
Improving Overall Performance of TLC SSD
by Exploiting Dissimilarity of Flash Pages

Wenhui Zhang , Qiang Cao , Senior Member, IEEE,

Hong Jiang , Fellow, IEEE, and Jie Yao,Member, IEEE

Abstract—TLC flash has three types of pages to accommodate the three bits in each TLC physical cell exhibiting very different

program latencies. This paper proposes PA-SSD to effectively improve the overall performance by exploiting the dissimilarity of TLC

pages on program latency throughout the write request handling workflow. The main idea behind PA-SSD is to coordinately allocate the

same type of pages for sub-requests of any given user write request, to mitigate the potential program latency imbalance among the

sub-requests, and to schedule sub-requests according to their page-types.We achieve the PA-SSD design goal by answering three key

research questions: (1) how to properly determine page-type for each user write request? (2) how to actually allocate a physical page for

each sub-request with an assigned page-type from (1)? (3) how to effectively schedule the sub-requests in the chips queues when their

page-types are judiciously allocated from (2)? To answer the first question, we propose seven page-type specifying schemes to

investigate their effects under different workloads.We answer the second question by redesigning the page allocation strategy in TLC

SSD to uniformly and sequentially determine physical pages for allocation following the internal programming process of TLC flash.

Lastly, a page-type aware scheduling policy is presented to reorder the sub-requests within chips’ queues. Our experiments show that

PA-SSD can accelerate both the write and read performance. Particularly, our proposed queue-depth based page-type specifying

scheme improves write performance by 2.6 times and read performance by 1.5 times over the conventional TLC SSD.

Index Terms—TLC SSD, diverse program latencies, TSU scheduling, write performance, page-type aware

Ç

1 INTRODUCTION

TLC (Triple-Level Cell) flash is gradually becoming a
dominant storage media in Solid-State Drives (SSDs)

because of its higher storage capacity and lower price per
gigabyte than SLC (Single-Level Cell) flash andMLC (Multi-
Level Cell) flash. However, TLC, which stores three data bits
in each physical cell, requires finer-grained program steps,
resulting in higher program latency than SLC and MLC
flash [1], [2]. This increased program latency leads research-
ers and developers to propose new SSD designs to boost the
TLC SSD performance.

Because the three bits in a TLC cell, LSB (Least Significant
Bit), CSB (Central Significant Bit) and MSB (Most Significant
Bit), exhibit very different program latencies, the TLC SSD
separates these bits into three types of pages with diverse
program latencies, i.e., LSB pages, CSB pages, and MSB
pages [1], [3]. Specifically, an LSB page has the shortest

program latency (e.g., 500 ms), a CSB page has the medium
program latency (e.g., 2000ms), and anMSB page has the lon-
gest program latency (e.g., 5500 ms) [3]. Due to the high pro-
gram latencies of CSB and MSB pages, write requests served
with CSB andMSBpages usually havemuch longer response
times than with LSB pages (up to 10x). To boost TLC write
performance, many proposals suggest enabling the SLC
mode in which only LSB pages are used when serving user
write requests [1], [4], [5], [6], [7]. However, these methods
waste some of the storage capacity provided by the CSB and
MSB pages that account for up to 2/3 of the total capacity.
On the other hand, the conventional SSD design allocates
pages for user write requests without differentiating page-
types. As each user write request greater than a page in size
is partitioned into multiple page-sized sub-requests that are
then allocated pages independently of page-types [8], a large
proportion of user write requests are actually served with at
least one MSB page in a conventional TLC SSD, as shown in
Fig. 1a, resulting in considerable write inefficiency. This
motivates us to redesign the page allocation strategy so that
it takes page-type into consideration to improvewrite perfor-
mance of TLC SSDwithout sacrificing any storage capacity.

In this paper, we present a Page-type Aware design of
TLC SSD, or PA-SSD, to exploit the diverse program latency
of TLC pages throughout the write request execution work-
flow. Specifically, it coordinately allocates pages of the same
type for the sub-requests of a given user write request, so as
to significantly lower the percentage of write requests served
with MSB pages, as shown by Fig. 1b, and thus improve the

� W. Zhang and Q. Cao are with the Wuhan National Laboratory for
Optoeletronics, Huazhong University of Science and Technology, Wuhan,
Hubei 430074, China.
E-mail: Singularity_x@outlook.com, caoqiang@hust.edu.cn.

� H. Jiang is with the Computer Science and Engineering Department,
University of Texas at Arlington, Arlington, TX 76019.
E-mail: hong.jiang@uta.edu.

� J. Yao is with the School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, China.
E-mail: jackyao@hust.edu.cn.

Manuscript received 8 Oct. 2018; revised 5 Aug. 2019; accepted 7 Aug. 2019.
Date of publication 14 Aug. 2019; date of current version 26 Dec. 2019.
(Corresponding author: Wenhui Zhang.)
Recommended for acceptance by M. D. Santambrogio.
Digital Object Identifier no. 10.1109/TPDS.2019.2934458

332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9875-0229
https://orcid.org/0000-0001-9875-0229
https://orcid.org/0000-0001-9875-0229
https://orcid.org/0000-0001-9875-0229
https://orcid.org/0000-0001-9875-0229
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0001-9124-0533
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
mailto:
mailto:
mailto:
mailto:

write performance. In other words, PA-SSD always attempts
to use the same type of pages to serve all sub-requests of any
single write request. Tomake this possible, three challenging
questionsmust be answered: Q1. How to properly determine
page-types for user write requests in runtime? Q2. How to
actually allocate pages to sub-requests of a user write request
whose page-type has been specified (by an answer to Q1)?
Q3. How to schedule the sub-requests in the chips queue
when their page-types are judiciously allocated (by an
answer to Q2)?

For the first challenge, we consider various factors, such
as host requirements, request sizes, device-level queue
length, and so on, and accordingly propose seven page-type
specifying schemes. They are sU (Uniformly specification)
scheme, sHG (Host-Guided specification) scheme, sLF (LSB-
First specification) scheme, sSB (Size-Based specification)
scheme, sQD (Queue-Depth-based specification) scheme,
sWB (Write-Buffer-based specification) scheme, and sUB
(Utilization-Based specification) scheme. We also evaluate
these schemes (and some combinations) and reveal that a
combination of sQD and sUB behaves the best on providing
high and stable write performance in PA-SSD.

For the second challenge, while the conventional TLC SSD
allows a single candidate page and a single active block
within a plane (i.e., no choice), PA-SSD provides more than
one candidate page and three active blockswithin each plane,
and uses a redesigned page allocation strategy to select suit-
able candidate pages forwrite sub-requests according to their
assigned page-types.

For the third challenge, PA-SSD employs a page-type
aware sub-request scheduling, namely PAS, in legacy Trans-
action Scheduling Unit (TSU), for further improving write
performance. Specifically, PAS strategically promotes sub-
requests allocated with LSB pages in the chip queue. The
insight behind this policy is that sub-requests with LSB can
be fast accessed, thus reducing the average waiting time of
the queue.

By integrating these techniques, PA-SSD outperforms
conventional SSD significantly. As shown in Fig. 1b (with
more details in Section 6), the proportion of user write
requests served with at least one MSB page in PA-SSD is
much lower than that of the conventional TLC SSD (Fig. 1a),
leading to lower write response time, as illustrated in Figs. 1c
and 1d.

In summary, in proposing and studying PA-SSD, we aim
to make the following contributions in this paper:

1) We analyze the drawbacks of type-blind page alloca-
tion strategy of the conventional TLC SSD that allo-
cates pages for the sub-requests of a user write
request regardless of page-types.

2) We present PA-SSD, a page-type aware TLC SSD
design that first determines a proper page-type for
serving a given user write request and then coordi-
nately allocates pages of the required type for all sub-
requests of the request. Seven schemes are designed
in PA-SSD to determine page-types for user write
requests, while the page allocation strategy in the
conventional TLC SSD is redesigned by appropriately
relaxing the program constraints within planes to
realize the coordinated, type-specified page alloca-
tion to sub-requests of anywrite request.

3) We propose Page-type Aware Sub-request (PAS)
scheduling policy in the TSU. It reorders write sub-
requests according to their assigned page-types,
ensuring LSB pages to be prioritized.

4) We simulate PA-SSD with SSDSim and evaluate its
performance in terms of write/read response times on
eight typical real-world workloads. Our experimental
results show that PA-SSD significantly improves both
the write and read performances of the conventional
TLC SSD without any sacrifice to storage capacity and
P/E cycle endurance. Especially, by using the combi-
nation of the sQD and sUB page-type specifying
schemes, PA-SSD improves the write and read per-
formances of the conventional TLC SSD by 2.6x and
1.5x on average, respectively.

The remainder of this paper is organized as follows. In
Section 2, we present background of TLC SSD. Section 3
motivates the PA-SSD proposal with insightful observations
and analysis. The detail design of PA-SSD is presented in
Section 4. In Sections 5 and 6, we present our experimental
setups and results for demonstrating the efficacy of PA-
SSD. Section 7 describes related works on improving write
performance of TLC SSD. Finally, we conclude this paper in
Section 8.

2 BACKGROUND

2.1 SSD Architecture

As shown in Fig. 2, an SSD is composed of three primary
components, i.e., host interface, SSD controller, and flash
chip array [8]. The host interface supports communication
between the host system and SSD controller, and maintains
the device-level I/O queue [9]. The SSD controller, usually
containing an embedded processor and DRAM, is responsi-
ble for handling I/O requests and managing SSD resources
by executing a set of flash translation layer (FTL) functions,

Fig. 1. Simulation results on tDAP workload. The ”SLC Mode” corre-
sponds to TLC SSD that all flashes are used in SLC mode.

ZHANG ET AL.: IMPROVING OVERALL PERFORMANCE OF TLC SSD BY EXPLOITING DISSIMILARITY OF FLASH PAGES 333

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

e.g., address translation, garbage collection, and wear level-
ing. The SSD controller also communicates with the flash
chip array through the flash chip controllers. The flash chip
array composed of multiple flash chips is connected to the
flash controller via channels and provides the physical stor-
age capacity. Flash chips are composed of dies, each of
which has its own address register and command register.
Dies are further divided into planes. Within a plane, pages,
the atomic units for read and program (write) operations,
are grouped into blocks to form the atomic units for the
erase operation. Importantly, page read and program opera-
tions can be striped across channels, chips, dies, and planes
for parallel processing [8], [9], [10].

2.2 Write Request Execution Workflow

In Fig. 3, we illustrate the write request execution workflow
within a conventional SSD. Upon the arrival of a write
request from the host at the host interface of SSD, the latter
first queues the request in the device-level I/O queue (I/O
queue for short) and then partitions the request into page-
sized sub-requests,1 each with a specific LPA (Logical Page
Address) [7]. These sub-requests are then sent to the SSD con-
troller for address translation, which is an important function
of FTL that translates the LPA to PPA (Physical Page
Address). The address translation for write sub-requests is
also referred to as Page Allocation. The page allocation selects
free pages for sub-requests via two primitives, the PLAlloc
primitive that allocates channel ID, chip ID, die ID, and plane
ID, and the BLAlloc primitive that allocates block ID and page
ID [8]. Finally, a PPA is determined by the combination of
these six IDs, and the mapping pair (LPA, PPA) is stored into
the page-level mapping table for future read operations.
With page allocation accomplished, the sub-requests are
inserted into corresponding chips’ queue, where not only
write sub-requests (program operation) but also read sub-
requests (read operation) and erase operations are scheduled
by the Transaction Scheduling Unit (TSU) for purpose of
improving parallelism [9], [11], reducing response time [12],
[13], providing fairness [14], etc. Finally, the sub-requests are
delivered to flash controllers where they are striped across
channels/chips/dies/planes for parallel programming [8].
When handling a program operation, the flash controller
transfers the command and address information to the target

die and the user data to the target plane. The user data is
cached in the data register of the target plane before being
programmed to the target page. In this study, a page-sized
sub-request is considered finished when its corresponding
user data is physically programmed,2 and a user write
request is considered completed when all of its sub-requests
are finished.

2.3 Page-Types and their Diverse
Program Latencies

TLC flash stores three bits with different program latencies,
namely, LSB (Least Significant Bit), CSB (Central Significant
Bit), and MSB (Most Significant Bit) within each flash cell.
The bits of the same type (program latency) in cells of a word-
line form a page. Therefore, pages in TLC flash are of three
different types of LSB, CSB, and MSB. Conventionally, the
three differently typed pages within a wordline are pro-
grammed separately page-by-page [1], [15], and pages can be
read before the wordline is fully-programmed (i.e., all three
pages are programmed). Many existing studies revealed that
the three types of pages have significantly diverse program
latencies [1], [3]. Typically, for the 25 nmTLC flash, LSB, CSB,
andMSB pages exhibit 500 ms, 2000 ms, and 5500 ms program
latencies, respectively [3]. In addition, programming a(n)
CSB(MSB) page requires that the associated LSB(LSB and
CSB) page(s) be accessed first, resulting in even longer pro-
gram latency. To mitigate the performance impact of this
requirement of physically reading extra pages when pro-
gramming CSB and MSB pages, the LSB and CSB pages
within an un-fully-programmed wordline are usually buff-
ered in DRAM in conventional TLC SSD.

2.4 Block Management and Page Management

Within a plane, blocks are partitioned into two pools, i.e., free
pool and used pool, and one active block, as depicted in Fig. 4.
Specifically, erased blocks (all pages within are free) are
belong to the free pool, while fully-programmed blocks (all
pages within are programmed) are belong to the used pool. In
addition, each plane maintains an active block, which usually
contains programmedpages aswell as free pages, for serving
subsequent page-sized write sub-requests. When all the
pages within the active block are programmed, the block is
deactivated and inserted into the used pool, while another
block is obtained from the free pool and activated as a new
active block. On the other hand, once the free pool size is
beneath a GC (garbage collection) threshold, GC operation is
triggered and it reclaims blocks from used pool to free pool.

Within the active block, pages should be programmed
sequentially according to their IDs [16], as illustrated by the
example depicted in Fig. 5, for the purpose of reducing cell-
to-cell program interference to fully-programmedwordlines.

According to this block management within plane and
page management within block, during page allocation,
after the target plane is determined by the PLAlloc primitive,
there is actually only one candidate page — the only next
free page of the active block can be allocated by the BLAlloc

Fig. 2. Architecture of SSD.

1. A sub-request referred in this article also is called a transaction in
some other literatures. We use the term sub-request because it indicates
the set membership, i.e., a request contains a set of sub-requests, more
clearly.

2. In some studies, a sub-request is regarded finished when its corre-
sponding data is cached in the data register of the target plane, result-
ing in lower response time. However, the data actually is not
permanently stored until it is programmed.

334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

primitive as the target page. This design of a lone candidate
page per plane can significantly simplify the management
of blocks and pages, however, at the expense of reduced
flexibility of allocating a desired type of page.

2.5 TSU Scheduling

Transaction Scheduling Unit, TSU for short, reorders sub-
requests in chips’ queue, including write, read, and erase
operations. There are two basic TSU policies as the first-come-
first-serve (FCFS) and read-priority (RP) [14]. For FCFS, read
and write sub-requests have the same priority while erase
operations usually have the lowest priority except that a GC
(garbage collection) hard threshold is exceeded, where the
priority of erase operations are shortly promoted to the high-
est. Different from FCFS, the RP policy gives read sub-
requests higher priority than write sub-requests for ensuring
low read response time. Other than these two basic policies,
researchers also presented several advanced policies for
reducing response time (e.g., Slacker [13]) and providing fair-
ness between different I/O streams (e.g., FLIN [14]).

3 MOTIVATION

In TLC SSD, a user write request greater than a page in size
is first partitioned into multiple page-sized sub-requests
that are then allocated pages by the page allocation strategy
and striped across channels/chips/dies/planes for parallel
processing [8]. A user write request completes when all of
its constituent sub-requests are finished. Thus, the response
time of a user write request actually is determined by its
slowest sub-request. As the program latency of MSB page is
far longer than those of LSB page and CSB page in TLC
flash, the response time of a user write request with at least
one MSB page involved will be much longer than one

without, particularly one with all its sub-requests allocated
LSB pages. We categorize user write requests in TLC SSD
into three distinctive groups, i.e., fast writes (all sub-requests
are served by LSB page), medium writes (sub-requests are
served by at least one CSB page but no MSB pages), and
slow writes (at least one sub-request is served by MSB page),
in order of increasing process time. Unfortunately, a large
proportion of user write requests actually are slow writes in
conventional TLC SSD, as illustrated in Fig. 1a, leading to
considerable write inefficiency of TLC SSD.

The main reason for the MSB write dominance is that, in
conventional SSD design, the page allocation strategy allo-
cates pages for the sub-requests of a user write request inde-
pendently of the page-type. In other words, each sub-request
has a 1/3 probability of being served by an MSB page.
Accordingly, for a user write request with n sub-requests
involved, the probability of at least one of its sub-requests
being served by anMSB page (slow write), denoted as Pslow, is

equal to ð1� ð23Þ
nÞ. On the other side, the probability of all

sub-requests being served by LSB pages (fast write), denoted
as Pfast, is equal to ð13Þ

n
. In addition to these two cases, the

sub-requests alsomay be served by at least one CSB page but
noMSB pages (mediumwrite), and the probability of this hap-
pening, denoted as Pmedium, is equal to ðð23Þ

n � ð13Þ
nÞ. For user

write requests with only one sub-request involved (n ¼ 1),
the three probabilities are the same and equal to 1/3. How-
ever, Pslow increases with n very quickly while the other two
probabilities decrease with n, as illustrated in Fig. 6. For
instance, when n ¼ 4, Pslow ¼ 80%, meaning that most of the
user write requests are slow writes. On the contrary, at n ¼ 4,
Pfast and Pmedium decrease to 1 and 19 percent, respectively,
diminishing the desirable impacts of fast/mediumwrites.

This lopsided negative performance impact of MSB write
dominance in conventional TLC SSD, where the undesirable
slow write increases rapidly while the desirable fast write
decreases rapidly with the request size n (the number of

Fig. 3. Write request execution workflow in a conventional SSD. The FTL, TSU, and FCC are short for Flash Translation Layer, Transaction Schedul-
ing Unit, and Flash Chip Controller, respectively.

Fig. 5. Program order of pages within a TLC block [3], [16].

Fig. 4. Block management in conventional SSD. Blocks are partitioned
into two pools as free pool and used pool. One active block is provided
for serving write sub-requests.

ZHANG ET AL.: IMPROVING OVERALL PERFORMANCE OF TLC SSD BY EXPLOITING DISSIMILARITY OF FLASH PAGES 335

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

sub-requests involved), motivates us to design a new page
allocation strategy that minimizes slow writes while maxi-
mizes fast writes. In other words, the new strategy should
keep Pslow low and Pfast high as n increases. To this end, we
suggest a coordinative page allocation scheme that allocates
the same type of pages for the sub-requests of a given user write
request. Furthermore, we propose to proactively and judi-
ciously specify the type of page used to serve each user
write request. In so doing, we hope to be able to control the
Pslow, Pmedium, and Pfast values to improve the write perfor-
mance of TLC SSD. Therefore, we present our novel page-
type aware TLC SSD design, PA-SSD, to be elaborated next.

4 PAGE-TYPE AWARE TLC SSD

4.1 Overview

The proposed PA-SSD is a Page-typeAware TLC SSD design
that improves the overall performance by fully exploiting
the dissimilarity of flash pages throughout the write requests
execution workflow. Especially, PA-SSD attempts to use the
same type of pages for serving sub-requests of any single
user write request. To this end, PA-SSD should first deter-
mine which type of page is used for serving a write request,
then allocates pages for corresponding sub-requests accord-
ing to the determined page-type, and finally reorder the sub-
requests in the chips queue.

In Fig. 7, we illustrate the write request execution work-
flow in PA-SSD. There are three major differences between
the write request execution workflow in PA-SSD design
and that in conventional SSD design (illustrated in Fig. 3).
First, the host interface in PA-SSD proactively assigns a

type of page for each user write request according to spe-
cific page-type specifying schemes, detailed in Section 4.2. Sec-
ond, PA-SSD allocates block IDs and page IDs for the page-
sized sub-requests according to their assigned page-types
with a redesigned pa-BLAlloc primitive, detailed in Section
4.3. These two modifications together make page-type aware
page allocation possible. Third, a page-type aware sub-request
scheduling policy is designed and introduced into the trans-
action scheduling unit of PA-SSD for further shortening the
write response time, elaborated in Section 4.4.

4.2 Page-Type Specifying Schemes

The host interface in PA-SSD is responsible for determining
and assigning the page-type for each user write request.
Note that assigning page-type for a user write request actu-
ally only entails adding some attributes to its sub-requests,
informing the page allocation strategy which type of pages
should be allocated to these sub-requests. In the next sub-
section, we detail the type-specified page allocation strategy
in PA-SSD that is responsible for actually allocating pages
for sub-requests according to their assigned page-types.

A user write request assigned with the LSB(CSB/MSB)
page is expected to be a fast(medium/slow) write. Thus, proac-
tively determining the page-types for user write requests
has the potential to adjust the ratios of fast/medium/slow
writes to optimize the write performance of TLC SSD. To
accommodate various performance requirements, we pro-
pose the following seven schemes in PA-SSD to determine
the page-types for user write requests.

Uniformly Specification (sU). With this scheme, PA-SSD
assigns the three page-types, i.e., LSB, CSB, and MSB, for
user write requests randomly or in a round-robin style.
Therefore, a write request will be assigned any of these three
page-types equally likely with a probability of 1/3, leading
to a uniform distribution of fast/medium/slow writes.

Host-Guided Specification (sHG). For a write command in
the NVMe policy, the host can specify the requirement of
response time by setting the two-bits long attribute ’Access
Latency’ [17]. Accordingly, with the sHG scheme, PA-SSD
assigns LSB, CSB, and MSB pages for write requests requir-
ing short, medium, and long response times, respectively.
When the ’Access Latency’ of a write request is omitted by
the host, PA-SSD will assign its page-type according to other

Fig. 6. The probabilities of fast write (Pfast), medium write (Pmedium), and
slow write (Pslow) as a function of n (the number of sub-requests).

Fig. 7. Write request execution workflow in PA-SSD, which has three major differences compared with that in conventional SSD. First, for each user
write request, the host interface of PA-SSD proactively assigns a page-type that is inherited by all of its constituent page-sized sub-requests. Second,
the BLAlloc primitive is replaced by pa-BLAlloc that allocates pages for sub-requests according to their assigned page-types. Third, a novel schedul-
ing policy is introduced into the TSU of PA-SSD to reorder sub-requests according to their allocated page-types.

336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

schemes, such as the sU scheme. By employing sHG, PA-SSD
effectively provides an interface for the host to leverage the
diverse program latencies within TLC flash, improving the
QoS (quality of service) of different applications.

LSB-First Specification (sLF). With sLF, PA-SSD always
assigns the LSB pages to any user write requests. The
insight behind this scheme is to use the LSB pages to maxi-
mally and greedily improve the write performance [3], [18].
However, when this scheme is employed, LSB pages tend to
be used up very quickly, leaving only CSB pages and MSB
pages to serve subsequent write requests (with more details
in Section 6.3). Thus, sLF is suggested as a turbo mode to
improve write performance during write-intensive bursts.

Size-Based Specification (sSB). In most cases, small-sized
user write requests are expected to have shorter response
timeswhile large-sized requests are less sensitive to response
time [19]. Accordingly, with the sSB scheme, PA-SSD assigns
LSB pages for small-sized requests (e.g., requests smaller
than 8 KB). On the other hand, for large-sized requests (e.g.,
requests larger than 8 KB), PA-SSD determines their page-
type by other schemes, e.g., sU.

Queue-Depth-based Specification (sQD). The I/O intensity of
a SSD can be sensed by the length of the device-level I/O
queue, which is maintained in the host interface. During
busy times when the queue is long, the response times of
requests (both read and write requests) are dominated by
their waiting time. By shortening the program latency of each
user write request, the waiting time can be greatly reduced,
resulting in high write and read performance. Accordingly,
PA-SSD with the sQD scheme assigns LSB pages for all write
requests when the device-level I/O queue is longer than a
preset threshold, e.g., 10 requests. On the other hand, when
the queue is shorter than the threshold, another scheme is
employed for assigning page-types, e.g., sU and sUB
schemes. The sQD scheme is regarded as a dynamic-sLF
scheme that activates and deactivates sLF dynamically
according to the I/O queue depth. The queue depth thresh-
old of sQD determines how aggressive of sQD to take use of
LSB pages. In fact, sQDwith the queue depth threshold of 0 is
reduced to sLF.

Write-Buffer-based Specification (sWB). In [18], Park et al.
presented the idea of proactively allocating LSB pages for
sub-requests according to the utilization of write buffer
(DRAM) within MLC SSD. It allocates LSB pages for sub-
requests when the write buffer is full. This idea can also be
applied to determining page-types for user write requests
in PA-SSD, resulting in the sWB scheme that assigns the
LSB pages for user write requests when the write buffer is
full. Compared with the sQD scheme that senses both write
and read intensity from the device-level I/O queue depth,
the sWB scheme can only sense write intensity, missing the
opportunity to improve read performance by speeding up
write requests during read intensive periods. In addition,
the write buffer may be filled by latency-insensitive large-
sized writes, leading to a waste of LSB pages when sWB is
employed. In fact, when the write buffer is very small, the
sWB scheme actually becomes the sLF scheme.

Utilization-Based Specification (sUB). The extremely imbal-
anced use of the three types of pages can result in inefficient
garbage collection because some blocks may be reclaimed
before all pages are programmed (e.g., all MSB pages are not

programmed). By assigning page-types for requests accord-
ing to the respective free capacities of the three page-types,
sUB-based PA-SSD can effectively balance their utilizations.
With sUB, PA-SSD determines page-types for write requests
according to three probabilitiesPL,PC , andPM , namely, those
of assigning a write request with LSB, CSB, and MSB page-
types respectively. To accommodate the utilization of the
three page-types, the sUB scheme sets PL : PC : PM ¼ #LSB :
#CSB : #MSB, in which #LSB, #CSB, and #MSB are the
numbers of free LSB, CSB, and MSB pages within the SSD
during the runtime, respectively. The sUB scheme is always
used as a complement to other non-utilization-based schemes,
e.g., sHG, sSB, and sQD.

One of the seven schemes or their combinations can be
deployed for specifying page-types. They also can be simply
integrated into a practical SSD. In runtime, a specific scheme
can be dynamically chosen according to current application
scenes. For instance, multi-queue SSD [14], where I/O
streams are distinguishable because multiple host I/O
queues are exposed to the SSDdirectly, can performdifferent
schemes for different streams. Besides, the write operations
generated by garbage collection usually are specified by sUB
scheme for purpose of balancing the utilization of different
types of pages.

4.3 Type-Specified Page Allocation

In PA-SSD, the user write requests are assigned appropriate
page-types by the host interface according to the page-type
specifying schemes described above. The assigned page-
types to user write requests are inherited by their page-sized
sub-requests in the subsequent page allocation process. This
is in contrast to the type-blind page allocation strategy in the
conventional TLC SSD.Moreover, the design of a lone candi-
date page per plane in conventional TLC SSD (with more
details in Section 2) greatly limits the flexibility of allocating
a desired type of page for a sub-request. Accordingly, in this
subsection, we first discuss how PA-SSD provides multiple
candidate pageswith different page-typeswithin each plane,
thenwe present the redesigned BLAlloc primitive in PA-SSD,
namely pa-BLAlloc, to realize type-specified page allocation.

4.3.1 Providing Multiple Candidate Pages

within a Plane

In the conventional SSD design, there is only one active block
in each plane, and there is only one candidate page in the
active block because of the strict program order within a
block, which leads to the design of a lone candidate page per
plane. While this design significantly simplifies the manage-
ment of flash resources, it severely limits the ability to allocate
type-specifiedpages. In fact, after thePLAlloc primitive deter-
mines the channel ID, chip ID, die ID, and plane ID used for
serving a write sub-request, there is no other choice but the
one single candidate page in the candidate plane that can be
allocated for serving the sub-request. To address this prob-
lem, one possible solution is to modify the PLAlloc primitive
to first select a candidate plane that has the assigned type of
page as candidate page to meet the page-type requirement.
This solution, however, means a fix path from channel all the
way to plane, which severely limits the selection of channel,
chip, die, and plane for the purpose of exploiting hardware

ZHANG ET AL.: IMPROVING OVERALL PERFORMANCE OF TLC SSD BY EXPLOITING DISSIMILARITY OF FLASH PAGES 337

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

parallelism [8], [10], significantly confining performance
potentials. Thus, we prefer providing more candidate pages
within each and every plane to searching a suitable plane to
match the page-type requirement of sub-requests in design-
ing PA-SSD, by appropriately relaxing program constraints
within blocks and providing multiple active blocks within each
plane.

�1 Relaxing Program Constraints within Blocks. The strict
program order within blocks in the conventional TLC SSD
design minimizes the inter-page (inter-cell) program inter-
ference by guaranteeing that a fully-programmed wordline
is interfered by only one adjacent page programming [16].
For instance, in Fig. 5, before programming page 11 in
Wordline2, all pages adjacent except page 14 have been pro-
grammed, thus, the fully-programmed Wordline2 only suf-
fers from adjacent page programming by page 14. Another
benefit of the strict program order is that LSB page is
guaranteed to be programmed the first while MSB page is
guaranteed to be programmed the last within a wordline.
However, the strict program order actually is not essential
for providing these two guarantees or benefits [18], [20].

For purpose of providing multiple candidate pages
within a plane, PA-SSD manages pages within block with
the following three program constrains instead of the strict
program order used in conventional SSD:

� LSB, CSB, and MSB pages are programmed in order
of their respective IDs, respectively;

� A CSB page can be programmed only when LSB
pages in adjacent wordlines have been programmed;

� An MSB page can be programmed only when CSB
pages in adjacent wordlines have been programmed.

By using these program constraints to manage pages,
PA-SSD provides more than one candidate page with differ-
ent types within an active block in the vast majority of cases,
as illustrated by the examples shown in Fig. 8.

However, there are two main concerns with employing
this page management in TLC blocks, namely, the cell-to-cell

program interference and the memory space required for
buffering un-fully-programmedwordlines.

For the first concern, the three program constrains actually
provide guarantee that fully-programmed wordlines are
interfered by no more than one adjacent page programming,
which is the core of strict program order to minimize cell-to-
cell program interference, thus, they theoretically provide the
same benefit as strict program order. In addition, similar
studies presented in [20] and [18] have experimentally dem-
onstrated that using relaxed program constraints to approxi-
mate the two guarantees within MLC blocks does not
significantly increase program interference errors. Because of
the very similar characteristics of cell-to-cell program inter-
ference in TLC flash to that in MLC flash [16], we propose to
use such similar relaxed program constraints in TLC flash
with the justifiable stipulation that program interference
errors are negligible.

For the second concern, as discussed in Section 2, conven-
tional TLC SSDusually buffers the LSB andCSB pageswithin
un-fully-programmed wordlines to shorten the latency of
programming of CSB and MSB pages. In the PA-SSD design,
as pages within a block are programmed with relaxed
program constraints, multiple wordlines are un-fully-pro-
grammed during the runtime, which makes it costlier, if not
impractical, to use a very large buffer for these un-fully-pro-
grammed wordlines. Therefore, in PA-SSD, the un-fully-pro-
grammed wordlines are not buffered, but at the possible
expense of increased program latencies for CSB and MSB
pages. Fortunately, our tests show that the negative impact is
negligible primarily because of the significantly reduced slow
writes in PA-SSD.

�2 Providing Multiple Active Blocks within Planes.Generally,
in the conventional TLC SSD design, each plane maintains
only one active block for serving subsequent write sub-
requests. Only when the free pages within the active block
are exhausted, the block is deactivated and another block
with free pages is activated as the new active block. This
design of one active block per plane is simple and effective
but not optimal when the strict program order within blocks
is replaced by our relaxed program constraints. For instance,
when the active block runs out of the fast pages, it can serve
subsequent sub-requests only with the slow pages, as illus-
trated by the examples depicted in both Figs. 8e and 8f.

To further increase the flexibility of allocating a desired
type of page within a candidate plane, the PA-SSD manages
blocks within plane with a fine-grained manner that blocks
are partitioned into four pools and three active blocks, as
depicted in Fig. 9. Specifically, the four pools are LSB can-
didates’ pool, CSB candidates’ pool, MSB candidates’ pool, and
used pool, while the three active blocks are active LSB block,
active CSB block, and active MSB block. The LSB candidates’
pool contains all erased blocks, blocks with all and only LSB
pages programmed are belonged to the CSB candidates’ pool,
blocks with all and only MSB pages free are belonged to the
MSB candidates’ pool, and the used pool contains blocks with
all pages programmed. The three active blocks are obtained
from their corresponding candidate pools and are used for
serving writes with corresponding page-type. The active
LSB block is deactivated and inserted into CSB candidates’
pool when its LSB pages are used up. Likewise, the active
CSB block and the active MSB block are finally inserted to

Fig. 8. Candidate pages within an active block in PA-SSD. In (a), only the
next LSB page is a candidate page; in (b), both the next LSB page and
CSB page are candidate pages; in (c), both the next LSB page and MSB
page are candidate pages; in (d), all of the next LSB page, CSB page,
and MSB page are candidate pages; in (e), the LSB pages are used up,
leaving only CSB and MSB pages for serving subsequent sub-requests;
in (f), both the LSB and CSB pages are used up, leaving only the slowest
MSB pages for serving subsequent sub-requests.

338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

MSB candidates’ pool and used pool, respectively. GC opera-
tion reclaims fully programmed blocks from the used pool to
the LSB candidates’ pool. The CSB candidates’ pool may be
empty and thus it cannot offer new active CSB block in some
situations, then the active LSB block also is used as active CSB
block for serving write sub-requests allocated with both LSB
page and CSB page. Likewise, the active CSB block also may
be used as active MSB block simultaneously.

4.3.2 pa-BLAlloc Primitive

By utilizing the new page management and block manage-
ment described in Section 4.3.1, PA-SSD is able to provide
up to three candidate pages with different types within a
candidate plane, largely increasing the flexibility to allocate
pages for sub-requests with respect to their assigned page-
types. However, the original BLAlloc primitive could not
exploit this benefit when allocating pages within plane.

In conventional SSD design, the BLAlloc primitive of the
page allocation strategy selects the lone active block within
the candidate plane as the target block, and selects the lone
candidate page within the block mandated by the strict pro-
gram order as the target page. In PA-SSD design, in contrast,
there are up to three active blocks within a plane and up to
three candidate pages within an active block. This provision
of PA-SSD makes it possible for its redesigned primitive to
select candidate pages for sub-requests according to their
assigned page-types. To this end, PA-SSD proposes the pa-
BLAlloc primitive that repurposes the conventional BLAlloc

primitive to allocate block IDs and page IDs for write sub-
requests. Specifically, after the channel ID, chip ID, die ID,
and plane ID are determined by the PLAlloc primitive, a can-
didate plane for serving the write sub-request is determined.
Then, pa-BLAlloc parses the sub-request to obtain the assigned
page-type, and selects a corresponding active block as the tar-
get block. Finally, it selects the specified type of candidate
pages in the target block and returns their IDs.

Though the design of multiple candidate pages per plane
in PA-SSD makes it more likely to allocate a specified-type
of page for serving a write sub-request, there is no guaran-
tee that the page-type requirement will be met. For instance,
if the active MSB block is in the state depicted in Fig. 8b, and
a sub-request with the specified page-type of MSB is sup-
posed to be served by this plane, then the requirement can-
not be met because no MSB candidate page is available.
Although our experimental results reveal that over 98 per-
cent write sub-requests are successfully allocated with their
specified-type of pages in PA-SSD (detailed in Section 6.1),
pa-BLAlloc also must be able to handle the rare exceptions
where a required type of page is not available.

When the required page-type of a sub-request is not
available, pa-BLAlloc allocates another type of candidate
page within the plane for serving the sub-request based on
the exception handling policy described in Fig. 10. That is,
pa-BLAlloc allocates the first alternate type of page if it is
available, otherwise, it allocates the last alternate type of
page. Especially, MSB page is always the last alternate for
the other two page-types due to its long program latency.

4.4 Page-Type Aware Sub-Request Scheduling

Once a type-specified page has been allocated, the write
sub-request is inserted into its corresponding chip’s queue,
to wait for actual execution by the flash chip controller. The
sub-requests in queue, usually including write, read, and
erase operations, can be further reordered by TSU for spe-
cific purposes, as described in Section 2, such as FCFS and
RP, and other advanced policies. Nevertheless, these poli-
cies actually do not take page-types into account. In the fol-
lowing, we first explain the benefit of scheduling write sub-
requests according to page-types, and then detail the corre-
sponding Page-type Aware Sub-request scheduling policy
in the TSU of PA-SSD.

4.4.1 Why Scheduling Write Sub-Requests

According to Page-Type?

Fig. 11 demonstrates the impact of execution order on write
response time under three typical cases, each of which is a
different execution order of three write sub-requests (or
program operations equivalently). In the first case, an MSB
programming is followed by a CSB programming and then

Fig. 10. Exception handling. When a specified type of page is not avail-
able in the candidate plane, pa-BLAlloc allocates the first alternate type
of page if it is available, otherwise, it allocates the last alternate type of
page. In the figure, A!Bmarked with First/Last alternate means A is the
first/last alternate of B.

Fig. 11. The execution order of write sub-requests influencing the aver-
age write latency significantly. The average write response time of the
three cases are normalized to that of Case 1.

Fig. 9. Block management in PA-SSD. Blocks are partitioned into four
pools, namely LSB candidates’ pool, CSB candidates’ pool, MSB can-
didates’ pool, and used pool. Three active blocks, i.e., active LSB/CSB/
MSB block, are provided simultaneously for serving write sub-requests.

ZHANG ET AL.: IMPROVING OVERALL PERFORMANCE OF TLC SSD BY EXPLOITING DISSIMILARITY OF FLASH PAGES 339

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

an LSB programming. Assuming that an LSB programming,
a CSB programming, and an MSB programming consume
500 ms, 2000 ms, and 5500 ms, respectively, then, the average
response time of three sub-requests in this case is 7000ms. For
the second case, the CSB programming is executed first, fol-
lowed by an MSB programming and then an LSB program-
ming. For this case, the average response time is 5833 ms,
which is 16.7 percent shorter than that of the first case. And
for the third case, the LSB programming is executed first,
followed by a CSB programming and then an MSB program-
ming, resulting in 3667 ms response time on average, which
is 47.6 percent shorter than that of the first case and is
37.1 percent shorter than that of the second case. In short, these
three typical cases reveal the fact that an execution order of
write sub-requests has great impact on thewrite performance.

We further introduce a mathematical model to quantita-
tively analyze the impact of write sub-requests’ execution
order on average write response time.

Considering a queue composed of n write sub-requests,
each of which has li (for i in ½1; n�) program latency. As the
execution of sub-requests in the back of the queue should
wait for those in the front of the queue, the response time of

the kth sub-request is therefore calculated as
Pk

i¼1 li. Accord-
ingly, the average response time of the n sub-requests in the
queue, denoted asAvg Res Time, is calculated as:

Avg Res Time ¼ 1

n

Xn
k¼1

Xk
i¼1

li

 !
¼ 1

n

Xn
i¼1

½ðn� iþ 1Þ � li�:

(1)

From the Equation (1), the program latency of a sub-request
with smaller subscript i (whichmeans that the sub-request is
closer to the queue head) has a higher weight, i.e., ðn� iþ
1Þ=n, on impacting the average response time. This is
because a sub-request close to the queue head has much
greater impact on delaying subsequent sub-requests than
those close to the queue tail. According to this analysis, mov-
ing the sub-requests with low write latency (i.e., LSB pages)
to the queue head while moving those with high write
latency (i.e., MSB pages) to the queue tail helps to reduce the
average response time. This actually inspires designing the
scheduling policy in TSU of PA-SSD.

4.4.2 TSU Scheduling Policy in PA-SSD

As described in the previous subsection, scheduling write
sub-requests according to their page-types can reduce the
average write response time. However, a conventional
SSD has a strict programing order, as described in Section 2,
which actually limits scheduling space. Take the program
order depicted in Fig. 5 as an example, the program of page 5
(MSB page) must be programmed before page 6 (LSB page),

thus, a sub-request allocated with page 6 cannot be executed
before a sub-request allocated with page 5. Besides, an SSD
without our proposed page-specifying mechanism cannot
benefit from this scheduling because a write request com-
prising different page-type sub-requests actually cannot be
accelerated as a whole.

PA-SSD relaxes the program constraints within blocks, as
described in Section 4.3.1. Therefore, LSB programming
always can be scheduled to execute ahead of CSB and MSB
programming. Likewise, CSB programming always can be
scheduled to execute before MSB programming. Besides,
PA-SSD allocates the same type of pages for sub-requests of
a write request, can eliminate the performance difference of
these sub-requests. These two respects make a page-type
aware sub-request scheduling effective.

The scheduling policy introduced in PA-SSD is named
PAS, as be illustrated in Fig. 12. Specifically, a sub-request
allocated with LSB page has the highest priority in three
pages; a sub-request allocated with CSB page has higher pri-
ority than those allocated with MSB pages. To avoid sub-
requests with lower priority being starved, PAS defines two
thresholds for MSB and CSB pages, respectively. The thresh-
olds are the numbers of preemptive pages. When these two
thresholds are too low, few sub-requests can be scheduled
by PAS to reduce the average write response time. On the
other hand,when these two thresholds are too high, the aver-
age write response time can be reduced but the write
response time of sub-requests allocated with CSB/MSB
pages can be increased.

PAS is only responsible for scheduling write sub-
requests. That is, it does not schedule read sub-requests and
erase operations within a chip’s queue. In some SSDs, write,
read, and erase operations have their own independent
queues. In these situations, PAS is merely applied to write
sub-request queues without affecting other queues. In other
SSDs that write, read, and erase operations share the
same queues, the PAS policy can only exchange write sub-
requests and work with other policies, such as FCFS and RP
for scheduling read sub-requests and erase operations. For
instance, when integrated with RP, read sub-requests are
scheduled to the front end while erase operations are sched-
uled to the back end of the queue, then the PAS policy han-
dles the write sub-requests in the queue.

4.5 Implementation Costs

Compared with baseline SSD design that allocates pages
without considering page-types, PA-SSD introduces extra
computation and memory consumption for allocating pages
judiciously according to their page-types and tracking free
pages within blocks. As PA-SSD differs from conventional
SSD in the design of host interface, FTL, and TSU, in the fol-
lowing, we detail the costs of PA-SSD from the perspectives
of these three components, respectively.

For the host interface, PA-SSD specifies a page-type for
each sub-request. To this end, PA-SSD first determines a
page-type according to a deployed page-type specifying
scheme, e.g., sQD, and then inserts a tag to a sub-request
for indicating the determined page-type. As elaborated in
Section 4.2, our proposed page-type specifying schemes
determine page-types are with straightforward logic, and
their computational complexities are OðnÞ (n represents the

Fig. 12. TSU scheduling policy in PA-SSD. The write sub-requests allo-
cated with LSB pages are moved to the head of the queue while those
allocated with MSB pages are moved to the tail of the queue.

340 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

number of user write requests). On the other hand, the tag for
indicating a page-type needs only two bits, which is negligi-
ble compared with 8 KBytes DRAM for caching a user write
sub-request.

For the FTL, PA-SSD utilizes fine-grained block manage-
ment and page management that result in extra memory
usage. Specifically, PA-SSD records the most recently pro-
grammed LSB page, CSB page, and MSB page IDs (each ID
with 2B) for each block. Considering a 288 GB TLC SSD with
structure parameters listed in Table 1, it needs extra 576 KB
(=8Channels * 2Chips/Channel * 16Planes/Chip * 384Blocks/
Plane * 6 Bytes/Block).

For the TSU, PA-SSD utilizes PAS for scheduling write
sub-requests, it reorders write sub-requests according to
their page-types. Actually, PAS has the same computational
complexity as RP (read-priority) that reorders sub-requests
according to Read/Write type.

In summary, the computational andmemory cost of imple-
menting PA-SSD are acceptable comparing with its benefits
on improvingwrite/read performance, detailed in Section 6.

5 EXPERIMENTAL SETUPS

5.1 Simulator

We implement PA-SSD based on SSDSim, which is a popu-
lar simulator whose accuracy has been validated against a
real hardware platform [10]. To accommodate our require-
ment for evaluating the performance of PA-SSD, we have
made the following major modifications to SSDSim:

� We modified the write latency calculation method to
support the diverse program latencies in TLC flash.

� We introduced page-type specifying schemes to
assign page-types for user write requests.

� We modified the page allocation strategy to support
type-specified page allocation.

� We realized the page-type aware sub-request sched-
uling policy to reorder sub-requests in chips’ queues.

� We introduced a multi-run mode for replaying the
same trace multiple times to observe long-term
performance.

In our experiments, we simulated a 288 GB TLC SSD
with 8 channels. In Table 1, we list the configuration details
of the simulated SSD. In PA-SSD, the program latencies of
CSB and MSB pages are lengthened by the amount of time
taken to read one and two pages respectively, as the cost of
not using un-fully-programmed wordline buffer. Besides,
to reflect the impact of garbage collections, before replaying
traces, the simulated SSD is aged to that with 70 percent of
its capacity being used (corresponds to the GC threshold as
30 percent).

5.2 Workloads

To fully evaluate the performance of PA-SSD, we use 8 real
application workloads in our experiments. The statistics of
these workloads are listed in Table 2. Among them, the tFin
is a light weight workload collected from on-line transaction
processing applications running at financial institutions [21],
while the other workloads spanning from lightweight
to heavyweight are collected from Microsoft Production
Server [22].

When a write request involves more than one page-sized
sub-request, we regard the request as a large write. Accord-
ingly, we record the ratio of large write of the workloads as
the number of large write requests divided by the total
number of write requests, as the last column of Table 2. The
average write size of the workloads are reported as the
number of pages in the sixth column of Table 2.

5.3 Evaluated Page-Type Specifying Schemes

In our experiments, we evaluated six page-type specifying
schemes, namely, sU, sLF, sSB+sU, sSB+sUB, sQD+sU, and
sQD+sUB. The details of these schemes are presented in
Section 4.2. Specifically, the notations sSB+sU, sSB+sUB,
sQD+sU, and sQD+sUB indicate paired-schemes, in which
the second scheme is used as a complement to the first
scheme. Take sQD+sUB as an example, PA-SSD assigns LSB
pages for write requests when the device-level I/O queue is
longer than a preset threshold; Otherwise, it assigns page-
types for write requests according to the sUB scheme. The
queue depth threshold of the sQD scheme is set to 10
requests in our experiments. For the sSB scheme, requests
with only one sub-request involved are assigned the LSB
pages while large writes are assigned by a complementary
scheme. The sHG scheme is not evaluated because the tested
traces do not offer response time requirement of the requests.
In addition, as no write buffer is utilized in our simulated
SSD, the sWB scheme is in fact reduced to the sLF scheme.

To validate the effectiveness of PAS scheduling policy in
PA-SSD, we also evaluated the performance of five specify-
ing schemes augmented with PAS, which are denoted as sU
+PAS, sSB+sU+PAS, sSB+sUB+PAS, sQD+sU+PAS, and
sQD+sUB+PAS, respectively. The two thresholds in PAS for
avoiding starvation of sub-requests with CSB and MSB
pages are set as 10 and 20, respectively.

The conventional SSD design that allocates pages and
schedules sub-requests without considering the page-types
is used as the baseline system for evaluating the performance

TABLE 1
Configurations of the Simulated SSD Device

TABLE 2
Characteristics of the Tested Workloads

Name Request
Count

Write
Req.
Ratio

Read
(GB)

Write
(GB)

Avg. W.
Size

(page)

Large
Write
Ratio

tFin 5,334,987 77% 2.7 14.6 0.5 6%
tRA 2,214,073 90% 2.3 15.6 1.0 12%
tDAP 1,086,729 44% 36.2 44.1 12.1 32%
tRBESS 5,250,996 82% 97.0 47.9 1.5 30%
tDTR 18,195,701 32% 252.1 176.1 3.9 53%
tExch 7,450,837 46% 37.4 41.3 1.6 17%
tMSFS 29,345,085 33% 200.9 102.3 1.4 10%
tBS 11,873,555 49% 149.8 166.2 3.7 67%

ZHANG ET AL.: IMPROVING OVERALL PERFORMANCE OF TLC SSD BY EXPLOITING DISSIMILARITY OF FLASH PAGES 341

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

of PA-SSD with various page-type specifying schemes and
PAS scheduling policy.

6 EXPERIMENTAL RESULTS

In this section, we report and discuss the experimental eval-
uation results of PA-SSD.

6.1 Average Response Time without PAS

In this subsection, we use the average response time, normal-
ized to that of the baseline, as a measure to evaluate the per-
formance of PA-SSD with various page-type specifying
schemes. The benefit of PAS is detailed in the next subsection
(Section 6.2), thus we just highlight the benefits of allocating
pages according to various specifying schemes in this sub-
section. The results on the average write and read response
times are shown in Figs. 13a and 13b, respectively. Thework-
loads on the x-axis are sorted in their relative intensity
increasing from light (left) to heavy (right).

The PA-SSD with sU scheme reduces the write response
time and read response time by 10 and 18 percent respec-
tively on average. This performance improvement is attrib-
uted to a balanced proportion of slow writes and fast writes
as PA-SSD with sU effectively increases the fast writes to
34 percent while decreases the slow writes to 33 percent, as
shown in Fig. 14.

By prioritizing the LSB pages in allocation, sLF achieves
significantly lower write and read response time than the
baseline, by 85 and 42 percent respectively on average. The
sLF scheme has the lowest write response time under most
workloads except for the two heaviest workloads, i.e.,
tMSFS and tBS, where the LSB pages are rapidly depleted.
The reasons behind this are elaborated in Section 6.3.

The sSB+sU scheme preferentially allocates LSB pages for
small writes. Thus, for workloads with high proportions of
small writes (low large write ratio), e.g., tFin and tMSFS, sSB
+sU can greatly reduce the write response time. On average,
sSB+sU reduces write response time and read response time
of the baseline by 54 and 36 percent, respectively. On the
other hand, the sSB+sUB scheme tends to allocate CSB and
MSB pages for large writes because the LSB pages have been

depleted for serving small writes, resulting in longer average
response time than the baseline in some cases.

The sQD+sU scheme dynamicallymonitors the I/O inten-
sity according to the length of I/O queue, and temporarily
reduces waiting time for all requests by assigning LSB pages
to all write requests during I/O bursts. For light workloads,
e.g., tFin and tRA, the sQD+sU scheme has an average write
response time similar to the sU scheme because the I/O
queue in these workloads seldom exceeds the threshold. But
for heavy workloads, especially for tMSFS and tBS, the sQD
+sU scheme achieves extremely lowwrite and read response
times. In short, sQD+sU reduces write response time and
read response time by 60 and 45 percent on average across
these eight tested workloads, leading to 2.5 times and 1.8
times write and read performance over the baseline design,
respectively. The sQD+sUB scheme achieves still lowerwrite
response time on the two heaviest workloads. Especially for
tMSFS, sQD+sUB reduceswrite response time of the baseline
by 99 percent. Noticeably, the write response time of sQD
+sUB is 6 percent higher than that of sQD+sU under light
workloads (i.e., from tFin to tExch), while its write response
time is 56 percent lower than that of sQD+sU under heavy
workloads (i.e., tMSFS and tBS). This performance difference
between sQD+sU and sQD+sUB is explained in Section 6.3.

Besides, our results also demonstrate that all tested page-
type specifying schemes and the baseline design experience
nearly same numbers of garbage collections with less than
1 percent differences.

The performance improvement of PA-SSD without PAS
over the baseline stems from its ability to effectively adjust
the proportions of fast writes, medium writes, and slow writes.
Fig. 14 illustrates the distribution of requests belonging to
these three groups of write requests under the tDAP work-
load for the baseline design and the main PA-SSD schemes.
In the baseline design, the proportion of slow writes is much
higher than those of the other two groups (explained in
Section 3). On the contrary, because of the type-specified
page allocation for sub-requests, PA-SSD consistently keeps
the proportion of slow writes the lowest among the three
groups (not higher than 1/3). By employing non-utilization-
based page-type specifying schemes, e.g., sLF, sSB, and sQD,
PA-SSD further improves write performance by promoting
the proportion of fast writes and reducing the proportion of
slowwrites. Besides, using sUB instead of sU as a complement
to sSB and sQD always leads to more uniform distributions
of the three groups.

We also demonstrate the efficiency of the type-specified
page allocation strategy in PA-SSD by evaluating the suc-
cess rate of PA-SSD on allocating specified-type of pages for
sub-requests with various page-type specifying schemes.
As shown in Fig. 15, the success rate is higher than 98 per-
cent for five of the six evaluated schemes. The low success

Fig. 13. Performance evaluation of PA-SSD. Workloads on the x-axis
are ordered in their relative intensity from light (left) to heavy (right).

Fig. 14. The distribution of fast/medium/slow writes under the tDAP
workload.

342 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

rate of PA-SSD with sLF is due to its greedy on using LSB
pages, detailed in the Section 6.3.

6.2 Benefit of PAS

We compare the average write response time of sU+PAS,
sSB+sU+PAS, sSB+sUB+PAS, sQD+sU+PAS, and sQD+sUB
+PAS to their respective counterparts as sU, sSB+sU, sSB
+sUB, sQD+sU, and sQD+sUB, and the results are listed in
Table 3.

By integrating PAS scheduling policy, the write response
time of PA-SSD with sU scheme can be reduced by 30 per-
cent on average. Note that for lightweight workloads as tFin
and tRA, the chips’ queues usually contain only one or two
sub-requests. Consequently, there are little benefits in these
cases. On the contrary, for heavyweight workloads as tDTR,
tExch, and tMSFS, PAS reduces over 40 percent write
response time for PA-SSD with sU scheme.

The PAS scheduling policy works even better on PA-SSD
with sSB+sU and sSB+sUB schemes as it reduces 40 and
41 percent write response time on average, respectively.
Since under sSB scheme, small write requests with only one
sub-request are assigned with LSB pages, reducing the
response time of the sub-requests will absolutely reduce the
response time of the write requests.

The benefits of PAS on reducing write response time of
PA-SSD with sQD+sU and sQD+sUB schemes are relatively
low, which are 11 and 17 percent reduction on average,
respectively. Note that the length of chips’ queue is posi-
tively correlated to the length of the device-level I/O queue.
As a result, when the chips’ queue is long under sQD
scheme, most of the sub-requests actually are allocated with
LSB pages. When most of the sub-requests within a chip’s
queue have the same type of pages, PAS seldom schedules
the sub-requests. On the other side, when the chips’ queue
is short, PAS also does not work. Consequently, the reduc-
tion in write response time of PAS with sQD scheme is
lower than other schemes. However, this does not mean

that PAS has little benefit under these two schemes. Actu-
ally, our results manifest that PAS helps greatly on smooth-
ing the performance of PA-SSD. Specifically, the standard
deviation of write response time in PA-SSD with sQD+sUB
+PAS is 55 percent lower than that in PA-SSD with sQD
+sUB, making PA-SSD with sQD+sUB+PAS not only fast
but also stable.

6.3 Write Performance Over time

In this subsection, we analyze the write performance over
time under two typical workloads, i.e., tFin (light) and
tMSFS (heavy), to better understand the write performance
characteristics of different page-type specifying schemes.

We first analyze the write response time under tFin,
which is depicted in the left diagram of Fig. 16a. Because of
the low I/O intensity and small ratio of large writes, even
the baseline design can obtain a response time 21 percent
higher than the average program latency in TLC flash (2.6 ms
in our simulated SSD). By allocating pages for sub-requests
with pages of the specified page-type, sU scheme reduces the
write response time of the baseline by 13 percent. As the I/O
queue under tFin seldom reaches the threshold of the sQD
+sU and sQD+sUB schemes, their performances are very
close to that of sU. On the contrary, the sLF scheme greatly
reduces the write response time by fully benefiting from the
LSB pages. However, it also makes the number of free LSB
pages within the SSDdecrease very fast, as shown in the right
diagram of Fig. 16a. Especially, during the last hour of the
simulation, there are no free LSB pages left. Although the gar-
bage collection in SSD can continuously reclaim LSB pages in
runtime, the pace with which the sLF scheme allocates the
LSB pages is much faster than that of garbage collection to

Fig. 15. The success rate of PA-SSD on allocating specified-type of
pages for sub-requests.

TABLE 3
Write Response Time Reduction by PAS

Workload
sU sSB sSB sQD sQD

+PAS
+sU +sUB +sU +sUB
+PAS +PAS +PAS +PAS

tFin 0% 0% 0% 0% 0%
tRA 2% 7% 7% 2% 2%
tDAP 21% 25% 25% 13% 13%
tRBESS 60% 76% 71% 7% 7%
tDTR 40% 47% 33% 9% 30%
tExch 44% 67% 70% 22% 25%
tMSFS 42% 51% 78% 1% 11%
tBS 33% 50% 47% 38% 45%
Average 30% 40% 41% 11% 17%

Fig. 16. Write performance over time.

ZHANG ET AL.: IMPROVING OVERALL PERFORMANCE OF TLC SSD BY EXPLOITING DISSIMILARITY OF FLASH PAGES 343

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

reclaim the LSB pages, resulting in significant degradation in
write performance at the end of the simulation.

For tMSFS, the sLF scheme achieves among the lowest
response time during the first seven quarters (15 mins/
quarter) of the simulation, which then gives way to quickly
increased response time once free LSB pages are exhausted
for the rest of the simulation, as shown in Fig. 16b. On the
contrary, both the sQD+sU and sQD+sUB schemes maintain
low write response times for a long period of time. Espe-
cially, sQD+sUB retains the low write response time for 22
quarters, which is three times that of the sLF scheme.

All of the PA-SSD schemes of sLF, sQD+sU, and sQD
+sUB improve the write performance by effectively leverag-
ing the LSB pages. Among them, sLF, as the most radical
scheme, drastically reduces write response time once free
LSB pages become available. However, once all free LSB
pages are used up, the performance of subsequent I/O
requests degrades noticeably. By dynamically monitoring
and leveraging the I/O request queue depth, the sQD+sU
and sQD+sUB schemes are able to use LSB pages judiciously
and efficiently. As a result, although sQD+sU and sQD+sUB
cannot achieve write response times as low as sLF on light
workloads, they are capable of maintaining lower response
times for longer periods of time under heavyworkloads than
the sLF scheme, achieving better overall performance. Addi-
tionally, by combining the sUB scheme that proactively
reserves LSB pages during relative idle times, the sQD+sUB
scheme performs even better than the sQD+sU scheme
under the extremely heavyworkloads, e.g., tMSFS and tBS.

6.4 Performance in Long-Term

As described above, the performance of sLF, sQD+sU, and
sQD+sUB is highly sensitive to the number of free LSB pages
within the SSD. When the free LSB pages are used up and
even though garbage collection reclaims LSB pages in the
runtime, the write performance of PA-SSD with these three
schemes degrades. It is possible to introduce some methods
to avoid or mitigate the condition in which free LSB pages
are used up, for example, triggering background garbage
collections during idle time to proactively reclaim LSB pages.
A challenging question is, can these three schemes still pro-
vide a better write performance than the baseline if the free
LSB pages are used up during busy time periods? To answer
this question, we present the long-term performances of
these schemes here to provide some insight.

We replay the tMSFS workload multiple times continu-
ously and observe that the free LSB pages in PA-SSDwith the
sLF, sQD+sU, and sQD+sUB schemes are all used up before
the third simulation. Therefore, we use the performance in

the third simulation under tMSFS to demonstrate the long-
term performance of PA-SSD, which is illustrated in Fig. 17.
As the figure shows, even when the free LSB pages are used
up, PA-SSD with sLF, sQD+sU, and sQD+sUB still outper-
forms the baseline significantly. Specifically, PA-SSD with
the sLF, sQD+sU, and sQD+sUB schemes achieve 66, 79, and
93 percent lower write response times than the baseline,
respectively. Particularly, this long-term performance analy-
sis suggests a great potential of the PA-SSD with the sQD
+sUB scheme in providing high and stablewrite performance
in I/O-intensive environments.

7 RELATED WORKS

Because of the long program latencies of MLC and TLC
flash, there have been many studies on improving the write
performance of MLC/TLC SSD. We categorize related tech-
niques for improving the SSD write performance into three
major classes as follows.

�1 Exploiting Parallelism. The resources within the flash
chip array are organized in a highly parallel architecture. It is
beneficial to exploit this parallelism for improving write per-
formance of SSD. Existing techniques generally exploit paral-
lelism in twoways, improving the PLAlloc primitive to stripe
sub-requests across channels, chips, dies, and planes [8], [10]
and scheduling user write requests to increase flash resource
utilization [9], [13], [19]. These techniques actually are com-
patible with and orthogonal to our proposed PA-SSD on
improvingwrite performance.

�2 Using SLC Flash as Buffer. As the write latency of SLC
flash is much lower than that of MLC/TLC flash, many
researchers and developers suggested employing SLC flash
in MLC/TLC SSD as a write buffer to improve the write
performance. In [23], L. Chang proposed a hybrid SSD,
which combined with SLC chips and MLC chips, in which
SLC chips serve hot data while MLC chips serve cold data.
M. Murugan and D. Du proposed Hybrot, for avoiding the
situation that SLC zone be worn out faster than MLC zone
in a hybrid SSD by intelligently forward data flow to SLC
zone and MLC zone [24]. In [4], S. Lee, et al. proposed
FlexFS that enables SLC mode in MLC flash to improve
write performance of MLC SSD. FlexFS introduces techni-
ques as background migration that triggers data migration
during idle time, and dynamic allocation that reduces the
amount of data written to SLC zone, to reduce migration
overhead in hybrid SSD. S. Im and D. Shin proposed Com-
boFTL that develops intelligent hot/cold data detection
technique to improve performance and lifespan of a hybrid
SSD [5]. W. Wang, et al., discussed the impact of the ratio of
SLC zone and MLC zone within a hybrid SSD, and demon-
strated that there is an optimal ratio for each workload to
achieve the best performance [6]. In [7], C. Chang, et al., pro-
posed SLO-aware Morphable SSD that adaptively changes
SLC mode and MLC mode in MLC flash to meet service-
level objectives. It decides a user write request should be
processed in SLC mode or MLC mode in the runtime by
analyzing SLO requirements of all requests in the queue. In
[1], D. Sharma revealed the poor write performance of TLC
flash and suggested an SLC-TLC combined hybrid SSD,
where data are first written to SLC and then be migrated to
TLC.

Fig. 17. Performance in Long-term under tMSFS workload.

344 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

All these techniques develop hybrid SSD in one of two
ways, i.e., introducing extra SLC flash chips [23], [24] or
enabling the SLCmode in part of theMLC/TLC flash [1], [4],
[5], [6], [7]. While the first approach increases the total SSD
cost, the second reduces the total actual storage capacity.
More importantly, the introduction of an SLC buffering layer
in SSD can noticeably complicate the FTL implementation
due to data migration between the SLC area and the MLC/
TLC area [25]. In addition, the limited size of the SLC area
can be filled up quickly during write intensive periods, lead-
ing to degraded performance for subsequent write requests.
Differently, our proposed PA-SSD improves write perfor-
mance without either sacrificing any storage capacity or sig-
nificantly complicating the FTL implementation.

�3 Taking Advantage of LSB Pages. The low program latency
of the LSB pages in MLC/TLC flash is exploited for improv-
ing write performance. In [3], Grupp et al. proposed a tech-
nique that proactively uses LSB pages to serve burst writes for
improving peak performance. However, constrained by the
strict program order withinMLC/TLC flash blocks, the bene-
fit of this technique is limited. In [18], Park et al. proved that
the strict program order within anMLCflash block is an over-
provision for reducing cell-to-cell program interference, and
further proposed flexFTL that uses relaxed program con-
straints within MLC flash blocks to provide more flexible use
of LSB andMSBpages. The flexFTL technique adaptively allo-
cates LSB pages for write sub-requests according to the write
buffer utilization to improve write performance. Our tech-
nique, PA-SSD, also relies on relaxed program constraints
within TLC flash blocks to provide flexible use of LSB, CSB,
and MSB pages. In addition, some of our page-type specify-
ing schemes also try to take advantage of LSB pages for
improving write performance. However, there are two major
differences between flexFTL and PA-SSD. First, PA-SSD
coordinately allocates pages of the same type for the sub-
requests of a given user write request, while flexFTL does
not consider the dependence and correlation among sub-
requests, which results in inefficient mixed-type page alloca-
tion (detailed in Section 3); Second, PA-SSD provides a rich
set of schemes to satisfy various performance requirements.

8 CONCLUSION

In this paper, we first demonstrated the write inefficiency of
the type-blind page allocation design in conventional TLC
SSD. To eliminate this write inefficiency, we presented PA-
SSD, a page-type aware TLC SSD design that improves
write/read performance by exploiting the diversity of flash
pages. Specifically, PA-SSD assigns the page-types for user
write requests according to seven proposed page-type speci-
fying schemes, and allocates pages for the corresponding sub-
requests according to their assigned page-types, finally sched-
ules the sub-requests within chips’ queue according to their
page-types. The program constraints within planes and the
BLAlloc primitive are redesigned to realize the type-specified
page allocation in PA-SSD. We implemented PA-SSD with
SSDSim and evaluated its performance with various page-
type specifying schemes. Our simulation results show that
PA-SSDwith the sQD+sUB+PAS scheme improves write and
read performance by 2.6 times and 1.5 times over the conven-
tional SSD design.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their valuable comments and helpful suggestions. This work
is supported in part by NSFC No. 61872156, Creative
Research Group Project of NSFC No. 61821003, National key
research and development program of China (Grant No.
2018YFA0701804), the Fundamental Research Funds for the
Central Universities No. 2018KFYXKJC037, Alibaba Group
through Alibaba Innovative Research (AIR) Program, and
theUSNSF under Grant No. CCF-1704504 and CCF-1629625.

REFERENCES

[1] D. Sharma, “System design for mainstream TLC SSD,” in Proc.
Flash Memory Summit, 2014, pp. 1–20.

[2] C. Matsui, T. Yamada, Y. Sugiyama, Y. Yamaga, and K. Takeuchi,
“Tri-hybrid SSD with storage class memory (SCM) and MLC/
TLC NAND Flash Memories,” in Proc. Flash Memory Summit,
2017, pp. 1–22.

[3] L. M. Grupp, J. D. Davis, and S. Swanson, “The harey tortoise:
Managing heterogeneous write performance in SSDs,” in Proc.
USENIX Annu. Tech. Conf., 2013, pp. 79–90.

[4] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “FlexFS: A flexible
flash file system for MLC NAND flash memory,” in Proc. USENIX
Annu. Tech. Conf., 2009, pp. 9–9.

[5] S. Im and D. Shin, ComboFTL: Improving Performance and Lifespan of
MLC Flash Memory using SLC Flash Buffer. Amsterdam, Netherlands:
Elsevier, 2010.

[6] W. Wang, W. Pan, T. Xie, and D. Zhou, “How many MLCs should
impersonate SLCs to optimize SSD performance?” in Proc. 2nd Int.
Symp. Memory Syst., 2016, pp. 238–247.

[7] C.-W. Chang, G.-Y. Chen, Y.-J. Chen, C.-W. Yeh, P. Y. Eng,
A. Cheung, and C.-L. Yang, “Exploiting write heterogeneity of
morphable MLC/SLC SSDs in datacenters with service-level
objectives,” IEEE Trans. Comput., vol. 66, no. 8, pp. 1457–1463,
Aug. 2017.

[8] A. Tavakkol, P. Mehrvarzy, M. Arjomand, and H. Sarbazi-Azad,
“Performance evaluation of dynamic page allocation strategies in
SSDs,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 1, no. 2,
pp. 1–33, Jun. 2016.

[9] M. Jung and M. T. Kandemir, “Sprinkler: Maximizing resource
utilization in many-chip solid state disks,” in Proc. IEEE 20th Int.
Symp. High Perform. Comput. Archit., Feb. 2014, pp. 524–535.

[10] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang,
“Performance impact and interplay of SSD parallelism through
advanced commands, allocation strategy and data granularity,”
in Proc. Int. Conf. Supercomputing, 2011, pp. 96–107.

[11] M. Jung, E. H. Wilson, and M. Kandemir, “Physically addressed
queueing (PAQ): Improving parallelism in solid state disks,” in
Proc. 39th Annu. Int. Symp. Comput. Archit., Jun. 2012, pp. 404–415.

[12] M. Jung,W.Choi, S. Srikantaiah, J. Yoo, andM. T.Kandemir, “HIOS:
A host interface I/O scheduler for solid state disks,” SIGARCHCom-
put. Archit. News, vol. 42, no. 3, pp. 289–300, Jun. 2014.

[13] N. Elyasi, M. Arjomand, A. Sivasubramaniam, M. T. Kandemir,
C. R. Das, and M. Jung, “Exploiting intra-request slack to improve
SSD performance,” in Proc. 22nd Int. Conf. Architectural Support
Program. Languages Operating Syst., 2017, pp. 375–388.

[14] A. Tavakkol, M. Sadrosadati, S. Ghose, J. Kim, Y. Luo, Y. Wang,
N. M. Ghiasi, L. Orosa, J. Gmez-Luna, and O. Mutlu, “FLIN:
Enabling fairness and enhancing performance in modern NVMe
solid state drives,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Com-
put. Archit., Jun. 2018, pp. 397–410.

[15] Y. Li, C. Hsu, and K. Oowada, “Non-volatile memory and method
with improved first pass programming,” US Patent. US 8811091,
Aug. 2014.

[16] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, andO.Mutlu, “Error charac-
terization, mitigation, and recovery in flash-memory-based solid-
state drives,” Proc. IEEE, vol. 105, no. 9, pp. 1666–1704, Sep. 2017.

[17] N. E. Workgroup, “Nvm express revision 1.3 specification,” 2017.
[Online]. Available: http://nvmexpress.org/

[18] J. Park, J. Jeong, S. Lee, Y. Song, and J. Kim, “Improving performance
and lifetime of NAND storage systems using relaxed program
sequence,” in Proc. 53nd ACM/EDAC/IEEE Des. Autom. Conf.,
Jun. 2016, pp. 1–6.

ZHANG ET AL.: IMPROVING OVERALL PERFORMANCE OF TLC SSD BY EXPLOITING DISSIMILARITY OF FLASH PAGES 345

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

http://nvmexpress.org/

[19] B. Mao and S. Wu, “Exploiting request characteristics and internal
parallelism to improve SSD performance,” in Proc. 33rd IEEE Int.
Conf. Comput. Des., Oct. 2015, pp. 447–450.

[20] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program interference
in MLC NAND flash memory: Characterization, modeling, and
mitigation,” in Proc. IEEE 31st Int. Conf. Comput. Des., Oct. 2013,
pp. 123–130.

[21] U. T. Repository, “Umass trace repository storage traces,”
2018. [Online]. Available: http://traces.cs.umass.edu/index.
php/Storage/Storage

[22] S. I. Repository, “Snia block i/o traces,” 2018. [Online]. Available:
http://iotta.snia.org/tracetypes/3

[23] L.-P. Chang, “A hybrid approach to NAND-flash-based solid-state
disks,” IEEETrans. Comput., vol. 59, no. 10, pp. 1337–1349, Oct. 2010.

[24] M. Murugan and D. H. C. Du, “Hybrot: Towards improved perfor-
mance in hybrid SLC-MLC devices,” in Proc. IEEE 20th Int. Symp.
Model. Anal. Simul. Comput. Telecommun. Syst., Aug. 2012, pp. 481–484.

[25] F. Chen, T. Zhang, and X. Zhang, “Software support inside and out-
side solid-state devices for high performance and high efficiency,”
Proc. IEEE, vol. 105, no. 9, pp. 1650–1665, Sep. 2017.

Wenhui Zhang received the BS degree in math-
ematics from Wuhan University, in 2011. He is
currently working toward the PhD degree of the
Wuhan National Laboratory for Optoelectronics
at the Huazhong University of Science and Tech-
nology. His research interests include erasure
codes, storage systems, and parallel algorithms.
He is a student member of the IEEE and ACM.

QiangCao received the BS degree in applied phys-
ics from Nanjing University, in 1997, the MS degree
in computer technology, and the PhD degree
in computer architecture from the Huazhong
University of Science and Technology, in 2000 and
2003, respectively. He is currently a full professor
of theWuhan National Laboratory for Optoelectron-
ics at the Huazhong University of Science and
Technology. His research interests include com-
puter architecture, large scale storage systems, and
performance evaluation. He is a senior member of
China Computer Federation (CCF) and the IEEE
and amember of ACM.

Hong Jiang received the BSc degree in com-
puter engineering from the Huazhong University
of Science and Technology, Wuhan, China, in
1982, the MASc degree in computer engineering
from the University of Toronto, Toronto, Canada,
in 1987, and the PhD degree in computer science
from the Texas A&M University, College Station,
Texas, in 1991. He is currently chair and Wendell
H. Nedderman Endowed professor of Computer
Science and Engineering Department, University
of Texas at Arlington. Prior to joining UTA, he

served as a Program director at National Science Foundation (2013.1-
2015.8) and he was at University of Nebraska-Lincoln since 1991, where
he was Willa Cather professor of Computer Science and Engineering.
He has graduated 16 PhD students who upon their graduations either
landed academic tenure-track positions in PhD-granting US institutions
or were employed by major US IT corporations. His present research
interests include computer architecture, computer storage systems and
parallel I/O, high performance computing, big data computing, cloud
computing, performance evaluation. He recently served as an associate
editor of the IEEE Transactions on Parallel and Distributed Systems. He
has more than 300 publications in major journals and international Con-
ferences in these areas, including the IEEE Transactions on Parallel and
Distributed Systems, the IEEE Transactions on Computers, the Pro-
ceedings of IEEE, the ACM Transactions on Architecture and Code Opti-
mization, the ACM Transactions on Storage, JPDC, ISCA, MICRO,
USENIX ATC, FAST, EUROSYS, LISA, SIGMETRICS, ICDCS, IPDPS,
MIDDLEWARE, OOPLAS, ECOOP, SC, ICS, HPDC, INFOCOM, ICPP,
etc., and his research has been supported by NSF, DOD, the State of
Texas and the State of Nebraska, and industry. He is a fellow of the
IEEE, and Member of ACM.

Jie Yao received the BS degree in computer sci-
ence and technology, and theMSandPhDdegrees
in computer architecture from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2001, 2004, and 2009, respectively. He is cur-
rently a lecturer with the Huazhong University of
Science and Technology. His research interests
include computer architecture, large scale storage
systems, and performance evaluation. He is a
member of China Computer Federation (CCF) and
amember of the IEEEand ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

346 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 30,2020 at 16:42:11 UTC from IEEE Xplore. Restrictions apply.

http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://iotta.snia.org/tracetypes/3

