T
∂x 

=0
∂T
∂x 

=0

L *

ω*

ω* x*
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component of the filtration velocity u , are related to the solution of the ordinary differential 325 
equation 326 
′ϕ ′′′ϕ − ′′ϕ 2 +ϕ ′ϕ 2 = 0  (42) 327 

where (⋅ ′)  stands for d(⋅) dz  and  328 
u = xϕ z( )  (43) 329 

T z( ) = −
1

Raω

P +ϕ z( )[ ]  (44) 330 

where P  is a constant defined by 331 
P = −Raω T (z)d z

0

1

∫  (45) 332 
The relationship (45) is a result of imposing a condition of no net flow through any vertical  333 
cross-section in the domain, stating that u d z = 0

0

1

∫ . 334 
The following boundary conditions are required to the solution of (41) for w : 335 

w = 0 at  z = 0 and z = 1  representing the impermeability condition at the solid boundaries and 336 
T = 0 at z = 0 and T =1 at z = 1 . Since ∂u ∂ x = ϕ  according to equation (43), then following the 337 
continuity equation (37) ϕ = − dw d z  and the temperature boundary conditions can be converted 338 
into conditions in terms of w  by using equation (44), leading to the following complete set of 339 
boundary conditions for w : 340 

z = 0 :   w = 0     and       
dw

d z
= P  (46) 341 

z = 1 :   w = 0     and       
dw

d z
= P + Raω  (47) 342 

Equations (46) and (47) represent four boundary conditions, while only three are necessary to solve 343 
the third order equation (41). The reason for the fourth condition comes from the introduction of the 344 
constant P , whose value remains to be determined. Hence, the additional two boundary 345 
conditions are expressed in terms of the unknown constant P  and the solution subject to these 346 
four conditions will determine the value of P  as well. A method similar to Blasius's method of 347 
solution was applied to solve equation (41). Therefore, w(z)  was expressed as a finite power series 348 
and the objective of the solution was to determine the power series coefficients. Once the solution 349 
for w(z)  and the value of P  were obtained, u  and T  were evaluated by using 350 
ϕ (z) = − dw d z  and equations (43) and (44). 351 
 352 

 353 
Figure 3: Graphical description of the resulting flow field; five streamlines equally spaced between their 354 
minimum value ψ

min
= 0  at the rigid boundaries and their maximum value ψ

max
= 1.554 . The values in the 355 

figure correspond to every other streamline. (courtesy Elsevier Science Ltd.) 356 
 357 

For presentation purposes a stream function ψ  was introduced to plot the results (358 
u = ∂ψ ∂ z , w = −∂ψ ∂ x ). An example of the flow field represented by the streamlines is 359 
presented in Figure 9 for Raω = 4  and for an aspect ratio of 3 (excluding a narrow region next to 360 
the sidewall at x = L ). Outside this narrow region next to x = L  the streamlines remain open on 361 
the right hand side. They are expected to close in the end region. On the left-hand side, however, 362 
the streamlines close throughout the domain. The reason for this, is the centrifugal acceleration, 363 

ψ = 0

ψ = 0

ψ = 1.036

ψ = 0

ψ = 0.518

ψ = 1.295
ψ = 0.777
ψ = 0.259
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which causes u  to vary linearly with x , thus creating (due to the continuity equation) a 364 
non-vanishing vertical component of the filtration velocity w  at all values of x . The local Nusselt 365 
number Nu , representing the local vertical heat flux was evaluated as well by using the definition 366 
Nu = −∂T ∂ z

z=0
 and using the solution for T . A comparison between the heat flux results 367 

obtained from this solution and the results obtained by Vadasz [34] using an asymptotic method 368 
was presented graphically by Vadasz [37]. The two results compare well as long as Raω  is very 369 
small. However, for increasing values of Raω  the deviation from the linear relationship pertaining 370 
to the first order asymptotic solution ( Nu = 1+ Raω 24 , according to Vadasz [34]) was evident. The 371 
stability of this convection flow was not evaluated, although it is of extreme interest. This would be 372 
an interesting though not simple task recommended for future research.  373 

The problem of stability of free convection in a rotating porous layer when the temperature 374 
gradient is collinear with the centrifugal body force was treated by Vadasz [38] and Vadasz [40] for 375 
a narrow layer adjacent to the axis of rotation (Vadasz [38]) and distant from the axis of rotation 376 
(Vadasz [40]), respectively. The problem formulation corresponding to the latter case is presented 377 
in Figure 4. In order to include explicitly the dimensionless offset distance from the axis of rotation 378 
x0 , and to keep the coordinate system linked to the porous layer, equation (33) was presented in the 379 
form 380 
V = −∇p − Raωo + Raω x⎡⎣ ⎤⎦T êx  (48) 381 
Two centrifugal Rayleigh numbers appear in equation (48); the first one, representing the 382 
contribution of the offset distance from the rotation axis to the centrifugal buoyancy is 383 
Raωo = βT *ΔTcω *

2x0*L*Ko α e*ν* , while the second, Raω = βT *ΔTcω *

2L*
2Ko α e*ν* , represents the 384 

contribution of the horizontal location within the porous layer to the centrifugal buoyancy. The 385 
ratio between the two centrifugal Rayleigh numbers is dimensionless reciprocal distance from the 386 
axis of rotation 387 

η =
Raω

Raωo

=
1

x0
 (49) 388 

and can be introduced as a parameter in the equations transforming equation (48) into the form 389 
V = −∇p − Raωo 1+ηx[ ]T êx  (50) 390 
From equation (50) it is observed that when the porous layer is far away from the axis of rotation 391 
then η << 1  ( x0 >> 1  ) and the contribution of the term η x  is not significant, while for a layer 392 
close enough to the rotation axis η >> 1  ( x0 << 1) and the contribution of the first term becomes 393 
insignificant. In the first case the only controlling parameter is Raωo  while in the latter case the 394 
only controlling parameter is Raω = ηRaωo . The flow boundary conditions are V ⋅ ên = 0  on the 395 
boundaries, where ên  is a unit vector normal to the boundary. These conditions stipulate that all 396 
boundaries are rigid and therefore non-permeable to fluid flow. The thermal boundary conditions 397 
are: T = 0  at x = 0 , T = 1  at x = 1  and ∇T ⋅ ên = 0  on all other walls representing the 398 
insulation condition on these walls. 399 
The governing equations accept a basic motionless conduction solution in the form 400 
Vb ,Tb , pb[ ] = 0, x, −Raωo (x

2 2 +η x 3 3) + C( )⎡⎣ ⎤⎦  (51) 401 
The objective of the investigation was to establish the condition when the motionless solution (51) is 402 
not stable and consequently a resulting convection pattern appears. Therefore a linear stability 403 
analysis was employed, representing the solution as a sum of the basic solution (51) and small 404 
perturbations in the form 405 
V, T , p[ ] = Vb + ′V , Tb + ′T , pb + ′p[ ]  (52) 406 

where (⋅ ′)  stands for perturbed values. Solving the resulting linearized system for the 407 
perturbations by assuming a normal modes expansion in the y  and z  directions, and θ (x)  in 408 
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the x  direction, i.e., ′T = Aκθ (x)exp σ t + i κ yy +κ zz( )[ ] , and using the Galerkin method to solve for 409 
θ (x)  one obtains at marginal stability, i.e., for σ = 0 , a homogeneous set of linear algebraic 410 
equations. This homogeneous linear system accepts a non-zero solution only for particular values of 411 
Raωo  such that its determinant vanishes. The solution of this system was evaluated up to order 7 412 
for different values of η , representing the offset distance from the axis of rotation.  413 
 414 

 415 
Figure 4: A rotating fluid saturated porous layer distant from the axis of rotation and subject to different 416 
temperatures at the sidewalls. 417 
 418 
However, useful information was obtained by considering the approximation at order 2. At this 419 
order the system reduces to two equations, which lead to the characteristic values of Raωo  in the 420 
form 421 

R0,c =
β 1+α( )2 + 4 +α( )2⎡⎣ ⎤⎦

2α β 2 − γ 2( ) ±
β 2 1+α( )2 + 4 +α( )2⎡⎣ ⎤⎦

2
− 4 β 2 − γ 2( ) 1+α( )2 4 +α( )2

2α β 2 − γ 2( )  (53) 422 

where the following notation was used 423 

Ro =
Raωo

π 2
 ;  R =

Raω

π 2
 ;  α =

κ 2

π 2
 ;  β = 1+

η

2
 ;  γ 2 =

256η 2

81π 4
 (54) 424 

and κ  is the wavenumber such that κ 2 = κ y

2 +κ z

2  while the subscript c  in equation (53) 425 
represents characteristic (neutral) values (values for which σ = 0 ). A singularity in the solution for 426 
Ro ,c , corresponding to the existence of a single root for Ro ,c , appears when β 2 = γ 2 . This 427 
singularity persists at higher orders as well. Resolving for the value of η  when this singularity 428 
occurs shows that it corresponds to negative η  values implying that the location of the rotation 429 
axis falls within the boundaries of the porous domain (or to the right side of the hot wall - a case of 430 
little interest due to its inherent unconditional stability). This particular case will be discussed later 431 
in this section. The critical values of the centrifugal Rayleigh number as obtained from the solution 432 
up to order 7 are presented graphically in Figure 5(a) in terms of both Ro ,cr  and Rcr  as a function 433 
of the offset parameter η . The results presented in Figure 5 are particularly useful in order to 434 
indicate the stability criterion for all positive values of η . It can be observed from the figure that as 435 
the value of η  becomes small, i.e. for a porous layer far away from the axis of rotation, the critical 436 
centrifugal Rayleigh number approaches a limit value of 4π 2 . This corresponds to the critical 437 
Rayleigh number in a porous layer subject to gravity and heated from below. For high values of η  438 
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it is appropriate to use the other centrifugal Rayleigh number R , instead of Ro , by introducing the 439 
relationship R = ηRo  (see equations (49) and (54)) in order to establish and present the stability 440 
criterion. It is observed from Fig. 5(a) that as the value of η  becomes large, i.e. for a porous layer 441 
close to the axis of rotation, the critical centrifugal Rayleigh number approaches a limit value of 442 
7.81π 2 . This corresponds to the critical Rayleigh number for the problem of a rotating layer 443 
adjacent to the axis of rotation as presented by Vadasz [38]. The stability map on the Raω − Raωo  444 
plane is presented in Figure 5(b), showing that the plane is divided between the stable and unstable 445 
zones by the straight line Raω ,cr 7.81π 2( ) + Raωo ,cr 4π 2( ) = 1 .  446 

The results for the convective flow field are presented graphically in Figure 6 following Vadasz 447 
[40], where it was concluded that the effect of the variation of the centrifugal acceleration within the 448 
porous layer is definitely felt when the box is close to the axis of rotation, corresponding to an 449 
eccentric shift of the convection cells towards the sidewall at x = 1 . However, when the layer is 450 
located far away from the axis of rotation (e.g. x0 = 50 ) the convection cells are concentric and 451 
symmetric with respect to x = 1 2  as expected for a porous layer subject to gravity and heated 452 
from below (here "below" means the location where x = 1 ). 453 

Although the linear stability analysis is sufficient for obtaining the stability condition of the 454 
motionless solution and the corresponding eigenfunctions describing qualitatively the convective 455 
flow, it cannot provide information regarding the values of the convection amplitudes, nor 456 
regarding the average rate of heat transfer. To obtain this additional information, Vadasz and Olek 457 
[46] analyzed and provided a solution to the non-linear equations by using Adomian’s 458 
decomposition method to solve a system of ordinary differential equations for the evolution of the 459 
amplitudes. 460 
 461 

   462 
 (a) (b) 463 
Figure 5: (a) The variation of the critical values of the centrifugal Rayleigh numbers as a function of η ;  464 
(b) The stability map on the Ra

ω
− Ra

ωo
 plane showing the division of the plane. 465 

 466 
This system of equations was obtained by using the first three relevant Galerkin modes for the 467 

stream function and the temperature in the form 468 

ψ = 2θ 2γ R − 1( ) X t( )sin π x( )sin π z

H
⎛
⎝

⎞
⎠  (55) 469 

T = x +
2 2γ R − 1( )

πR
Y t( )sin π x( )cos π z

H
⎛
⎝

⎞
⎠ +

R − 1( )
πR

Z t( )sin 2π x( )  (56) 470 

where γ = H 2 H 2 + 1( ) , θ = H 2 + 1( ) H , H  being the layer’s aspect ratio, R = ξ π 2θ 2 , 471 
ξ = Raωo + Raω 2 , and X,Y ,Z  the possibly time dependent amplitudes of convection. In this 472 
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model it was considered of interest including the time derivative term in Darcy’s equation in the 473 
form (1 Va)∂V ∂ t , where Va = φ Pre Da , and Da, Pre  are the Darcy and the effective Prandtl 474 
numbers, respectively, defined as Da = K* L*

2  and  Pre = ν*
!α e*  (see equation (58) with Rag = 0  475 

and Ek→ ∞ ). The reason for including the time derivative term in the Darcy equation was the fact 476 
that one anticipates oscillatory and possibly chaotic solutions for which very high frequencies may 477 
occur. Then, the following equations were obtained for the time evolution of the amplitudes 478 
X t( ),Y t( ),Z t( )   479 
 480 

 481 
Figure 6: The convective flow field at marginal stability for three different values of x

0
; 10 stream lines 482 

equally divided between ψ
min

 and ψ
max

. At x
0
= 10 −10 : ψ

min
= −1.378 ; ψ

max
= 1.378 , at x

0
= 0.02 : ψ

min
= −1.374 ;  483 

ψ
max

= 1.374  and at x
0
= 50 : ψ

min
= −1.319 ;  ψ

max
= 1.319 . 484 

 485 

 
!X = α Y − X( )  (57) 486 

 
!Y = R X − Y − R − 1( )X Z  (58) 487 

 
!Z = 4γ XY − Z( )  (59) 488 

where α = γ Va π 2 , and R  is a rescaled Rayleigh number introduced above according to the 489 
definitions in the text following equation (56). The results obtained are presented in Figure 7 in the 490 
form of projection of trajectories data points onto the Y − X  and Z − X  planes. Different 491 
transitions as the value of R  varies are presented and they relate to the convective fixed point 492 
which is a stable simple node in Figure 7(a), a stable spiral in Figures 7(b) and 7(c), and loses 493 
stability via an inverse Hopf bifurcation in Figure 7(d), where the trajectory describes a limit cycle, 494 
moving towards a chaotic solution presented in Figures 7(e) and (f). A further transition from chaos 495 
to a periodic solution was obtained at a value of R  slightly above 100, which persists over a wide 496 
range of R  values. This periodic solution is presented in Figures 7(g) and 7(h) for R = 250 .  497 

Previously in this section (see equation (53)) a singularity in the solution was identified and 498 
associated with negative values of the offset distance from the axis of rotation. It is this resulting 499 
singularity and its consequences, which were investigated by Vadasz [41] and are the objective of 500 
the following presentation. As this occurs at negative values of the offset distance from the axis of 501 
rotation it implies that the location of the rotation axis falls within the boundaries of the porous 502 
domain, as presented in Fig. 8. This particular axis location causes positive values of the centrifugal 503 
acceleration on the right side of the rotation axis and negative values on its left side. The rotation 504 
axis location implies that the value of x0  is not positive.  505 
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Figure 7: Different transitions in natural convection in a rotating porous layer. (courtesy Elsevier 

Science Ltd.) 
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 508 
Figure 8: A rotating porous layer having the rotation axis within its boundaries and subject to different 509 
temperatures at the sidewalls. (courtesy Elsevier Science Ltd.) 510 

 511 

 512 
Figure 9: The convective flow field at marginal stability for three different values of x

0
; 10 streamlines 513 

equally divided between ψ
min

 and ψ
max

. (courtesy Elsevier Science Ltd.) 514 
 515 
 516 
It is therefore convenient to explicitly introduce this fact in the problem formulation specifying 517 
explicitly that x0 = − x0 . As a result equation (50) can be expressed in the form 518 

V = −∇p − Raω x − x0[ ]T êx  (60) 519 
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The solution for this case is similar to the previous case leading to the same characteristic equation 520 
for Rc  at order 2 as obtained previously in equation (53) for Ro ,c , with the only difference 521 
appearing in the different definition of β  and γ  as follows 522 

β =
1

2
− x0

⎛
⎝

⎞
⎠ ;         γ 2 =

256

81π 4
 (61) 523 

The singularity is obtained when β 2 = γ 2 , corresponding to β = γ  or β = −γ . Since β  is 524 
uniquely related to the offset distance x0  and γ = 16 9π 2  is a constant, one can relate the 525 
singularity to specific values of x0 . At order 2 this corresponds to x0 = 0.3199  and x0 = 0.680 . 526 
It was shown by Vadasz [41] that the second value x0 = 0.680  is the only one, which has physical 527 
consequences. This value corresponds to a transition beyond which, i.e., for x0 ≥ 0.68 , no positive 528 
roots of Rc  exist. It therefore implies an unconditional stability of the basic motionless solution for 529 
all values of R  if x0 ≥ 0.68 . The transitional value of x0  was investigated at higher orders 530 
showing x0 ≥ 0.765  at order 3 and the value increases with increasing the order. The indications 531 
are that as the order increases the transition value of x0  tends towards the limit value of 1. The 532 
results for the critical values of the centrifugal Rayleigh number expressed in terms of Rcr  vs. x0  533 
are presented graphically by Vadasz [41], who concluded that increasing the value of x0  has a 534 
stabilizing effect. The results for the convective flow field as obtained by Vadasz [41] are presented 535 
in Figures 9, 10 and 11 for different values of x0 . Keeping in mind that to the right of the rotation 536 
axis the centrifugal acceleration has a destabilizing effect while to its left a stabilizing effect is 537 
expected; the results presented in Figures 9(b) and (c) reaffirm this expectation showing an eccentric 538 
shift of the convection cells towards the right side of the rotation axis. When the rotation axis is 539 
moved further towards the hot wall, say at x0 = 0.6  as presented in Figure 10(a), weak convection 540 
cells appear even to the left of the rotation axis. This weak convection becomes stronger as x0  541 
increases, as observed in Figure 10(b) for x0 = 0.7  and formation of boundary layers associated 542 
with the primary convection cells is observed to the right of the rotation axis. These boundary 543 
layers become more significant for x0 = 0.8  as represented by sharp streamlines gradients in 544 
Figure 11(a). When x0 = 0.9  Figure 11(b) shows that the boundary layers of the primary 545 
convection are well established and the whole domain is filled with weaker secondary, tertiary and 546 
further convection cells. The results for the isotherms corresponding to values of 547 
x0 = 0, 0.5, 0.6 and  0.7  are presented in Figure 12 where the effect of moving the axis of rotation 548 

within the porous layer, on the temperature is evident. 549 
Previously the discussion focused on centrifugally driven natural convection under conditions 550 

of small rotation rates, i.e. Ek >> 1 . Then, as a first approximation the Coriolis effect was neglected. 551 
In this section the effect of the Coriolis acceleration on natural convection is presented even when 552 
this effect is small, i.e., Ek >> 1 . A long rotating porous box where the temperature gradient was 553 
perpendicular to the centrifugal body force was considered by Vadasz [35]. The possibility of 554 
internal heat generation was included but the case without heat generation, i.e., when the box is 555 
heated from above and cooled from below was dealt with separately. The leading order basic flow 556 
was evaluated analytically. From the solutions it was concluded that the Coriolis effect on natural 557 
convection is controlled by the combined dimensionless group 558 

σ =
Raω

Ek
=
2βT *ΔTcω *

3L*H *Ko

2

α e*ν*

2φ
 (62) 559 

The flow and temperature fields in the plane y − z , perpendicular to the leading order natural 560 
convection plane as evaluated through the analytical solution shows single or double vortices 561 
secondary flow in this plane, perpendicular to the basic flow.  562 
 563 
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Figure 10: The convective flow field at marginal stability for two different values of x

0
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Figure 11: The convective flow field at marginal stability for two different values of x
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An important analogy was discovered by Palm and Tyvand [20] who showed, by using a Darcy 596 
model, that the onset of gravity driven convection in a rotating porous layer is equivalent to the 597 
case of an anisotropic porous medium. The critical Rayleigh number was found to be 598 
Rag ,cr = π 2 1+ Ta( )1 2 + 1⎡⎣ ⎤⎦

2
 (63) 599 

where Ta  is the Taylor number defined here as  600 

Ta =
2ω *Ko

φν*

⎛
⎝⎜

⎞
⎠⎟
2

 (64) 601 

and the corresponding critical wave number is π 1+ Ta( )1 4 . The porosity is missing in Palm and 602 
Tyvand [20] definition of Ta . Nield [21, 22] has pointed out that these authors and others have 603 
omitted the porosity from the Coriolis term. This result, eq. (63) (amended to include the correct 604 
definition of Ta ), was confirmed by Vadasz [41] for a Darcy model extended to include the time 605 
derivative term (see equation (31) with Raω = 0 ), while performing linear stability as well as a 606 
weak non-linear analyses of the problem to provide differences as well as similarities with the 607 
corresponding problem in pure fluids (non-porous domains). As such, Vadasz [42] found that, in 608 
contrast to the problem in pure fluids, overstable convection in porous media at marginal stability 609 
is not limited to a particular domain of Prandtl number values (in pure fluids the necessary 610 
condition is Pr < 1 ). Moreover, it was also established by Vadasz [42] that in the porous media 611 
problem the critical wave number in the plane containing the streamlines for stationary convection 612 
is not identical to the critical wave number associated with convection without rotation, and is 613 
therefore not independent of rotation, a result which is quite distinct from the corresponding 614 
pure-fluids problem. Nevertheless, it was evident that in porous media, just as in the case of pure 615 
fluids subject to rotation and heated from below, the viscosity at high rotation rates has a 616 
destabilizing effect on the onset of stationary convection, i.e. the higher the viscosity the less stable 617 
is the fluid. An example of stability curves for overstable convection is presented in Figure 14 for 618 
Ta = 5 , where κ  is the wave number. The upper bound of these stability curves is represented by 619 
a stability curve corresponding to stationary convection at the same particular value of the Taylor 620 
number, while the lower bound was found to be independent of the value of Taylor number and 621 
corresponds to the stability curve for overstable convection associated with Va = 0 .  622 

 623 
 624 

 625 
Figure 14: Stability curves for overstable gravity driven convection in a rotating porous layer heated from 626 

below ( γ = Va π 2 , R = Ra
g

π 2 ). (courtesy: Cambridge University Press.) 627 
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 629 
Figure 15: Stability map for gravity driven convection in a rotating porous layer heated from below  630 

( γ = Va π 2 , R = Ra
g

π 2 ). (courtesy: Cambridge University Press.) 631 
 632 
Two conditions have to be fulfilled for overstable convection to set in at marginal stability, i.e., (i) 633 
the value of Rayleigh number has to be higher than the critical Rayleigh number associated with 634 
overstable convection, and (ii) the critical Rayleigh number associated with overstable convection 635 
has to be smaller than the critical Rayleigh number associated with stationary convection. The 636 
stability map obtained by Vadasz [42] is presented in Figure 15, which shows that the Ta − γ   637 
( γ = Va π 2 ) plane is divided by a continuous curve (almost a straight line) into two zones, one for 638 
which convection sets in as stationary, and the other where overstable convection is preferred. The 639 
dotted curve represents the case when the necessary condition (i) above is fulfilled but condition (ii) 640 
is not. Weak non-linear stationary as well as oscillatory solutions were derived, identifying the 641 
domain of parameter values consistent with supercritical pitchfork (in the stationary case) and Hopf 642 
(in the oscillatory case) bifurcations. Unfortunately due to a typo affecting the sign of one of the 643 
nonlinear terms in the weak nonlinear analysis the direction of the bifurcations presented seems to 644 
be incorrect. The identification of the tricritical point corresponding to the transition from 645 
supercritical to subcritical bifurcations was presented on the γ − Ta  parameter plane. The 646 
possibility of a codimension-2 bifurcation, which is anticipated at the intersection between the 647 
stationary and overstable solutions, although identified as being of significant interest for further 648 
study, was not investigated by Vadasz [42]. 649 
 650 

6. Natural Convection due to Combined Centrifugal and Gravity Buoyancy 651 
Previous sections dealt with natural convection due to centrifugal buoyancy, when the gravity 652 

body force contribution was negligible, Rag = 0 , satisfying the condition: Rag Raω = g* ω *

2L* << 1 , 653 
or with gravity buoyancy when the centrifugal body force contribution was insignificant, Raω = 0 , 654 
satisfying the condition: Raω Rag = ω *

2L* g* << 1 . In the present section the focus is on conditions 655 
when both centrifugal buoyancy as well as gravity buoyancy effects are significant,  Rag ∼ Raω , but 656 
at small rotation rates, i.e. Ek >> 1 . Then, as a first approximation the Coriolis effect can be 657 
neglected. Figure 4 still applies to the present problem, subject to a slight modification of drawing 658 
the gravity acceleration g*  in the negative z  direction. The notation remains the same and 659 
equation (50) becomes 660 
V = −∇p − Raωo 1+ηx[ ]Têx + RagTêz  (65) 661 
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where η = 1 x0 = Raω Raωo  represents the reciprocal of the offset distance from the axis of rotation. 662 
The approach being the same as before, the solution is expressed as a sum of a basic solution and 663 
small perturbations as presented in equation (52). However, because of the presence of the gravity 664 
component in equation (65), a motionless conduction solution is not possible any more. Therefore, 665 
the basic solution far from the top and bottom walls is obtained in the form 666 

ub = vb = 0;  wb = Rag x −
1

2
⎛
⎝

⎞
⎠ ;    Tb = x ; pb =

1

2
Ragz − Raωox

2 1

2
+
1

3
ηx⎡

⎣⎢
⎤
⎦⎥
+ const.  (66) 667 

Substituting this basic solution into the governing equations and linearizing the result by neglecting 668 
terms that include products of perturbations, which are small, yields a set of partial differential 669 
equations for the perturbations. Assuming a normal modes expansion in the y  and z  directions 670 
in the form 671 
′T = Aκθ (x)exp σ t + i(κ yy +κ zz)[ ]  (67) 672 

where κ y  and κ z  are the wave numbers in y  and z  directions respectively, i.e., κ 2 = κ y

2 +κ z

2 , 673 
and using the Galerkin method, the following set of linear algebraic equations is obtained at 674 
marginal stability ( i.e., for σ = 0  ) 675 

2 m2π 2 +κ 2( )2 −κ 2Raωo 2 +η( )⎡⎣ ⎤⎦δ ml +
⎧
⎨
⎩m=1

M

∑  676 

               
16mlκ 2Raωo

π 2 l 2 − m2( ) − i
8mlκ zRag

π 2 l 2 − m2( )2 π 2 l 2 + m2( ) + 2κ 2[ ]⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δ m+l , 2 p−1

⎫
⎬
⎭
am = 0  (68) 677 

for l = 1, 2, 3,...,M  and i = −1 . In equation (68) δ ml  is the Kronecker delta function and the 678 
index p  can take arbitrary integer values, since it stands only for setting the second index in the 679 
Kronecker delta function to be an odd integer. A particular case of interest is the configuration 680 
when the layer is placed far away from the axis of rotation, i.e. when the length of the layer L*  is 681 
much smaller than the offset distance from the rotation axis x0* . Therefore for x0 = x0* L*( )→ ∞  682 
or η → 0  the contribution of the term ηx  in equation (65) is not significant. Substitution of this 683 
limit into equation (68) and solving the system at the second order, i.e. M = 2 , yields a quadratic 684 
equation for the characteristic values of Raωo . This equation has no real solutions for values of 685 

α = κ z

2 π 2  beyond a transitional value α tr = (27π
3 16 Rag )

2 . This value was evaluated at higher 686 
orders too, showing that for M = 10  the transitional value varies very little with Rag , beyond a 687 
certain Rag  value around 50π . The critical values of Raωo  were evaluated for different values of 688 
Rg  (= Rag π )  and the corresponding two-dimensional convection solutions in terms of streamlines 689 
are presented graphically for the odd modes in Figure 16(a), showing the perturbation solutions in 690 
the x − z  plane as skewed convection cells when compared with the case without gravity. The 691 
corresponding convection solutions for the even modes are presented in Figure 16(b), where it is 692 
evident that the centrifugal effect is felt predominantly in the central region of the layer, while the 693 
downwards and upwards basic gravity driven convection persists along the left and right 694 
boundaries, respectively, although not in straight lines. Beyond the transition value of α , the basic 695 
gravity driven convective flow (equation (66) ) is unconditionally stable. These results were shown 696 
to have an analogy with the problem of gravity driven convection in a non-rotating, inclined porous 697 
layer (Govender and Vadasz [29]). Qualitative experimental confirmation of these results was 698 
presented by Vadasz and Heerah [45] by using a thermo-sensitive liquid-crystal tracer in a rotating 699 
Hele-Shaw cell. When the layer is placed at an arbitrary finite distance from the axis of rotation no 700 
real solutions exist for the characteristic values of Raωo  corresponding to any values of γ  other 701 
than γ = κ zRag = 0 . In the presence of gravity Rag ≠ 0 , and γ = 0  can be satisfied only if κ z = 0 . 702 
Therefore the presence of gravity in this case has no other role but to exclude the vertical modes of 703 
convection. The critical centrifugal Rayleigh numbers and the corresponding critical wave numbers 704 
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7. Additional Effects on Flow and Natural Convection in Rotating Porous Media  717 
Not much research results are available for thermo-haline convection in porous media subject 718 

to rotation. Chakrabarti and Gupta [78] investigated a non-Darcy model, which includes the 719 
Brinkman term as well as a non-linear convective term in the momentum equation (in the form 720 
(V ⋅∇)V ). Therefore the model's validity is subject to the limitations pointed out by Nield [69]. Both 721 
linear and non-linear analyses were performed and overstability was particularly investigated. 722 
Overstability is affected in this case by both the presence of a salinity gradient and by the Coriolis 723 
effect. Apart from the thermal and solutal Rayleigh numbers and the Taylor number, two 724 
additional parameters affect the stability. These are the Prandtl number Pr = ν* α e* , and the Darcy 725 
number Da = Ko H *

2 , where H *  is the layer's height. The authors found that, in the range of 726 
values of the parameters, which were considered, the linear stability results favor setting-in of 727 
convection through a mechanism of overstability. The results for non-linear steady convection show 728 
that the system becomes unstable to finite amplitude steady disturbances before it becomes 729 
unstable to disturbances of infinitesimal amplitude. Thus the porous layer may exhibit subcritical 730 
instability in the presence of rotation. These results are surprising at least in the sense of their 731 
absolute generality and the authors mention that further confirmation is needed in order to increase 732 
the degree of confidence in these results. A similar problem was investigated by Rudraiah et al [16] 733 
while focusing on the effect of rotation on linear and non-linear double-diffusive convection in a 734 
sparsely packed porous medium. A non-Darcy model identical to the one used by Chakrabarti and 735 
Gupta [78] was adopted by Rudraiah et al [16], however the authors spelled out explicitly that the 736 
model validity is limited to high porosity and high permeability which makes it closer to the 737 
behavior of a pure fluid system (non-porous domain). It is probably for this reason that the authors 738 
preferred to use the non-porous medium definitions for Rayleigh and Taylor numbers which differ 739 
by a factor of Da  and Da2 , respectively, from the corresponding definitions for porous media. It 740 
is because of these definitions that the authors concluded that for small values of Da  number the 741 
effect of rotation is negligible for values of Ta < 106 . This means that rotation has a significant effect 742 
for large rotation rates, i.e., Ta > 106 . If the porous media Taylor number had been used instead, 743 
i.e., the proper porous media scales, then one could have significant effects of rotation at porous 744 
media Taylor numbers as small as Ta > 10 . Hence, the results presented by Rudraiah et al [16] are 745 
useful provided Da = O 1( )  which is applicable for high permeability (or sparsely packed) porous 746 
layers. Marginal stability as well as overstability were investigated and the results show different 747 
possibilities of existence of neutral curves by both mechanisms, i.e., monotonic as well as oscillatory 748 
instability. In this regard the results appear more comprehensive in the study by Rudraiah et al [16] 749 
than in Chakrabarti and Gupta [78]. The finite amplitude analysis was performed by using a 750 
severely truncated representation of a Fourier series for the dependent variables. As a result a 751 
seventh-order Lorenz model of double diffusive convection in a porous medium in the presence of 752 
rotation was obtained. From the study of steady, finite amplitude analysis the authors found that 753 
subcritical instabilities are possible, depending on the parameter values. The effect of the 754 
parameters on the heat and mass transport was investigated as well, and results presenting this 755 
effect are discussed in Rudraiah et al [16]. The onset of double-diffusive convection in a rotating 756 
porous layer was investigated by Lombardo and Mulone [60], Malashety, Pop, and Heera [48], 757 
Falsaperla, Giacobbe and Mulone [63]. Triple-diffusion effects in rotating porous layers were 758 
investigated by Capone and De Luca [64]. They evaluated the ultimate boundedness of the 759 
solutions and found a necessary and sufficient condition for the global nonlinear asymptotic 760 
L2-stability of the motionless conduction solution. 761 

Lack of local thermal equilibrium (LaLotheq) or local thermal non-equilibrium (LTNE) means 762 
that distinct temperature values exist between the solid and fluid phases within the same 763 
Representative Elementary Volume (REV). Malashetty et al [53] presented the linear stability and 764 
the onset of convection in a porous layer heated from below and subject to rotation, accounting for 765 
the Coriolis effect as in Vadasz [42] but allowing for distinct temperature values between the solid 766 
and fluid phases, i.e. lack of local thermal equilibrium (LaLotheq), or local thermal non-equilibrium 767 
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(LTNE). The nonlinear part of the analysis was undertaken by using a truncated mode spectral 768 
system, such as the one used by Vadasz and Olek [46] but adapted for the LaLotheq conditions. The 769 
effect of finite heat transfer between the phases leading to lack of local thermal equilibrium was 770 
investigated also by Govender and Vadasz [32] while investigating also the effect of mechanical and 771 
thermal anisotropy on the stability of a rotating porous layer heated from below and subject to 772 
gravity. The topic of anisotropic effects is discussed in the next section. Bhadauria [47] investigated 773 
the effect of temperature modulation on the onset of thermal instability in a horizontal 774 
fluid-saturated porous layer heated from below and subject to uniform rotation. An extended Darcy 775 
model, which includes the time derivative term, has been considered, and a time-dependent 776 
periodic temperature field was applied to modulate the surfaces' temperature. A perturbation 777 
procedure based on small amplitude of the imposed temperature modulation was used to study the 778 
combined effect of rotation, permeability, and temperature modulation on the stability of the fluid 779 
saturated porous layer. The correction of the critical Rayleigh number was calculated as a function 780 
of amplitude and frequency of modulation, the porous media Taylor number, and the Vadasz 781 
number. It was found that both rotation and permeability suppress the onset of thermal instability. 782 
Furthermore, the author concluded that temperature modulation could either promote or retard the 783 
onset of convection.  784 

The effect of anisotropy on the stability of convection in a rotating porous layer subject to 785 
centrifugal body forces was investigated by Govender [25]. The Darcy model extended to include 786 
anisotropic effects and rotation was used to describe the momentum balance and a modified energy 787 
equation that included the effects of thermal anisotropy was used to account for the heat transfer. 788 
The linear stability theory was used to evaluate the critical Rayleigh number for the onset of 789 
convection in the presence of thermal and mechanical anisotropy. It was found that the convection 790 
was stabilized when the thermal anisotropy ratio (which is a function of the thermal and 791 
mechanical anisotropy parameters) increased in magnitude. Malashetty and Swamy [54], and 792 
Govender and Vadasz [32] investigated the Coriolis effect on natural convection in a rotating 793 
anisotropic fluid-saturated porous layer heated from below and subject to gravity as the body force. 794 
Malashetty and Swamy [54] assumed local thermal equilibrium while Govender and Vadasz [32] 795 
dealt with lack of local thermal equilibrium (LaLotheq), or local thermal non-equilibrium (LTNE). 796 
Malashetty and Swamy [54] used the linear stability theory as well as a nonlinear spectral method. 797 
The linear theory was based on the usual normal mode technique and the nonlinear theory on a 798 
truncated Galerkin analysis. The Darcy model extended to include a time derivative and the 799 
Coriolis terms with an anisotropic permeability was used to describe the flow through the porous 800 
media. A modified energy equation including the thermal anisotropy was used. The effect of 801 
rotation, mechanical and thermal anisotropy parameters and the Prandtl number on the stationary 802 
and overstable convection was discussed. It was found that the effect of mechanical anisotropy is to 803 
prefer the onset of oscillatory convection instead of the stationary one. It was also found, just as in 804 
Vadasz [42], that the existence of overstable motions in case of rotating porous media is not 805 
restricted to a particular range of Prandtl number as compared to the pure viscous fluid case. The 806 
steady finite amplitude analysis was performed using the truncated Galerkin modes to find the 807 
Nusselt number. The effect of various parameters on heat transfer was investigated. Govender and 808 
Vadasz [32] analyzed the stability of a horizontal rotating fluid saturated porous layer exhibiting 809 
both thermal and mechanical anisotropy, subject to lack of local thermal equilibrium (LaLotheq), or 810 
local thermal non-equilibrium (LTNE). All of the results were presented as a function of the scaled 811 
inter-phase heat transfer coefficient. The results of the linear stability theory have revealed that 812 
increasing the conductivity ratio and the mechanical anisotropy has a destabilizing effect, whilst 813 
increasing the fluid and solid thermal conductivity ratios is stabilizing. In general it was found that 814 
rotation has a stabilizing effect in a porous layer exhibiting mechanical or thermal (or both 815 
mechanical and thermal) anisotropy. Additional results for the effect of rotation on thermal 816 
convection in an anisotropic porous medium were presented by Vanishree and Siddheshwar [49]. 817 

An interesting, more recent, application is related to nanofluids. A nanofluid is a suspension of 818 
nanoparticles or nanotubes in a liquid. When the liquid is saturating a porous matrix one deals with 819 
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nanofluids in porous media. Chand and Rana [79] analyzed the Coriolis effect on natural 820 
convection in a rotating porous layer saturated by a nanofluid. Agarwal an Bhadauria [52], Rana 821 
and Agarwal [55], investigated the natural convection in a rotating porous layer saturated by a 822 
nanofluid and a binary mixture. This implies that the nanoparticles are suspended in a binary 823 
mixture, e.g. in a water and salt solution. Therefore double-diffusive convection is anticipated. The 824 
model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, 825 
while the Darcy model is used for the porous medium. The neutral and critical Rayleigh numbers 826 
for stationary and oscillatory convection have been obtained in terms of various dimensionless 827 
parameters. The authors concluded that the principle of exchange of stabilities is applicable in the 828 
present problem, while more amount of heat is required in the nanofluid case for convection to 829 
set-in. Agarwal et al [50] considered the convection in a rotating anisotropic porous layer saturated 830 
by a nanofluid. The model used for nanofluid combines the effect of Brownian motion along with 831 
thermophoresis, while for a porous medium the Darcy model has been used. Using linear stability 832 
analysis the expression for the critical Rayleigh number has been obtained in terms of various 833 
dimensionless parameters. Agarwal et al [50] indicate that bottom-heavy and top-heavy 834 
arrangements of nanoparticles tend to prefer oscillatory and stationary modes of convection, 835 
respectively. The onset of double-diffusive nanofluid convection in a rotating porous layer was 836 
investigated by Yadav et al [56].  837 

During solidification of binary alloys the solidification front between the solid and the liquid 838 
phases is not a sharp front but rather a mushy layer combining liquid and solid phases each one 839 
being interconnected. It is not surprising therefore that the treatment of this mushy layer follows all 840 
the rules applicable to a porous medium. Natural convection due to thermal as well as 841 
concentration gradients occurs in the mushy layer resulting in possible creation of freckles that 842 
might affect the quality of the cast. When such a process occurs in a system that is subject to 843 
rotation, centrifugal buoyancy as well as Coriolis effects are relevant and essential to be included in 844 
any model of this process. Govender and Vadasz [31] investigated such a system via a weak 845 
nonlinear analysis for moderate Stefan numbers applicable to stationary convection in a rotating 846 
mushy layer. Consequently Govender and Vadasz [30] investigated a similar system via a weak 847 
nonlinear analysis for moderate Stefan numbers applicable to oscillatory convection in a rotating 848 
mushy layer. A near-eutectic approximation and large far-field temperature were employed in both 849 
papers in order to decouple the mushy layer from the overlying liquid melt. The parameter regimes 850 
in terms of Taylor number for example where the bifurcation is subcritical or supercritical were 851 
identified. In the case of oscillatory convection increasing the Taylor number lead to a supercritical 852 
bifurcation. 853 

Linear stability was the primary method used in previous sections to establish the stability 854 
criteria for the onset of natural convection in a rotating porous layer. Straughan [73] pioneered the 855 
introduction of a nonlinear analysis producing a sharp nonlinear stability threshold in rotating 856 
porous convection. The application and generalization of this method was presented by Lombardo 857 
and Mulone [60], while deriving necessary and sufficient conditions of global nonlinear stability for 858 
double-diffusive convection in rotating porous media. The nonlinear method was expanded and 859 
summarized by Straughan [59]. The application of this nonlinear method to natural convection in 860 
non-rotating porous media was expanded showing the coincidence between linear and global 861 
nonlinear stability of non-constant through-flows was presented by Capone and De Luca [66] by 862 
using the “Rionero Auxiliary System Method”. Weak nonlinear solutions were presented by 863 
Bhadauria et al [51]. Investigations into the effects of inertia on rotating porous convection were 864 
undertaken by Falsaperla, Mulone, and Straughan [62], and by Capone and Rionero [65]. The latter 865 
used again the “Rionero Auxiliary System Method” to derive a set of conditions for the significance 866 
of inertia in this problem and for global nonlinear stability in terms of the porous media Taylor 867 
number as well as Vadasz number. 868 

Other studies considered effects of rotation for a combination of previously presented 869 
conditions. For example Capone and Gentile [80] presented sharp stability results in a rotating 870 
anisotropic porous layer subject to lack of local thermal equilibrium (LaLotheq, LTNE). Double 871 
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diffusive convection in a rotating anisotropic porous layer was presented by Galkwad and Kouser 872 
[81], Malashetty and Heera [82], and Malashetty and Begum [83]. Double diffusive convection in a 873 
rotating porous medium saturated with a coupled stress fluid was considered by Malashetty et al 874 
[84], while double diffusive convection in a rotating porous layer saturated by a viscoelastic fluid 875 
was investigated by Kumar and Bhadauria [85]. The effect of rotation on a micropolar 876 
ferromagnetic fluid heated from below saturating a porous medium was presented by Sunil et al 877 
[86]. Rotation effects on convection in a porous layer saturated by nanofluids was further 878 
considered by Bhadauria and Agrawal [87], for a porous medium model including the Brinkman 879 
term. A similar model was presented by Yadav and Lee [88] for the case of lack of local thermal 880 
equilibrium (LaLotheq, LTNE), and by Yadav et al [89] for a Darcy model Soret driven convection 881 
in a rotating porous medium saturated by a nanofluid. Brinkman convection induced by internal 882 
heating in a rotating porous medim layer saturated by a nanofluid was investigated by Yadav et al 883 
[90], while thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid 884 
was considered by Yadav et al [91]. Yadav et al [92] presented the conditions for the onset of 885 
convection in a rotating porous layer due internal heating by using a Brinkman model. The effects 886 
of thermal modulation, i.e. top and bottom imposed temperatures are allowed to vary slightly in 887 
time, were considered by Malashetty and Swamy [93] using a Darcy model and Bhadauria [94] 888 
using a Brinkman model. A similar Brinkman model was applied for investigating the effects of 889 
centrifugal buoyancy in a rotating porous layer far away from the center of rotation subject to 890 
modulation of rotation by Om et al [95], i.e. the angular velocity was allowed to slightly vary 891 
periodically in time. The same conditions applied to a rotating porous layer distant an arbitrary 892 
distance from the center of rotation was presented by Om et al [96]. Coriolis effect on thermal 893 
convective instability of viscoelastic fluids in a rotating porous cylindrical annulus was investigated 894 
by Kang et al [97]. Küppers-Lortz instability in rotating Rayleigh-Benard convection in a porous 895 
medium was studied by Rameshwar et al. [98]. 896 

 897 

8. Conclusions 898 
A review of the variety of instability problems linked to natural convection in rotating porous 899 

media was presented. The effect of centrifugal buoyancy was investigated separately, and later in 900 
combination with gravitational buoyancy. The cases when the Coriolis effect is significant were also 901 
analyzed and the corresponding results were discussed. The diversity of additional effects linked to 902 
natural convection in rotating porous media, such as thermo-solutal and double-diffusive 903 
convection, the effect of anisotropy of the porous medium, the inclusion of nanofluids in rotating 904 
porous media, solidification of binary alloys, and lack of local thermal equilibrium are examples 905 
that were also shortly reviewed. The pioneering studies on global nonlinear analyses and 906 
investigations of the effect of inertia on natural convection in rotating porous media concluded the 907 
present review. 908 
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