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Abstract: A review on instability and consequent natural convection in rotating porous media is
presented. Taylor-Proudman columns and geostrophic flows exist in rotating porous media just
the same as in pure fluids. The latter leads to a tendency towards two-dimensionality. Natural
convection resulting from density gradients in a gravity field as well as natural convection
induced by density gradients due to the centripetal acceleration are being considered. The former
is the result of gravity-induced buoyancy, the latter is due to centripetally-induced buoyancy. The
effect of Coriolis acceleration is also discussed. Linear stability analysis as well as weak nonlinear
solutions are being derived and presented.

Keywords: Rotating Flows; Porous Media; Natural Convection; Instability; Taylor-Proudman
column; Centrifugal Buoyancy, Coriolis Acceleration.

1. Introduction

The research into the effects of rotation on the flow and transport phenomena in porous media
is driven by the fundamental scientific significance as well as by engineering and geophysical
applications. To be specific, one refers to flows in porous geological formations subject to earth
rotation, to the flow of magma in the earth mantle close to the earth crust (Fowler [1]) as
geophysical applications. The food process industry, chemical process industry, centrifugal
filtration processes, and rotating machinery are examples of engineering applications.

For example, packed bed mechanically agitated vessels are being used in the food processing
and chemical engineering industries in batch processes. The packed bed consists of solid particles
or fibers of material, which form the solid matrix while fluid flows through the pores. As the solid
matrix rotates, due to the mechanical agitation, a rotating frame of reference is a necessity when
investigating these flows. The role of the flow of fluid through these beds can vary from drying
processes to extraction of soluble components from the solid particles. Two examples of such
processes are the molasses subject to centrifugal crystal separation in the sugar milling industry and
the extraction of sodium alginate from kelp. Additional industrial applications are being presented
in Vadasz [2,3,4], Nield and Bejan [5,6], and Bejan [7] in comprehensive reviews of the
fundamentals of heat convection in porous media.

With the emerging utilization of the porous medium approach in non-traditional fields,
including some applications in which the solid matrix is subjected to rotation (like physiological
processes in human body subject to rotating trajectories, cooling of electronic equipment in a
rotating radar, cooling of turbo-machinery blades, or cooling of rotors of electric machines) a
thorough understanding of the flow in a rotating porous medium becomes essential. Its results can
then be used in the more established industrial applications like food processing, chemical
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engineering or centrifugal processes, as well as to the less traditional applications of the porous
medium approach.

The fundamental equations and assumptions applicable to single-phase convective heat
transfer were presented by Dagan [8], Acharya [9]. A review of the effects of rotation on heat
transfer in general was presented by Wiesche [10].

Reviews of the fundamentals of flow and heat transfer in rotating porous media were
presented by Vadasz [2, 3, 4, 11, 12, 13, 14, 15].

No reported results were found on isothermal flow in rotating porous media prior to 1994.
Research of a pioneering nature on natural convection in rotating porous media were reported by
Rudraiah et al [16], Patil and Vaydianathan [17], Jou and Liaw [18, 19], and Palm and Tyvand [20].
Nield [21] found that the effect of rotation on convection in a porous medium attracted limited
interest in a comprehensive review of the stability of convective flows in porous media.

The fact that isothermal flow in homogeneous porous media following Darcy law is
irrotational and hence the effect of rotation on this flow is insignificant contributed to the limited
interest for this type of flow. However, for natural convection in a non-isothermal homogeneous
porous medium or for a heterogeneous medium with spatially dependent permeability the flow is
not irrotational anymore, and therefore the effects of rotation become significant. More recent
interest in this type flow, during the past three decades, led to an increased number of publications.
For example, Nield [22], Auriault et al [23, 24], Govender [25, 26], Havstad and Vadasz [27], Vadasz
and Havstad [28], Govender and Vadasz [29, 30, 31, 32], Vadasz [2, 3, 4, 11, 12, 13, 14, 15, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42], Vadasz and Govender [43, 44], Vadasz and Heerah [45], Vadasz and Olek
[46], Bhadauria [47], Malashetty, Pop, Heera [48], Vanishree and Siddheshwar [49], Agarwal et al
[50], Bhadauria et al [51], Agarwall and Bhadauria [52], Malashetty et al [53], Malashetty and
Swamy [54], Rana and Agarwal [55], Yadav et al [56], Rashidi et al [57], Makinde et al [58],
Straughan [59], Lombardo and Mulone [60], Falsaperla, Mulone and Straughan [61, 62], Falsaperla,
Giacobbe and Mulone [63], Capone and De Luca [64], Capone and Rionero [65], Capone and De
Luca [66].

2. Governing Equations

The equations governing the flow and heat transfer in rotating porous media are presented in a
dimensionless form subject to the assumptions of constant angular velocity of rotation, Boussinesq
approximation (Boussinesq [67]), and local thermal equilibrium (LTE or Lotheq). The latter implies
that the difference in the local temperature between the solid and fluid phases in the porous
medium is insignificantly small and can be neglected. Boussinesq approximation [67] applicable to
buoyancy flows states that the density id constant in all terms of the governing equations except the
buoyancy terms in the momentum equation. The notation being used refers to symbols having an
asterisk as dimensional, while symbols without an asterisk represent dimensionless quantities,
except symbols carrying the subscript “c” representing characteristic values, or the subscript “o0”
representing reference values, both being dimensional. The continuity equation is presented in the
form
V.V=0 @)
where V=ue +ve +we_is the filtration velocity vector presented in Cartesian coordinates,
u,v,w are the components of the the filtration velocity vector in the x,y,z directions,

respectively, and éx,éy,éj are unit vectors in the x,y,z directions, respectively. The operator V.

is the divergence operator defined in the form V.= [éx o )/ox+e o )/oy+e d( )/d x] .
The momentum transport in porous media is governed primarily by the Darcy law, which is
presented in the rotating frame of reference of the solid matrix in the following dimensionless form

V:—NprJrFrpéngnpéwx(éwxX)fLéwa ()
Ek

A
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where four dimensionless groups emerged, i.e. a pressure number N (equivalent to a porous
media Euler number where gl /K. replaces pu_ ), a porous media Froude number Fr, a
centrifugal number Cn, and a porous media Ekman number Ek, defined in the form

_ K.Ap, gk B K*Cl)jl(.

V.,
= , Fr , Cn , EkA:(P—
waul v v.u, 2w.K.

®)

P

and where K, and ¢ are the permeability and the porosity of the porous matrix, respectively, u

5

is the dynamic viscosity, p, is a constant reference value of the fluid density used to convert the
density into a dimensionless form, v, =y, / p, is the kinematic viscosity of the fluid, ®, is the
constant angular velocity of rotation, p and p are the dimensionless pressure and density,
respectively, ég is a unit vector in the direction of the gravity acceleration, éw is a unit vector in
the direction of the angular velocity of roation, and X =xéx +yéy +Zé; is the position vector

measured from the axis of rotation. Also [ ,u_,p  are constant dimensional characteristic values of

length, filtration velocity, and pressure, respectively, used to convert the space variables, the
filtration velocity, and the pressure into dimensionless forms. The gradient operator in equation (2)

is defined in the form Vs[éxa( )/8x+éy8( )/ay-l-éza( )/8x]

The third term in the brackets in equation (2) represents the centrifugal force while the fourth term
represents the Coriolis acceleration.

When fast transients or high frequency effects are of interest there is another extension to the
Darcy equation that is applicable. Then, the time resolution obtained by assuming a very fast
reaction of Darcy flow to changes and therefore the quasi-steady approximation which is inherent
in the formulation of the Darcy law is not sufficient and a time derivative of the filtration velocity
needs to be incorporated leading to the following dimensionless form of the extended Darcy
equation in a rotating frame of reference

DaReM , 9V N o A P .
7p—+V=—NPVp+Frpeg—Cnpewx(emxX)——ewa 4)

) dt Ek,
where the additional dimensionless groups that emerged are the Darcy number Da, and the
Reynolds number Re

K, ul
Da = , Re=— ®)
I v

and M ; is a ratio of heat capacities that its the definition will follow later. The corresponding

length scale is a macro-level length scale, not the pore-size, despite the fact that it is the porous
media filtration velocity that emerged in the definition of the Reynolds number. However the
Reynolds number appears in equation (4) in a product combination with the Darcy number,
bringing therefore the pore-scale effects into account too.

Following the definition of the dimensionless temperature in the form

- (ZA—T ) ©

where T, is the dimensional temperature, 7 is a reference value of temperature, and AT is a

characteristic temperature difference, the dimensionless form of the energy equation subject to local
thermal equilibrium (LTE or Lotheq) is presented in the form

oT 1,
—+VVI =—V'T @)
at Pe
where Peclet number emerged as an additional dimensionless group, defined in the form
ul
Pe=—==PrRe (8)
o

o*

where the porous media Prandtl number Pr is defined by
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v,
Pr=— 9)
o

o*

The effective thermal diffusivity of the porous medium appearing in (8) and (9) is defined as
a,=k, / Y. and M =y, / Y. is the heat capacity ratio, i.e. the ratio between the effective heat

capacity of the fluid phase and the effective heat capacity of the porous medium, where
Yo=Y.+Y., k.=k.+k,. are the effective heat capacity and effective thermal conductivity of the

7
S

porous medium and subscripts and “f” refer to the solid and fluid phases, respectively. Then

the adjusted effective thermal diffusivity is defined as follows o, =, / M, =k, / Y-

To complete the governing equations one needs a relationship between the density,
temperature and pressure (and solute concentration when the fluid is a solution of soluble
substances, e.g. salt in water, alcohol in water, etc., in which case an additional species equation
needs to be added to). A linear approximation for this relationship is usually sufficiently accurate if
the temperature and pressure differences are no excessively high. The dimensionless form of the
linear approximation of the equation of state can be obtained by using the definition of the
dimensionless temperature from equation (6) and the dimensionless pressure in the form
p=(p.—p,)/Ap. . Then the equation of state becomes

p=[1-B,7+8,p] (10)
where p=p./ p, is the dimensionless density, and B, =B,.AT , B =B Ap are the
dimensionless thermal expansion and pressure compression coefficients, respectively. For most
fluid flows and especially for incompressible flows, i.e. flows of liquids, B, < f3, . Therefore the
common approximation of the dimensionless equation of state is

p=[1-57] (11)
There are some identities relevant to flows in a rotating frame of reference and in buoyancy flows
that are useful in the following derivations. These identities are

¢, =V(é, X) (12)
o x(é.xX)= _vB(@w «X)-(6. xX)} 13)
¢ x(é, xX)=(¢,-X)é, - X (14)

Their proof can be found in Vadasz [3].

Although for a significantly high number of practical instances Darcy’s model (or its extension)
for a rotating frame of reference is sufficient for representing the effects of rotation, non-Darcy
models have been used as well. Their relevance and limitations are subject to professional discourse
(e.g. Nield [68, 69, 70] and Vafai and Kim [71]).

3. Taylor-Proudman Columns and Geostrophic Flow in Rotating Porous Media

By using equations (12) and (13), considering isothermal conditions (no heat transfer) and
consequently the density is constant p, = p, hence p =1, Darcy equation (2) becomes

~

1
——é XV (15)
Ek

A

1
V=-V|Np-Fr(é X)-Cn E(é‘” xX)-(e, xX)]

The term under the common gradient operator is a reduced pressure p_, defined as
. Cn, .
p,=N,p-Fr(é -X)-—(¢,xX)-(é,xX) (16)
g 2 ® 2]

By using (16) and choosing the direction of the angular velocity of rotation to be aligned with the
vertical axis, i.e. e, = e_, the Darcy equation (2) can be presented in the following rearranged form

[Ek, +é, x|V =-V(Ek,p,) 17)
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For typical values of viscosity, porosity and permeability the range of variation of Ekman number
can be evaluated in some engineering applications. Consequently, the angular velocity may vary

from 10 rpm to 10,000 rpm leading to Ekman numbers in the range from Ek, =1 to Ek, = 107,
The latter value is very small, pertaining to the conditions considered here. Therefore, in the limit of
Ek, —0,say Ek, =0, equation (17) takes the simplified form

é xV=-V(Ek,p,) (18)
and the effect of permeability variations disappears. Taking the "curl" of equation (18) leads to
Vx(e xV)=0 (19)
Evaluating the "curl" operator on the cross product of the left-hand side of equation (19) leads to
(e.-V)v=0 (20)
Equation (20) is identical to the Taylor-Proudman theorem for pure fluids (non-porous domains); it
thus represents the proof of the Taylor-Proudman theorem in porous media, and can be presented
in the following simplified form
v _

dz

The conclusion expressed by equation (21) is that V =V(x,y), i.e. it cannot be a function of z,

@1

where z is the direction of the angular velocity vector. This means that all filtration velocity
components can vary only in the plane perpendicular to the angular velocity vector. This result
leads to the existence of Taylor-Proudman columns in rotating porous media as presented in detail
by Vadasz [3]. The consequence of this result can be demonstrated by considering a particular
example that was presented by Vadasz [36] (see Greenspan [72] for the corresponding example in
pure fluids).

A further significant consequence of equation (21) is represented by a geostrophic type of flow.
Taking the z-component of equation (21) yields é?w/ dz=0, and the continuity equation (1)

becomes two dimensional

—+—=0 (22)

Therefore the flow at high rotation rates has a tendency towards two-dimensionality and a stream
function, y, can be introduced for the flow in the x—y plane in the form

Y y
it AVS &
dy ox

which satisfies identically the continuity equation (1). Substituting u and v with their stream

(23)

u=

function representation given by equation (23) into equation (18) yields

9y _ I(Ek,p,)

24
ox ox @)
v _ I(Ek,p,) 25)
dy dy

As both the pressure and the stream function can be related to an arbitrary reference value, the
conclusion from equations (24) and (25) is that the stream function and the pressure are the same in
the limit of high rotation rates ( Ek — 0). This type of geostrophic flow means that isobars represent
streamlines at the leading order, for Ek —0.

4. Natural Convection due to Centrifugal Buoyancy

Natural convection is the effect of flow and convection heat transfer due to the existence of
density gradients in a body force field (such as gravity or centrifugal force field). As density
depends on temperature as demonstrated in the derivation of the equation of state, temperature
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gradients may create natural convective flows when a body force field is present. What
characterizes natural convection is the lack of a known value of characteristic filtration velocity that
can be applied upfront in a problem. No characteristic velocity can be specified because the latter is
dictated by the temperature gradients and their resulting buoyancy rather than being known
upfront. Therefore a sensible choice of u, would be u =a, / [ . With this choice of u_ the

Froude number Fr, the pressure number N , and the centrifugal dimensionless group Cn in

equations (12) and (14) become Fr = g*K*lc/v*aC* , N, = K*Apf/u*(xﬁ , Cn= wzlzK /v*oce* . Without
loss of generality for the same reason as for the filtration velocity one can chose the characteristic
pressure difference to be such that the pressure number N, becomes unity, i.e. Ap =p.o, / K,
leading to N =1. Also the Reynolds number in equation (5) renders into the reciprocal Prandtl
number Re =, / v, = 1/ Pr and the Peclet number in equations (7) and (8) becomes equal to one by
definition Pe=u [ / o,=a,l / la,=1. One may define the effective Prandtl number in terms of
the effective thermal diffusivity o, (see the equation and the text following equation (9) )
Pr=v./a, = Pr/ M . Then the coefficient to the time derivative term in equation (4) becomes
DaReM , / ¢ = DaM / ¢Pr = Da/¢Pr =1/Va a new dimensionless group that Straughan [73] named

the Vadasz number (Va), or the Vadasz coefficient named by Straughan [73] (see also Sheu [74] and
Govender [26]). By using equations (11), (12) and (13) leads to transforming equations (2) and (4)
into the following form

1
V=-Vp +RaTé —RaTl[(é X)ée —X]-—e xV (26)
Ek,

1
i&—v+ V=-Vp +RaTé —RaTl[(e, X)e, —X]-—e, xV (27)
Va dt ‘ Ek

The product of B, by Fr and Cn produced two new dimensionless groups in the form of the

gravity related Rayleigh number and the centrifugal Rayleigh number, respectively in the form

AT g K1
Rag =Fr BT — & (28)
V.o,
B,.AT 0 K,
Ra, =Cnf, = e (29)
V.o,

The particular cases when ¢ =-¢ and e, =e will be considered later. Subject to this orientation
of the gravity and angular velocity of rotation equations (26) and (27) take the form

A R n L,
V:prr+Ra,Te,fRawT(xex+ye )f—e_xV (30)

A

1 oV . R n 1
——+V=-Vp +RagTe_ fRawT(xex +yey)f—
Va dt ’ Ek,

The vector r=(xe +ye ) in equations (30) and (31) represents the perpendicular radius vector

e.xV (31)

from the axis of rotation to any point in the flow domain.

Three dimensionless groups emerged in equation (30) when fast transients or high frequencies are
not of interest. These dimensionless groups control the significance of the different phenomena.
Therefore, the value of Ekman number ( Ek,) controls the significance of the Coriolis effect, and the
ratio between the gravity related Rayleigh number (Ra,) and centrifugal Rayleigh number (Ra, )
controls the significance of gravity with respect to centrifugal forces as far as natural convection is
concerned. This ratio is Ra, / Ra, =g, / a)zl . When fast transients or high frequencies are of interest
equation (27) is to be considered. In such a case one additional dimensionless group emerged, the
Va number representing the ratio between two characteristic frequencies, i.e. the fluid flow

frequency @, =¢v, / K. and the thermal diffusion frequency o, =0, / lf , e
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Va=w, / o, =¢)v*lf / Ko, =¢Pr / Da, or alternatively the ratio between two time scales, i.e. the
thermal diffusion time scale Ta%=l:“ /o?e« , and the fluid flow time scale 7,=K, /¢v* , le.

Va=1, [T, =¢v.I’ / K.6. =¢Pr /Da. In addition to such cases equation (27) should be used also

when the effective Prandtl number is of the order of magnitude of Darcy number, i.e. Pr, = 0(Da)

i.e. a very small number (as Da <<1 in most porous media). Such small values of the Prandtl
number are typical for liquid metals. In such cases too the time derivative term in equation (27)
should be retained.

Considering the Darcy regime subject to a centrifugal body force and by neglecting gravity
effects ( Ra, / Ra, <<1) equations (1), (7) and (26) with Ra =0 and Pe=1 represent the

mathematical model for this case. The objective in the first instance is to establish the convective
flow under small rotation rates, then Ek >>1, and as a first approximation the Coriolis effect can
be neglected, i.e., Ek — o . Following these conditions the governing equations become (by using
identity (14))

V-V=0 (32)
V=-[Vp-RaTeé x(é xX)] (33)
or ,

—+V-VT =V'T (34)
ot

There are three cases corresponding to the relative orientation of the temperature gradient with
respect to the centrifugal body force as presented in Figure 1. Case 1(a) in Figure 1 corresponds to a
temperature gradient, which is perpendicular to the direction of the centrifugal body force and
leads to unconditional convection. The solution representing this convection pattern is presented by
Vadasz [34, 3, 4]. Cases 1(b) and 1(c) in Figure 1 corresponding to temperature gradients collinear
with the centrifugal body force represent stability problems and hence our present focus. The
objective is then to establish the stability condition as well as the convection pattern when this
stability condition is not satisfied.

) vT
VT B B VT B
Unconditional Conditional No Convection
Convection Convection
(a) (b) (©)

Figure 1. The effect of the relative orientation of the temperature gradient with respect to the body
force on the setup of convection.

An example of a case when the imposed temperature is perpendicular to the centrifugal body force
is a rectangular porous domain rotating about the vertical axis, heated from above and cooled from
below. For this case the centrifugal buoyancy term in equation (33) becomes Ra,T xe_ leading to
V=-Vp—RaTxe, (35)

An analytical two-dimensional solution to this problem (see Figure 2) for a small aspect ratio of the
domain was presented by Vadasz [34, 3, 4]. The solution to the non-linear set of partial differential
equations was obtained through an asymptotic expansion of the dependent variables in terms of a
small parameter representing the aspect ratio of the domain.

The convection in the core region far from the sidewalls was the objective of the investigation. To
first order accuracy, the heat transfer coefficient represented by the Nusselt number was evaluated
in the form
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W2x,
Z }i()
m*
TH*
z=1
T _ I _y |H,
ax 0x
> z=0
TC* X
x=0 L. x=L

Figure 2: A rotating rectangular porous domain heated from above, cooled from below, and insulated on its
sidewalls. (courtesy Elsevier Science Ltd.)

Nu=—|:l+&+0(H2)jl (36)
24
where Nu is the Nusselt number and the length scale used in the definition of Ra_, equation (54),

was [ =H, . Vadasz [37] used a different approach to solve a similar problem without the
restriction of a small aspect ratio. A direct extraction and substitution of the dependent variables
was found to be useful for de-coupling the non-linear partial differential equations, resulting in a
set of independent non-linear ordinary differential equations, which was solved analytically. To
obtain an analytical solution to the non-linear convection problem we assume that the vertical
component of the filtration velocity, w, and the temperature 7 are independent of x, i.e.,
9w/8x=8T/9x=0 Vxe(O,L), being functions of z only. It is this assumption that will
subsequently restrict the validity domain of the results to moderate values of Ra, (practically
Ra, < 5). Subject to the assumptions of two-dimensional flow v=0 and d(-)/dy=0 and that w

and 7 areindependentof x the governing equations take the form

—+—=0 37
Jdx dz 7
d
u=——p—Rawa (38)
ox
dp
Ww=—— 39
0z 9)
d’r 4T
~-w—=0 (40)
dz dz

The method of solution consists of extracting 7 from equation (38) and expressing it explicitly in
terms of u,d p/ dx and x. This expression of 7 is then introduced into equation (40) and the
derivative 9/ dx is applied to the result. Then, substituting the continuity equation (37) in the form
dufdx=~-dw/dz and equation (39) into the results yields a non-linear ordinary differential
equation for w in the form

d’w d’w

L (41)

dz dz’

An interesting observation regarding equation (41) is the fact that it is identical to the Blasius
equation for boundary layer flows of pure fluids (non-porous domains) over a flat plate. To observe
this, one simply has to substitute w(z) =—f(z)/2 to obtain 2f” + ff” =0, which is the Blasius

equation. Unfortunately, no further analogy to the boundary layer flow in pure fluids exists,

predominantly due to the different boundary conditions and because the derivatives [d(-)/dz] and

the flow (w) are in the same direction. The solutions for the temperature 7 and the horizontal
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component of the filtration velocity u, are related to the solution of the ordinary differential
equation

¢/¢/// _ (P//2 + (p qo/z — 0 (42)
where (-) stands for d(-)/dz and
u=x¢(z) (43)
1
T(z)=-—][P+0o(2)] (44)
Ra,

where P is a constant defined by

P=-Ra,[ T(z)dz (45)

The relationship (45) is a result of imposing a condition of no net flow through any vertical
cross-section in the domain, stating that J.Ol udz=0.

The following boundary conditions are required to the solution of (41) for w :
w=0at z=0andz=1 representing the impermeability condition at the solid boundaries and
T=0atz=0andT=latz=1. Since Jdu/dx=¢ according to equation (43), then following the
continuity equation (37) ¢ =-dw/dz and the temperature boundary conditions can be converted
into conditions in terms of w by using equation (44), leading to the following complete set of
boundary conditions for w:

dw

z=0: w=0 and —= (46)
dz
dw

z=1: w=0 and d—=P+Ram (47)
Z

Equations (46) and (47) represent four boundary conditions, while only three are necessary to solve
the third order equation (41). The reason for the fourth condition comes from the introduction of the
constant P, whose value remains to be determined. Hence, the additional two boundary
conditions are expressed in terms of the unknown constant P and the solution subject to these
four conditions will determine the value of P as well. A method similar to Blasius's method of
solution was applied to solve equation (41). Therefore, w(z) was expressed as a finite power series
and the objective of the solution was to determine the power series coefficients. Once the solution
for w(z) and the value of P were obtained, # and T were evaluated by using

@(z)=-dw/dz and equations (43) and (44).

Y=0
=0.518
$=1.036
Y=0 (
P =1.295
Y =0.777
Y =0.259
Y=0

Figure 3: Graphical description of the resulting flow field; five streamlines equally spaced between their
minimum value y_ =0 at the rigid boundaries and their maximum value y__=1.554. The values in the

max

figure correspond to every other streamline. (courtesy Elsevier Science Ltd.)

For presentation purposes a stream function y was introduced to plot the results (
u=0y/dz, w=-dy/dx). An example of the flow field represented by the streamlines is
presented in Figure 9 for Ra, =4 and for an aspect ratio of 3 (excluding a narrow region next to

the sidewall at x =L ). Outside this narrow region next to x=L the streamlines remain open on
the right hand side. They are expected to close in the end region. On the left-hand side, however,
the streamlines close throughout the domain. The reason for this, is the centrifugal acceleration,
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which causes u to vary linearly with x, thus creating (due to the continuity equation) a
non-vanishing vertical component of the filtration velocity w at all values of x.The local Nusselt
number Nu, representing the local vertical heat flux was evaluated as well by using the definition
Nu =|—<9T/ QzL:O and using the solution for 7. A comparison between the heat flux results

obtained from this solution and the results obtained by Vadasz [34] using an asymptotic method
was presented graphically by Vadasz [37]. The two results compare well as long as Ra, is very

small. However, for increasing values of Ra, the deviation from the linear relationship pertaining
to the first order asymptotic solution (Nu =1+ Ra, / 24, according to Vadasz [34]) was evident. The

stability of this convection flow was not evaluated, although it is of extreme interest. This would be
an interesting though not simple task recommended for future research.

The problem of stability of free convection in a rotating porous layer when the temperature
gradient is collinear with the centrifugal body force was treated by Vadasz [38] and Vadasz [40] for
a narrow layer adjacent to the axis of rotation (Vadasz [38]) and distant from the axis of rotation
(Vadasz [40]), respectively. The problem formulation corresponding to the latter case is presented
in Figure 4. In order to include explicitly the dimensionless offset distance from the axis of rotation
x,, and to keep the coordinate system linked to the porous layer, equation (33) was presented in the

form
V=-Vp-[Ra, +Rax]Té (48)

Two centrifugal Rayleigh numbers appear in equation (48); the first one, representing the
contribution of the offset distance from the rotation axis to the centrifugal buoyancy is

Ra, =B, AT w x, LK, Jov. , while the second, Ra, = B, AT® 'K, [o.v, , represents the

X
contribution of the horizontal location within the porous layer to the centrifugal buoyancy. The
ratio between the two centrifugal Rayleigh numbers is dimensionless reciprocal distance from the
axis of rotation

Ra, 1

Ra X

wo 0

and can be introduced as a parameter in the equations transforming equation (48) into the form
V=-Vp-Ra, [1+nx]|Té (50)

From equation (50) it is observed that when the porous layer is far away from the axis of rotation
then 1 <<1 (x,>>1 ) and the contribution of the term 7x is not significant, while for a layer
close enough to the rotation axis 7 >>1 (x, <<1) and the contribution of the first term becomes

insignificant. In the first case the only controlling parameter is Ra, while in the latter case the
only controlling parameter is Ra, =7NRa, . The flow boundary conditions are V-e =0 on the

boundaries, where e, is a unit vector normal to the boundary. These conditions stipulate that all
boundaries are rigid and therefore non-permeable to fluid flow. The thermal boundary conditions
are: 7T=0 at x=0, T=1 at x=1 and VT- én =0 on all other walls representing the

insulation condition on these walls.
The governing equations accept a basic motionless conduction solution in the form

[v,.7,.p,]1=[ 0.x.(~Ra, (*/2+1x[3)+ C) ] 1)

The objective of the investigation was to establish the condition when the motionless solution (51) is
not stable and consequently a resulting convection pattern appears. Therefore a linear stability
analysis was employed, representing the solution as a sum of the basic solution (51) and small
perturbations in the form

V.7, p]=[V,+ V. T,+7", p,+p] (52)
where (1) stands for perturbed values. Solving the resulting linearized system for the
perturbations by assuming a normal modes expansion in the y and z directions, and 6(x) in
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the x direction,ie., T = AKO(x)exp[O't + i(K)_y + K:z)], and using the Galerkin method to solve for

0(x) one obtains at marginal stability, i.e., for =0, a homogeneous set of linear algebraic
equations. This homogeneous linear system accepts a non-zero solution only for particular values of
Ra, such that its determinant vanishes. The solution of this system was evaluated up to order 7

for different values of 17 , representing the offset distance from the axis of rotation.

7' A
AZZA wlx, <9 R
VA
z=H
o —
1 1
B~ =
— >
X' ‘ X
X

Figure 4: A rotating fluid saturated porous layer distant from the axis of rotation and subject to different
temperatures at the sidewalls.

However, useful information was obtained by considering the approximation at order 2. At this
order the system reduces to two equations, which lead to the characteristic values of Ra, in the

form
B [3|:(1+oz)2 +(4+a)2:| . \/[32[(1+05)2 +(4+0¢)2:| —4(f -7’ )(1+a) (4+a) )
0.c Z(X(ﬁz—yz) - Za(ﬁz_yz)
where the following notation was used
Ra Ra K’ n , 256n°
RO: :‘"’; R = zﬂ’; o=—; ﬁ:1+—; Y = " (54)
T T T 2 81m

and x is the wavenumber such that x’ = K'z +Kf while the subscript ¢ in equation (53)
represents characteristic (neutral) values (values for which ¢ =0). A singularity in the solution for
R, corresponding to the existence of a single root for R , appears when B’ =y’. This
singularity persists at higher orders as well. Resolving for the value of 1 when this singularity
occurs shows that it corresponds to negative 7 values implying that the location of the rotation

axis falls within the boundaries of the porous domain (or to the right side of the hot wall - a case of
little interest due to its inherent unconditional stability). This particular case will be discussed later
in this section. The critical values of the centrifugal Rayleigh number as obtained from the solution
up to order 7 are presented graphically in Figure 5(a) in terms of both R = and R, as a function
of the offset parameter 1. The results presented in Figure 5 are particularly useful in order to
indicate the stability criterion for all positive values of 7. It can be observed from the figure that as
the value of 1 becomes small, i.e. for a porous layer far away from the axis of rotation, the critical

centrifugal Rayleigh number approaches a limit value of 47’ . This corresponds to the critical
Rayleigh number in a porous layer subject to gravity and heated from below. For high values of 7
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it is appropriate to use the other centrifugal Rayleigh number R, instead of R , by introducing the
relationship R=nR (see equations (49) and (54)) in order to establish and present the stability
criterion. It is observed from Fig. 5(a) that as the value of 1 becomes large, i.e. for a porous layer
close to the axis of rotation, the critical centrifugal Rayleigh number approaches a limit value of

7.817° . This corresponds to the critical Rayleigh number for the problem of a rotating layer
adjacent to the axis of rotation as presented by Vadasz [38]. The stability map on the Ra, —Ra,,

0

plane is presented in Figure 5(b), showing that the plane is divided between the stable and unstable
zones by the straight line (Raw/7.817t2 ) + (Raww/47r2) =1.

The results for the convective flow field are presented graphically in Figure 6 following Vadasz
[40], where it was concluded that the effect of the variation of the centrifugal acceleration within the
porous layer is definitely felt when the box is close to the axis of rotation, corresponding to an
eccentric shift of the convection cells towards the sidewall at x=1. However, when the layer is
located far away from the axis of rotation (e.g. x, =50) the convection cells are concentric and

symmetric with respect to x =1/2 as expected for a porous layer subject to gravity and heated

from below (here "below" means the location where x=1).

Although the linear stability analysis is sufficient for obtaining the stability condition of the
motionless solution and the corresponding eigenfunctions describing qualitatively the convective
flow, it cannot provide information regarding the values of the convection amplitudes, nor
regarding the average rate of heat transfer. To obtain this additional information, Vadasz and Olek
[46] analyzed and provided a solution to the non-linear equations by using Adomian’s
decomposition method to solve a system of ordinary differential equations for the evolution of the

amplitudes.
8 |
Ra Ra
7 w,cr 0,cr
4 8 Py =1
T S A R T A S . 1 2 4 2
~. et ; p 7811 /4
3 w|_ RWI '.,.'¥ 6 Nk) 5| il
- N Iy = I 5 A Unstable
N [ o M 4
\/ s 03
S} 2 % 4 bt S+ 3
> \ ~ I |
3 Stable
1 2
1
\\\ 1
.- - U ‘ ‘
P — ~~ 0 05 1 15 2 25 3 35 4
2 -1 0 1 2
2
loglon Raa)o/TE
(a) (b)

Figure 5: (a) The variation of the critical values of the centrifugal Rayleigh numbers as a function of 7;

(b) The stability map on the Ra, — Ra, plane showing the division of the plane.

This system of equations was obtained by using the first three relevant Galerkin modes for the
stream function and the temperature in the form

= 29«/2}7(R—1)X(t)sin(nx)sin(%j (55)
=x+ 2—'27(R_I)Y(t)sin(ﬂ:x)cos(%)+ %Z(r)sin(brx)

= R (56)

where 77=H2/(H2+1) , 0=(H2+1)/H , H being the layer's aspect ratio, R=E&/n’0",
&=Ra, +Ra, /2, and X.,Y,Z the possibly time dependent amplitudes of convection. In this
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model it was considered of interest including the time derivative term in Darcy’s equation in the
form (1/ Va)o_?V/ dt, where Va=¢Pr / Da, and Da,Pr, are the Darcy and the effective Prandtl

numbers, respectively, defined as Da =K, / L and Pr=v./a, (seeequation (58) with Ra =0

and Ek — o). The reason for including the time derivative term in the Darcy equation was the fact
that one anticipates oscillatory and possibly chaotic solutions for which very high frequencies may
occur. Then, the following equations were obtained for the time evolution of the amplitudes

X(1).y (1).2(1)

Z Z Z Z
U‘)C
N
i S
9 &
x”
‘_ -10 ‘ ‘
Xp=10 X,=0.02 X=50
m=10" (M =50) M =002)

Figure 6: The convective flow field at marginal stability for three different values of x ; 10 stream lines

equally divided between v and y__ .At x = 10" ww =-1378;y =1.378,at x =0.02:y =-1.374;

nnnnnnnn

w_ =1374 andat x,=50:y_=-1319; y_ =1319.

X=a(Y-X) (57)
Y=RX-Y-(R-1)XZ (58)
Z=47(XY-2) (59)

where « =77Va/ n’, and R is a rescaled Rayleigh number introduced above according to the

definitions in the text following equation (56). The results obtained are presented in Figure 7 in the
form of projection of trajectories data points onto the Y —-X and Z-X planes. Different
transitions as the value of R varies are presented and they relate to the convective fixed point
which is a stable simple node in Figure 7(a), a stable spiral in Figures 7(b) and 7(c), and loses
stability via an inverse Hopf bifurcation in Figure 7(d), where the trajectory describes a limit cycle,
moving towards a chaotic solution presented in Figures 7(e) and (f). A further transition from chaos
to a periodic solution was obtained at a value of R slightly above 100, which persists over a wide
range of R values. This periodic solution is presented in Figures 7(g) and 7(h) for R =250.

Previously in this section (see equation (53)) a singularity in the solution was identified and
associated with negative values of the offset distance from the axis of rotation. It is this resulting
singularity and its consequences, which were investigated by Vadasz [41] and are the objective of
the following presentation. As this occurs at negative values of the offset distance from the axis of
rotation it implies that the location of the rotation axis falls within the boundaries of the porous
domain, as presented in Fig. 8. This particular axis location causes positive values of the centrifugal
acceleration on the right side of the rotation axis and negative values on its left side. The rotation
axis location implies that the value of x, is not positive.
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Figure 7: Different transitions in natural convection in a rotating porous layer. (courtesy Elsevier

Science Ltd.)
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509 Figure 8: A rotating porous layer having the rotation axis within its boundaries and subject to different
510 temperatures at the sidewalls. (courtesy Elsevier Science Ltd.)
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513 Figure 9: The convective flow field at marginal stability for three different values of |x0|; 10 streamlines

514 equally divided between y  and __.(courtesy Elsevier Science Ltd.)

515

516

517 1t is therefore convenient to explicitly introduce this fact in the problem formulation specifying
518  explicitly that x, = —|x,|. As a result equation (50) can be expressed in the form

519 V=—Vp—Raw[x—|x0|]Téx (60)
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The solution for this case is similar to the previous case leading to the same characteristic equation
for R at order 2 as obtained previously in equation (53) for R , with the only difference

appearing in the different definitionof f and y as follows

5 (1 | |) , 256 61)
= ——|X ; =
2 7 4 8ir’

The singularity is obtained when B°=7’, corresponding to B=7y or B=-y. Since B is
uniquely related to the offset distance |x,| and 7= 16/ 97’ is a constant, one can relate the
singularity to specific values of |x,|. At order 2 this corresponds to |x,|=0.3199 and |x,|=0.680.
It was shown by Vadasz [41] that the second value |x,|=0.680 is the only one, which has physical
consequences. This value corresponds to a transition beyond which, i.e., for |x0| =0.68 , no positive
roots of R exist. It therefore implies an unconditional stability of the basic motionless solution for
all values of R if |x0| >0.68 . The transitional value of |x0| was investigated at higher orders
showing |x,|>0.765 at order 3 and the value increases with increasing the order. The indications
are that as the order increases the transition value of |x0| tends towards the limit value of 1. The
results for the critical values of the centrifugal Rayleigh number expressed in terms of R vs. |x0|
are presented graphically by Vadasz [41], who concluded that increasing the value of |x,| has a
stabilizing effect. The results for the convective flow field as obtained by Vadasz [41] are presented
in Figures 9, 10 and 11 for different values of |x0| . Keeping in mind that to the right of the rotation

axis the centrifugal acceleration has a destabilizing effect while to its left a stabilizing effect is
expected; the results presented in Figures 9(b) and (c) reaffirm this expectation showing an eccentric
shift of the convection cells towards the right side of the rotation axis. When the rotation axis is
moved further towards the hot wall, say at |x,|=0.6 as presented in Figure 10(a), weak convection

cells appear even to the left of the rotation axis. This weak convection becomes stronger as |x,|

increases, as observed in Figure 10(b) for |x,|=0.7 and formation of boundary layers associated
with the primary convection cells is observed to the right of the rotation axis. These boundary
layers become more significant for |x,|=0.8 as represented by sharp streamlines gradients in
Figure 11(a). When |x0| =0.9 Figure 11(b) shows that the boundary layers of the primary
convection are well established and the whole domain is filled with weaker secondary, tertiary and
further convection cells. The results for the isotherms corresponding to values of
|x,|=0,0.5,0.6and 0.7 are presented in Figure 12 where the effect of moving the axis of rotation
within the porous layer, on the temperature is evident.

Previously the discussion focused on centrifugally driven natural convection under conditions
of small rotation rates, i.e. Ek >>1. Then, as a first approximation the Coriolis effect was neglected.
In this section the effect of the Coriolis acceleration on natural convection is presented even when
this effect is small, i.e,, Ek >>1. A long rotating porous box where the temperature gradient was
perpendicular to the centrifugal body force was considered by Vadasz [35]. The possibility of
internal heat generation was included but the case without heat generation, i.e., when the box is
heated from above and cooled from below was dealt with separately. The leading order basic flow
was evaluated analytically. From the solutions it was concluded that the Coriolis effect on natural
convection is controlled by the combined dimensionless group

Ra, 2fB,ATw®/LHK’
O = =
Ek vy

The flow and temperature fields in the plane y-—z, perpendicular to the leading order natural

(62)

convection plane as evaluated through the analytical solution shows single or double vortices
secondary flow in this plane, perpendicular to the basic flow.



564
565
566
567

568

569
570

571

Fluids 2017, 2, x FOR PEER REVIEW 17 of 31

(a) (b)

Figure 10: The convective flow field at marginal stability for two different values of |x0| ; 10 streamlines

equally divided between y_ and y__ . (courtesy Elsevier Science Ltd.)
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Figure 11: The convective flow field at marginal stability for two different values of |x0| ; 10 streamlines
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Figure 12: The convective temperature field at marginal stability for four different values of |x0 ; 10 isotherms

equally divided between T =0 and T _ =1.(courtesy Elsevier Science Ltd.)

5. Coriolis Effect on Natural Convection due to Gravity Buoyancy

The problem of a rotating porous layer subject to gravity and heated from below (see Figure
13) was originally investigated by Friedrich [75] and by Patil and Vaidyanathan [17]. Both studies
considered a non-Darcy model, which is probably subject to the limitations as shown by Nield [68].
Friedrich [74] focused on the effect of Prandtl number on the convective flow resulting from a linear
stability analysis as well as a non-linear numerical solution, while Patil and Vaidyanathan [17] dealt
with the influence of variable viscosity on the stability condition. The latter concluded that variable
viscosity has a destabilizing effect while rotation has a stabilizing effect. Although the non-Darcy
model considered included the time derivative in the momentum equation the possibility of
convection setting-in as an oscillatory instability was not explicitly investigated by Patil and
Vaidyanathan [17]. It should be pointed out that for a pure fluid (non-porous domain) convection
sets in as oscillatory instability for a certain range of Prandtl number values (Chandrasekhar [76,
77]). This possibility was explored by Friedrich [75], which presents stability curves for both
monotonic and oscillatory instability. Jou and Liaw [19] investigated a similar problem of gravity
driven thermal convection in a rotating porous layer subject to transient heating from below. By
using a non-Darcy model they established the stability conditions for the marginal state without
considering the possibility of oscillatory convection.

e :54}‘,_«’\: E,j:

Hot x=0 Tr=1

Figure 13: A rotating fluid saturated porous layer heated from below. (courtesy: Cambridge University Press.)



596
597
598

599
600

601

602

603
604
605
606

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

625

626

627
628

Fluids 2017, 2, x FOR PEER REVIEW 19 of 31

An important analogy was discovered by Palm and Tyvand [20] who showed, by using a Darcy
model, that the onset of gravity driven convection in a rotating porous layer is equivalent to the
case of an anisotropic porous medium. The critical Rayleigh number was found to be

Ra,, =n'[(1+Ta)" +1] (63)
where Ta is the Taylor number defined here as
20.K ’
Ta = 2 (64)
ov.

and the corresponding critical wave number is ﬂ(1+Ta)]/ ‘. The porosity is missing in Palm and

Tyvand [20] definition of Ta. Nield [21, 22] has pointed out that these authors and others have
omitted the porosity from the Coriolis term. This result, eq. (63) (amended to include the correct
definition of 7a), was confirmed by Vadasz [41] for a Darcy model extended to include the time
derivative term (see equation (31) with Ra =0), while performing linear stability as well as a

weak non-linear analyses of the problem to provide differences as well as similarities with the
corresponding problem in pure fluids (non-porous domains). As such, Vadasz [42] found that, in
contrast to the problem in pure fluids, overstable convection in porous media at marginal stability
is not limited to a particular domain of Prandtl number values (in pure fluids the necessary
condition is Pr <1). Moreover, it was also established by Vadasz [42] that in the porous media
problem the critical wave number in the plane containing the streamlines for stationary convection
is not identical to the critical wave number associated with convection without rotation, and is
therefore not independent of rotation, a result which is quite distinct from the corresponding
pure-fluids problem. Nevertheless, it was evident that in porous media, just as in the case of pure
fluids subject to rotation and heated from below, the viscosity at high rotation rates has a
destabilizing effect on the onset of stationary convection, i.e. the higher the viscosity the less stable
is the fluid. An example of stability curves for overstable convection is presented in Figure 14 for
Ta=5, where x isthe wave number. The upper bound of these stability curves is represented by
a stability curve corresponding to stationary convection at the same particular value of the Taylor
number, while the lower bound was found to be independent of the value of Taylor number and
corresponds to the stability curve for overstable convection associated with Va=0.

2
Rafv)/n'
S
e
. pd i
, ,/

v\ b4
...‘ M ::_.-
] P
6 0 0.5 1 1.5 2 2.5
K/TT

Figure 14: Stability curves for overstable gravity driven convection in a rotating porous layer heated from

below (y =Va/n’, R= Rag/ﬂ'2 )- (courtesy: Cambridge University Press.)
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Figure 15: Stability map for gravity driven convection in a rotating porous layer heated from below

(y=Va/n’, R= Ra, / 7). (courtesy: Cambridge University Press.)

Two conditions have to be fulfilled for overstable convection to set in at marginal stability, i.e., (i)
the value of Rayleigh number has to be higher than the critical Rayleigh number associated with
overstable convection, and (ii) the critical Rayleigh number associated with overstable convection
has to be smaller than the critical Rayleigh number associated with stationary convection. The
stability map obtained by Vadasz [42] is presented in Figure 15, which shows that the Ta—7y

(7= Va/ 7" ) plane is divided by a continuous curve (almost a straight line) into two zones, one for

which convection sets in as stationary, and the other where overstable convection is preferred. The
dotted curve represents the case when the necessary condition (i) above is fulfilled but condition (ii)
is not. Weak non-linear stationary as well as oscillatory solutions were derived, identifying the
domain of parameter values consistent with supercritical pitchfork (in the stationary case) and Hopf
(in the oscillatory case) bifurcations. Unfortunately due to a typo affecting the sign of one of the
nonlinear terms in the weak nonlinear analysis the direction of the bifurcations presented seems to
be incorrect. The identification of the tricritical point corresponding to the transition from
supercritical to subcritical bifurcations was presented on the y—7Ta parameter plane. The
possibility of a codimension-2 bifurcation, which is anticipated at the intersection between the
stationary and overstable solutions, although identified as being of significant interest for further
study, was not investigated by Vadasz [42].

6. Natural Convection due to Combined Centrifugal and Gravity Buoyancy

Previous sections dealt with natural convection due to centrifugal buoyancy, when the gravity
body force contribution was negligible, Ra, =0, satisfying the condition: Ra, / Ra, =g, / oL <<1,

or with gravity buoyancy when the centrifugal body force contribution was insignificant, Ra, =0,

satisfying the condition: Ra, / Ra = w’L, / g. << 1. In the present section the focus is on conditions
when both centrifugal buoyancy as well as gravity buoyancy effects are significant, Ra, ~ Ra,, but
at small rotation rates, i.e. Ek>>1. Then, as a first approximation the Coriolis effect can be
neglected. Figure 4 still applies to the present problem, subject to a slight modification of drawing
the gravity acceleration g, in the negative z direction. The notation remains the same and
equation (50) becomes

V=-Vp—Ra, [1+nx]|Té +RaTe. (65)
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where 711 = 1/ x, = Ra, / Ra, represents the reciprocal of the offset distance from the axis of rotation.

The approach being the same as before, the solution is expressed as a sum of a basic solution and
small perturbations as presented in equation (52). However, because of the presence of the gravity
component in equation (65), a motionless conduction solution is not possible any more. Therefore,
the basic solution far from the top and bottom walls is obtained in the form

u,=v,=0; w,=Ra, (x— %), T =x; p = %Raﬁz— Rawx2 |:%+§nx}+ const. (66)
Substituting this basic solution into the governing equations and linearizing the result by neglecting
terms that include products of perturbations, which are small, yields a set of partial differential
equations for the perturbations. Assuming a normal modes expansion in the y and z directions

in the form
T’ = AB(x)exp[ot +i(k y+x 2)] (67)
where K, and «x_ are the wave numbers in y and z directions respectively, i.e., K’ = Kf +K‘:,

and using the Galerkin method, the following set of linear algebraic equations is obtained at
marginal stability (i.e. for c=0 )

M
2{[2(m27r2 +1<2)2 —-k’Ra, (2+ n):lém, +
16mix’Ra, ~  8mlx Ra,
—i
”z(lz_mz) 7[2(12—}7’12)2
for 1=1,2,3,..,M and i=+/-1. In equation (68) &, is the Kronecker delta function and the

index p can take arbitrary integer values, since it stands only for setting the second index in the

[7[2 ([2 + m2)+2;<2] 5%,72]]71 }am =0 (68)

Kronecker delta function to be an odd integer. A particular case of interest is the configuration
when the layer is placed far away from the axis of rotation, i.e. when the length of the layer L. is

much smaller than the offset distance from the rotation axis x,. Therefore for x, = (xo* / L) — o0
or n— 0 the contribution of the term 7x in equation (65) is not significant. Substitution of this

limit into equation (68) and solving the system at the second order, i.e. M =2, yields a quadratic
equation for the characteristic values of Ra, . This equation has no real solutions for values of

a=K. / n’ beyond a transitional value o, =277’ / 16 Ra,)" . This value was evaluated at higher
orders too, showing that for M =10 the transitional value varies very little with Rag, beyond a
certain Ra, value around 507 . The critical values of Ra, were evaluated for different values of
R (=Ra, / ) and the corresponding two-dimensional convection solutions in terms of streamlines

are presented graphically for the odd modes in Figure 16(a), showing the perturbation solutions in
the x—z plane as skewed convection cells when compared with the case without gravity. The
corresponding convection solutions for the even modes are presented in Figure 16(b), where it is
evident that the centrifugal effect is felt predominantly in the central region of the layer, while the
downwards and upwards basic gravity driven convection persists along the left and right
boundaries, respectively, although not in straight lines. Beyond the transition value of ¢, the basic
gravity driven convective flow (equation (66) ) is unconditionally stable. These results were shown
to have an analogy with the problem of gravity driven convection in a non-rotating, inclined porous
layer (Govender and Vadasz [29]). Qualitative experimental confirmation of these results was
presented by Vadasz and Heerah [45] by using a thermo-sensitive liquid-crystal tracer in a rotating
Hele-Shaw cell. When the layer is placed at an arbitrary finite distance from the axis of rotation no
real solutions exist for the characteristic values of Ra, corresponding to any values of y other

than y =k Ra, = 0. In the presence of gravity Ra, #0,and y =0 can be satisfied only if x =0.

Therefore the presence of gravity in this case has no other role but to exclude the vertical modes of
convection. The critical centrifugal Rayleigh numbers and the corresponding critical wave numbers
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are the same as in the corresponding case without gravity as presented in section 4.3. However, the
eigenfunctions representing the convection pattern are different as they exclude the vertical modes
replacing them with a corresponding horizontal mode in the y direction. Therefore, a cellular

convection in the x—y plane is superimposed to the basic convection in the x—z plane.
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Figure 16: The convective flow field (streamlines) at marginal stability for different values of R (= Ra, / )

(a) the odd modes; (b) the even modes.
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7. Additional Effects on Flow and Natural Convection in Rotating Porous Media

Not much research results are available for thermo-haline convection in porous media subject
to rotation. Chakrabarti and Gupta [78] investigated a non-Darcy model, which includes the
Brinkman term as well as a non-linear convective term in the momentum equation (in the form
(V- V)V ). Therefore the model's validity is subject to the limitations pointed out by Nield [69]. Both

linear and non-linear analyses were performed and overstability was particularly investigated.
Overstability is affected in this case by both the presence of a salinity gradient and by the Coriolis
effect. Apart from the thermal and solutal Rayleigh numbers and the Taylor number, two
additional parameters affect the stability. These are the Prandtl number Pr=v, / o, , and the Darcy

number Da=K /H?, where H, is the layer's height. The authors found that, in the range of
0 y g 8

values of the parameters, which were considered, the linear stability results favor setting-in of
convection through a mechanism of overstability. The results for non-linear steady convection show
that the system becomes unstable to finite amplitude steady disturbances before it becomes
unstable to disturbances of infinitesimal amplitude. Thus the porous layer may exhibit subcritical
instability in the presence of rotation. These results are surprising at least in the sense of their
absolute generality and the authors mention that further confirmation is needed in order to increase
the degree of confidence in these results. A similar problem was investigated by Rudraiah et al [16]
while focusing on the effect of rotation on linear and non-linear double-diffusive convection in a
sparsely packed porous medium. A non-Darcy model identical to the one used by Chakrabarti and
Gupta [78] was adopted by Rudraiah et al [16], however the authors spelled out explicitly that the
model validity is limited to high porosity and high permeability which makes it closer to the
behavior of a pure fluid system (non-porous domain). It is probably for this reason that the authors
preferred to use the non-porous medium definitions for Rayleigh and Taylor numbers which differ

by a factor of Da and Da’, respectively, from the corresponding definitions for porous media. It
is because of these definitions that the authors concluded that for small values of Da number the

effect of rotation is negligible for values of Ta < 10°. This means that rotation has a significant effect

for large rotation rates, i.e.,, Ta>10". If the porous media Taylor number had been used instead,
i.e., the proper porous media scales, then one could have significant effects of rotation at porous
media Taylor numbers as small as Ta >10. Hence, the results presented by Rudraiah et al [16] are
useful provided Da=0(1) which is applicable for high permeability (or sparsely packed) porous

layers. Marginal stability as well as overstability were investigated and the results show different
possibilities of existence of neutral curves by both mechanismes, i.e., monotonic as well as oscillatory
instability. In this regard the results appear more comprehensive in the study by Rudraiah et al [16]
than in Chakrabarti and Gupta [78]. The finite amplitude analysis was performed by using a
severely truncated representation of a Fourier series for the dependent variables. As a result a
seventh-order Lorenz model of double diffusive convection in a porous medium in the presence of
rotation was obtained. From the study of steady, finite amplitude analysis the authors found that
subcritical instabilities are possible, depending on the parameter values. The effect of the
parameters on the heat and mass transport was investigated as well, and results presenting this
effect are discussed in Rudraiah et al [16]. The onset of double-diffusive convection in a rotating
porous layer was investigated by Lombardo and Mulone [60], Malashety, Pop, and Heera [48],
Falsaperla, Giacobbe and Mulone [63]. Triple-diffusion effects in rotating porous layers were
investigated by Capone and De Luca [64]. They evaluated the ultimate boundedness of the
solutions and found a necessary and sufficient condition for the global nonlinear asymptotic
L2-stability of the motionless conduction solution.

Lack of local thermal equilibrium (LaLotheq) or local thermal non-equilibrium (LTNE) means
that distinct temperature values exist between the solid and fluid phases within the same
Representative Elementary Volume (REV). Malashetty et al [53] presented the linear stability and
the onset of convection in a porous layer heated from below and subject to rotation, accounting for
the Coriolis effect as in Vadasz [42] but allowing for distinct temperature values between the solid
and fluid phases, i.e. lack of local thermal equilibrium (LaLotheq), or local thermal non-equilibrium
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(LTNE). The nonlinear part of the analysis was undertaken by using a truncated mode spectral
system, such as the one used by Vadasz and Olek [46] but adapted for the LaLotheq conditions. The
effect of finite heat transfer between the phases leading to lack of local thermal equilibrium was
investigated also by Govender and Vadasz [32] while investigating also the effect of mechanical and
thermal anisotropy on the stability of a rotating porous layer heated from below and subject to
gravity. The topic of anisotropic effects is discussed in the next section. Bhadauria [47] investigated
the effect of temperature modulation on the onset of thermal instability in a horizontal
fluid-saturated porous layer heated from below and subject to uniform rotation. An extended Darcy
model, which includes the time derivative term, has been considered, and a time-dependent
periodic temperature field was applied to modulate the surfaces' temperature. A perturbation
procedure based on small amplitude of the imposed temperature modulation was used to study the
combined effect of rotation, permeability, and temperature modulation on the stability of the fluid
saturated porous layer. The correction of the critical Rayleigh number was calculated as a function
of amplitude and frequency of modulation, the porous media Taylor number, and the Vadasz
number. It was found that both rotation and permeability suppress the onset of thermal instability.
Furthermore, the author concluded that temperature modulation could either promote or retard the
onset of convection.

The effect of anisotropy on the stability of convection in a rotating porous layer subject to
centrifugal body forces was investigated by Govender [25]. The Darcy model extended to include
anisotropic effects and rotation was used to describe the momentum balance and a modified energy
equation that included the effects of thermal anisotropy was used to account for the heat transfer.
The linear stability theory was used to evaluate the critical Rayleigh number for the onset of
convection in the presence of thermal and mechanical anisotropy. It was found that the convection
was stabilized when the thermal anisotropy ratio (which is a function of the thermal and
mechanical anisotropy parameters) increased in magnitude. Malashetty and Swamy [54], and
Govender and Vadasz [32] investigated the Coriolis effect on natural convection in a rotating
anisotropic fluid-saturated porous layer heated from below and subject to gravity as the body force.
Malashetty and Swamy [54] assumed local thermal equilibrium while Govender and Vadasz [32]
dealt with lack of local thermal equilibrium (LaLotheq), or local thermal non-equilibrium (LTNE).
Malashetty and Swamy [54] used the linear stability theory as well as a nonlinear spectral method.
The linear theory was based on the usual normal mode technique and the nonlinear theory on a
truncated Galerkin analysis. The Darcy model extended to include a time derivative and the
Coriolis terms with an anisotropic permeability was used to describe the flow through the porous
media. A modified energy equation including the thermal anisotropy was used. The effect of
rotation, mechanical and thermal anisotropy parameters and the Prandtl number on the stationary
and overstable convection was discussed. It was found that the effect of mechanical anisotropy is to
prefer the onset of oscillatory convection instead of the stationary one. It was also found, just as in
Vadasz [42], that the existence of overstable motions in case of rotating porous media is not
restricted to a particular range of Prandtl number as compared to the pure viscous fluid case. The
steady finite amplitude analysis was performed using the truncated Galerkin modes to find the
Nusselt number. The effect of various parameters on heat transfer was investigated. Govender and
Vadasz [32] analyzed the stability of a horizontal rotating fluid saturated porous layer exhibiting
both thermal and mechanical anisotropy, subject to lack of local thermal equilibrium (LaLotheq), or
local thermal non-equilibrium (LTNE). All of the results were presented as a function of the scaled
inter-phase heat transfer coefficient. The results of the linear stability theory have revealed that
increasing the conductivity ratio and the mechanical anisotropy has a destabilizing effect, whilst
increasing the fluid and solid thermal conductivity ratios is stabilizing. In general it was found that
rotation has a stabilizing effect in a porous layer exhibiting mechanical or thermal (or both
mechanical and thermal) anisotropy. Additional results for the effect of rotation on thermal
convection in an anisotropic porous medium were presented by Vanishree and Siddheshwar [49].

An interesting, more recent, application is related to nanofluids. A nanofluid is a suspension of
nanoparticles or nanotubes in a liquid. When the liquid is saturating a porous matrix one deals with
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nanofluids in porous media. Chand and Rana [79] analyzed the Coriolis effect on natural
convection in a rotating porous layer saturated by a nanofluid. Agarwal an Bhadauria [52], Rana
and Agarwal [55], investigated the natural convection in a rotating porous layer saturated by a
nanofluid and a binary mixture. This implies that the nanoparticles are suspended in a binary
mixture, e.g. in a water and salt solution. Therefore double-diffusive convection is anticipated. The
model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis,
while the Darcy model is used for the porous medium. The neutral and critical Rayleigh numbers
for stationary and oscillatory convection have been obtained in terms of various dimensionless
parameters. The authors concluded that the principle of exchange of stabilities is applicable in the
present problem, while more amount of heat is required in the nanofluid case for convection to
set-in. Agarwal et al [50] considered the convection in a rotating anisotropic porous layer saturated
by a nanofluid. The model used for nanofluid combines the effect of Brownian motion along with
thermophoresis, while for a porous medium the Darcy model has been used. Using linear stability
analysis the expression for the critical Rayleigh number has been obtained in terms of various
dimensionless parameters. Agarwal et al [50] indicate that bottom-heavy and top-heavy
arrangements of nanoparticles tend to prefer oscillatory and stationary modes of convection,
respectively. The onset of double-diffusive nanofluid convection in a rotating porous layer was
investigated by Yadav et al [56].

During solidification of binary alloys the solidification front between the solid and the liquid
phases is not a sharp front but rather a mushy layer combining liquid and solid phases each one
being interconnected. It is not surprising therefore that the treatment of this mushy layer follows all
the rules applicable to a porous medium. Natural convection due to thermal as well as
concentration gradients occurs in the mushy layer resulting in possible creation of freckles that
might affect the quality of the cast. When such a process occurs in a system that is subject to
rotation, centrifugal buoyancy as well as Coriolis effects are relevant and essential to be included in
any model of this process. Govender and Vadasz [31] investigated such a system via a weak
nonlinear analysis for moderate Stefan numbers applicable to stationary convection in a rotating
mushy layer. Consequently Govender and Vadasz [30] investigated a similar system via a weak
nonlinear analysis for moderate Stefan numbers applicable to oscillatory convection in a rotating
mushy layer. A near-eutectic approximation and large far-field temperature were employed in both
papers in order to decouple the mushy layer from the overlying liquid melt. The parameter regimes
in terms of Taylor number for example where the bifurcation is subcritical or supercritical were
identified. In the case of oscillatory convection increasing the Taylor number lead to a supercritical
bifurcation.

Linear stability was the primary method used in previous sections to establish the stability
criteria for the onset of natural convection in a rotating porous layer. Straughan [73] pioneered the
introduction of a nonlinear analysis producing a sharp nonlinear stability threshold in rotating
porous convection. The application and generalization of this method was presented by Lombardo
and Mulone [60], while deriving necessary and sufficient conditions of global nonlinear stability for
double-diffusive convection in rotating porous media. The nonlinear method was expanded and
summarized by Straughan [59]. The application of this nonlinear method to natural convection in
non-rotating porous media was expanded showing the coincidence between linear and global
nonlinear stability of non-constant through-flows was presented by Capone and De Luca [66] by
using the “Rionero Auxiliary System Method”. Weak nonlinear solutions were presented by
Bhadauria et al [51]. Investigations into the effects of inertia on rotating porous convection were
undertaken by Falsaperla, Mulone, and Straughan [62], and by Capone and Rionero [65]. The latter
used again the “Rionero Auxiliary System Method” to derive a set of conditions for the significance
of inertia in this problem and for global nonlinear stability in terms of the porous media Taylor
number as well as Vadasz number.

Other studies considered effects of rotation for a combination of previously presented
conditions. For example Capone and Gentile [80] presented sharp stability results in a rotating
anisotropic porous layer subject to lack of local thermal equilibrium (LaLotheq, LTNE). Double
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diffusive convection in a rotating anisotropic porous layer was presented by Galkwad and Kouser
[81], Malashetty and Heera [82], and Malashetty and Begum [83]. Double diffusive convection in a
rotating porous medium saturated with a coupled stress fluid was considered by Malashetty et al
[84], while double diffusive convection in a rotating porous layer saturated by a viscoelastic fluid
was investigated by Kumar and Bhadauria [85]. The effect of rotation on a micropolar
ferromagnetic fluid heated from below saturating a porous medium was presented by Sunil et al
[86]. Rotation effects on convection in a porous layer saturated by nanofluids was further
considered by Bhadauria and Agrawal [87], for a porous medium model including the Brinkman
term. A similar model was presented by Yadav and Lee [88] for the case of lack of local thermal
equilibrium (LaLotheq, LTNE), and by Yadav et al [89] for a Darcy model Soret driven convection
in a rotating porous medium saturated by a nanofluid. Brinkman convection induced by internal
heating in a rotating porous medim layer saturated by a nanofluid was investigated by Yadav et al
[90], while thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid
was considered by Yadav et al [91]. Yadav et al [92] presented the conditions for the onset of
convection in a rotating porous layer due internal heating by using a Brinkman model. The effects
of thermal modulation, i.e. top and bottom imposed temperatures are allowed to vary slightly in
time, were considered by Malashetty and Swamy [93] using a Darcy model and Bhadauria [94]
using a Brinkman model. A similar Brinkman model was applied for investigating the effects of
centrifugal buoyancy in a rotating porous layer far away from the center of rotation subject to
modulation of rotation by Om et al [95], i.e. the angular velocity was allowed to slightly vary
periodically in time. The same conditions applied to a rotating porous layer distant an arbitrary
distance from the center of rotation was presented by Om et al [96]. Coriolis effect on thermal
convective instability of viscoelastic fluids in a rotating porous cylindrical annulus was investigated
by Kang et al [97]. Kiippers-Lortz instability in rotating Rayleigh-Benard convection in a porous
medium was studied by Rameshwar et al. [98].

8. Conclusions

A review of the variety of instability problems linked to natural convection in rotating porous
media was presented. The effect of centrifugal buoyancy was investigated separately, and later in
combination with gravitational buoyancy. The cases when the Coriolis effect is significant were also
analyzed and the corresponding results were discussed. The diversity of additional effects linked to
natural convection in rotating porous media, such as thermo-solutal and double-diffusive
convection, the effect of anisotropy of the porous medium, the inclusion of nanofluids in rotating
porous media, solidification of binary alloys, and lack of local thermal equilibrium are examples
that were also shortly reviewed. The pioneering studies on global nonlinear analyses and
investigations of the effect of inertia on natural convection in rotating porous media concluded the
present review.
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