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Abstract—Clustering uncertain graphs based on the proba-
bilistic graph model has sparked extensive research and widely
varying applications. Existing structural clustering methods rely
heavily on the computation of pairwise reliable structural sim-
ilarity between vertices, which has proven to be extremely
costly, especially in large uncertain graphs. In this paper, we
develop a new, decomposition-based method, ProbSCAN, for
efficient reliable structural similarity computation with theoret-
ically improved complexity. We further design a cost-effective
index structure UCNO-Index, and a series of powerful pruning
strategies to expedite reliable structural similarity computation
in uncertain graphs. Experimental studies on eight real-world
uncertain graphs demonstrate the effectiveness of our proposed
solutions, which achieves orders of magnitude improvement of
clustering efficiency, compared with the state-of-the-art structural
clustering methods in large uncertain graphs.

Index Terms—Uncertain Graphs, Structural Clustering

I. INTRODUCTION

In the modern networked world, graphs have been widely

used for modeling and interpreting interconnected relation-

ships between network entities. However, real-life networks

are oftentimes associated with uncertainty caused by the noise,

distortions, and measurement errors arising in every stage of

the graph computation pipeline [1]. As a result, extensive

research on real networks has shifted focus onto uncertain
graphs, where each edge is associated with a probability

indicating the likelihood of the existence of that edge in

the networks [2]. In this paper, we consider a fundamental

graph analytical operation, structural clustering, which has

found widely varying applications in real-world uncertain

graphs. The objective of structural clustering is to partition

an uncertain graph based solely on its interlinked topological

structures, such that nodes within the same cluster are closely

connected, while those belonging to different clusters are far

apart in a probabilistic sense [3].

An existing solution for structural clustering in uncertain

graphs, referred to as USCAN [3], relies primarily on the

key notion of reliable structural similarity, which quantifies

the probability of the event that two vertices are structurally

similar in the uncertain graph, in terms of two parameters

ε and η. The notion of reliable core can be further defined

to identify the nodes that have a sufficient number of reliable

structure-similar neighboring nodes, quantified by the parame-

ter μ. These reliable cores, once identified from the uncertain

graph, can uniquely determine a cluster. However, USCAN

suffers from severe performance and scalability issues, due

in particular to the sheer cost of reliable structural similarity

computation, especially in real-world large uncertain graphs.

In this paper, we propose a new, and more efficient method

for reliable structural similarity computation, denoted by

ProbSCAN (in Section III). Inspired by [4], ProbSCAN
decomposes the costly reliable structure similarity computa-

tion into smaller sub-portions, each of which is with only

one variable, and thus can be computed separately and more

efficiently. Specifically, given a node pair (u, v) from the

uncertain graph, we prove that the time complexity of reli-

able structural similarity computation can be improved from

O(d2m · min{ku, kv}) (in USCAN) to O((min{ku, kv})2) (in

ProbSCAN), where ku (resp. kv) is the degree of the node

u (resp. v), and dm is the maximum node-degree of the

uncertain graph. It is worth mentioning that the improved

complexity is only determined by localized node-degrees of

u and v, for which the reliable structure similarity is to

be computed, but becomes irrelevant to the global variable,

dm. This improvement leads to an immediate and significant

performance gain for structural clustering, especially in large-

scale uncertain graphs.

We further develop an index structure, UCNO-Index, and a

series of index-based pruning algorithms, to facilitate the com-

putation of reliable structural similarity in uncertain graphs

(in Section IV). Specifically, the size of UCNO-Index is well

bounded by O(m), the size of the uncertain graph. To the

best of our knowledge, UCNO-Index is the first index-based

solution for the structural clustering problem in uncertain

graphs.

We perform extensive experimental studies on eight real-

world uncertain graphs, and compare our solutions with the

state-of-the-art method, USCAN [3] (in Section V). The ex-

perimental results demonstrate that our methods have achieved

several orders of magnitude improvement, in terms of cluster-

ing efficiency, than USCAN.

II. PRELIMINARIES

Given an uncertain graph G(V,E, p), where V is a set

of vertices, E is a set of edges, and p is a probabilistic

function p : E → [0, 1] that assigns for each edge e ∈ E
a probability value pe. Such an edge probability is assumed

to be independent of those of any other edges of E, and we

consider the well-accepted possible-world semantics in this
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paper for uncertain graph modeling [1]. Specifically, G ⊆ G
denotes that G(V,EG) is a possible world of G. Given a vertex

u ∈ VG in the possible world G of G, the neighbors of u in G,

denoted as NG[u] = {v ∈ VG|(u, v) ∈ EG} ∪ {u}, consisting

of all the adjacent vertices of u in G, including u itself.

Definition 1. [Probability of Structural Similarity] Given an
uncertain graph G, an edge e = (u, v) ∈ E, and a similarity
threshold ε ∈ (0, 1], the probability of structural similarity of
e s.t. σ(e) ≥ ε, denoted by Pr[e, ε], is defined as the sum of
the probabilities of all possible worlds G ⊆ G, such that the
structural similarity between u and v is no less than ε in each
possible world G:

Pr[e, ε] =
∑

G⊆G
Pr[G : σG(u, v) ≥ ε] (1)

where σG(u, v) =
|NG[u]∩NG[v]|
|NG[u]∪NG[v]| .

Definition 2. [Reliable Structural Similarity] Given an edge
e = (u, v) and a probability threshold η, u is reliably structural

similar to v if Pr[e, ε] ≥ η.

Definition 3. [(ε, η)-Reliable Neighbor] The (ε, η)-reliable
neighbors of a vertex u, denoted as N(ε,η)[u], is a subset of
NG [u], in which every vertex v is reliably structural similar to
u; that is, N(ε,η)[u] = {v ∈ NG [u]|Pr[e = (u, v), ε] ≥ η}.

Note (ε, η)-reliable neighbors of a given vertex u include u
itself. Intuitively, when the number of (ε, η)-reliable neighbors

of u is large, u tends to be critical in structural clustering, and

we refer to u as a reliable core, defined as follows,

Definition 4. [(ε, η, μ)-Reliable Core] Given a similarity
threshold ε ∈ (0, 1], a probability threshold η ∈ (0, 1], and
an integer μ ≥ 2, a vertex u is a (ε, η, μ)-reliable core if
|N(ε,η)[u]| ≥ μ.

Accordingly, a vertex is a non-core if it is not a reliable core.

Detecting reliable cores turns out to be crucial, as clusters can

be identified by expanding reliable cores.

Definition 5. [Reliably Structure-reachable] Given param-
eters ε ∈ (0, 1], η ∈ (0, 1], and μ ≥ 2, a vertex v is reliably
structure-reachable from u if there is a sequence of vertices
v1, v2, · · · , vl ∈ V (l ≥ 2), s.t. (i) v1 = u, vl = v; (ii) for all
1 ≤ i ≤ l−1, vi is a reliable core, and vi+1 ∈ N(ε,η)[vi].

We formulate the structural clustering problem in uncertain

graphs as follows,

Definition 6. [Structural Clustering] Given an uncertain
graph G, and parameters ε ∈ (0, 1], η ∈ (0, 1], μ ≥ 2, we
consider computing the set C of reliable clusters from G. Each
reliable cluster C ∈ C should contain at least two vertices (i.e.,
|C| ≥ 2) such that:
• [Maximality] For each reliable core u ∈ C, all vertices

reliably structure-reliable from u must belong to C;
• [Connectivity] For any two vertices v1, v2 ∈ C, there

exists a vertex u ∈ C such that both v1 and v2 are reliably
structure-reachable from u.

III. ProbSCAN

The major cost in the existing solution, USCAN [3], is to

compute the reliable structural similarity (Pr[e, ε]) between

node pairs of G. To lower the computational complexity of

Pr[e, ε], we introduce a new method, named ProbSCAN.

The key idea is to break down the computation of Pr[e, ε]
into smaller portions with fewer variables, such that each

portion can be computed independently, either sequentially or

in parallel, like the decomposition approach proposed in [4].

A. Pr[e, ε]-decomposed Computation

Proposition 1 below provides the theoretical foundation for

decomposed computation of Pr[e, ε].

Proposition 1. Given an uncertain graph G = (V,E, p),
an edge e = (u, v) ∈ G, and a similarity threshold ε,
Pr[σ(u, v) ≥ ε] can be computed as

Pr[σ(u, v) ≥ ε] =

k(u,v)∑

i=0

Pr[supG(u, v) = i]×

(

ku∑

j=i+1

Pr[du = j]×
min(kv, i+� i+2

ε
�−j)∑

k=i+1

Pr[dv = k])

(2)

where ku is the vertex-degree of u in G, k(u,v) = |NG [u] ∩
NG [v]|−2 is the maximum possible support of the edge (u, v)
in G, supG(u, v) ∈ [0, k(u,v)], and du ∈ [1, ku].

With Proposition 1, the computation of reliably structural

similarity Pr[σ(u, v) ≥ ε] can be decomposed into three sub-

problems: (1) computing Pr[supG(u, v) = i], (2) computing

Pr[du = j], and (3) computing Pr[dv = k]. The sub-problems

(2) and (3) are essentially the same, we thus focus on the sub-

problems (1) and (2). Fortunately, both have been addressed

in the previous studies [5], [6].

B. Implementation

We pre-compute Pr[dv = k] for all vertices v, and store the

values into a two-dimensional array X: X[v][k] = Pr[dv =
k], k ∈ [0, kv]. We further maintain another two-dimensional

array Y to store the values of Pr[0 ≤ dv ≤ k], i.e.,

Y [v][k] =
∑k

i=0 X[v][k], k ∈ [0, kv]. This way, it takes only

constant time to obtain the value
∑i+� i+2

ε �−j

k=i+1 Pr[dv = k],
which corresponds to Y [v][i+ 	 i+2

ε 
 − j]− Y [v][i].
Furthermore, while we compute Pr[e, ε] in Equation 2, we

always start with the vertex u with a smaller degree, and

choose another vertex v with a larger degree. This way, we

can reduce the computation in the second loop for du.

Time complexity. The time complexity to process an edge

(u, v) of G is bounded by O((min{ku, kv})2). As a conse-

quence, the total cost of computing Pr[e, ε] for all e ∈ E can

be bounded by O(
∑

(u,v)∈E(min{ku, kv})2) = O(dm × α ×
m), where α is the arboricity of the graph G.

Space complexity. We need to maintain two two-

dimensional arrays X and Y, which consumes O(
∑

v∈V kv) =
O(m) space. The whole graph itself consumes O(m) space.

Therefore, the total space complexity is bounded by O(m).
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IV. INDEX-BASED APPROACH

In this section, we propose a novel index structure, denoted

as UCNO-Index (uncertain core-neighbor η-order index). The

idea of UCNO-Index is to pre-select a small set S of ε
values. We then index the reliable structural similarity of node-

pairs only for the ε values in S. Given this index, we can

efficiently obtain tight lower- and upper-bounds for reliable

structural similarity of node-pairs for any ε, and the space

cost of UCNO-Index can be well bounded by O(m).

A. Index Construction

We start with the computation of all reliable cores for any

given probability threshold η under specific μ and ε. Note that

because the parameter μ cannot be larger than the maximum

vertex degree, we can obtain a set of candidate reliable cores,

denoted as {u ∈ V |ku ≥ μ}. Next, for each specific μ and

a fixed similarity threshold ε ∈ S, we compute the reliable

cores by the probability threshold η. Recall that a vertex u is

a reliable core if the number of (ε, η)-reliable neighbors is at

least μ. We thus have the following theorem:

Theorem 1. Given an uncertain graph G, a fixed pair (μ ≥
2, ε), and two probability thresholds 0 < η ≤ η′ ≤ 1, a vertex
u is a reliable core of a cluster determined by η, if it is a
reliable core of a cluster determined by η′.

According to the monotonicity property in Theorem 1, we

only need to maintain the largest value of η for each vertex u
that is a reliable core given each specific parameter pair (μ, ε).
We call such a value core-η-threshold, defined as follows:

Definition 7. [CORE-η-THRESHOLD] Given an uncertain
graph G, a fix parameter pair (μ, ε), the core-η-threshold of
a vertex u, denote as CET u[ε][μ], is the largest η such that u
is a (ε, η, μ)-reliable core determined by ε, μ, and η.

Theorem 2. Given an uncertain graph G, parameters μ and ε,
the core-η-threshold of a vertex u (ku ≥ μ) is the μ-th largest
value in the probabilities of structural similarity between u
and its neighborhood.

Based on Theorem 2, for each vertex u, we compute the

probabilities of structural similarity between u and its neigh-

bors v ∈ N [u], and sort the neighborhood in a non-increasing

order based on their probabilities of structural similarity, as

follows,

Definition 8. [NEIGHBOR-η-ORDER] Given an uncertain
graph G, a vertex u and a fixed ε, the neighbor-η-order of
u, denoted by NEOu[ε], is a probabilistic order of neigh-
boring vertices such that: (i) the i-th value in NEOu[ε] is
(v,Pr[(u, v), ε]), where v ∈ N [u], CET u[ε][μ] = Pr[e, ε]; and
(ii) for any two vertices v1 and v2, v1 occurs before v2 if and
only if Pr[(u, v1), ε] ≥ Pr[(u, v2), ε].

For each ε ∈ S, we store the corresponding neighbor-η-

order for all the vertices into UCNO-Index. The number of

entries in NEOu[εi] is ku for each vertex u and ε ∈ S, and

thus the size of all neighbor-η-orders can be well bounded.

TABLE I
NETWORK STATISTICS

Datasets |V | |E| dm d̄ p̄

Krogan 2559 7031 141 5.49 0.6799
DBLP 636,751 2,366,461 446 7.43 0.4487

Amazon 334,863 925,872 549 5.53 0.5001
Youtube 1,134,890 2,987,624 28,754 5.27 0.5001
Google 875,713 5,105,039 6,332 9.87 0.5001

Cit 3,774,768 16,518,948 793 6.13 0.5001
LiveJournal 3,997,962 34,681,189 14,815 17.35 0.5001

Orkut 3,072,441 117,185,083 33,313 76.28 0.5001

Theorem 3. Given ε, the space cost of neighbor-η-orders for
all vertices is

∑
u∈V,ε∈S NEOu[ε] = O(m). Therefore, the

overall space cost of the index structure, UCNO-Index, is
O(m).

B. Query Processing

Based on UCNO-Index, we can reduce the computational

cost of Pr[e, ε], by devising novel lower- and upper-bounds

for Pr[e, ε], given any ε. Specifically, given a query with

parameters ε ∈ (0, 1], η ∈ (0, 1] and μ ≥ 2, we can categorize

it in the following three cases:

1) There exists an ε′ ∈ S that equals ε. We can answer this

query in O(m) time.

2) There exists an ε′ < ε. We find in this case a tight

upper-bound of Pr[e, ε] for all the edges.

3) There exists an ε′ > ε. We find in this case a tight

lower-bound of Pr[e, ε] for all edges.

According to Case (2), we can obtain the candidate re-

liable neighbors for the vertex u, which is {v|Pr[e, ε] ≥
η, (v,Pr[e, ε]) ∈ NEOu[ε]}. Since the vertices of NEOu[εi]
are sorted in a non-increasing order of probabilities of struc-

tural similarity, we perform a binary search with the value

η upon NEOu[ε] in order to efficiently obtain the candidate

reliable neighbors of u.

V. EXPERIMENTS

We report our experimental studies in eight real-world

probabilistic networks, and the detailed statistics of these

networks are presented in Table I. Specifically, the average

degree (d̄) and the average probability (p̄) are listed in the

last two columns. Edge probabilities of the first two networks

stem from real-world application domains, while probabilities

in other network datasets are randomly assigned. We compare

our solutions, ProbSCAN and UCNO-Query, with the state-

of-the-art method, USCAN [3] on all eight networks. All the

algorithms are implemented in C++ and compiled with g++

7.4.0. All the experiments are performed on a Linux server

running Ubuntu 18.04 with two Intel 2.3GHz ten-core CPUs

and 256GB memory.

Clustering Performance. The runtime for all structural

clustering algorithms under the default parameter setting,

η = 0.5, ε = 0.5 and μ = 5, on all datasets is illustrated

in Figure 1. We recognize from the experimental results that

UCNO-Query is more efficient than ProbSCAN, and it is

1968

Authorized licensed use limited to: Florida State University. Downloaded on May 30,2020 at 15:33:16 UTC from IEEE Xplore.  Restrictions apply. 



10−4

10−2

100

102

104

106

Krogan DBLP Amazon Youtube Google Cit L.J. Orkut

R
un

ni
ng

 T
im

e 
(s

)

USCAN ProbSCAN UCNO−Query

Fig. 1. Clustering Performance in Different Networks

10−1

100

101

102

103

104

105

Krogan DBLP Amazon Youtube Google Cit L.J. Orkut

M
em

or
y 

(M
B

)

USCAN ProbSCAN UCNO−Query

Fig. 2. Memory Consumption in Different Networks

one or two orders of magnitude faster than USCAN on all

datasets. For instance, in the Krogan network, UCNO-Query
only needs 0.8ms for structural clustering, while ProbSCAN
and USCAN need 5ms and 70ms, respectively. In another

dataset Orkut with over 100 millions edges, it takes UCNO-
Query less than two seconds for structural clustering, while

ProbSCAN and USCAN spend approximately 2, 700 seconds

and around 2 days, respectively, in this large uncertain graph.

Space Cost. The memory consumption results of differ-

ent structural clustering methods are reported in Figure 2

for different networks. In general, the memory usage of all

algorithms grows proportionally when the network size, in

terms of the number of edges, grows, with one exception for

USCAN on the Youtube network. We note that the space cost

of USCAN in Youtube is about three times of that for the Live
Journal network. The reason is that the dominating factor

of the space cost in this case turns out to be the maximum

vertex degree dm, rather than the network size, in this network.

Additionally, the total memory consumption of UCNO-Query
can always be bounded by 3.5X the size in ProbSCAN.

VI. RELATED WORK

Uncertain Graphs. There have been a lot of fundamental

querying and mining problems that have been studied in the

setting of uncertain graphs, including, but not limited to,

cohesive graphs detection [5], [6], reliability search [7], pattern

matching [2], kNN search [8], and frequent pattern mining [9].

Bonchi et al. [5] study the core decomposition problem on

uncertain graphs. Huang et al. [6] propose the concepts of local

and global (k, γ)-truss that enable truss decomposition for

probabilistic graphs. Jin et al. [7] study the distance-constraint

reachability query problem in uncertain graphs. Lian et al.
[2] propose a framework to efficiently answer RDF queries

over probabilistic RDF graphs. Potamias et al. [8] study the

problem of k-nearest neighbor search on uncertain graphs.

Zou et al. [9] examine the problem of discovering frequent

subgraph patterns on uncertain graph databases.

Structural Graph Clustering. In deterministic graphs, there

have been numerous structural graph clustering methods. Xu

et al. [10] propose the algorithm, SCAN, that can help identify

densely connected graph clusters as well as hubs and outliers.

The main issue of SCAN is that it has to consider all the

adjacent vertex-pairs for structural similarity computation. To

address this issue, Chang et al. [11] propose the PSCAN algo-

rithm that identifies core vertices first. Dong et al. [12] develop

an index-based solution, which is the state-of-the-art method

for structural clustering in deterministic graphs. However, all

these SCAN-based algorithms cannot be directly applied in

uncertain graphs. [3] first explores the SCAN framework in

the uncertain graph setting based on a new concept: reliable

structural similarity, which quantifies the probability of the

event that two vertices are structurally similar in a probabilistic

sense in an uncertain graph.

VII. CONCLUSION

In this paper, we study the structural clustering problem

in uncertain graphs. We develop a new, decomposition-based

method, ProbSCAN, for efficient reliable structural similar-

ity computation with theoretically improved complexity. We

further design a cost-effective index structure, UCNO-Index,

and powerful pruning strategies to further expedite the reliable

structural similarity computation in large uncertain graphs.

Experimental studies on eight real-world uncertain graphs

demonstrate that our proposed methods have significantly

outperformed the state-of-the-art structural clustering solutions

on large uncertain graphs.
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