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Abstract—Clustering uncertain graphs based on the proba-
bilistic graph model has sparked extensive research and widely
varying applications. Existing structural clustering methods rely
heavily on the computation of pairwise reliable structural sim-
ilarity between vertices, which has proven to be extremely
costly, especially in large uncertain graphs. In this paper, we
develop a new, decomposition-based method, ProbSCAN, for
efficient reliable structural similarity computation with theoret-
ically improved complexity. We further design a cost-effective
index structure UCNO-Index, and a series of powerful pruning
strategies to expedite reliable structural similarity computation
in uncertain graphs. Experimental studies on eight real-world
uncertain graphs demonstrate the effectiveness of our proposed
solutions, which achieves orders of magnitude improvement of
clustering efficiency, compared with the state-of-the-art structural
clustering methods in large uncertain graphs.

Index Terms—Uncertain Graphs, Structural Clustering

I. INTRODUCTION

In the modern networked world, graphs have been widely
used for modeling and interpreting interconnected relation-
ships between network entities. However, real-life networks
are oftentimes associated with uncertainty caused by the noise,
distortions, and measurement errors arising in every stage of
the graph computation pipeline [1]. As a result, extensive
research on real networks has shifted focus onto uncertain
graphs, where each edge is associated with a probability
indicating the likelihood of the existence of that edge in
the networks [2]. In this paper, we consider a fundamental
graph analytical operation, structural clustering, which has
found widely varying applications in real-world uncertain
graphs. The objective of structural clustering is to partition
an uncertain graph based solely on its interlinked topological
structures, such that nodes within the same cluster are closely
connected, while those belonging to different clusters are far
apart in a probabilistic sense [3].

An existing solution for structural clustering in uncertain
graphs, referred to as USCAN [3], relies primarily on the
key notion of reliable structural similarity, which quantifies
the probability of the event that two vertices are structurally
similar in the uncertain graph, in terms of two parameters
e and 7. The notion of reliable core can be further defined
to identify the nodes that have a sufficient number of reliable
structure-similar neighboring nodes, quantified by the parame-
ter p. These reliable cores, once identified from the uncertain
graph, can uniquely determine a cluster. However, USCAN
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suffers from severe performance and scalability issues, due
in particular to the sheer cost of reliable structural similarity
computation, especially in real-world large uncertain graphs.

In this paper, we propose a new, and more efficient method
for reliable structural similarity computation, denoted by
ProbSCAN (in Section III). Inspired by [4], ProbSCAN
decomposes the costly reliable structure similarity computa-
tion into smaller sub-portions, each of which is with only
one variable, and thus can be computed separately and more
efficiently. Specifically, given a node pair (u,v) from the
uncertain graph, we prove that the time complexity of reli-
able structural similarity computation can be improved from
O(d?, - min{ky, k,}) (in USCAN) to O((min{k,, k,})?) (in
ProbSCAN), where k, (resp. k,) is the degree of the node
u (resp. v), and d,, is the maximum node-degree of the
uncertain graph. It is worth mentioning that the improved
complexity is only determined by localized node-degrees of
u and v, for which the reliable structure similarity is to
be computed, but becomes irrelevant to the global variable,
dy,. This improvement leads to an immediate and significant
performance gain for structural clustering, especially in large-
scale uncertain graphs.

We further develop an index structure, UCNO-Index, and a
series of index-based pruning algorithms, to facilitate the com-
putation of reliable structural similarity in uncertain graphs
(in Section IV). Specifically, the size of UCNO-Index is well
bounded by O(m), the size of the uncertain graph. To the
best of our knowledge, UCNO-Index is the first index-based
solution for the structural clustering problem in uncertain
graphs.

We perform extensive experimental studies on eight real-
world uncertain graphs, and compare our solutions with the
state-of-the-art method, USCAN [3] (in Section V). The ex-
perimental results demonstrate that our methods have achieved
several orders of magnitude improvement, in terms of cluster-
ing efficiency, than USCAN.

II. PRELIMINARIES

Given an uncertain graph G(V, E,p), where V is a set
of vertices, F is a set of edges, and p is a probabilistic
function p : E — [0,1] that assigns for each edge e € F
a probability value p.. Such an edge probability is assumed
to be independent of those of any other edges of E, and we
consider the well-accepted possible-world semantics in this
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paper for uncertain graph modeling [1]. Specifically, G C G
denotes that G(V, E¢) is a possible world of G. Given a vertex
u € Vg in the possible world G of G, the neighbors of u in G,
denoted as Ng[u] = {v € Vg|(u,v) € Eg} U {u}, consisting
of all the adjacent vertices of u in G, including wu itself.

Definition 1. [Probability of Structural Similarity] Given an
uncertain graph G, an edge e = (u,v) € E, and a similarity
threshold € € (0, 1], the probability of structural similarity of
e s.t. a(e) > ¢, denoted by Prle, €|, is defined as the sum of
the probabilities of all possible worlds G C G, such that the
structural similarity between u and v is no less than € in each
possible world G:

Prle, e = Z Pr[G : o¢(u,v) > € (1)
GCg
where oG (u,v) = 7&2%8%2&” O

Definition 2. [Reliable Structural Similarity] Given an edge
e = (u,v) and a probability threshold 1), u is reliably structural
similar fo v if Prle,€e] > n. O

Definition 3. [(¢,7)-Reliable Neighbor] The (e, n)-reliable
neighbors of a vertex u, denoted as N(E_’n)[u], is a subset of
Nglu), in which every vertex v is reliably structural similar to
u; that is, N(¢ ) [u] = {v € Ng[u]| Prle = (u,v),e] > n}. O

Note (e, n)-reliable neighbors of a given vertex v include u
itself. Intuitively, when the number of (e, n)-reliable neighbors
of w is large, u tends to be critical in structural clustering, and
we refer to u as a reliable core, defined as follows,

Definition 4. [(e, 7, ;)-Reliable Core] Given a similarity
threshold € € (0,1], a probability threshold n € (0,1], and
an integer p > 2, a vertex u is a (e,n, u)-reliable core if
|N(e,17) [UH > [ O

Accordingly, a vertex is a non-core if it is not a reliable core.
Detecting reliable cores turns out to be crucial, as clusters can
be identified by expanding reliable cores.

Definition 5. [Reliably Structure-reachable] Given param-
eters € € (0,1], n € (0,1], and u > 2, a vertex v is reliably
structure-reachable from u if there is a sequence of vertices
V1,02, 0 € V(1> 2), st (i) v1 = u,vp = v; (ii) for all
1 <i <1—1, v is a reliable core, and viy1 € N py[vs). O

We formulate the structural clustering problem in uncertain
graphs as follows,

Definition 6. [Structural Clustering] Given an uncertain
graph G, and parameters € € (0,1], n € (0,1], u > 2, we
consider computing the set C of reliable clusters from G. Each
reliable cluster C' € C should contain at least two vertices (i.e.,
|C| > 2) such that:

o [Maximality] For each reliable core u € C, all vertices
reliably structure-reliable from u must belong to C;

o [Connectivity] For any two vertices vy,vy € C, there
exists a vertex u € C' such that both vy and vo are reliably
structure-reachable from . O

I1I. ProbSCAN

The major cost in the existing solution, USCAN [3], is to
compute the reliable structural similarity (Pr[e,€]) between
node pairs of G. To lower the computational complexity of
Prle, €], we introduce a new method, named ProbSCAN.
The key idea is to break down the computation of Prle, €]
into smaller portions with fewer variables, such that each
portion can be computed independently, either sequentially or
in parallel, like the decomposition approach proposed in [4].

A. Prle, €]-decomposed Computation
Proposition 1 below provides the theoretical foundation for

decomposed computation of Prle, €].

Proposition 1. Given an uncertain graph G = (V,E,p),
an edge e = (u,v) € G, and a similarity threshold e,
Pro(u,v) > €| can be computed as

E(u,v)
Prlo(u,v) > €] = Z Prsupg (u, v) = ] x
=0
kuy min(ky, H’L#J —5) (2)
( Z Pr[du = ]] X Z Pr[dv _ k‘D

j=it+1 k=i+1

where ky is the vertex-degree of u in G, k¢, ,y = |Nglu] N
Ng[v]|—2 is the maximum possible support of the edge (u,v)
in G, supg(u,v) € [0, k(yv)), and dy € [1, k). O

With Proposition 1, the computation of reliably structural
similarity Pr[o(u,v) > €] can be decomposed into three sub-
problems: (1) computing Pr[supg(u,v) = ], (2) computing
Pr[d, = j], and (3) computing Pr[d, = k|. The sub-problems
(2) and (3) are essentially the same, we thus focus on the sub-
problems (1) and (2). Fortunately, both have been addressed
in the previous studies [5], [6].

B. Implementation

We pre-compute Pr[d, = k] for all vertices v, and store the
values into a two-dimensional array X: X[v][k] = Pr[d, =
k], k € [0, k,]. We further maintain another two-dimensional
array Y to store the values of Pr[0 < d, < k] ie,
Yvl[k] = Zf:o X [v][k],k € [0, k,]. This way, it takes only
constant time to obtain the value ;;E;_%lj_] Pr[d, = k],
which corresponds to Y [v][i + [ 2] — j] — Y[v][d].

Furthermore, while we compute Prle, €] in Equation 2, we
always start with the vertex w with a smaller degree, and
choose another vertex v with a larger degree. This way, we
can reduce the computation in the second loop for d,,.

Time complexity. The time complexity to process an edge
(u,v) of G is bounded by O((min{k,,k,})?). As a conse-
quence, the total cost of computing Pr[e, €] for all e € E can
be bounded by O3, ,)cp(min{ky, ku})?) = O(dm x a x
m), where « is the arboricity of the graph G.

Space complexity,. We need to maintain two two-
dimensional arrays X and Y, which consumes O(3", . kv) =
O(m) space. The whole graph itself consumes O(m) space.
Therefore, the total space complexity is bounded by O(m).
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IV. INDEX-BASED APPROACH

In this section, we propose a novel index structure, denoted
as UCNO-Index (uncertain core-neighbor n-order index). The
idea of UCNO-Index is to pre-select a small set S of €
values. We then index the reliable structural similarity of node-
pairs only for the € values in S. Given this index, we can
efficiently obtain tight lower- and upper-bounds for reliable
structural similarity of node-pairs for any e, and the space
cost of UCNO-Index can be well bounded by O(m).

A. Index Construction

We start with the computation of all reliable cores for any
given probability threshold 7 under specific 1 and €. Note that
because the parameter y cannot be larger than the maximum
vertex degree, we can obtain a set of candidate reliable cores,
denoted as {u € V|k, > u}. Next, for each specific ¢ and
a fixed similarity threshold ¢ € S, we compute the reliable
cores by the probability threshold 7. Recall that a vertex u is
a reliable core if the number of (e, n)-reliable neighbors is at
least ;1. We thus have the following theorem:

Theorem 1. Given an uncertain graph G, a fixed pair (u >
2,€), and two probability thresholds 0 < n <n' <1, a vertex
u is a reliable core of a cluster determined by n, if it is a
reliable core of a cluster determined by 7. |

According to the monotonicity property in Theorem 1, we
only need to maintain the largest value of 7 for each vertex w
that is a reliable core given each specific parameter pair (i, €).
We call such a value core-n-threshold, defined as follows:

Definition 7. [CORE-n-THRESHOLD] Given an uncertain
graph G, a fix parameter pair (u,¢€), the core-n-threshold of
a vertex u, denote as CET ,|€][], is the largest ) such that u
is a (e,n, u)-reliable core determined by ¢, u, and 7. O

Theorem 2. Given an uncertain graph G, parameters |1 and e,
the core-n-threshold of a vertex u (k, > ) is the u-th largest
value in the probabilities of structural similarity between u
and its neighborhood. O

Based on Theorem 2, for each vertex u, we compute the
probabilities of structural similarity between v and its neigh-
bors v € NJu|, and sort the neighborhood in a non-increasing
order based on their probabilities of structural similarity, as
follows,

Definition 8. [NEIGHBOR-7-ORDER] Given an uncertain
graph G, a vertex u and a fixed €, the neighbor-n-order of
u, denoted by NEO,e], is a probabilistic order of neigh-
boring vertices such that: (i) the i-th value in NEO,le| is
(v, Pr[(u,v), €]), where v € N[u],CET ,[€][n] = Prle, €]; and
(ii) for any two vertices v, and vy, v1 occurs before vy if and
only if Pr[(u,v1), €] > Pr[(u, v2), €. O

For each ¢ € S, we store the corresponding neighbor-n-
order for all the vertices into UCNO-Index. The number of
entries in NEO, [e;] is k, for each vertex v and € € S, and
thus the size of all neighbor-n-orders can be well bounded.

TABLE 1
NETWORK STATISTICS

[ Datasets [ V[ ] |E] [ [ dn [ d | P ]
Krogan 2559 7031 141 549 | 0.6799

’ DBLP H 636,751 ‘ 2,366,461 ‘ 446 ‘ 7.43 ‘0.4487 ‘
Amazon 334,863 925,872 549 5.53 | 0.5001
Youtube 1,134,890 2,987,624 28,754 | 5.27 | 0.5001
Google 875,713 5,105,039 6,332 9.87 | 0.5001
Cit 3,774,768 16,518,948 793 6.13 | 0.5001
LiveJournal 3,997,962 34,681,189 14,815 | 17.35 | 0.5001
Orkut 3,072,441 | 117,185,083 | 33,313 | 76.28 | 0.5001

Theorem 3. Given ¢, the space cost of neighbor-n-orders for
all vertices is 3,y .cs NEOule] = O(m). Therefore, the
overall space cost of the index structure, UCNO-Index, is
O(m). O

B. Query Processing

Based on UCNO-Index, we can reduce the computational
cost of Prle, €], by devising novel lower- and upper-bounds
for Prle, €|, given any e. Specifically, given a query with
parameters € € (0,1],n € (0,1] and p > 2, we can categorize
it in the following three cases:

1) There exists an ¢ € S that equals e. We can answer this
query in O(m) time.

2) There exists an € < e. We find in this case a tight
upper-bound of Pr[e, €] for all the edges.

3) There exists an € > e. We find in this case a tight
lower-bound of Prle, €] for all edges.

According to Case (2), we can obtain the candidate re-
liable neighbors for the vertex w, which is {v|Prle,e] >
7, (v, Prle, €]) € NEO,[e]}. Since the vertices of NEO,,[¢;]
are sorted in a non-increasing order of probabilities of struc-
tural similarity, we perform a binary search with the value
n upon NEO,[€] in order to efficiently obtain the candidate
reliable neighbors of w.

V. EXPERIMENTS

We report our experimental studies in eight real-world
probabilistic networks, and the detailed statistics of these
networks are presented in Table 1. Specifically, the average
degree (d) and the average probability () are listed in the
last two columns. Edge probabilities of the first two networks
stem from real-world application domains, while probabilities
in other network datasets are randomly assigned. We compare
our solutions, ProbSCAN and UCNO-Query, with the state-
of-the-art method, USCAN [3] on all eight networks. All the
algorithms are implemented in C++ and compiled with g++
7.4.0. All the experiments are performed on a Linux server
running Ubuntu 18.04 with two Intel 2.3GHz ten-core CPUs
and 256GB memory.

Clustering Performance. The runtime for all structural
clustering algorithms under the default parameter setting,
n = 0.5,e = 0.5 and p = 5, on all datasets is illustrated
in Figure 1. We recognize from the experimental results that
UCNO-Query is more efficient than ProbSCAN, and it is
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Fig. 2. Memory Consumption in Different Networks

one or two orders of magnitude faster than USCAN on all
datasets. For instance, in the Krogan network, UCNO-Query
only needs 0.8ms for structural clustering, while ProoSCAN
and USCAN need 5ms and 70ms, respectively. In another
dataset Orkut with over 100 millions edges, it takes UCNO-
Query less than two seconds for structural clustering, while
ProbSCAN and USCAN spend approximately 2, 700 seconds
and around 2 days, respectively, in this large uncertain graph.

Space Cost. The memory consumption results of differ-
ent structural clustering methods are reported in Figure 2
for different networks. In general, the memory usage of all
algorithms grows proportionally when the network size, in
terms of the number of edges, grows, with one exception for
USCAN on the Youtube network. We note that the space cost
of USCAN in Youtube is about three times of that for the Live
Journal network. The reason is that the dominating factor
of the space cost in this case turns out to be the maximum
vertex degree d,,, rather than the network size, in this network.
Additionally, the total memory consumption of UCNO-Query
can always be bounded by 3.5X the size in ProbSCAN.

VI. RELATED WORK

Uncertain Graphs. There have been a lot of fundamental
querying and mining problems that have been studied in the
setting of uncertain graphs, including, but not limited to,
cohesive graphs detection [5], [6], reliability search [7], pattern
matching [2], kNN search [8], and frequent pattern mining [9].
Bonchi et al. [5] study the core decomposition problem on
uncertain graphs. Huang et al. [6] propose the concepts of local
and global (k,~)-truss that enable truss decomposition for
probabilistic graphs. Jin et al. [7] study the distance-constraint
reachability query problem in uncertain graphs. Lian et al.
[2] propose a framework to efficiently answer RDF queries
over probabilistic RDF graphs. Potamias et al. [8] study the
problem of k-nearest neighbor search on uncertain graphs.
Zou et al. [9] examine the problem of discovering frequent
subgraph patterns on uncertain graph databases.

Structural Graph Clustering. In deterministic graphs, there
have been numerous structural graph clustering methods. Xu
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et al. [10] propose the algorithm, SCAN, that can help identify
densely connected graph clusters as well as hubs and outliers.
The main issue of SCAN is that it has to consider all the
adjacent vertex-pairs for structural similarity computation. To
address this issue, Chang et al. [11] propose the PSCAN algo-
rithm that identifies core vertices first. Dong et al. [12] develop
an index-based solution, which is the state-of-the-art method
for structural clustering in deterministic graphs. However, all
these SCAN-based algorithms cannot be directly applied in
uncertain graphs. [3] first explores the SCAN framework in
the uncertain graph setting based on a new concept: reliable
structural similarity, which quantifies the probability of the
event that two vertices are structurally similar in a probabilistic
sense in an uncertain graph.

VII. CONCLUSION

In this paper, we study the structural clustering problem
in uncertain graphs. We develop a new, decomposition-based
method, ProbSCAN, for efficient reliable structural similar-
ity computation with theoretically improved complexity. We
further design a cost-effective index structure, UCNO-Index,
and powerful pruning strategies to further expedite the reliable
structural similarity computation in large uncertain graphs.
Experimental studies on eight real-world uncertain graphs
demonstrate that our proposed methods have significantly
outperformed the state-of-the-art structural clustering solutions
on large uncertain graphs.
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