Pigeon: an Effective Distributed, Hierarchical Datacenter Job
Scheduler

Zhijun Wang
The University of Texas at Arlington
zhijun.wang@uta.edu

Xiaocui Sun
Guangdong Pharmaceutical
University
xiaocuisun1002@hotmail.com

Huiyang Li
The University of Texas at Arlington
huiyang li@mavs.uta.edu

Jia Rao
The University of Texas at Arlington
jia.rao@uta.edu

Zhongwei Li
The University of Texas at Arlington
zhongweili@mavs.uta.edu

Hao Che

The University of Texas at Arlington
hche@cse.uta.edu

Hong Jiang
The University of Texas at Arlington
hong jiang@uta.edu

ABSTRACT

In today’s datacenters, job heterogeneity makes it difficult for sched-
ulers to simultaneously meet latency requirements and maintain
high resource utilization. The state-of-the-art datacenter sched-
ulers, including centralized, distributed, and hybrid schedulers, fail
to ensure low latency for short jobs in large-scale and highly loaded
systems. The key issues are the scalability in centralized schedulers,
ineffective and inefficient probing and resource sharing in both
distributed and hybrid schedulers.

In this paper, we propose Pigeon, a distributed, hierarchical job
scheduler based on a two-layer design. Pigeon divides workers
into groups, each managed by a separate master. In Pigeon, upon a
job arrival, a distributed scheduler directly distribute tasks evenly
among masters with minimum job processing overhead, hence,
preserving highest possible scalability. Meanwhile, each master
manages and distributes all the received tasks centrally, oblivious
of the job context, allowing for full sharing of the worker pool at
the group level to maximize multiplexing gain. To minimize the
chance of head-of-line blocking for short jobs and avoid starvation
for long jobs, two weighted fair queues are employed in each master
to accommodate tasks from short and long jobs, separately, and a
small portion of the workers are reserved for short jobs. Evaluation
via theoretical analysis, trace-driven simulations, and a prototype
implementation shows that Pigeon significantly outperforms Spar-
row, a representative distributed scheduler, and Eagle, a hybrid
scheduler.

CCS CONCEPTS

« Computer systems organization — Cloud Computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC 19, November 20-23, Santa Cruz, CA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06....$15.00

DOI: 10.1145/3357223.3362728

246

KEYWORDS

Job scheduling, resource management, datacenter

ACM Reference Format:

Zhijun Wang, Huiyang Li, Zhongwei Li, Xiaocui Sun, Jia Rao, Hao Che,
and Hong Jiang. 2019. Pigeon: an Effective Distributed, Hierarchical Dat-
acenter Job Scheduler. In SoCC ’19: ACM Symposium of Cloud Computing
conference, Nov 20-23, 2019, Santa Cruz, CA. ACM, New York, NY, USA,
13 pages.

1 INTRODUCTION

Workload heterogeneity has been a long-standing challenge in dat-
acenter scheduling. Jobs that differ in execution time and fanout
degree have distinct requirements for scheduling. Short jobs have
stringent latency requirements and are sensitive to scheduling de-
lays; long jobs, which usually have a large fanout and high resource
demands, require high-quality scheduling, e.g., improving load bal-
ance, but can tolerate some scheduling delays. While short jobs
are usually user-facing applications [2, 18] and important to user-
perceived quality-of-service, long jobs help improve datacenter
resource utilization. Therefore, it is common practice to collocate
short and long jobs in datacenter management, but meeting the
diverse needs of heterogeneous jobs remains a critical challenge.
Early datacenter job schedulers, e.g., Jockey [12], Quincy [17],
Tetrished [31], Delay Scheduling [34], Firmament [14] and Yarn
[32] are centralized by design. Centralized schedulers rely on a
global view of resource availability to make scheduling decisions.
As systems scale, handling a large number of jobs and collecting
runtime status from a large number of nodes inevitably become
a bottleneck and incur a significant scheduling delay for each job.
This is particularly problematic for short jobs with tight deadlines.
To address the scalability issue, recent research, such as Spar-
row [22] and Peacock [21], employs multiple schedulers to dispatch
tasks in an independent and distributed manner. Without requiring
a global view of resources, distributed schedulers probe randomly
selected nodes (usually twice as many as the number of tasks to
be dispatched) and dispatch tasks onto the least loaded nodes. The
probe based technique has been proved to greatly improve task
queuing time compared to random placement [22]. However, each

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SoCC ’19, November 20-23, Santa Cruz, CA

scheduler still needs to maintain a fairly large amount of probe re-
lated states and incurs non-negligible probe processing overheads.

Besides the above issues, the collocation of heterogeneous work-
loads presents unique challenges to the centralized and distributed
schedulers. First, heterogeneous workloads require an effective
mechanism to prioritize short jobs over long jobs. Distributed sched-
ulers lack coordination among one another, thereby unable to en-
force global service differentiation among jobs. While centralized
schedulers can employ priority queues to differentiate task sched-
uling for different types of jobs, they are usually work conserving —
low priority, long jobs can utilize the entire cluster to avoid wasting
cluster resources. However, by doing so, a burst of long jobs can
inflict the so called head-of-line blocking to short jobs that arrive
immediately after the burst. Even in the presence of centralized
priority queues, tasks from short jobs need to wait for the tasks
of long jobs that have already been dispatched onto workers. Re-
cent work BigC [3] and Karios [10] propose to suspend long jobs’
tasks via lightweight virtualization to enable preemption on indi-
vidual workers, but have shown significant overhead in preempting
resource-intensive tasks. Second, high resource utilization in data-
centers that embrace workload consolidation makes randomized
load balancing less effective. For heterogeneous workloads that
contain tasks of various sizes, it is difficult to identify less loaded
nodes. It has also been reported that randomized load balancing is
inefficient and requires multiple rounds of probing to locate idle or
less busy nodes if most nodes are highly loaded [28].

Hybrid approaches, such as Mercury [20], Hawk [11] and Ea-
gle [9], combine centralized and distributed schedulers, with former
handling long jobs and the latter short jobs. However, long and
short jobs are scheduled independently. This makes it difficult to
mitigate the negative impact of long jobs on the performance of
short jobs. For example, Eagle [9] employs two techniques to en-
tirely eliminate the head-of-line blocking, i.e., multiple rounds of
probing for short-job task placement and a reserved worker pool
for short jobs. However, as the cluster load becomes high, most
of the short jobs are driven by long jobs to the reserved pool [10],
resulting in rapid performance deterioration for short jobs. Our
simulations based on the Yahoo trace [5] show that the performance
of short jobs drastically degrades, by as many as 70 times at high
load compared with the non-resource-constrained case (see Section
4 for details).

In this paper, we demonstrate that a hierarchical scheduler that
employs a divide-and-conquer approach in task scheduling can
effectively overcome the shortcomings of centralized, distributed
and hybrid schedulers, and ensure low latency for short jobs while
maintaining high resource utilization without significantly sacrific-
ing the performance of long jobs. Specially, we propose Pigeon, a
two-layer, hierarchical scheduler for heterogeneous jobs. Pigeon
divides workers in a cluster into groups and delegates task schedul-
ing in each group to a group master. Upon job submission, Pigeon
assigns the tasks of an incoming job to the masters as evenly as
possible. The dispatching of tasks onto masters is intended to be
simple and does not consider the type of tasks. The master in each
group implements more sophisticated scheduling by maintaining
two weighted fair queues, one for tasks from short jobs and the
other for tasks from long jobs, respectively, and partitioning work-
ers in each group into high and low priority workers. Tasks of short

247

Wang, et al.

jobs can run on any workers while tasks of long jobs can only run
on low priority workers. Tasks are only dispatched when there are
idle workers from a group and are otherwise queued at a respective
priority queue according to their types.

Pigeon is a hierarchical solution purposely designed for effec-
tive task distribution to combat heterogeneity. Pigeon’s two-layer
design is specially useful for heterogeneous jobs. First, it effec-
tively mitigates head-of-line blocking of short jobs. The simple
job-oblivious task dispatching among masters prevents a burst of
tasks from monopolizing all workers and provides a certain level
of isolation between jobs. Unlike in a centralized scheduler, where
tasks of the same type (e.g., short jobs) are usually served in FIFO
order, tasks of different jobs in Pigeon are evenly distributed among
masters, allowing tasks that arrive late to start to execute even
before some tasks of an earlier job start to execute (see Section
4.1 for details). Second, the two-layer design preserves good scala-
bility of distributed schedulers but avoids the pitfalls of random-
ized load balancing. The size- and type-oblivious task dispatching
among masters provide sufficient randomness for effective load
balancing without global knowledge and the weighted fair queuing
based scheduling within a group is deterministic, ensuring that idle
workers are rapidly located to serve latency-sensitive jobs without
starving the long jobs.

We perform an evaluation of Pigeon through theoretical analysis,
simulation, and a prototype implementation on the Amazon EC2
cloud. Analysis results show that Pigeon can greatly increase the
job-zero-queuing probability compared to Sparrow, a representative
distributed scheduler, for workloads that only contain short jobs.
Trace-driven simulations based on the Yahoo, Cloudera and Google
traces demonstrate that Pigeon outperforms Eagle, a state-of-the-
art hybrid scheduler, on short job performance by as many as tens
of times in a highly loaded cluster. Experimental results on the
Amazon EC2 further confirm the effectiveness of Pigeon.

2 PIGEON SCHEDULER

This section presents Pigeon. We first give an overview of Pigeon
and introduce its task placement scheme, and then discuss how it
handles tasks at the master level.

2.1 System model

We consider a datacenter cluster composed of a large number of
workers, each of which can be an independent processing unit, such
as a CPU core. The workers can run in parallel to execute differ-
ent tasks. A key idea in Pigeon is to divide workers into groups.
Each group is managed by a master which centrally controls all the
tasks handled by the group and places tasks among the workers in
the group. Distributed job schedulers directly distribute the tasks
belonging to a job to the masters. After a master receives a task,
it either directly sends the task to an idle worker to be processed
immediately or puts it in the corresponding task queue if there is
no idle worker in the group at the time. Figure 1 gives a system
overview of Pigeon. The system is composed of multiple distributed
job schedulers, masters, and workers. All job schedulers work in-
dependently and do not exchange any task placement information
among themselves.

Pigeon: an Effective Distributed, Hierarchical Datacenter Job Scheduler

\f" ‘ low

i Tas}gl<_.<-» >
[]D scheduler /\T“W: | il

Task ||

rty woker |
> low prioirty woker

——{ high prioirty woker |
"‘[low prioirty woker J

e low prioirty woker ‘

high prioirty woker
| low prioirty woker |
[low prioirty woker

g

a \
(Master p

(I

High priority queue
| Low priority queue

Figure 1: Overview of Pigeon.

A master works at the task level and is mostly job oblivious ex-
cept for its awareness of whether a task is a low or high priority one,
based on whether the task is from a short or a long job. It maintains
two weighted fair task queues, where the high priority and low
priority queues store tasks belonging to short and long jobs, respec-
tively. The classification of a job as a short or long job is handled
by schedulers, based on the type of application the job belongs to.
For example, user-facing applications, such as web searching and
social networking, that generally have short task execution times
and require stringent tail latency guarantee, can be classified as
short jobs. On the other hand, background batch applications, such
as data backup, that usually have long task execution times and
call for loose mean response time assurance, can be classified as
long jobs. In Pigeon, a small number of workers in the group, called
high priority workers, are reserved exclusively for serving high
priority tasks. The other workers, called low priority workers, can
serve both low and high priority tasks. Since all the workers in a
group are shared among tasks from short jobs in a work-conserving
manner, while all the low priority workers are shared by tasks from
long jobs, Pigeon can greatly improve resource efficiency, achieving
high multiplexing gain, compared with the existing job schedulers
that distribute tasks directly to individual workers.

A master can run in a worker who needs to be be allocated
enough computation resource to effectively handle group status
report and task placement functions. As we shall discuss in more
detail later, in Pigeon a master needs to handle about one incoming
task per second on average, which is modest from computation
resource demand point of view.

2.2 Task Scheduling

Assume that a system has N schedulers and N groups (i.e., Ny
masters). Each group has N,, workers in it. For a job with F tasks
(i.e., fanout degree, F), the scheduler that handles the job will dis-
tribute the tasks as follows. It sends S = |F/Ny| task(s) to each
master (here | x| represents the floor of x, i.e., the integer part of x)
and the remaining r = F%Nj to r randomly selected masters. Since
the number of workers in each group is much larger than one (i.e.,
in the range of 50 to 100), according to the law of large numbers,
the workloads distributed to different groups are expected to be
much more balanced than those distributed directly to individual

248

SoCC 19, November 20-23, Santa Cruz, CA

workers. This helps synchronize the task processing for tasks be-
longing to the same job and hence, reduce the job completion time,
with respect to the existing job scheduling solutions.

Two task queues of different scheduling priorities are set in
each master to store the corresponding types of tasks!, i.e., tasks
belonging to short and long jobs. More specifically, the two queues
are scheduled based on weighted fair queuing with a single integer
weight to ensure that tasks from the high priority queue are served
with higher priority than those from the low priority queue, without
starving the low priority tasks. The queue scheduler ensures that
out of every W tasks to be served, at least one comes from the
low priority task queue if it is not empty. The queue scheduler
degenerates to strict priority queuing, when W is set to infinity. In
this case, the low priority tasks can be served only when the high
priority task queue is empty.

A master maintains two idle worker lists, i.e., the high and low
priority idle worker lists that record all high and low priority work-
ers that are currently idle, respectively. A task sent to a master
must include the priority of the task. When a master receives a high
priority task, it first checks whether the low priority idle worker
list is empty or not. If the list is not empty, an idle worker from
the list is removed and assigned to handle the task. Otherwise, the
master checks whether the high priority idle worker list is empty
or not. If it is not empty, a worker is removed from the list and
assigned to handle the task. If both idle worker lists are empty, the
high priority task is put into the high priority task queue. When a
master gets a low priority task, it only checks the low priority idle
worker list. If the list is not empty, a worker is removed from the
list to serve the task. Otherwise, the task is put into the low priority
task queue. Whenever a worker is selected to handle a task, the
master sends the task to the worker, together with the scheduler
identifier (ID) for the scheduler from which the task is received. If a
master receives multiple tasks from a job at a time, it handles these
tasks one by one consecutively following the same procedure.

We note that both reserving a given portion of workers in a group
for high priority tasks and setting W to be a finite integer help to
avoid head-of-line-blocking of short jobs and starvation of long
jobs, respectively. The exact values of these two parameters must
be properly selected in practice. For all our real-world-trace-driven
case studies (see Section 4), we found that no more than 10% of
workers need to be reserved to achieve high short job performance,
lower than that of Eagle, a state-of-the-art hybrid scheduler. In the
meantime, W can be simply set to infinity to achieve the highest
short job performance without significantly impacting the long job
performance. This is because the trace statistics show that the short
job execution time is less than 20% of the overall job execution time
and hence, long jobs have little chance to be starved by short jobs.

When a worker completes a task, it sends the reports/results
directly to the corresponding scheduler and meanwhile, sends an
idle notification message to its master. This may further trigger a
task in one of the two queues to be sent to the worker or the worker
to be added to the high priority worker list if it is reserved for high
priority jobs, otherwise, to the low priority worker list.

!Pigeon can be easily extended to support more than two job types by allocating as
many priority queues as the number of job types with weighted fair queuing.

SoCC ’19, November 20-23, Santa Cruz, CA

3 PERFORMANCE MODELING AND
ANALYSIS

To gain insights on the Pigeon performance, in this section, we
conduct simple performance modeling and analyses for Pigeon,
compared with the analysis of a performance model for Sparrow
[22]. To be mathematically tractable, we consider only one class
of jobs and assume that the job fanout degree (i.e., the number of
tasks in a job) is less than the number of groups and the number
of workers in Pigeon and Sparrow, respectively. Hence, only one
task queue is used in each master. In this case, all the workers serve
tasks from all jobs. We focus on short jobs, which are usually more
latency sensitive and whose fanout degrees are smaller than long
jobs. We assume that the job fanout degrees are no larger than the
number of groups.

Consider a cluster with Ny groups and each group with N,
workers, with a total of N = Ny N,, workers in the cluster. Assume
that jobs arrive following a Poisson arrival process with average
arrival rate A. All the jobs have fanout degree, F, where F < Ny,
and the task execution time follows an exponential distribution
with average execution time, T,.

With the above model, each master can then be approximately
modeled as running a single M/M/N,, task queue [6] with av-
erage task arrival rate Ay = AF/N,. The worker utilization is
p = AtTe/Nyy. Given that F < Ny, the probability, P 44(0), that
a task experiences zero queuing time in a group is then given as
follows [6],

Prasi(0) = 1 : ey
task\V) = 1~ >
N,,! Ny—1 (N, p)k
1+ (1=) i) Sy B
and the average queuing time Ty for a task in a master is
1-P 0
Tq - rask() @)
Nuw/Te = At

In this paper, a job is considered to have zero queuing time if
the job completion time (not including the communication time) is
equal to its longest task execution time. For example, assume that
a job has 2 tasks with execution time 10s and 100s, respectively. If
the job completion time is 100s, it experiences no queuing delay,
even though its task with 10s execution time may have queued for
some time, e.g., 50s.

Now we first consider the case that all the tasks in a job have
the same execution time. Then the job-zero-queuing probability in
Pigeon, P]};Ib (0), can be written as,

PP, (0) = (Prask(O)". 3)

In this case, the job-zero-queuing probability for Sparrow, Pjsf; (0),
using 2F probes per job, is derived in the original paper on Sparrow
[22], as follows,

2F
PrR0) =) (1= p)p* iR), (4)
i=F
where C(2F, i) is the combination function.

Figure 2 depicts the analytical job-zero-queuing probability for
Sparrow (i.e., Eqn.(4)) and Pigeon (i.e., Eqn.(3)) for two different
group sizes, i.e., N,,=100 and 200 and two job fanout degrees, i.e.,
F =50 and 100. As one can see, the job-zero-queuing probability for

249

Wang, et al.

. /100 tasks per Job

- Sparrow

*Pigeon—Nw=100
Pigeon-Nw=200

0 —4

0 0.10.20.30.40.50.60.70.80.9 1

Load
(b)

Probability
o
(4]
Probability
o
(%]

¢ Sparrow
e Pigeon-Nw=1 00
Pigeon»NW=200
0 %
0 0.10.20.30.40.50.60.70.80.9 1

Load
(2)

Figure 2: Job-zero-queuing probabilities for Sparrow and Pi-
geon with two different group sizes (N,,=100 and 200). All
tasks in a job have the same execution time. (a) Job fanout
F=50; (b) F=100.

Sparrow starts to drop at load 0.4 and quickly drops to near zero at
load 0.6, whereas for Pigeon, similar drops occur in a much higher
load region, i.e., 0.6 to 0.8. It means that Pigeon can work at 20 - 40%
higher load than Sparrow, while achieving similar job-zero-queuing
performance as Sparrow, demonstrating the effectiveness of Pigeon
for job scheduling, compared with Sparrow.

We also note that for Pigeon, when N,, increases from 100 to
200, the job-zero-queuing probability starts to drop at load 0.7, 0.1
higher than the former case. But it quickly approaches 0 as the
load approaches 0.9, similar to the former case. This suggests that a
larger group can improve performance in the medium load region
(0.7 to 0.8), but not much in high load region (>0.9).

The above analyses assume that each task in a job has the same
execution time. However, real trace analyses indicate that the task
execution time can vary significantly from one task to another for
a given job. To capture the performance impact of such variability,
we consider the case where the task execution time for a task in a
given job follows an exponential distribution.

We first calculate the average job queuing time, Tj,p,. Since the
job queuing time is defined as the queuing time of the slowest task
of the job, we need to find the queuing time for the slowest task of
the job. To this end, we observe from Figures 3(b) and 4(b) that the
average queuing time in Pigeon is much shorter than the average
task execution time (i.e., T,=100 ms) even at a high load (e.g., 90%).
This suggests that whichever task has the largest execution time
is likely to be the slowest one, regardless of its queuing time. This
implies that the average queuing time for the slowest task can be
simply approximated as the average queuing time for all tasks, i.e.,
Tjop = Tg-

Now we calculate the job-zero-queuing probability. Consider
two independent exponential distribution random variables (¢; and
ty) with average value T, the joint probability density function
f(t1,t2) = #e_([l +22)/Te Then the probability of t; —tz > Ty under
condition #; > ty [26] is

P(ty — ty > Tylty > t5) = e TalTe, (5)

Let Al and A2 be the tasks with the longest (¢1) and second
longest (t2) execution times in a job, respectively. Now the job-zero-
queuing probability P;lotb (0) for a job with different task execution
times can be approximately expressed as the probability of A1 with

Pigeon: an Effective Distributed, Hierarchical Datacenter Job Scheduler

Job-zero-queuing probability Average wait Time

104 % AN-80%
0.95 -© SM-80%
=z @ AN-90%
5os E 4-SM-90%
Q07 H-AN-80% g s
o ©-SM-80% [
0.6, AN-90% p
©-SM-90% 3
0.5 0
50 100 150 200 50 100 150 200
N N
w w

Figure 3: Analysis (denoted as AN) vs Simulation (denoted as
SM) at different group sizes. (a) Job-zero-queuing Probabili-
ties (b) Average job wait time.

zero-queuing time (i.e., P44 (0)) while t; — t2 > T, i.e., the execu-
tion time difference between the longest and the second longest
task execution time is greater than the average task queuing time
Ty, namely,

(6)

We verify the analytical approximations for Tj,; and Pj‘.iotb by
simulation. Assume that N.=30,000, F = 100, and T,=100 ms. Each
task execution time follows an exponential distribution. The com-
munication time is set at 0.5 ms between any two nodes. We note
that with communication delay, the average job waiting time Ty, is
no longer equal to the average queuing time, but rather the average
queuing time plus the communication time.

We study the Pigeon performance by changing N,, from 50 to
200 (the total number of workers N¢ in the system is fixed). Figure
3 depicts the job-zero-queuing probability and the average job
waiting time at two different high loads (i.e., 80% and 90%). We
note that the simulation results (denoted as SM) closely match the
analytical ones (denoted as AN), e.g., less than 1% for the job-zero-
queuing probability for all N,,’s tested. The largest difference is
about 12% for the average waiting time at N,,=50 and the load of
90%. In this case, the simulated waiting time (also queuing time) is
longer than the analytical one because the analytical results only
consider the waiting time for the task with the longest execution
time. As the job-zero-queuing probability is low (below 60%), the
contribution of other tasks may not be neglected, resulting in larger

d T, Te
P (0) % Pygsi(0)e™ Tl Te.

€errors.
The results verify that Eqns. (2) and (6) can be used to estimate
the performance of Pigeon for handling jobs with fanout degrees
less than the number of groups. The results indicate that the job-
zero-queuing probability increases and the average waiting time
decreases as the group size increases. It means that a larger group
can provide better performance, particularly from 50 to 100. The
performance improves slower as the group size increases from 100
to 200, particularly for the average waiting time. Further increasing
the group size is expected to offer marginal performance gain. This
result provides some insight on how to set the right group size when
a cluster handles jobs with small fanout degree (i.e., the number of
tasks in a job is less than the number of groups in the cluster).
Now we study the performance of Pigeon by varying cluster
loads. Two cases with N,, set at 100 and 200 are studied. The results

250

SoCC 19, November 20-23, Santa Cruz, CA

’ Job-zego-que%ng probability Average Wait Time

2 ;
SANN,_ =100 .
- __3t [{©ANN =200
=09 N = %)
= - AN:N, =100 3 £ SM:N, =100
g -©-ANN, =200 © 27 |5 SM:N_ =200
[=] £ w
o8 SMN, =100 E o,
5 SM:N_ =200 19
w
07 0
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Load Load

@ (b)

Figure 4: Analysis (denoted as AN) vs Simulation (denoted as
SM) results with various cluster loads. (a) Job-zero-queuing
probabilities (b) Average job wait time.

are given in Figure 4. Again, the simulation results closely match
the analytical ones. The results indicate that the job-zero-queuing
probability is close to 1 even at load 80% and reduces to 0.7 at
load 90%. This means that most jobs do not need to be queued
even at high load, hence offering high probability of meeting the
tightest job performance requirements at high load. We also note
that the average waiting time is very small (less than 4%) compared
to the average task execution time even at very high load, e.g., 90%.
These results clearly demonstrate the effectiveness of Pigeon for
job scheduling.

The following two sections test the efficiency of Pigeon by large-
scale simulation and on a small EC2 cloud cluster, respectively.

4 SIMULATION TESTING

To test the scalability and efficiency, we use simulation to evaluate
the performance of Pigeon against Eagle? in large clusters, using
three real-world traces as input, i.e., Yahoo [5], Cloudera [4], and
Google traces [24]. The open source simulation code of Eagle [9] is
used and an event-driven simulator is developed for Pigeon.

Table 1 provides the statistics of these traces, including the maxi-
mum/minimum/average job fanout degrees (denoted as Fqx / Fmin/
Favg) and maximum/minimum/average task execution time (de-
noted as T/*** /T/"" /T/“7). We see that the job fanout degree
ranges from 1 to 51834; the execution time varies from microsec-
onds to over 700K seconds; and the average task execution time
ranges from 118.78 seconds to 661.74 seconds. Unlike the modeled
workload in the previous section, these statistics indicate that the
job size in terms of both fanout degree and task execution time
vary significantly from job to job in practice. Such job heterogene-
ity makes it difficult to meet service requirements for individual
applications, e.g., in terms of providing job completion time or
throughput guarantee. For example, for a cluster with 10K workers
and a long job with fanout degree of 50K, each worker needs to
execute 5 tasks for the job on average. The placement of such a
job evenly among all the workers in the cluster can take up all
the cluster resources at once, causing head-of-line blocking to the
upcoming short jobs. As aforementioned, to effectively deal with
the job heterogeneity issue, both Pigeon and Eagle [9] reserve a
subset of workers to be used by short jobs only, at the group-level

2 As Eagle outperforms Sparrow and Hawk[11], only Eagle is compared here.

SoCC ’19, November 20-23, Santa Cruz, CA

Wang, et al.

Trace Fmax Fmin Favg T/ (s) TMn(s) T, "9 (s)
Yahoo 5900 1 3991 21259.9 1.54E-5 118.78
Cloudera 51834 1 272.93 97941.8 3.89E-5 162.19
Google 49960 1 35.32 774922 1E-6 661.74

Table 1: Trace statistics of job fanout and execution time

and cluster-level, respectively. In what follows, we first discuss
the parameter settings, in terms of the short-vs-long job thresh-
olds, the reserved worker pool size, the communication delays, the
group size, and the weight value for weighted fair queuing and then
performance evaluation.

4.1 Parameter Settings

Short Jobs vs Long Jobs: As mentioned earlier, in practice, a sched-
uler may rely on whether a job belongs to a user-facing application
to classify it as a short job or not. However, due to the lack of the
application information for the three traces and to fairly compare
against Eagle, for Pigeon, we simply use the same short job cutoff
times, defined as the average task execution time of a job, as those
used in Eagle, i.e., 90.5811, 272.783 and 1129.532 seconds for the
Yahoo, Cloudera and Google traces, respectively.

Reserved Worker Pool Size: The actual number of workers re-
served for tasks of short jobs has significant impact on job com-
pletion times for both short and long jobs. The more workers are
reserved, the smaller the job completion time for short jobs but the
larger the job completion time for long jobs. We study the perfor-
mance using the three traces by varying the worker reservation
ratio (due to page limitation, the results are not presented here).
By taking into account of the performance for both short and long
jobs, we decide to set the reservation ratios at 2%, 7% and 9% for the
Yahoo, Cloudera and Google traces, respectively. For Eagle, against
which Pigeon is to be compared in the following section, we set the
reservation ratios for the three traces at the same values as those
used in [9], i.e., 2%, 9% and 17%, respectively.

The reservation ratio that gives the best performance tradeoffs
for Pigeon is between 2%-9% for the three traces. We also found
that setting this ratio at 5% for all the traces leads to a maximal
performance deviation from the best tradeoffs within 20% for both
short and long jobs. Hence, to address the possible lack of the traces
in practice, the ratio can be initially set at 5% and then adjusted as
the trace workload runs long enough to estimate the best ratio.

Weight Value for Fair Queuing: The weight value W is an im-
portant parameter for Pigeon. A smaller (larger) W helps improve
the performance of long (short) jobs at the cost of the other. We
study the Pigeon performance by varying W from 5 to 100 and com-
pared to that with strict priority queuing (i.e. W is set to infinity)
(again, the results are not presented here due to page limitation).
We find that the short job performance becomes very sensitive to
W at high cluster loads when W gets below 20. For example, while

251

the 99th-percentile short job completion time at W = 20 is within
140% of that at W = oo, it increases to more than 300% at W = 5, at
high cluster loads for all the three traces. Meanwhile, we find that
the long job performance is insensitive to W in a wide range, e.g.,
only 2% difference from W = 10 to co at all cluster loads for all the
three traces. In other words, no long job starvation occurs even at
W = oo for all the three traces. Hence, for all the cases studied, we
set W in the range of 20 to co.

Communication Delays: The communication delays are set at
0.5 ms between any two nodes, i.e., a scheduler and a master, a
master and a worker, or a worker and a scheduler.

Group Size: Without knowing the exact processing overhead per
task scheduling at each master, we have not taken this overhead
into account in both performance modeling in the previous section
and the simulation in this section. As a result, intuitively, one would
expect that the testing results in both previous and this section will
be always in favor of larger group size, with the group size equal
to the cluster size offering the highest performance (i.e., the case
when Pigeon degenerates to a centralized scheduler). While this
intuition is confirmed in the previous section based on the results
from an ideal model, much to our surprise, it turns out to be false
as confirmed by the simulation results in this section. More specif-
ically, we can conclude that Pigeon with the group size in a finite
range actually outperforms its centralized counterpart, even when
the centralized scheduler incurs negligible processing overhead. The
implication of this is significant. It means that one can no longer as-
sume that so long as it is free from scalability concerns, centralized
scheduling is always the best choice, as it has a global view of the
cluster resource availability. In what follows, we first identify the
range and the preferred group size, and then provide an explanation
of why this seemingly counter-intuitive phenomenon can happen.

We compare the Pigeon performance at different group sizes,
using the Cloudera trace as input for the simulation (similar re-
sults are obtained for the Yahoo and Google traces and hence are
not given here). We consider the cluster size of 12K and 18K, cor-
responding to high (about 93%) and medium (about 62%) cluster
loads, respectively. All other parameters pertaining to Pigeon are
the same as those given above. The 50th, 90th and 99th percentiles
of the short and long job completion times are used as performance
metrics.

From the results depicted in Figure 5 (normalized to the central-
ized one), we can see that Pigeon performs better than its centralized
counterpart for all the three performance metrics for short jobs,
particularly at the high load (Figures 5 (a)). At high load, the short

Pigeon: an Effective Distributed, Hierarchical Datacenter Job Scheduler

Short job - high load Long job - high load

2 1 2 1.1
° -¢50th percentile ° -¢50th percentile
& g.95 || ¥90th percentile 8405 =-90th percentile
A 99th percentile ® 99th percentile
§ R
© 09 o am—¥ S 1 e
e % 2 Mg
o & o \~\</<—\
3 3
£0.85 £0.95
© ©
E 3 £
2 08 2 09
25 50 75 100 125 150 25 50 75 100 125 150
Group Size Group Size
() (b)
N Short job - medium load 012 Long job - medium load
2 el
2 ° -¢50th percentile
g 0.98 k. S ->k-90th percentile
s (\/X—W ERR 99th percentile
5 O.Q&N(/xe——x/ £
8 8
=) 2
2094 s 1 - S
2 ¢50th percentile] =
® 0.92 1 |3k 90th percentile| g
E 99th i E
S S
Z 09 Z0.9
25 50 75 100 125 150 25 50 75 100 125 150
Group Size Group Size
(© ()

Figure 5: Pigeon performance at different group sizes (Pi-
geon is normalized to the centralized scheduler).

job performance gets better as the group size reduces from 150 to
50 and then becomes slightly worse as it further reduces to 25. The
largest performance gains for short jobs are about 17%, 18% and 14%
for 50th, 90th and 99th percentile job completion times at group size
50, compared to the centralized one, respectively. Similar results
with smaller gains are observed at the medium cluster load (Figure
5 (c)). For long jobs at high load (Figure 5 (b)), the performance is
better (worse) than the centralized one when group size is above
(below) 50. The three percentiles of job completion times decrease
when the group size reduces from 150 to 100, and then increase
when the group size further reduces. In the medium load (Figure
5 (d)), the performance for long jobs is worse than that of the cen-
tralized one in the entire group size range studied. All the three
percentiles of long job completion time decrease as the group size
increases. The above results indicate that Pigeon is not only more
scalable but also performs better than its centralized counterpart
for handling heterogeneous jobs, particularly at high cluster loads.

Although the optimal group size may be workload dependent
(such as the ratio between the number of short and long jobs, the
task execution time distribution, etc.), based on the above obser-
vation, which agree with the observation made for the other two
traces, and consistent with the analytical results for jobs at small
fanout (i.e., the multiplexing gain is small when the group size is
over 100), we can safely conclude that in general, the performance
is insensitive to the group size in a wide range, i.e., between 50 and
100. Hence it suffices to set group size anywhere in between 50 and
100 and we set the group size at 100 for all the cases studied in this
section.

Explanations for the Counterintuitive Phenomenon: A key
observation we make is that this phenomenon may occur when
both job fanout degree and task execution time vary in a wide range,

252

SoCC 19, November 20-23, Santa Cruz, CA

t=0

queue queue t=0
Master A20| w1 (G2][B2 [Ac10[As10 (a,20 | wi
5
B2 |[As1
Azt | w2 A1 W2
g As10 | W3 A1 w3
[c-2 |[Ac-10 .
As-10| W4 As-10] W4
Pigeon task scheduling Centralized task sceduling
()
queue t=10 queue =10
Master A1-10 | W1 €2 [[a10 | w1
w2 As1 | w2
e Ae-10 | w3 Ae-1 | W3
c2 | wa B2 w4
Pigeon task scheduling Centralized task sceduling
(b)

Figure 6: Task scheduling example: (a) tasks at time 0; (b)
tasks at time 10. X-t at a worker or a queue: X is the task
name, and ¢ is the remaining task execution time.

which is the case in practice (see Table 1) but not for the model
in the previous section (that explains why we did not observe this
phenomenon there). The best way to see why this is true is by
example.

Consider job scheduling for a single type of jobs and a cluster
of 4 workers. At time 0, all the workers are idle and job A with 6
tasks (called as tasks Ay, ..., Ag) arrives, with task execution times
of 20, 1, 1, 10, 10 and 10 units. Immediately following it are two
other jobs B and C, each having 1 task with execution time of 2
units. We further assume that there is no processing overhead and
the communication time can be neglected. Now we compare the
performance of a Pigeon scheduler and its centralized counterpart.

First consider a Pigeon scheduler, where 4 workers are divided
into 2 groups with 2 workers each. Upon the arrival of jobs A, B,
and C, in that order, the first 3 tasks from A (i.e., A1, Az and A3 with
execution times 20, 1 and 1) are sent to group one and the other
3 tasks from A (i.e., A4, As and Ag all with execution time 10) to
group two. Then the task from job B is sent to group one and the
task from job C to group two. At time 0, in group one, two tasks A;
and Ay with execution times 20 and 1 are served by workers 1 and 2,
respectively; and in group two, workers 3 and 4 serve tasks A4 and
As, respectively. The tasks at time 0 in Pigeon are shown in Figure
6 (a). At time 1, worker 2 completes the task Ay and immediately
starts serving the task As. It finishes the task A3 at time 2 and then
serves the task from job B which is completed at time 4. Hence job
B is finished at time 4. At time 10, workers 4 and 5 complete the
tasks A4 and As, and then serve the tasks Ag and C. The tasks in
Pigeon are now given in Figure 6 (b). The task from job C is finished
at time 12, so job C is completed at time 12. As tasks A; and Ag are
finished at time 20, so job A finishes at time 20. The job completion

SoCC ’19, November 20-23, Santa Cruz, CA

times in Pigeon for the three jobs are 20, 4 and 12, for a total of 36
units.

Now, consider a centralized scheduler. The first 4 tasks (i.e.,
A1, Az, A3 and Ay) from job A are sent to workers 1-4 at time 0,
respectively, as given in Figure 6 (a). At time 1, workers 2 and 3
complete their tasks and then serve the other two tasks (i.e., As
and Ag) from job A. At time 10, worker 4 finishes its task and then
serves the task from job B which will be completed at time 12. So
job B is completed at time 12. The tasks at time 10 is given in Figure
6 (b). At time 11, workers 2 and 3 complete their tasks, and then
worker 2 serves the task from job C which is completed at time 13,
and hence job C is completed at time 13. Task A; finishes at time
20, and hence job A finishes at time 20. So the job completion times
for the three jobs are 20, 12 and 13, respectively, for a total of 45
units, 9 units or 25% more than the Pigeon scheduler!

From the above example, we see that for centralized scheduling,
a job with a large fanout degree (i.e., job A) causes head-of-line
blocking of the following jobs of the same type, even when their
fanout degrees are low (i.e., jobs B and C). The head-of-line blocking
caused by the same type of jobs may be alleviated by enabling task
preemption [3,8], which however, may incur significant preempting
overhead, particularly for resource-intensive tasks.

In contrast, for Pigeon, the tasks for jobs are distributed to dif-
ferent groups. This enhances the chance for tasks from later jobs to
be served before tasks from the earlier jobs due to heterogeneous
task execution time distribution. This helps reduce the chance of
head-of-line blocking of jobs with small fanout degrees by jobs
with large fanout degrees, hence, resulting in better overall perfor-
mance. While helping more in alleviating head-of-line blocking by
dispersing the tasks of a job with a large fan-out degree to more
groups, using a smaller group size reduces multiplexing gain. This
help explain why Pigeon gives the overall best performance at the
group size in a certain range, i.e., 50 to 100.

Master Workload Estimation: Finally, with the parameters given
above, we can now estimate the offered task load at a master. As-
sume that the cluster size, N.=20,000, and hence, the total number
of masters, Nyg=200, given the group size, N,,=100. The real trace
statistics in Table 1 suggest that the average task execution time
is more than 100s (from 118s to 661s, to be exact). It means that a
master needs to handle about only 1 task per second on average
(or equivalently, 1 task per 100 seconds per worker), this overhead
is negligible. In the case of a long job with a huge number of tasks,
such as a job with 50,000 tasks, each master will see a burst of
task arrivals of size 250. This is in stark contrast with a distributed
scheduler, who needs to generate and dispatch 50,000 tasks. This
example clearly indicates that the resource demand on a master
is modest and a single worker should be sufficient to serve as a
master, which consumes only 1% (i.e., 1 out of 100) of the total
worker resources in the cluster. This means that indeed, Pigeon is
a highly scalable solution.

In practice, to save the cluster resource, a master may run in a
regular worker as long as the worker has enough resource to act
as both a master and a regular worker. An alternative is to allow
a worker to run multiple masters. For example, consider a system
with 10,000 workers and each group with 100 workers. We may use

253

Wang, et al.

10 workers, each hosting 10 masters, instead of 100 workers with
one master each, hence, cutting the overhead from 1% to 0.1%.

4.2 Performance evaluation

The number of workers in the whole cluster is used as a tunable
parameter to adjust the load level. We use 50th, 90th and 99th
percentile job slowdowns with respect to the case of unlimited
resources (i.e., the case with zero communication time and zero task
queuing time) for both short and long jobs as performance metrics.
More specifically, the xth-percentile short/long job slowdown is
defined as the xth-percentile short/long job completion time divided
by the xth-percentile short/long job execution time. Here a job
execution time is defined as the largest task execution time among
all the tasks in the job.

Figures 7 and 8 give the slowdowns of the 50th, 90th and 99th
percentiles of short and long jobs for all the three traces. Here W is
set at 20 in Pigeon. First, we note that at the fixed job arrival rate, as
the number of workers in the cluster increases, the slowdowns of
the two schedulers converge and approach 1 for both short and long
jobs. This is expected, because as the cluster size becomes larger,
or equivalently, the load becomes lighter, all the jobs experience
smaller queuing delays and hence, smaller job completion times,
regardless what scheduling mechanism is used. Hence, it is more
interesting and important to focus on small cluster sizes or high
load regions. As the cluster size reduces, we can see that remarkable
performance gaps between the two emerge.

In the case of the Yahoo trace, at the cluster size of 3K, the slow-
downs for short jobs in Pigeon are about 1.3, 1.5 and 5.3 times which
indicates the queuing times are less than one job execution time for
the 50th and 90th percentiles, and just above 3 job execution times
for the 99th percentile. The results indicate that Pigeon achieves ex-
cellent short job performance even at very high cluster loads (about
95%). In contrast, the slowdowns for Eagle are above 70 times for all
the three percentiles, implying that for Eagle, the queuing times are
more than 70 job execution times for short jobs. Similar results can
be found with the Google and Cloudera traces as shown in Figures
7(b)-(c). In what follows, we explain why Pigeon outperforms Eagle
by such big margins.

Eagle improves over Hawk, as detailed in [9], by allowing work-
ers who are handling long jobs to reject the probes coming from
distributed schedulers who handle short jobs. This allows a dis-
tributed job scheduler to issue more rounds of probes to discover
workers that are not handling long jobs, hence alleviating the head-
of-line blocking effect for short jobs. However, most lower priority
(i.e., non-reserved) workers can still be blocked by the long jobs,
either at high load or whenever a long job with a large fan-out de-
gree arrives. In this case, after multiple rounds of random probing,
most of the tasks from short jobs are forced to be served by the
high priority (i.e., reserved) workers, which however, may become
the bottlenecks themselves. For example, for the Yahoo trace, con-
sider the case of a cluster with 3K workers and 60 high priority
workers (2% as set in Eagle [9]) for short jobs. When a long job
with 5900 tasks (i.e., the maximum number of tasks in a job for
the Yahoo trace) arrives, each low priority worker has to serve, on
average, about 2 tasks of the job. After the tasks of the long job
are placed, all the upcoming short jobs following this long job are

Pigeon: an Effective Distributed, Hierarchical Datacenter Job Scheduler

Yahoo-Short jobs

Cloudera-Short jobs

SoCC 19, November 20-23, Santa Cruz, CA

Google-Short jobs

Il 50th-Pigeon
Il 50th-Eagle
[90th-Pigeon
[C]90th-Eagle
[_]99th-Pigeon
[_]99th-Eagle

-
S o
=

Slowdown
Slowdown

Il 50th-Pigeon
Il 50th-Eagle
[90th-Pigeon
[C]90th-Eagle
[_J99th-Pigeon
[_]99th-Eagle

Il 50th-Pigeon
Il 50th-Eagle
[90th-Pigeon
[]90th-Eagle
[_]99th-Pigeon
[_]99th-Eagle

Slowdown

Il 0
anallElt wanm 0
4 5 6 11 13 15 17 19 15 17 19
Number of workers in the system (x1000) Number of workers in the system (x1000) Number of workers in the system (x1000)
(a) (b) (©

Figure 7: Short job completion time, W = 20.

Yahoo-Long jobs

Cloudera-Long jobs

Google-Long jobs

25
30 Il 50th-Pigeon 40 Il 50th-Pigeon Il 50th-Pigeon
[50th-Eagle [50th-Eagle 20 [l 50th-Eagle
25 I 90th-Pigeon 30 I 90th-Pigeon I 90th-Pigeon
- [C]90th-Eagle - [C]90th-Eagle - [C]90th-Eagle
=20 [_J99th-Pigeon B [_]99th-Pigeon £ 15 [_]99th-Pigeon
h-Eagl h-Eagl h-Eagl
g 15 [_]99th-Eagle g 20 [_]99th-Eagle g [_]99th-Eagle
3 3 S0
w w w
10
5 5
1 1 ! fl -
0 Lt S R 3 0 (O T 11— T I
3 4 5 6 11 13 15 17 19 11 13 15 17 19
Number of workers in the system (x1000) Number of workers in the system (x1000) Number of workers in the system (x1000)

(a)

(b)

(©

Figure 8: Long job completion time, W = 20.

forced to be served by only 60 high priority workers after a number
of rounds of probing. In other words, all the low priority workers
are blocked by the long job, hence resulting in big job completion
time for short jobs. The key difficulty is that as a hybrid scheduler,
Eagle distributes tasks from short and long jobs independently by
distributed and centralized schedulers, respectively.

In contrast, Pigeon allows centralized scheduling of tasks coming
from both short and long jobs and full resource sharing at the group
level. This makes it possible for Pigeon to largely remove head-of-
line blocking without starving the long job through weighted fair
queuing and worker reservation. Again, consider the above example
where along job with 5900 tasks arrives at a cluster with 3K workers.
Assume that the workers are divided into 30 groups of 100 each
with 2 (i.e., 2%) workers reserved for the tasks from short jobs. Now
about 197 (i.e., 5900/30) tasks from the long job are sent to each
group. In a given group, the master dispatches as many tasks out
of 197 to the available low priority workers as possible and the
rest to the low priority queue, e.g., with 10 to the available low
priority workers at the load of 90% (i.e., about 90% or 88 out of 98
are currently busy) and 187 queued. The upcoming tasks of short
jobs are either served by an idle reserved worker or queued in the
high priority queue. However, in addition to the 2 high priority
workers, whenever a low priority worker becomes idle, it will first
have high chance (19/20 at W = 20) to serve a task from the high
priority queue. Unlike Eagle, most of the long tasks (i.e., 187) are not
queued at the low priority workers, but centrally at the master, high
priority tasks following these low priority tasks will not be blocked
by the latter from accessing the low priority workers. Moreover, a
task at the head of the high priority queue is likely to find an idle

254

low priority worker soon, because the probability that one out of
98 busy lower priority workers will finish its task in the near future
is high. This explains why Pigeon can significantly outperform
Eagle in terms of short job performance, especially in the high load
region.

The fact that Pigeon performs slightly better than Eagle even for
long jobs, despite the use of the weighted fair queuing for short jobs
over long ones, as depicted in Figure 8, can be explained as follows.
First, Pigeon generally reserves a smaller number of workers for
short jobs than Eagle (i.e., 9% vs. 17% and 7% vs. 9% in the cases of
the Google and Cloudera traces, respectively and 2% vs. 2% in the
case of the Yahoo trace), hence allowing more workers to be used
by the long jobs. This explains why overall Pigeon outperforms
Eagle in the cases of the Google and Cloudera traces but not as
much in the Yahoo trace. Second, for all the real traces studied, the
overall execution time for short jobs constitutes less than 20% of
the total job execution time, implying that the possible negative
impact of giving high priority to short jobs (i.e., letting W=20) on
the performance of long jobs is quite limited.

We also test the effect of W by comparing the setting of W = oo
against that of W=20. The results are given in Figures 9 and 10.
We can see that only the short job completion times at very high
load are different. For example, when W changes from 20 to co,
the slowdowns of the 50th, 90th, and 99th short job completion
times for the Yahoo trace are reduced from 1.3, 1.5 and 5.3 to 1.2,
1.4 and 3.6, respectively, in a cluster with 3K workers. while the
corresponding slowdowns for long jobs are within 2%. The results
indicate that the performance of Pigeon is indeed insensitive to W,
in the range of [20, co].

SoCC ’19, November 20-23, Santa Cruz, CA

Yahoo-Short jobs

Cloudera-Short jobs

Wang, et al.

Google-Short jobs

Il 50th-Pigeon
Il 50th-Eagle
[90th-Pigeon
[C]90th-Eagle
[_]99th-Pigeon
[_]99th-Eagle

~
13 I
=

Slowdown
Slowdown

Il 50th-Pigeon
Il 50th-Eagle
[90th-Pigeon
[C]90th-Eagle
[_J99th-Pigeon
[_]99th-Eagle

Il 50th-Pigeon
Il 50th-Eagle
[90th-Pigeon
[]90th-Eagle

[_]99th-Pigeon
[_]99th-Eagle

Slowdown

II]PH n | oy I
I A o BB R T MARO | MR T
4 5 6 11 13 15 17 19 15 17 19
Number of workers in the system (x1000) Number of workers in the system (x1000) Number of workers in the system (x1000)
(a) (b) (©

Figure 9: Short job completion time, W = co.

Yahoo-Long jobs

Cloudera-Long jobs

Google-Long jobs

25
30 I 50th-Pigeon 40 I 50th-Pigeon Il 50th-Pigeon
[50th-Eagle [50th-Eagle 20 [l 50th-Eagle
25 [E90th-Pigeon 20 [90th-Pigeon [90th-Pigeon
= [T190th-Eagle - [[T190th-Eagle - [[T190th-Eagle
=20 [_J99th-Pigeon B [_]99th-Pigeon £ 15 [_]99th-Pigeon
- h-Eagl h-Eagl
s [199th-Eagle =P [199th-Eagle] [_199th-Eagle
o o 2 10
w w w
10
° Dﬂ:lllgﬂﬂzmﬂfﬁzmﬂﬂi)
01 Lt S R 3 a T T ‘II=II- IS V!III=- 1[5 i
3 4 5 6 11 13 15 17 19 11 13 15 17 19
Number of workers in the system (x1000) Number of workers in the system (x1000) Number of workers in the system (x1000)

(a)

(b)

(©

Figure 10: Long job completion time, W = co.

The above results clearly demonstrate that Pigeon is a much
more effective job scheduler than Eagle in terms of both design
complexity (e.g., without probing phase, without having to run
two different types of schedulers, and no worker involvement of
scheduling) and performance.

5 PERFORMANCE EVALUATION ON EC2
CLOUD

In this study, we compare the performance of Pigeon against both
Sparrow [22] and Eagle [9], the state-of-the-art distributed and
hybrid job schedulers, respectively, in a small cluster on the Amazon
EC2 cloud. The Pigeon implementation includes two parts: the
Pigeon scheduler code and the Spark plug-in. Distributed Pigeon
schedulers are concurrently deployed at the application frontends,
exposing services to allow the framework to submit job scheduling
requests using remote procedure calls (RPCs). All RPCs for internal
communications between modules of a Pigeon scheduler are defined
with Apache Thrift [30]. We directly run the available open source
implementation codes for Sparrow [22] and Eagle [9]. m4.large
instances are used to serve as workers, masters and schedulers.
The cluster is composed of 10 schedulers and 120 workers. For

Pigeon and Eagle, 10% of the workers are reserved for short jobs.

In Pigeon, the workers are divided into 3 groups with 40 workers
each. One worker in each group is selected as a master and W is set
to infinite (i.e., each master runs two strict priority task queues). A
sample job trace including 5000 jobs is extracted from the Google
trace. The task execution time is scaled to the range of 10ms to 100s
and the job fanout degree is scaled to the range of 1 to 100. The

255

short job cutoff time is set at 1s. It turns out that 10% jobs are long
jobs, which however, consume about 88% overall task execution
time, in line with the statistics of the original trace.

We use average job arrival rate as a tuning knob to adjust the
cluster load. As the Poisson arrival process has been widely consid-
ered a good model for datacenter workload, we assume that the job
arrival process follows the Poisson distribution. The experimental
results are also compared against the simulation results. The simu-
lators for Pigeon and Eagle are the same as the ones described in
the previous section and the open source event-driven simulator
for Sparrow [22] is used.

We find that the short job performance for Sparrow and Eagle are
very sensitive to the number of schedulers in use (by changing the
number of schedulers from 1 to 10). This is because the processing
delay in the probe phase becomes non-negligible compared to the
job execution time for short jobs. In contrast, Pigeon offers almost
the same performance, regardless how many schedulers are used.
In all the experiments, we use 10 schedulers to minimize the impact
of the processing delay for Sparrow and Eagle.

Figure 11 depicts both measured (on EC2) (denoted as Imp) and
simulated (denoted as Sim) 50th, 90th and 99th short and long job
completion times normalized to Pigeon. The results for Sparrow
and Eagle are depicted in Figures 11 (a) and (b) and Figures 11(c) and
(d), respectively. Clearly, the experiment results are consistent with
the simulation results. The differences between experiment and
simulation are within 15% for short jobs and 5% for long jobs, mainly
caused by the unaccounted processing overhead in the simulation.

As Sparrow does not distinguish between short and long jobs,
it incurs up to 200 (10) times longer short job completion times

Pigeon: an Effective Distributed, Hierarchical Datacenter Job Scheduler

Short jobs

[Cogth-Imp
[199th-Sim

Long jobs

N
o
S

N

[l 50th-Imp
I50th-Sim
[E90th-Imp
[Esoth-sim

200

o
©

1
=

Sparrow normalized to Pigeon
))
L) 2

Sparrow normalized to Pigeon

70 80
Load (%)

@

90 60 80

Load (%)

(b)

Short jobs Long jobs

Eagle normalized to Pigeon
Eagle normalized to Pigeon

0
70

Load (%)

(d)

80
Load (%)

(©

Figure 11: Experiment vs Simulation. Sparrow (a) short job
and (b) long job; Eagle (c) short job and (d) long job.

than Pigeon (Eagle), although it offers up to 15% better long job
completion times than both Pigeon and Eagle. This means that
Sparrow is not effective in supporting short jobs in the presence
of heterogeneous workloads. We also see that Pigeon provides
significant performance gain for short jobs over Eagle. For example,
at 90% load, the 50th, 90th and 99th percentile short job completion
times for Eagle reaches about 25, 30 and 7 times longer than those for
Pigeon. Pigeon and Eagle achieve comparable performance for long
jobs at all cluster loads. The experiment results indicate that Pigeon
is highly effective in handling heterogeneous jobs, which agrees
with the simulation results obtained from the previous section.

The Pigeon project information and all the simulation and proto-
type implementation source codes can be found at https://github.com/
ruby-/pigeon.

6 PRACTICAL CONSIDERATIONS

This section discusses some practical implementation issues, i.e.,
how to handle master failure and how to deal with heterogeneous
workers and task assignment constraints.

6.1 Master Failure Recovery

A master plays a key role in a group. If a master fails, all the group
information, such as the queued tasks and idle worker lists, are
lost. In a full-fledged implementation of Pigeon, one may borrow
a failure recovery mechanism widely used in the traditional dis-
tributed systems for failure recovery [27]. To allow fast recovery
from a master failure, a second master is selected in a group. The
second master can be another worker. A master needs to periodi-
cally update the second master on the group information and task
state information. Whenever a master failure is detected, the second
master can immediately take the master responsibility from the

256

SoCC 19, November 20-23, Santa Cruz, CA

failed master without losing any state information. After a master
failure happens, the second master sends a notice to each worker
in the group and each scheduler in the cluster to notify them of
the changes, so that the subsequent tasks and idle worker notices
are sent to the new master. Now the second master acts as a new
primary master of the group and then a new secondary master
should also be chosen for subsequent backups.

If both masters fail at the same time, the group information is
lost. To quickly recover the group information, any worker in the
group that detects such a failure can take the responsibility as a
master. It broadcasts a message into the group to ask worker status.
Each worker sends its response back to the new master with its
status (idle or busy, priority, executing task, etc.). The new master
also needs to send a message to each scheduler to get the task
information sent to the group to recover the task queue list in the
group. In case that multiple workers take the responsibility as a
new master at the similar time, these workers can elect one as the
new master based on some rules, e.g., the timestamp of master
declaration time, CPU power or storage capacity and so on.

6.2 Dealing with Heterogeneous Workers and
Tasks with Assignment Constraints

In the Pigeon design, we implicitly assumed that the same number
of workers are assigned to each group and all the workers have
the same processing power. In practice, however, the number of
workers in a group may not be conveniently set to be the same. Even
if the numbers of workers assigned to different groups are the same,
different workers may have different processing powers. In this
case, the schedulers in Pigeon may need to assign tasks to different
groups in proportion to their relative processing powers to balance
the task load among groups. More specifically, the probability of a
task assigned to a group is proportional to the group’s processing
power.

Moreover, in practice, some tasks may have to be assigned to
specific workers, as the needed resources or data are only avail-
able at those workers. All these may cause load imbalance among
worker groups and hence have a negative impact on the perfor-
mance of Pigeon. One possible solution is to require that all masters
report their queue lengths for all the priority queues periodically
to distributed schedulers. This will allow distributed schedulers to
make more informed decision as to how to balance the load among
groups. The well-balanced task assignment will reduce the overall
job completion latency and increase the overall throughput, and
hence resulting in high system utilization.

7 RELATED WORK

Today’s datacenter job schedulers can be classified into three cat-
egories, i.e., centralized, distributed and hybrid. The earlier job
schedulers, e.g., Jockey [12], Quincy [17], Tetrished [31], Delay
Scheduling[34], Firmament [14] and Yarn [32] are centralized by
design. A centralized scheduler can potentially provide high worker
utilization, as it has a global view of the worker status for individual
workers. But the scalability and head-of-line blocking are the major
problems concerning centralized scheduling solutions. The sched-
uling decisions and status reports can overwhelm a centralized

SoCC ’19, November 20-23, Santa Cruz, CA

scheduler and cause additional job delay. Some shared-state sched-
ulers, e.g., Apollo [1], Omega [25], and Mesos [15], use a centralized
resource manager to maintain shared state. The job distributors are
distributed but the decision making is based on the shared status
of the cluster resource availability. The shared status is updated
by the distributed schedulers and/or workers. However, the shared
state may not be always up-to-date and hence may result in job
placement conflict and retries. This approach still requires a central
entity for shared status maintenance. Recent work BigC [3] and
Karios [10] propose to deal with job heterogeneity by suspending
long jobs’ tasks via lightweight virtualization to enable preemp-
tion on individual workers, but have shown significant overhead
in preempting resource-intensive tasks.

Yarn Federation [13] is developed to address the scalability issue
of Yarn [32]. In Yarn Federation, a cluster is split into sub-clusters.
Jobs are distributed to sub-clusters, Jobs are distributed to sub-
clusters, each of which in turn performs job scheduling (i.e., dis-
tributing tasks of received jobs). With the coordination between
resource managers and nodes from different sub-clusters, the tasks
of a job can span the entire cluster, not limited to the sub-cluster the
job is mapped to. As a result, YARN federation is more of a quasi-
centralized task scheduling solution than a hierarchical one. Hydra
[7] leverages the Yarn Federation architecture, in which a collection
of loosely coupled sub-clusters coordinates to provide the illusion
of a single massive cluster. In contrast, Pigeon is indeed a two-level
hierarchical task scheduling solution, in which the tasks from a
job spans across multiple groups (or sub-clusters). First, distributed
job schedulers evenly distribute tasks of jobs to all group masters.
Then, in turn, each group master, which is job-agnostic, uses prior-
ity queues to differentiate the scheduling of short and long tasks.
Moreover, while YARN federation aims to address the scalability
issue of the resource manager in YARN, Pigeon mainly aims to
address job heterogeneity concerning centralized and hybrid job
scheduling solutions.

Sparrow [22], on the other hand, is a fully distributed job sched-
uler based on random batch-based probe and late task binding.
Although free from the scalability issues that plague the centralized
job schedulers, the distributed schedulers and workers in Sparrow
need to maintain fairly large amounts of task related state infor-
mation and incur high communication cost for probing, including
probe management, probe queuing, probe processing, and redun-
dant probe removals. Furthermore, it does not perform well in
highly loaded clusters nor in the presence of heterogeneous work-
loads. Another probe-based distributed scheduler, Peacock [21],
organizes workers in a ring overlay network and a probe can be
rotated to its neighbors at fixed time intervals to balance the probe
queue lengths among workers. Peacock, however, requires that the
workers communicate with each other to form and maintain a ring
topology. Moreover, it inherits much of the drawbacks pertaining
to probe-based solutions in general.

To solve the scalability issue while providing high performance
in the presence of heterogeneous jobs, Hybrid schedulers [9, 11, 20,
33] are proposed. Hybrid schedulers combine a centralized sched-
uler and a set of distributed schedulers. Mercury [20] uses dis-
tributed schedulers to place jobs without latency requirement and
a centralized scheduler to place jobs with guaranteed resource re-
quirement. Hawk [11] uses a centralized scheduler for long job

257

Wang, et al.

placement and the distributed schedulers for short job placement.
The short job scheduling is similar to the techniques used in Spar-
row, i.e., batch probing and late task binding based. Some workers
are reserved to serve short jobs only, as a way to mitigate head-of-
line bocking. Moreover, an idle worker can steal tasks belonging
to short jobs from other workers to improve efficiency. Eagle [9]
improves over Hawk by introducing sticky batch probe with each
probe staying on a worker until all the tasks of the job finish. It
also allows multiple rounds of probing to mitigate head-of-line
blocking. These hybrid schedulers need a central scheduler that
can still pose a potential bottleneck. Moreover, short job scheduling
is still probe-based and hence, inheriting its shortcomings.

More complex queuing mechanisms than priority queuing are
being used to minimize the job performance. Queue reordering
[9, 16, 25, 31] is used to reduce the job completion time. More
complex queue management techniques [23] such as appropriate
queue sizing, prioritization of task execution via queue reordering,
and starvation freedom are also being used to improve the efficiency
of job scheduling.

Some job scheduling solutions [8, 19, 29] are developed to im-
prove the service level objectives (SLOs) violations. Morpheus [19]
is designed to reduce the SLOs violations through automatically
deriving SLOs and job resource models from historical data, rely-
ing on recurrent reservations and packing algorithms to enforce
SLOs, and dynamic reprovisioning to mitigate inherent execution
variance. The tail-cutting techniques [8, 29] can help mitigate the
impact of stragglers on the job tail-latency performance.

Pigeon differs from the existing solutions in two important as-
pects. First, it is a hierarchically distributed solution to avoid head-
of-line block in centralized schedulers. Second, it is free of the
probing phase, a technique shared by all the existing distributed
and hybrid solutions.

8 CONCLUSIONS

In this paper, we propose Pigeon, a distributed hierarchical job
scheduler for datacenters. In Pigeon, workers are divided into
groups. Each group has a master worker which centrally man-
ages all the tasks handled by the group. Weighted fair queuing is
used to provide priority service differentiation between tasks of
short jobs and tasks of long jobs. A small portion of workers in
each group are reserved to serve short job tasks only. The ability
of each master in managing its group resources centrally makes
Pigeon highly effective in scheduling heterogeneous jobs. The anal-
ysis, simulation and experiment results demonstrate that Pigeon
outperforms Sparrow and Eagle by significant margins. Pigeon is
implemented and tested in Amazon EC2 cloud, which has validated
the Pigeon simulator used for the Pigeon evaluation.

9 ACKNOWLEDGMENTS

We would like to thank our shepherd, Ahmed Eldawy, and the
anonymous reviewers for their insightful feedbacks. This work is
supported by the US NSF under Grant No. CCF XPS-1629625 and
CCF SHF-1704504

REFERENCES

[1] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and Coordinated Scheduling

Pigeon: an Effective Distributed, Hierarchical Datacenter Job Scheduler

(2]
(3]

(4]

(8]

[9

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

for Cloud-Scale Computing. In Proceedings of OSDL

Jake Brutlag. 2009. Speed matters for google web search. In Google.

Wei Chen, Jia Rao, and Xiaobo Zhou. 2017. Preemptive, Low Latency Datacenter
Scheduling via Lightweight Virtualization. In Proceedings of USENIX Annual
Technical Conference.

Yanpei Chen, Sara Alspaugh, and Randy Katz. 2012. Interactive Analytical Pro-
cessing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads.
In Proceedings of VLDB Endowment.

Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. 2011. The Case
for Evaluating MapReduce Performance Using Workload Suites. In Proceedings
of MASCOTS.

Robert B. Cooper. 1981. Introduction to Queueing Theory. North Holland.

Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao, Giovanni M.
Fumarola, Botong Huang, Kishore Chaliparambil, Arun Suresh, Young Chen,
Solom Heddaya, Roni Burd, Sarvesh Sakalanaga, Chris Douglas, Bill Ramsey, and
Raghu Ramakrishnan. 2019. Hydra: a federated resource manager for data-center
scale analytics. In Proceedings of USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (2013).

Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel. 2016. Job-
aware scheduling in eagle: divide and stick to your probes. In Proceedings of ACM
Symposium on Clod Computing (SOCC).

Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel. 2018. Kairos:
Preemptive Data Center Scheduling Without Runtime Estimates . In Proceedings
of ACM Symposium on Clod Computing (SOCC).

Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy Zwaenepoel.
2015. Hawk: Hybrid Datacenter Scheduling. In Proceedings of USENIX Annual
Technical Conference (ATC).

Andrew D. Fergusin, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo Fon-
seca. 2012. Jockey: Guaranteed job latency in data parallel clusters. In Proceedings
of EuroSys.

Apache Software Foundation. 2018. Hadoop: YARN Federation. https://hadoop.
apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/Federation.html

Tonel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and Steven
Hand. 2016. Firmanent: Fast, Centralized Cluster Scheduling at Scale. In Proceed-
ings of USENIX Symposium on Iperating System Design (OSDI).

Benjamin Hindman, Andy Konwinski, Mati Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center. In Proceedings of NSDL
Chien-Chun Hung, Leana Golubchik, and Minlan Yu. 2011. Scheduling Jobs
Across Geo-distributed Datacenters. In Proceedings of SoCC.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. 2012. Quincy: Fair scheduling for distributed computing
clusters. In Proceedings of SOSP.

Myeongjae Jeon, Saehoon Kim, Seung won Hwang, Yuxiong He, Sameh Elnikety,
Alan L. Cox, and Scott Rixner. 2014. Predictive Parallelization: Taming Tail
Latencies in Web Search. In Proceedings of the ACM SIGIR.

Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus: Towards Au-
tomated SLOs for Enterprise Clusters. In Proceedings of USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

Konstantinos Karanasos, Sriram Rao, Chris Douglas, Kishore Chaliparambil,
Giovanni Matteo Fumarola, Solom Heddaya, Raghu Ramakrishnan, and Sarvesh
Sakalanaga. 2015. Mercury: Hybrid centralized and distributed scheduling in
large shared clusters. In Proceedings of USENIX Annual Technical Conference
(ATC).

Mansour Khelghatdoust and Vincent Gramolim. 2018. Peacock: Probe-Based
Scheduling of Jobs by Rotating Between Elastic Queuess. In Proceedings of Inter-
national Conference on Parallel and Distributed Computing.

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:
Distributed, Low Latency Scheduling. In Proceedings of ACM Symposium on
Operating System (SODP).

Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula, Rodrigo Fonseca, Mi-
lan Vojnovic, and Sriram Rao. 2016. Efficient Queue Management for Cluster
Scheduling. In Proceedings EroSys.

Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A.
Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In Proceedings of ACM Symposium on Cloud Computing (SOCC).

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
2013. Omega: flexible, scalable schedulers for large compute clusters. In Proceed-
ings of EuroSys.

Ross Sheldon. 2014. Introduction to Probability Models. Academic Press.

Ryan Scott Stutsman. 1987. Durabilit and Crash Recovery in Distributed In-
Memory Storage Systems . In Dissertation of Doctor Philosophy.

Kun Suo, Jia Rao, Hong Jiang, and Witawas Srisa-an. 2018. Characterizing
and Optimizing Hotspot Parallel Garbage Collection on Multicore Systems. In

258

[33

[34

SoCC 19, November 20-23, Santa Cruz, CA

Proceedings of ACM European Conference on Computer systems (EuroSys).

Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3: cutting
tail latency in cloud data stores via adaptive replica selection. In Proceeding of
USENIX NSDIL

Apache Thrift. 2017. Apache Thrift. https://thrift.apache.org/

Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-
Balter, and Gregory R. Ganger. 2016. Tetrisched: Global rescheduling with adap-
tive plan-ahead in dynamic heterogeneous clusters. In Proceedings of EuroSys.
Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed,
and Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet Another Resource
Negotiator. In Proceedings of ACM Symposium on Cloud Computing (SOCC).
Yigian Xia, Rui Ren, Hongming Cai, Athanasios V. Vasilakos, and Zheng Lv. 2018.
Daphne: A Flexible and Hybrid Scheduling Framework in Multi-Tenant Clusters.
IEEE Transactions on Network and Service Management 15, 1 (2018).

Matei Zaharia, Dhruba Borthakur, Joydeep Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. 2010. Delay Scheduling: A Simple Technique for Achiev-
ing Locality and Fairness in Cluster Scheduling. In Proceedings of EuroSys.

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/Federation.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/Federation.html
https://thrift.apache.org/

	Abstract
	1 Introduction
	2 Pigeon Scheduler
	2.1 System model
	2.2 Task Scheduling

	3 Performance Modeling and Analysis
	4 Simulation Testing
	4.1 Parameter Settings
	4.2 Performance evaluation

	5 Performance Evaluation on EC2 Cloud
	6 Practical Considerations
	6.1 Master Failure Recovery
	6.2 Dealing with Heterogeneous Workers and Tasks with Assignment Constraints

	7 Related Work
	8 Conclusions
	9 Acknowledgments
	References

