



How to cite:

International Edition: doi.org/10.1002/anie.202003093

German Edition: doi.org/10.1002/ange.202003093

# Acid–Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction

Pengsong Li, Xu Lu,\* Zishan Wu, Yueshen Wu, Richard Malpass-Evans, Neil B. McKeown, Xiaoming Sun,\* and Hailiang Wang\*

**Abstract:** Hybrid electrodes with improved  $O_2$  tolerance and capability of  $CO_2$  conversion into liquid products in the presence of  $O_2$  are presented. Aniline molecules are introduced into the pore structure of a polymer of intrinsic microporosity to expand its gas separation functionality beyond pure physical sieving. The chemical interaction between the acidic  $CO_2$  molecule and the basic amino group of aniline renders enhanced  $CO_2$  separation from  $O_2$ . Loaded with a cobalt phthalocyanine-based cathode catalyst, the hybrid electrode achieves a CO Faradaic efficiency of 71 % with 10 %  $O_2$  in the  $CO_2$  feed gas. The electrode can still produce CO at an  $O_2/CO_2$  ratio as high as 9:1. Switching to a Sn-based catalyst, for the first time  $O_2$ -tolerant  $CO_2$  electroreduction to liquid products is realized, generating formate with nearly 100 % selectivity and a current density of  $56.7 \text{ mA cm}^{-2}$  in the presence of 5 %  $O_2$ .

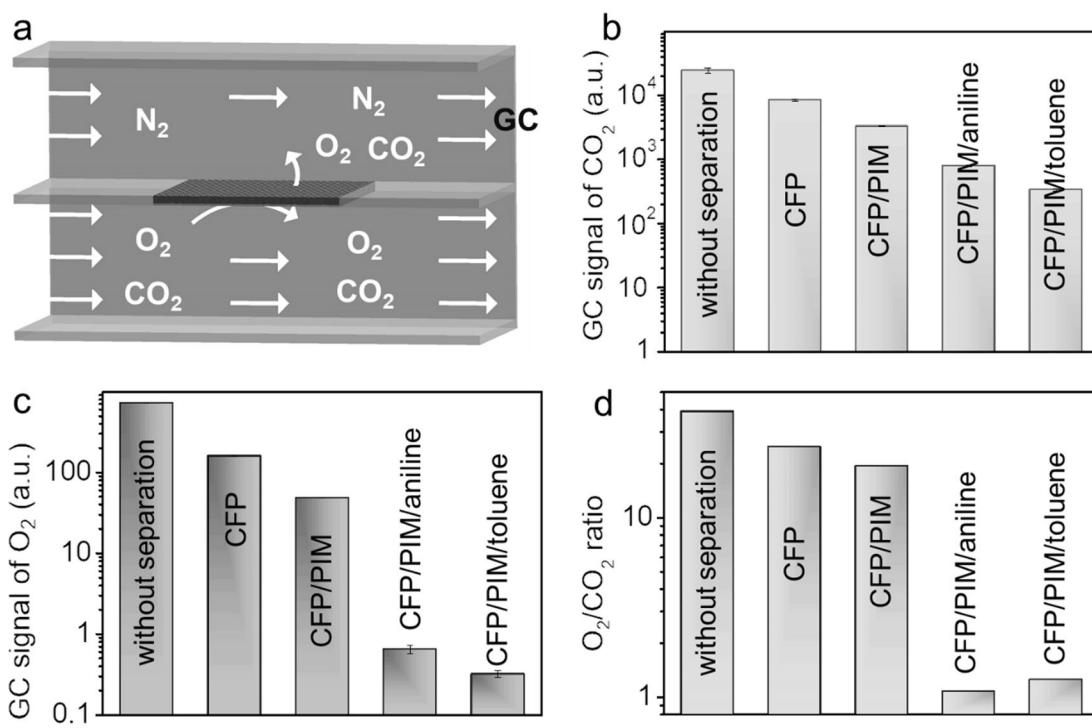
Electrochemical  $CO_2$  reduction driven by renewable energy sources is an attractive strategy for converting  $CO_2$  into value-added carbon-based products.<sup>[1–7]</sup> If achieved on a large scale, it could help alleviate the global warming and ocean acidification issues.<sup>[8,9]</sup> For this process to be more commercially relevant, the  $CO_2$  reactant should come from practical sources such as combustion exhaust and ambient air,<sup>[10,11]</sup> both of which contain a substantial amount of  $O_2$ . However, in a realistic electrolytic cell without mass-transport limitation, the  $CO_2$  reduction reactions can be completely inhibited by as little as 5 %  $O_2$  in  $CO_2$  because of the considerable difference in their standard reduction electrode potentials.<sup>[10,12–15]</sup> It is therefore challenging yet potentially highly rewarding to develop a catalytic electrode that can directly valorize  $O_2$ ,

containing  $CO_2$  gases without requiring additional energy input for reactant purification.

In our prior work, we designed the first  $O_2$ -tolerant catalytic electrode for  $CO_2$  reduction. Our design was to integrate a  $CO_2$  reduction electrocatalyst with a polymer of intrinsic microporosity (PIM) layer that can selectively permeate  $CO_2$  from its  $O_2$  mixture.<sup>[10]</sup> This electrode was able to generate CO with a Faradaic efficiency (FE) of 75.9 % from  $CO_2$  containing 5 %  $O_2$ . Despite this progress, it is still necessary to further improve  $O_2$  tolerance of the electrode and expand the scope of products. Considering that PIM separates  $CO_2$  from  $O_2$  via a physical process through its size-selective pores,<sup>[16,17]</sup> we believe there is opportunity to enhance the separation process by introducing chemical interactions.

Herein, we report a second generation of  $O_2$ -tolerant catalytic electrodes for  $CO_2$  reduction, which are developed from their predecessors by introducing guest aniline molecules into the PIM structure and by changing the electrocatalyst. Benefiting from the chemical interaction between acidic  $CO_2$  and the basic amino group of aniline, the PIM/aniline hybrid membrane demonstrates improved  $CO_2$  vs.  $O_2$  selectivity compared to pure PIM. Deployed in an electrolytic flow cell, our electrode comprising such a hybrid gas selection layer and a catalyst layer of cobalt phthalocyanine (CoPc) molecules anchored on carbon nanotubes (CNTs) achieves a  $FE_{CO}$  of 71 % in the presence of 10 %  $O_2$  in  $CO_2$ . At a high  $O_2/CO_2$  ratio of 9:1, the electrode can still have net  $CO_2$  conversion, whereas the control electrode without aniline completely loses its function. Switching the catalyst to Sn particles allows us to expand our products beyond CO and realize the first selective reduction of  $CO_2$  to formate in the presence of 5 %  $O_2$ .

We first used a gas separation experiment (see the Supporting Information for details), where a  $CO_2/O_2$  mixture gas with a fixed volume ratio of 1:39 flows through the channel on one side of the gas diffusion electrode (GDE) and a  $N_2$  carrier gas flows on the other side for gas sampling (Figure 1 a), to study the amounts of  $CO_2$  and  $O_2$  penetrating the GDE. The GDE was a carbon fiber paper (CFP) or a CFP with a gas selection layer drop-casted on the side facing the  $CO_2/O_2$  mixture gas channel. As can be seen from the gas chromatography (GC) peak areas, the CFP alone can reject both  $CO_2$  and  $O_2$  to some extent (Figure 1 b,c). CFP coated with a layer of PIM can more effectively limit  $CO_2$  and  $O_2$  penetration and decrease the  $O_2/CO_2$  ratio compared to the CFP-only case. When the PIM layer is infiltrated with aniline or toluene, gas (especially  $O_2$ ) penetration is further suppressed. In the aniline case, we observed the smallest  $O_2/CO_2$


[\*] P. Li, Prof. Dr. X. Sun

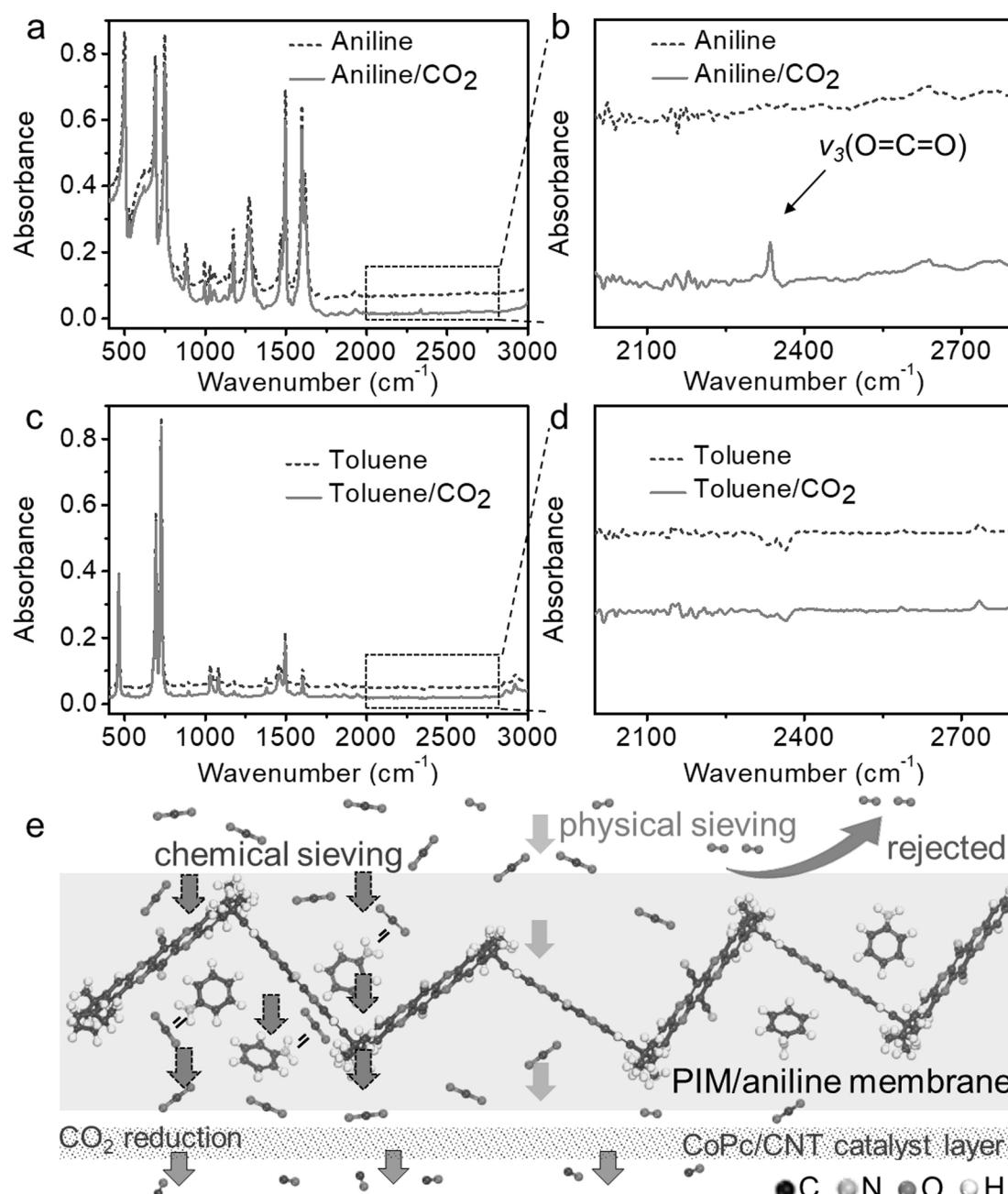
State Key Laboratory of Chemical Resource Engineering  
Beijing University of Chemical Technology  
Beijing 100029 (P. R. China)  
E-mail: sunxm@mail.buct.edu.cn

P. Li, Dr. X. Lu, Z. Wu, Y. Wu, Prof. Dr. H. Wang  
Department of Chemistry, Yale University  
New Haven, CT 06520 (USA)  
and  
Energy Sciences Institute, Yale University  
West Haven, CT 06516 (USA)  
E-mail: xu.lu@yale.edu  
hailiang.wang@yale.edu

Dr. R. Malpass-Evans, Prof. Dr. N. B. McKeown  
EastChem, School of Chemistry, University of Edinburgh  
Edinburgh EH9 3FJ (UK)

 Supporting information and the ORCID identification number(s) for  
 the author(s) of this article can be found under:  
<https://doi.org/10.1002/anie.202003093>.



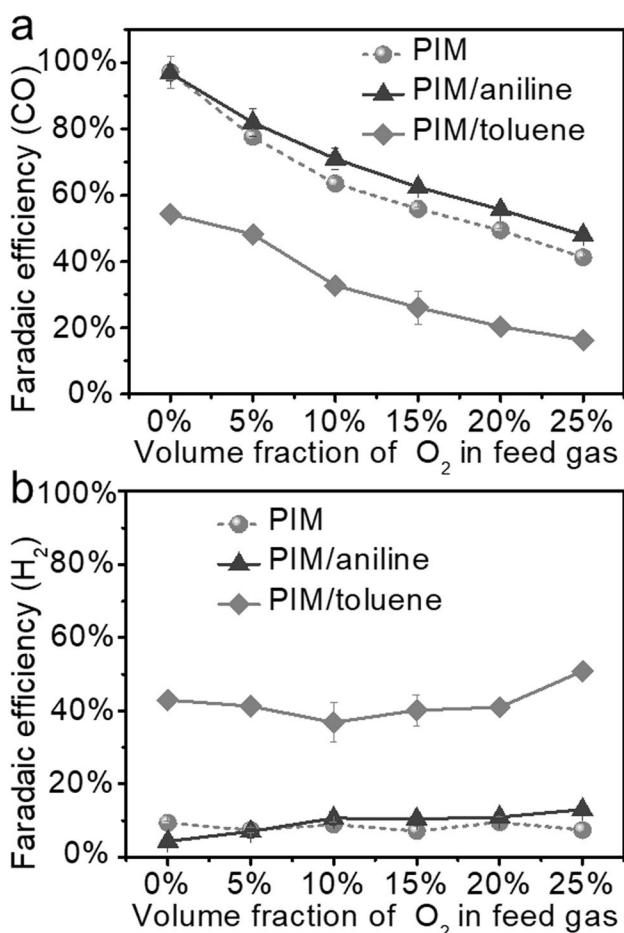

**Figure 1.** a) Diagram of the gas separation setup for measuring the selectivity of membrane for  $CO_2$  separation from  $O_2$ . b)  $CO_2$  and c)  $O_2$  signals detected by GC for the effluent of the  $N_2$  channel with different GDEs. Error bars represent standard deviations from multiple GC samplings. d)  $O_2/CO_2$  volume ratios in the effluent of the  $N_2$  channel with different GDEs.

ratio among all of the electrode configurations (Figure 1d), revealing its highest  $CO_2/O_2$  selectivity despite the lower  $CO_2$  permeability caused by small molecule incorporation in the PIM structure (Figure 1b).

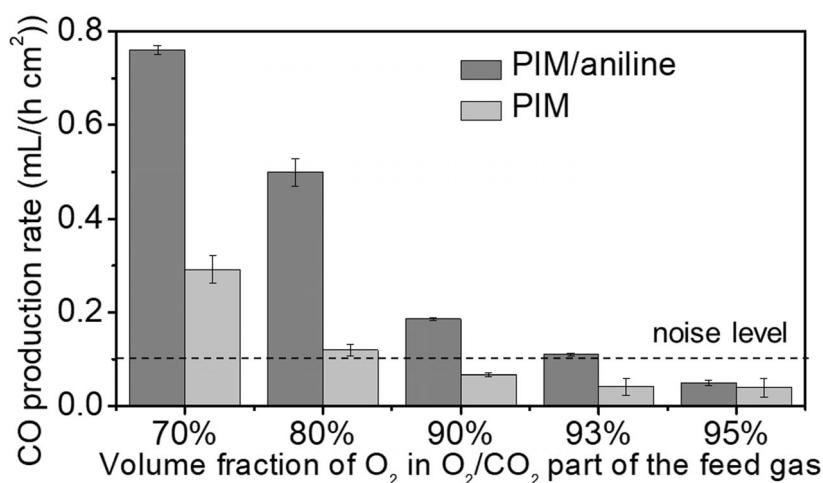
We conducted infrared (IR) spectroscopy measurements to understand the enhancing effect of aniline on PIM for  $CO_2$  separation from  $O_2$ . The IR spectra of aniline and toluene before and after 1 h of  $CO_2$  bubbling into these two liquids are plotted in Figure 2a-d. Interestingly, the asymmetrical stretching band of  $CO_2$  is clearly observed at approximately  $2335\text{ cm}^{-1}$  for the  $CO_2$ -treated aniline sample,<sup>[18,19]</sup> while no such peak is found in the case of toluene. The observation of the  $CO_2$  peak and its decrease in wavenumber relative to a free  $CO_2$  molecule ( $2349\text{ cm}^{-1}$ )<sup>[20]</sup> indicates that  $CO_2$  is likely adsorbed by aniline via the chemical interaction between the acidic  $CO_2$  and the basic amino group of aniline.<sup>[21,22]</sup> In fact, amino groups are often incorporated into metal-organic framework structures to enhance their  $CO_2$  adsorption capacity.<sup>[23,24]</sup> Figure 2e depicts the roles played by aniline in the improved  $CO_2$  vs.  $O_2$  separation of the PIM/aniline material: On the one hand, the aniline molecules residing in the pore structure of PIM create a physical barrier, which enhances the rejection of the bigger  $O_2$  (kinetic diameter  $0.35\text{ nm}$ )<sup>[25]</sup> molecules to a greater extent compared to the smaller  $CO_2$  ( $0.33\text{ nm}$ )<sup>[26]</sup> molecules. This would result in a lower gas permeability but a higher  $CO_2/O_2$  selectivity. On the other hand, the amino group of aniline can selectively enhance  $CO_2$  transport via acid-base interactions. In the absence of amino groups, the PIM/toluene membrane sepa-

rates  $CO_2$  from  $O_2$  solely through physical sieving. Therefore, the  $CO_2/O_2$  selectivity of PIM/toluene is higher than pure PIM but lower than PIM/aniline.

Based on the gas separation results, we anticipate the PIM/aniline-containing GDE would improve electrocatalytic  $CO_2$  reduction in the presence of  $O_2$ , although the separation performance may not be directly translated into electrochemical performance because of their different conditions. To perform electrochemical  $CO_2$  reduction reaction studies, we used CoPc molecules supported on CNTs (CoPc/CNT) as the catalyst,<sup>[3,10,27,28]</sup> which was coated onto the other side of the CFP supporting PIM/aniline (see the Supporting Information). A gas-diffusion electrochemical cell as reported in our previous work was used.<sup>[10,28]</sup> The cell voltage was optimized to be 3.4 V for achieving highest  $CO_2$  reduction selectivity (Supporting Information, Figure S1). Figure 3 (Supporting Information, Figure S2) shows the  $FE_{CO}$  and total current density ( $j_{total}$ ) for the reduction reactions of  $CO_2/O_2$  mixtures containing different percentages of  $O_2$ . The PIM/aniline electrode operating with 10%  $O_2$  exhibits a  $FE_{CO}$  of 71% and a  $j_{total}$  of  $30.6\text{ mA cm}^{-2}$ , outperforming the corresponding PIM electrode which affords a  $FE_{CO}$  of 63% under the same conditions. The improved  $FE_{CO}$  is consistent with the improved  $CO_2$  vs.  $O_2$  selectivity observed in the gas separation experiments (Figure 1d). The reasonably high current density indicates that mass transport of  $CO_2$ , although suppressed by the PIM/aniline layer (Figure 1b), is not compromising the reaction rate. In contrast, the PIM/toluene electrode, which lacks chemical interaction between toluene




**Figure 2.** IR spectra of a), b) aniline and c), d) toluene before and after interacting with CO<sub>2</sub>. e) Diagram of enhanced CO<sub>2</sub>/O<sub>2</sub> separation and O<sub>2</sub>-tolerant catalytic CO<sub>2</sub> reduction on a hybrid electrode with PIM/aniline.


and CO<sub>2</sub>, shows a FE<sub>CO</sub> of 33 % with a  $j_{\text{total}}$  of 29.3 mA cm<sup>-2</sup> at the same conditions, lower in selectivity and activity for CO production than that of the PIM electrode. The poor CO<sub>2</sub> reduction efficiency can be attributed to the low gas permeability of the PIM/toluene membrane, which hampers CO<sub>2</sub> delivery to the catalytic sites, in line with the gas separation results (Figure 1b,c). Consistently, H<sub>2</sub> evolution becomes more dominant (Figure 3b). For all these three catalytic electrodes, FE<sub>CO</sub> gradually decreases when the O<sub>2</sub> content of the feed gas increases, and the PIM/aniline electrode always gives the highest FE<sub>CO</sub> among the three at any fixed O<sub>2</sub>

concentration (Figure 3a). Further control experiments with PIM/benzene (Supporting Information, Figures S3, S4) and PIM/phenol electrodes (Supporting Information, Figures S5, S6) give similar results to the PIM/toluene electrode, confirming the critical role of the amino group in the aniline molecular structure in enhancing CO<sub>2</sub> selection via acid–base interaction.

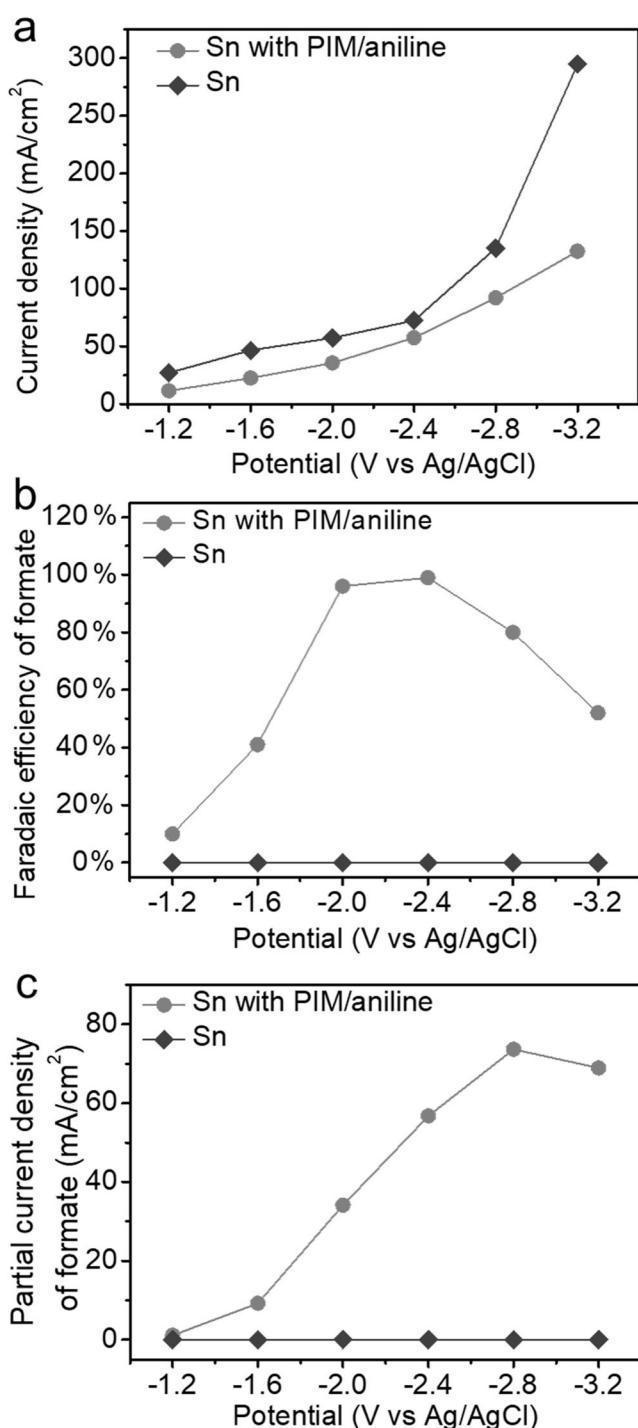
Incorporation of aniline in the PIM layer extends the range of O<sub>2</sub>/CO<sub>2</sub> feed ratio under which the catalytic electrode can effectively convert CO<sub>2</sub> into CO. When operating in a gas mixture containing 40 % O<sub>2</sub>, 10 % CO<sub>2</sub>,



**Figure 3.** a) FE<sub>CO</sub> and b) FE<sub>H<sub>2</sub></sub> for PIM, PIM/aniline, and PIM/toluene cathodes operating with CO<sub>2</sub>/O<sub>2</sub> feed gas containing different O<sub>2</sub> percentages. Electrolyte: 0.5 M aqueous KHCO<sub>3</sub>; cathode catalyst: CoPc/CNT; anode catalyst: CoO<sub>x</sub>/CNT; cell voltage: 3.4 V. Error bars represent standard deviations from multiple measurements.



**Figure 4.** CO production rate vs. volume fraction of O<sub>2</sub> in the O<sub>2</sub>/CO<sub>2</sub> part of the feed gas (CO<sub>2</sub>, N<sub>2</sub>, and O<sub>2</sub>) with PIM or PIM/aniline as the CO<sub>2</sub>/O<sub>2</sub> selection layer. Electrolyte: 0.5 M aqueous KHCO<sub>3</sub>; cathode catalyst: CoPc/CNT; anode catalyst: CoO<sub>x</sub>/CNT; cell voltage: 3.4 V. Volume fraction of N<sub>2</sub> in the feed gas is fixed at 50%. The dash line in the graph marks the noise level. Error bars represent standard deviations from multiple measurements.


and 50 % N<sub>2</sub> (N<sub>2</sub> is blended in because it is a major component of air and typical flue gases<sup>[29]</sup>), the PIM electrode cannot effectively catalyze CO<sub>2</sub> reduction, with its measured CO production rate at the same level as the instrument noise in this case (Figure 4), whereas the PIM/aniline electrode can still produce CO at a rate that is five times higher (Figure 4). When the O<sub>2</sub>/CO<sub>2</sub> ratio is further increased to 9:1, the PIM/aniline electrode can still perform CO<sub>2</sub> reduction at a rate significantly higher than the noise level (Figure 4). This represents another small step toward the ultimate goal of direct CO<sub>2</sub> valorization from the atmosphere.

The PIM/aniline gas selection layer also allows us to produce useful liquid products from electrochemical CO<sub>2</sub> reduction in the presence of O<sub>2</sub>, which has never been realized before. To generate formate, we used Sn metal particles as the cathode catalyst<sup>[30]</sup> and performed electrolysis in a three-electrode cell with enhanced gas diffusion (see the Supporting Information). With 5 % O<sub>2</sub> in the feed gas, the control Sn electrode without PIM/aniline exhibits a  $j_{\text{total}}$  up to 295.0 mA cm<sup>-2</sup> (Figure 5 a) but produces no formate (Figure 5 b,c) at various electrode potentials. This is because O<sub>2</sub> reduction completely dominates the catalyst surface, in consistency with our previous observation.<sup>[10]</sup> In sharp contrast, the electrode with PIM/aniline as the gas selection layer can catalyze CO<sub>2</sub> reduction to formate with a FE close to 100 % and a  $j_{\text{formate}}$  of 56.7 mA cm<sup>-2</sup> at a cathode potential of -2.4 V vs. Ag/AgCl, despite the presence of 5 % O<sub>2</sub>. As the electrode potential is further polarized to -2.8 V,  $j_{\text{formate}}$  increases to 73.6 mA cm<sup>-2</sup>.

In summary, we have developed a CO<sub>2</sub>-selective layer by introducing aniline into the pores of PIM and revealed that the acid–base interaction between CO<sub>2</sub> and aniline enhances CO<sub>2</sub> separation from O<sub>2</sub>. Loaded with CO<sub>2</sub> reduction electrocatalysts, the PIM/aniline catalytic electrodes show improved O<sub>2</sub> tolerance. CO<sub>2</sub> in a feed gas with an O<sub>2</sub>/CO<sub>2</sub> ratio as high as 9:1 can be effectively reduced to CO. Formate can be produced at a near-unity FE and a high current density from electrochemical CO<sub>2</sub> reduction in the presence of O<sub>2</sub>. The strategy of introducing chemical sieving to a gas separation membrane could be useful for directly mining the atmospheric CO<sub>2</sub> for fuels.

### Acknowledgements

This work was supported by the National Science Foundation (Grant CHE-1651717). P.L. acknowledges an exchange student



**Figure 5.** a) Total current density, b) formate FE, and c) formate partial current density at various cathode potentials (without *iR* correction). There is 5% O<sub>2</sub> in the CO<sub>2</sub> feed gas. Electrolyte: 0.5 M aqueous KHCO<sub>3</sub>; cathode catalyst: Sn; anode catalyst: NiFe-layered double hydroxide.

fellowship from the China Scholarship Council. X.L. thanks the Croucher Fellowship for Postdoctoral Research. N.McK. acknowledges the Engineering and Physical Sciences Research Council (EPSRC EP/M01486X/1).

### Conflict of interest

The authors declare no conflict of interest.

**Keywords:** acid–base interaction · CO<sub>2</sub> reduction · electrocatalysis · gas separation · O<sub>2</sub> tolerance

- [1] Z. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X. Wang, Q. Ma, G. W. Brudvig, V. S. Batista, Y. Liang, Z. Feng, H. Wang, *Nat. Commun.* **2018**, *9*, 415.
- [2] P. De Luna, R. Quintero-Bermudez, C. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, *Nat. Catal.* **2018**, *1*, 103–110.
- [3] Y. Wu, Z. Jiang, X. Lu, Y. Liang, H. Wang, *Nature* **2019**, *575*, 639–642.
- [4] J. M. Spurgeon, B. Kumar, *Energy Environ. Sci.* **2018**, *11*, 1536–1551.
- [5] X. Lu, Y. Wu, X. Yuan, H. Wang, *Angew. Chem. Int. Ed.* **2019**, *58*, 4031–4035; *Angew. Chem.* **2019**, *131*, 4071–4075.
- [6] Z. Cai, Y. Wu, Z. Wu, L. Yin, Z. Weng, Y. Zhong, W. Xu, X. Sun, H. Wang, *ACS Energy Lett.* **2018**, *3*, 2816–2822.
- [7] D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang, C. P. Berlinguet, *Acc. Chem. Res.* **2018**, *51*, 910–918.
- [8] S. Chu, Y. Cui, N. Liu, *Nat. Mater.* **2017**, *16*, 16–22.
- [9] S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, *Chem. Rev.* **2019**, *119*, 7610–7672.
- [10] X. Lu, Z. Jiang, X. Yuan, Y. Wu, R. Malpass-Evans, Y. Zhong, Y. Liang, N. B. McKeown, H. Wang, *Sci. Bull.* **2019**, *64*, 1890–1895.
- [11] K. Williams, N. Corbin, J. Zeng, N. Lazouski, D. Yang, K. Manthiram, *Sustainable Energy Fuels* **2019**, *3*, 1225–1232.
- [12] Y. Xu, J. P. Edwards, J. Zhong, C. P. O'Brien, C. M. Gabardo, C. McCallum, J. Li, C. Dinh, E. H. Sargent, D. Sinton, *Energy Environ. Sci.* **2020**, *13*, 554–561.
- [13] P. S. Surdhar, S. P. Mezyk, D. A. Armstrong, *J. Phys. Chem.* **1989**, *93*, 3360–3363.
- [14] A. A. Gewirth, J. A. Varnell, A. M. DiAscro, *Chem. Rev.* **2018**, *118*, 2313–2339.
- [15] A. Bard, *Standard Potentials in Aqueous Solution*, Routledge, Abingdon-on-Thames, **2017**.
- [16] P. M. Budd, K. J. Msayib, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. B. McKeown, D. Fritsch, *J. Membr. Sci.* **2005**, *251*, 263–269.
- [17] M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown, *Science* **2013**, *339*, 303–307.
- [18] L. H. Jones, E. McLaren, *J. Chem. Phys.* **1958**, *28*, 995–995.
- [19] A. L. Goodman, L. M. Campus, K. T. Schroeder, *Energy Fuels* **2005**, *19*, 471–476.
- [20] G. Gregoire, N. R. Brinkmann, D. van Heijnsbergen, H. F. Schaefer, M. A. Duncan, *J. Phys. Chem. A* **2003**, *107*, 218–227.
- [21] Z. Chen, S. Deng, H. Wei, B. Wang, J. Huang, G. Yu, *Front. Environ. Sci. Eng.* **2013**, *7*, 326–340.
- [22] S. Couck, J. F. M. Denayer, G. V. Baron, T. Rémy, J. Gascon, F. Kapteijn, *J. Am. Chem. Soc.* **2009**, *131*, 6326–6327.
- [23] B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, *Nat. Energy* **2017**, *2*, 17086.
- [24] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. Bae, J. R. Long, *Chem. Rev.* **2012**, *112*, 724–781.

[25] P. J. M. Carrott, I. P. P. Cansado, M. M. L. R. Carrott, *Appl. Surf. Sci.* **2006**, *252*, 5948–5952.

[26] S. Li, J. L. Falconer, R. D. Noble, *Adv. Mater.* **2006**, *18*, 2601–2603.

[27] X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, *Nat. Commun.* **2017**, *8*, 14675.

[28] X. Lu, Y. Wu, X. Yuan, L. Huang, Z. Wu, J. Xuan, Y. Wang, H. Wang, *ACS Energy Lett.* **2018**, *3*, 2527–2532.

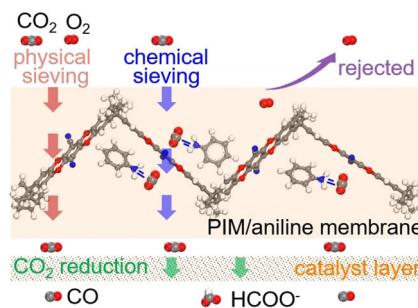
[29] D. Aaron, C. Tsouris, *Sep. Sci. Technol.* **2005**, *40*, 321–348.

[30] H. Jiang, K. Moon, H. Dong, F. Hua, C. P. Wong, *Chem. Phys. Lett.* **2006**, *429*, 492–496.

Manuscript received: February 28, 2020

Accepted manuscript online: March 25, 2020

Version of record online: ■■■■■


## Communications



## Electrocatalysis

P. Li, X. Lu,\* Z. Wu, Y. Wu,  
R. Malpass-Evans, N. B. McKeown,  
X. Sun,\* H. Wang\* 

Acid–Base Interaction Enhancing Oxygen  
Tolerance in Electrocatalytic Carbon  
Dioxide Reduction



An aniline-infiltrated polymer-of-intrinsic-microporosity (PIM) membrane is reported for direct valorization of CO<sub>2</sub> from its mixture with O<sub>2</sub>. The acid–base interaction between CO<sub>2</sub> and aniline enhances CO<sub>2</sub>/O<sub>2</sub> separation, enabling catalytic electrodes capable of producing CO from a feed gas with an O<sub>2</sub>/CO<sub>2</sub> ratio as high as 9:1 and of reducing CO<sub>2</sub> selectively to formate in the presence of O<sub>2</sub>.