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ABSTRACT

Cloud providers like the Alibaba cloud routinely and widely
employ hybrid storage nodes composed of solid-state drives
(SSDs) and hard disk drives (HDDs), reaping their respective
benefits: performance from SSD and capacity from HDD.
These hybrid storage nodes generally write incoming data
to its SSDs and then flush them to their HDD counterparts,
referred to as the SSD Write Back (SWB) mode, thereby
ensuring low write latency. When comprehensively analyzing
real production workloads from Pangu, a large-scale storage
platform underlying the Alibaba cloud, we find that (1) there
exist many write dominated storage nodes (WSNs); however,
(2) under the SWB mode, the SSDs of these WSNs suffer from
severely high write intensity and long tail latency. To address
these unique observed problems of WSNs, we present SSD
Write Redirect (SWR), a runtime IO scheduling mechanism
for WSNs. SWR judiciously and selectively forwards some
or all SSD-writes to HDDs, adapting to runtime conditions.
By effectively offloading the right amount of write IOs from
overburdened SSDs to underutilized HDDs in WSNs, SWR
is able to adequately alleviate the aforementioned problems
suffered by WSNs. This significantly improves overall system
performance and SSD endurance. Our trace-driven evalua-
tion of SWR, through replaying production workload traces
collected from the Alibaba cloud in our cloud testbed, shows
that SWR decreases the average and 99t"-percentile latencies
of SSD-writes by up to 13% and 47% respectively, notably
improving system performance. Meanwhile the amount of
data written to SSDs is reduced by up to 70%, significantly
improving SSD lifetime.
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1 INTRODUCTION

Large cloud providers have significant pressures to offer at-
tractive features and services to customers, while controlling
their datacenter costs. Most providers, such as Google[9],
Amazon[18], Facebook[16] and Microsoft’s online services[2],
have built their respective global and warehouse-scale dis-
tributed storage systems to uniformly support a myriad
of high-level online services. These cloud storage systems
provide data abstractions, such as Files, Blobs, Tables and
Queues, to enable the rapid development of new business
lines. Pangu [6] is such a large-scale storage platform underly-
ing Alibaba cloud with high-reliability, high-availability and
high-performance, supporting most Alibaba cloud services
including Table Store, MaxCompute, and AnalyticDB.

In order to achieve overall cost-effectiveness, cloud storage
systems have wholeheartedly embraced storage heterogeneity
within storage nodes[19, 29]. Solid-state drive (SSD) offers
higher IOPS and lower IO latency[7] than hard disk drive
(HDD) while the latter provides larger capacity at lower cost.
Therefore, storage nodes generally are deployed with different
types and numbers of SSDs and HDDs. To effectively reap
the write performance advantage of SSDs, a hybrid storage
node, first writes incoming data from frontend application
servers into SSDs, and then flushes them into HDDs. This
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is referred to in this paper as the SSD Write Back (SWB)
mode.

Observations from real production workloads of Pangu
indicate that many storage nodes supporting latency-critical
services experience a write-dominant 1O pattern. We refer to
these nodes as write-dominant storage nodes (WSNs) in this
paper. Specifically, 77%-99% of IOs in these nodes are writes.
This phenomenon stems from the fact that, to ensure high
reliability and availability, frontend servers always flush new
and updated data to the backend storage nodes as soon as
possible, while reserving local fast-storage to cache hot data
for user reads. In fact, backend storage nodes rarely serve
reads from frontend servers because the upper latency-critical
online services generally build their own application-aware
cache to enhance service responsiveness.

By holistically analyzing traces of production workloads
collected from Pangu WSNs, we come to the conclusion
that executing the SWB mode in WSNs leads to severely
harmful SSD overuse with high write intensity and long tail
latency. These SSDs experience high write intensity (e.g., an
average interarrival time of 62us) and large write volume
(e.g., 3 TB per day per disk) while the IO capacity of the
HDDs is severly under-utilized(e.g., 0.5 TB per day per
disk). Worse still, SSDs with high IOPS suffer heavy-tail
IO latency, due to the head-of-the-queue blocking by large
writes (e.g., 1IMB) and frequent garbage collections induced
by high write intensity. As a result, optimizing writes is
critically important, especially for WSNs where excessive
writes harm both performance and reliability of SSDs.

In this paper, we propose SSD write Redirect, or SWR
for brevity, a runtime IO scheduling mechanism for WSNs.
The key idea behind SWR is to strategically offload writes
intended for selected SSDs to HDDs while guaranteeing the
IO latency requirement. In other words, SWR, dynamically
redirects some or all incoming SSD-writes to HDDs based on
runtime conditions to exploit the underutilized IO handling
capacity and sequential nature of HDDs within WSNs. So
the IO burdens of SSDs can be significantly relieved.

The key runtime conditions for write redirection are write
size and IO queue length. Specifically, SWR redirects SSD-
writes of sizes exceeding a threshold to idle HDDs. The
latencies of such large writes may suffer as a result of being
executed in HDDs instead of their intended SSDs. However,
many small SSD-writes behind large writes in the IO queues
will no longer be blocked and can be completed quickly,
thus decreasing the average and tail latencies. SWR also
monitors the IO queue lengths of all SSDs and HDDs at
runtime and redirects SSD-writes on heavily-loaded SSDs
(i.e., with large queue length) to idle HDDs. This scheme
helps reduce the write intensity and GC-induced delays by
decreasing the GC frequency that is generally proportional to
write intensity. The threshold values of write size and queue
length which decide write redirection are initialized by the
storage characteristics and workload behavior of each WSN,
e.g., 99t percentile size of SSD-writes as the threshold value.
Once initialized, the threshold values can vary dynamically
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according to the current queue length of SSD, so that tail
latency can be reduced while guaranteeing average latency.
This paper makes the following contributions:

e We analyze detailed 1O characteristics of production
workloads from Pangu and gain key insights into unique
1O patterns in storage nodes of the cloud. We reveal
that the excessive write IOs under the SWB mode can
lead to severely harmful SSD overuse with high write
intensity and long tail latency.

e We propose SWR, a runtime IO schedule mechanism to
reduce excessive write and long tail problems of SSDs
in WSNs by redirecting SSD-writes to HDDs while
guaranteeing IO latency requirement.

e We design and implement a prototype SWR system
and evaluate the effectiveness of the SWR scheduling
mechanism. Evaluation driven by production workload
traces collected from Pangu show that SWR reduces
the total amount of data written to SSDs by up to
70%, alleviating wear-out of SSDs. Meanwhile, SWR,
effectively reduces both the average and tail latencies
of SSD-writes by up to 13% and 47%, respectively.

The rest of our paper is organized as follows. Section 2
provides the necessary background for the SWR research,
namely, the Pangu cloud storage system and WSN. Section
3 presents the Pangu production trace analysis to motivate
the proposed SWR. Section 4 describes our methodology for
the design and implementation of the SWR mechanism. We
evaluate the effectiveness of SWR in reducing wear-out and
improving write performance of SSDs in Section 5. Finally,
Section 6 reviews prior works most relevant to SWR, while
Section 7 concludes the paper with remarks on future work.

2 BACKGROUND

2.1 Pangu

Pangu is a hyper-scale and distributed storage system [2][18]
for Alibaba Cloud. A storage cluster in Pangu deploys more
than 10,000 servers, with a total capacity exceeding 1 EB. It
provides cost-effective and unified storage services not only
for Alibaba Cloud but also for other independent businesses
of Alibaba Group and Ant Financial[6], such as object storage,
cloud computing, etc. As a unified storage platform of Alibaba
Group, Pangu must minimize the cost of total ownership
and support multiple computing clusters while meeting QoS
requirements.

Pangu is a simple and scalable three-party architecture,
as shown in Figure 1. It consists of Application Servers
(AS), MetaServers (MS) and ChunkServers (CS). Application
Servers are storage clients and provide online services for
users. A subset of ChunkServers and Application Servers
together are generally partitioned into Business Zones, where
each Business Zone consists of a group of ApplicationServers
and ChunkServers. This provides a specific online service
(e.g., the Object Storage Service), avoiding multi-business
collocation and potential hardware resource contention. ASs
can access data in ChunkServers directly. Each file in Pangu
is divided into a series of Chunks distributed across multiple
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ChunkServers. Chunk is the smallest data management unit
with itsa size of up to 64MB. Each Chunk is allocated a
globally unique chunk ID. Each MetaServer has a global lo-
cation table that maintains the mapping relationship of files
to chunks and chunks to ChunkServers. MetaServers adopt
the ParallelRaft protocol[3] to achieve a fully distributed
metadata management with high load-balance, reliability
and availability. To facilitate access to applications in the
open source ecosystem, Pangu is compatible with HDFS. So
it enables seamless accesses to massive data and interactions
with other storage products of Alibaba Cloud.

—— Control
--------- ~
Business | | Business |
| Zone Zone Zone
________ A

f |r \|/
=q Elj [
1

~
i Business | |

ChunkServer @ MetaServer

Figure 1: The system architecture of the Pangu cloud storage. The
core base layer of Pangu consists of the Application Servers (clients),
MetaServers and ChunkServers.

Application
Server

2.2 Hybrid Storage

Large-scale cloud storage systems like Pangu demand ex-
tremely high end-to-end performance at low cost. To meet
this demand, the clouds increasingly embrace storage hetero-
geneity. They deploy variable types and numbers of SSDs,
which offer higher IOPS and lower IO latency[7], and HDDs,
which provide larger capacity at low cost, in each storage
node.

Table 1: The characteristics of disk types.

Disk Type SSD HDD
Interface PClIe PClIe SATA SATA
NVMe AHCI AHCI AHCI
Cost($/GB) 1.2-2.6 | 0.6-1.1 | 0.5-1.0 | 0.2-0.45
Ave. write lat.(us) | 20-100 | 30-200 | 30-200 | 10k-30k
Ave. read lat.(us) | 20-100 | 30-200 | 30-200 | 10k-30k
Max. throughput
(GB/s) 3 0.52 0.52 0.2

The performance characteristics of mainstream SSDs and
HDDs are listed in Table 1. The peak throughput of com-
modity SSDs reaches 3GB/s for the PCle type and 520MB/s
for the SATA type. The write 10 latency of 4KB is as low as
100us-200us. Generally, the high performance of SSDs also
means high cost. On the contrary, HDDs generally have a
high capacity/cost ratio. Further, the actual performance of
HDDs heavily depends on IO request size and access pattern.
The write throughput of HDD varies with requested block
sizes. We used fio to perform continuous and sequential writes
to the disk (a 4TB ST4000DMO005 HDD) with different write
block size. When the block size is larger than 16 KB, the disk
reaches its maximum throughput at 180MB/s. Morcover,
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Figure 2: The architecture and IO flows of hybrid WSN comprising
an SSD and an HDD Tier.

HDDs are notorious for their poor random IO performances
due to mechanical delays by seeking and rotating because
of a seeking latency of 9.5ms in average [27]. To reap the
write performance of SSDs, hybrid storage nodes first write
incoming data from frontend application servers into SSDs,
then integrate and flush them into HDDs. This write pattern
is referred to as the SSD Write Back (SWB) mode.

Compared to HDDs, SSDs have limited Program/Erase
(P/E) cycles and asymmetric read/write delays [30]. To avoid
fast and unpredictable wear-out, SSDs are limited in the
amount of external data written daily defined as DWPD
(Drive Writes Per Day) in practice. TBW (Terabyte Written)
is used to approximately measure SSD’s lifespan. Wear lev-
eling mechanisms ensure that writes are evenly distributed
over SSD cells. However, the total amount of data written
in an SSD is determined by the product of its cell count
and the maximal P/E cycles. A recent study [14] indicates
that the limited write endurance is a critical design issue in
SSD-based storage systems.

Additionally, out-of-place-write nature of SSDs necessi-
tates garbage collection (GC), an SSD performance killer.
It reclaims the invalid pages by moving valid pages to new
blocks and then erases the old blocks[17]. GC can block in-
coming reads/writes, resulting in performance instability and
long tail latencies. Therefore, recent studies [17, 31] indicate
that SSDs do not always deliver their raw performance, often
far from it.

2.3 Pangu ChunkServer

To take better tradeoff between performance and cost for
different applications, Pangu generally deploys ChunkServers
with different types and numbers of SSDs and HDDs.
Figure 2 shows typical 10 flows in the hybrid ChunkServers
in Pangu. IOs are categorized into internal and external for
both read and write. The external writes and reads come from
the frontend application servers through the datacenter net-
work. They consist of two types: external SSD-writes/reads
and external HDD-writes/reads. Both types of external writes
are explicitly launched by Application Servers. ChunkServers
perform the external SSD-writes to SSDs and then dump
data into HDDs in the background. The external HDD-
writes are directly written into HDDs without passing SSDs.
ChunkServers periodically flush their internal critical data
(e.g., local system metadata) from DRAM into SSDs in a log
manner to ensure crash-recovery. The logging writes actually
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Table 2: Trace characteristics. Traces are recorded from three different online services in Pangu: A, B, C. We select two A WSNs, two C WSNs,
and one B WSN. The SSD ratio is the number of SSDs to all disks deployed in a WSN. The ratio is further divided into three levels as High

(>33%), Mid (>10% and <33%), and Low (<10%).

. . Number of . . Avg. 10 Avg. Max.

Node type | SSD ratio(%) Time duration requests erte're;uest Read .re(;uest Write data | Read data i.utegnsity requist request
(hour) (millions) ratio(%) ratio(%) (GB) (GB) (us) size(KB) | size(KB)

Al High 22 36.7 77.2 19.2 1534 24 2163 56 22336

A2 Mid 15 28.5 77.5 5 794 408 1933 73 21664

B Low 10 66.9 97.2 0.9 9875 295 543 177 3092

C1 High 0.5 66 99.3 0.44 185 53 62.3 4.2 3841

C2 Mid 0.5 65.8 99.2 0.43 184 46 63.9 4.1 3827

invoke internal SSD-writes. The internal HDD-writes and
internal SSD-reads are caused by the dump operations that
migrate data from SSDs to HDDs.

2.4 Write-dominated Storage Nodes

Through production trace analysis detailed in the next sec-
tion, many ChunkServers in Pangu experience a write-dominant
workload behavior. We call these CSs WSNs (Write-dominant
Storage Nodes). 77%-99% of requests are writes in WSNs,
and the volume of data written in them is 2-3 orders of
magnitude larger than that of data read from them.

This phenomenon can be explained by the fact that the
frontend application servers absorb the vast majority of
reads by caching hot and time-critical data. Typical frontend
latency-sensitive online applications such as web applica-
tions, search engines or message services, generally have their
application-aware cache layer [16], which deploys fast storage
based on all SSD or large memory to serve user reads. Some
hot online-service applications employ multiple cache layers,
including Content Delivery Network (CDN)[10, 16, 25] to
effectively serve most and burst reads. Consequently, only
a tiny fraction of all read requests actually missed by the
frontend application servers need to be responded by the
backend ChunkServers in Pangu. Meanwhile, to ensure large
available caches, such applications also attempt to immedi-
ately flush all writes into Pangu and reserve adequate local
fast storage for hot data[3]. Therefore, Pangu offers a unified
data persistence platform for production data, replica data,
or the intermediate results in cloud computing. As a result,
many ChunkServers in Pangu must serve extremely frequent
and massive writes.

Note that in current networked storage systems like Pangu,
NVMe SSDs offer a bandwidth of 3.6 GB/s for sequential
writes, which nearly matches the bandwidth a 40GbE network
offers. This means that network latency is similar to 10
latency, and network may become a performance bottleneck
in cloud storage systems [5]. Therefore, ultra-low (us level)
IO latency in Pangu is not strongly desired.

3 TRACE ANALYSIS
3.1 Workload Traces

Studies on Cloud in general and its storage systems in par-
ticular to date lack real-world workload traces of production
cloud storage servers from large cloud service providers. To
gain meaningful insight into the IO characteristics of storage
nodes in Cloud, we trace real workloads from online Pangu
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Chunkservers. There are three representative Business Zones:
A (Cloud Computing), B (Cloud Storage) and C (Structured
Storage). For each online service, we trace all operations from
two nodes for A, two nodes for C, and one node for B as
representative.

These workload traces collectively amount to 264 million
request records with more than 13TB request data. Table 2
shows the high-level characteristics of these collected traces.
We observe that these storage nodes experience significant
dominated writes as writes account for more than 77%, 97%,
and 99% of all requests in A, B and C. Obviously, all of these
Chunkservers are WSNs.

These WSNs have different configurations in number and
interface type of their component SSDs and HDDs. Note
that inactive HDDs and SSDs in WSNs are not tracked in
the traces. The configuration difference is mainly a result of
application requirements and gradual deployment plans. B
node deploys the most HDDs for large capacity at low cost
so that its SSD Ratio is the lowest in all nodes. The SSD
Ratio of A1 node is higher than that of A2 node to ensure
higher storage performance.

TimeStamp: “2019-01-24 11:20:36.158678”
Operation: “SSDAppend”

Chunkld: 81591493722114_3405_1
SATADiskld: -1

SSDDiskld: 1

PhysicalLength: 16384

Offset: 56852480

Queueing delay: 76

10 delay: 213

Figure 3: An example trace record.

Figure 3 shows the key part of a typical trace record with
9 important fields: the Timestamp field contains the request
arrival time in the UTC timezone; Operation is the request
command (e.g., SSDAppend and WriteChunk); ChunkID is
the globally unique ID of each Chunk; DiskID shows the
requested destination disk; Offset indicates the offset of the
requested data in the Chunk; Length shows the amount
of data written or read; QueueSize is the current queue
length when requests complete; Waiting delay is the time of
request waiting in the queue; IO delay indicates the processing
time of requests in disks; The waiting delay and 1O delay
together constitute the write latency for a request. Some
other auxiliary fields in a record are irrelevant in this work
and are thus ignored.

Pangu achieves good load balance across Chunkservers like
Amazon S3[18] and Microsoft Azure[2]. This ensures that
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Figure 4: The request intensities, defined to be the number of requests
per hour/minute, on the Chunkservers as a function of time under A,
B and C.
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Figure 5: The number of requests and the amount of data written per
minute in SSD and HDD of C1.

all Chunkservers in a Business Zone have similar workloads.
Figure 4 shows that the request intensities on Chunkservers
varies over time under A, B and C. These three scenarios
exhibit significant workload variations. C' workloads have a
significantly high write intensity. To minimize intrusiveness
and negative performance impact to Pangu’s production
services, we had to capture relatively short-range traces for
the workload. These traces are still representative of the
longer-time workload behaviors. However, even at the troughs,
the request intensities are still quite high. Figure 5b and 5a
demonstrate how the request intensities on six SSDs and six
HDDs in C1 change over a 30-minute period of time. Figure
5d and 5c¢ illustrate how the written data intensities vary on
six SSDs and six HDDs of C'1 over a 30-minute time window.
The results show that both the request and written data
intensities are roughly equal across either SSDs or HDDs
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Figure 6: The proportions of different operations.

Table 3: The amount of data written to/read from one SSD or HDD
in different types of WSN by proportionally scaling to 24 hours.

Al A2 B C1 C2

SSD-writes(GB) | 138 | 575 | 3071 | 820 | 1027
HDD-writes(GB) | 0.1 3.7 555 384 355
SSD-reads(GB) 3.1 1.3 0.2 201 2.4

HDD-reads(GB) | 0.3 | 12.3 0.2 33.6 7.2

during this period. It means that WSNs achieve internal load
balance reasonably well. Therefore, the workload of one SSD
and one HDD can well represent their SSD-tier and HDD-tier
respectively in the WSN.

3.2 SSD Dominant-Write Behavior

WSNs under SWB mode ensure quick data persistency for
latency-critical online services. External-write data from fron-
tend application servers is first written into SSDs, and then
dumped to HDDs. Therefore, actual IO patterns in WSNs are
heavily correlated to their corresponding applications based
on Pangu. To better understand the write behaviors, we thor-
oughly investigate write operations, data written amount,
request size and request interarrival time.

Figure 6 shows the proportions of all types of operations.
First, the prevailing workload behavior in these five nodes is
dominant-write. 97-99% of requests are writes in C1, C2 and
B. The A set of nodes exhibit relatively lower write percentage
(i.e., 77%). We believe that the difference mainly comes from
their corresponding application requirements. We also observe
that more than 99% of the writes are external SSD-writes
in C1 and C2. A1 exhibits 42% external SSD-writes but
57% internal SSD-writes. B demonstrates 53% external SSD-
writes, 20% internal SSD-writes, but 27% external HDD-
writes. The second frequent write operation is the internal
SSD-writes. B prefers to use HDDs for cost-effective object
storage. Therefore, the percentage of different type writes
also depends on storage nodes. For these five WSNs, only
A set of nodes have more than 5% reads, of which most are
internal reads for the replica checksum. The external reads
are as rare as less than 2%.

The most important factor impacting the SSD lifespan is
the amount of data written [4]. We calculate the total amount
of data, including both internal and external writes, that is
written into one SSD of each type WSN by proportionally
scaling to 24 hours. The results are tabulated in Table 3. The
B node writes up to 1.25 terabytes to one SSD within 10
hours. On the contrary, the amount of reads generally is less
than 4GB in all WSNs except C'1.
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Figure 8: The request interarrival times CDF for different types of writes.

There are two main observations. First, the key insight
from the analysis is the prevailing problem of SSD overuse
in WSNs, which is detrimental to the lifespan and perfor-
mance of SSD. For example, assuming that an SSD in the
B node has a capacity of 500GB with an average lifespan of
300TB[8] TBW (Terabyte Written), it will wear out within 4
months under the write intensities of production workloads
underlying analysis. If the amount of data written to an SSD
each day is limited by DWPD, more SSDs or storage nodes
have to be added to meet the write volume requirement. This
will increase the overall cost proportionally. Second, HDDs
are underutilized in most of time, and we will analyze it in
Section 3.4.

Next, we investigate the distributions of request size and
interarrival time. Figure 7 shows CDFs of request size under
three types of write operations. External SSD-writes have
a wide range distribution of request sizes in three scenarios.
B has a relatively small write sizes where 90% are less than
1KB, while Al has large sizes with 756% being larger than
10KB. Internal SSD-writes have almost fixed data sizes, of
which 74% are 8KB in A2 and 99% are 4KB in other WSNs.
Similarly, the external HDD-writes have discrete and fixed
sizes, e.g., 512KB in almost all WSNs except A. Such fixed
write sizes could be caused by the threshold-based write-
trigger scheduling polices used by both the application servers
and Chunkservers.

Figure 8 shows CDFs of request interarrival times under
three write types. We find that internal SSD-writes are very
intensive, with 90% of the interarrival times being less than
0.25 ms in all WSNs. Moreover, external writes have a wide
range distribution of interarrival times for different node types.
External SSD-writes in node C have the highest intensity.
99% of the interarrival times are less than 1 ms, while that
in node A exhibit relatively low write intensities that 90%
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of them are more than 15 ms. On the contrary, most writes
to HDD have second-level interarrival times, meaning that
HDDs are very lightly loaded and remain idle most of the
time.

3.3 Write Performance

We now comprehensively analyze the write performance of
WSNs. We first analyze write latency. Figure 9 shows the
CDF of waiting delays and 1O delays for different write types
under the five WSNs.

Figure 9a, Figure 9b and Figure 9c show the IO delays for
external SSD-writes, HDD-writes, and internal SSD-writes.
We observe that 90% of the external SSD-writes are less
than 800us while 90% of internal SSD-writes are less than
100us. This is because the former have generally larger 10 size
than the latter. Figure 7a and Figure 7b show that over 75%
of external SSD-writes are of sizes one order of magnitude
larger than their internal SSD-writes in A set of nodes, which
directly results in the long IO delay of external SSD-writes.
Meanwhile, B and C have similar 10 delay distribution.

Figure 9d, Figure 9e, and Figure 9f show the waiting delays
for external SSD-writes, internal SSD-writes, and external
HDD-writes. The waiting delays of internal SSD-writes are
far shorter than their own external writes. For internal SSD-
writes in all nodes, 95% of waiting delays for the former are
less than 3us, with the maximum being lower than 2.5ms.
Whereas, 90% of waiting delays for the latter are almost 70us,
far longer than that of internal SSD-writes. Because when
two IO flows with different intensities execute concurrently,
the length of the queues can more adversely affect the flow
with a lower IO intensity (i.e. external SSD-writes) than a
higher IO intensity (i.e. internal SSD-writes) [26]. Therefore,
the external SSD-writes are severely affected by the write
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Figure 9: The distributions of IO and waiting delays for different types of writes.

Table 4: The average and maximum write latencies(in milliseconds)
for three types of operations in WSNs.

Node type External Internal External
SSD-write | SSD-write | HDD-write
Al 0.8/113.0 | 0.09/39.5 0.3/0.4
A2 0.3/94.1 0.1/9.2 19.2/31.0
B 0.1/31.8 0.05/14.4 1.3/415.7
C1 0.1/25.3 0.04/6.7 4.3/613.3
C2 1.0/302.0 | 0.09/184.1 | 6.9/774.8

intensities. Besides, the waiting delays are one order of magni-
tude larger than their IO delays, suggesting that are severely
overloaded.

As a supplement to Figure 9, Table 4 provides the maxi-
mum and average write latencies of three write operations. It
is found that the peak write latency is 2-3 orders of magnitude
longer than the average ones in all five WSNs. For example,
the gap between maximum and average latencies for external
SSD-writes are 318x and 313x in B and A2 respectively. This
is compelling evidence that writes to SSD suffer from a severe
long-tail latency problem.

In what follows, we endeavor to find the root cause of the
observed long-tail write latencies suffered by SSDs in WSNs.
Figure 10a and 10b plot the 90t"-percentile and average la-
tencies as a function of the queue length. The 90th-percentile
of request latency is lower than 100us without queuing. How-
ever, it becomes 2-3 orders of magnitude longer when the
queue length reaches 2. Consequently, an outstanding request
could cause long waiting delay for its subsequent requests.

To further understand the reason behind queue blockage,
Figure 11a shows the request-size distribution of the queue-
head requests which cause queue blockage. We observe that
the distributions have a wide range, both large and small
writes can cause blockage. First, for A1 and A2, at least 20%
of the blocked writes are more than 512KB. This percentage
is about two times larger than their original percentage in
all writes as less than 10% shown in Figure 7a. Second, small
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Figure 10: The 90" -percentile and average waiting delays of all types
of SSD-writes as a function of queue length from 0 to 10.

requests are also likely culprits for SSD queue blockage. 80%
of the blocked requests in B, C1 and C2 and 45% in A are
smaller than 4KB. Figure 11b further shows that 4KB, 16KB,
512KB, and 2MB blocked SSD-writes have long tails of 1O
delay. Garbage collections(GC) inside SSD can temporarily
freeze the SSD queue until their completion, leading to the
long-tail for all kinds of writes[17, 31]. A single GC blocks
the SSD controller, as a result of which all outstanding IOs
cannot be served[31]. The higher the write intensities (i.e.,
larger number of small requests in the queue) are, the more
frequently garbage collections will be triggered.
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quests that cause queue blockage.

Consequently, a long IO-delay request (i.e., due to large IO
or GC) can lead to queue blocking, which further lengthens
waiting delays for its subsequent requests.

3.4 Low Utilization of HDD

Table 3 shows that there is a great gap between the amount
of data written to SSD and that to HDD in all WSNs. For
instance, in A1, the amount of data written by external SSD-
write is 1380x larger than HDD-write, while such gaps in
A2, B, C2 and C1 are 155x, 5.5x, 2.9x and 2.1x, respectively.
This also implies very low HDD utilization, defined to be the
percentage of time an HDD is working within a given time
period. Specifically, Figure 12 plots the average utilizations
of HDDs in all five WSNs over a 10-hour period. We observe
that HDDs are generally in very low utilization states. For
example, the HDD utilization in Al is far less than 0.1% on
average, while none in other WSNs is more than 14.3%. The
SWB mode causes SSDs to be heavily loaded (overused) and
become bottlenecks, while the HDDs are grossly underutilized.
This is because SWB prevents HDDs from directly serving
requests due to their high IO latency.
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Figure 12: The HDD utilization in the five WSNs.
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However, we found that the HDD performance is not as
unacceptable as one might expect, raising the question of
whether HDDs should directly serve some appropriate re-
quests. Figure 9a and 9c reveal that the IO delay experienced
by about 85% of HDD-writes is only 10 times longer than
that experienced by SSD-writes in the C'1, C2 and B nodes.
The SSD and HDD performances in 10 delay in A1 are al-
most the same. Meanwhile, Figure 10 illustrates that the tail
latency of write requests can be orders of magnitude longer
than the average in a long-queue state. In other words, the
actual write delay of SSDs with very heavy workload can be
close to that of HDDs with very light load. This suggests that
we should exploit the underutilized HDDs to serve some of
the SSD-writes without significant performance degradation
when SSDs are heavily loaded.

3.5 Dump

In the SWB mode, the dump operation is an indispensable
internal operation that migrates data from SSDs to HDDs.
When dump is executed, both SSD-reads and HDD-writes are
performed, which will occupy the request queues of HDDs.
To understand the impact of the dump operation on the
service quality of WSNs, Figure 13 depicts the CDF of the
disk queue length caused by dump. We observe an interesting
fact that in all WSN nodes, more than 95% of the dump
operations do not cause any queue blocking since the queue
length is always less than 1 in these cases. This is because
Pangu uses an efficient idle-time dump strategy, in which the
dump operation is triggered only when there is few requests.
In this way, even if the dump operation moves terabytes of
data and consumes 10 bandwidth for both SSDs and HDDs,
it has negligible effect on user requests.
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Figure 13: The queue length CDF of dumping.

3.6 Summary

We find that:(1) In WSNs, SSDs overuse is very prevalent,
which is detrimental to both lifespan and performance of
SSDs. Meanwhile, HDDs are underutilized in most of time. (2)
Writes to SSD suffer from a severe long-tail latency problem,
which is caused by large IO or GC. (3) The dump operation
has negligible effect on user requests.

4 DESIGN OF SSD-REDIRECT

In this section, we propose SSD Write Redirect, or SWR, a
runtime IO scheduling mechanism for WSNs. The goal of
SWR is to relieve the SSD write pressure by leveraging HDDs
while ensuring QoS. The architecture of SWR is shown in
Figure 14. The SWR algorithm is described as Algorithm
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1. SWR monitors all request queues of SSDs and HDDs in
WSNs at runtime. When external and internal SSD-writes
arrive, the scheduler determines whether an SSD-write should
be redirected. If yes, the scheduler determines a suitable HDD
as the destination for the redirected write. If all HDDs have
waiting requests, the redirection is paused and the request is
still written back to its original SSD. This strategy is based
on the observation that SSD-writes suffer from dramatically
long tail latency upon workload bursts or heavy GCs. The
queue length can be 8-10 times longer than its average in
this case.

External Internal
SSD-writes _,r _; SSD-writes
N\
/ ______ T / _________ ~

10 scheduler
Dynamical Redirecting

Strategy

Request
queue

SSD

SSD

HDD HDD

Log file in HDD
Figure 14: Architecture of SWR. It monitors all queues of SSDs and
HDDs. The SSD-writes meeting the conditions are redirected to ap-
propriate destination HDDs.

Algorithm 1 SWR algorithm

Input: Request i operation: opi, Request 1 size: sizej;
SSD queue length at time t: lggp (t), HDD queue length
at time t : lypp (t);
Initial size value Smax, Step value p, SSD queue length
threshold L;

Output: flagi(True: to SSD queue, False: to HDD queue);

1: Set the size threshold value of S to Syax

2: for the head request i in the global write queue do

3. if op; is HDD-write then

4 flag; is False

5 else

6 if lssp (t) exceeds L then

7: calculate S according to Symax and p

8 end if

9: if lypp(t) is 0 and size; is higher than S then

10: flag; is True

11: else

12: flag; is False

13: end if

14:  end if

15:  Send the request i to the corresponding queue accord-
ing to flagy

16: end for

SWR simply redirects an SSD-write to an idle HDD when
the request size s is larger than a size threshold S. Further-
more, SWR dynamically adjusts the S value according to
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current queue length lgsp (t) of SSDs. When the lgsp (t) of
an SSD exceeds a threshold L, this SSD is considered over-
loaded and needs to reduce its write pressure by redirecting
SSD-writes to idle HDDs.This will not sacrifice the average
latency but slightly or moderately increase the latencies of
a few of the redirected large-writes. Besides, the redirected
writes are written to the destination HDD in a log manner to
minimize write latency, because HDDs are friendly to large
and sequential writes. In other words, both SSDs and HDDs
work cooperatively to handle the write bursts.

From our earlier analysis, each WSN deploys different stor-
age configuration and experiences diverse workloads. There-
fore, SWR is a WSN-dependent and dynamical 10 scheduler.
The initial size-threshold is set to a maximum (upper limit)
value Smax- Smax mainly affects the amount of redirected
data and is set to a percentile (e.g. 99t™) of SSD-writes sizes
in each WSN. The queue length threshold L is set to value
such that when SSD queue length exceeds L, the write la-
tency of blocked SSD-writes with Sy qx size is higher than
the average 10 delay of sequential HDD-writes. This value
is determined from the measurements done in practice. It
ensures that redirected SSD-writes do not lengthen their
latencies significantly. L can practically reflect the impact of
workload behaviors and hardware configurations. L can also
be adjusted according to performance profiling of the real
systems.

To better handle workload bursts, when the queue length
is long, more incoming writes with a lower size-threshold
S are preferred to be redirected to idle HDDs. To do this,
when the lssp(t) of an SSD is always higher than L, SWR
gradually decreases the size threshold S with a fixed step
value p. p deals with burst-intensive requests and tries to
redirect more requests to HDDs. The step value p is set to
be proportional to Smax, €.g., 1/4. The threshold reduction
ceases as soon as the lggp (t) value returns back to L. Finally,
in order to make full use of SSD, once the lssp (t) becomes
0, it will be reset to the initial value.

Logging HDD-writes. To take full advantage of HDD se-
quential write performance, SWR executes redirected HDD-
writes to a log file in an append-only approach. The log file is
a device file that only stores the data field of HDD-writes in
an append-only manner. We further use DIRECT_IO [21] to
accelerate the data persistence process. Generally speaking,
this append-only manner enhances write performance by sac-
rificing reads. Fortunately, for WSNs, external HDD-reads
are very rare and HDDs are extremely lowly utilized. Besides,
we also periodically write the logged Chunk data to their
corresponding Chunks in HDDs, and then clear the log file.

Log Metadata.To manage all Chunks in the log file, we
design a metadata structure that records and tracks the
Chunks at request-level granularity. We choose a hash table
as the key data structure because it is query friendly. To
manage data at the granularity of Chunks, the hash table
uses the Chunk ID field of a request as the hash key, and
performs a single linked list to store the metadata of requests.
Each list node represents an update request to this Chunk
and records four fields: the length of the request data (Data
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Figure 15: The average latencies of writes per minute in the original and replaying cases changes over time.

Length), the location of data that is persisted in the log file
(Physical offset), the position of data in the Chunk (Logical
offset) and the request arrival time (Témestamp) to keep the
sequential order of requests.

5 EVALUATION
5.1 Experiment Setup

We run experiments on a server with two Intel Xeon E5-
2696 v4 processors (2.20 GHz, 22 CPUs) and 64 GB of
DDR3 DRAM. From trace analysis in Section 3, we observe
that SSDs among five WSNs exhibit significant performance
diversity. The peak throughput of SSD-writes in B, C'1 and
C2 reach 1GB/s, and 0.5GB/s in A1 and A2. To reflect such
performance variations, we choose two types of experimental
SSDs with different performance levels, i.e., a 256 GB Intel
600p NVMe-SSD with 0.6 GB/s peak writes and a 256GB
Samsung 960 EVO NVMe-SSD with 1.1GB/s peak write.
HDDs are 4TB Seagate ST4000DM005 HDD with 180 MB/s
peak write.

Considering that all SSDs in a WSN experience nearly
identical workload behaviors as discussed in Section 3, we
choose one SSD trace and one HDD trace as presentative
from each type of WSNs. We replay one-hour traces on our
server, and record the actual performance results as the base-
line in the SWB mode. Figure 15 shows the performance
comparison (i.e., average write latency per minute) between
the replay results and their corresponding original trace re-
sults. Although there exist nearly constant performance gaps
due to different hardware deployment between the original
and test servers, the performance-varying trend tracks both
cases very closely for each workload. Therefore, we believe
that the replay approach is viable and fair to the evaluation.

SWR 10 scheduler has three key parameters: the maximum
block size threshold Sy qx, the SSD queue length threshold
L and the reduction step value p, which are explained in
Section 4.

First, we select the 99t-percentile block size of SSD-writes
(i.e., external and internal SSD-writes) as the initial block
size threshold S qx. For instance, Symax is 324KB for the
B node and 32KB for C1 node. This is because the redi-
rected writes should be tiny in number and large in request
size. Consequently, only a very small number of writes may
see their latencies increased moderately so that the HDD
will very unlikely be overloaded. Large writes also efficiently
leverage HDD’s high sequential write throughput. Besides,
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Table 5: The amount of redirected writes data and requests with
SWR.

Al A2 B C1 C2
SSD data written
with SWB(GB) 7.3 | 24.1 126 11.1 14
SSD data written J
with SWR(GB) 2.5 | 134 | 37.8 6.2 7.7
Redirected =1y o1 o | g7 | 2.0 |20
requests(%)

we found that the large 10 requests blocking the queue typi-
cally account for only 1.1% of all requests. As a result, the
99tN_percentile size is a sensible choice. Second, the selection
of the queue length threshold L has been explained in the
previous section. The value of L is set to 6 for Al, 5 for A2,
30 for B, 40 for C'1 and 57 for C2. Third, when the current
SSD queue length continuously exceeds L, SWR will decrease
the block size threshold S by the reduction step value p in

proportion to S , namely, p ={0, %, %, %,1}.

5.2 SSD-write Reduction
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Figure 16: Reduced data amount of SSD-writes in SWR.

The design goal of SWR is to reduce the amount of data
written to SSD, significantly mitigating wear-out of SSDs and
decreasing SSD deployment requirement for cloud storage.
We measure the amount of SSD-writes data in each node
with SWB (baseline) and SWR respectively for comparison
purpose. Figure 16 shows that SWR effectively reduces the
amount data written to SSD, by 70% in B and about 45%
in the other four nodes, compared to SWB. In addition, we
observe that p has no effect on the write reduction. This is
because only the bursty cases which are very rare can trigger
the adjustment of S.

Table 5 compares the amounts of data written to SSD
with SWB and SWR and reports the percentage of writes
redirected by SWR. By redirecting less than 2% write requests
from SSDs to HDDs, SWR is able to reduce 44%-70% of the
data written to SSD. It also means that compared with
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Figure 18: The 99tM-percentile write latency for WSNs of SWR (Normalized to SWB).
the SWB mode, SWR may indirectly increases the SSD reported here is actually grossly overestimated in this experi-
lifetime by up to 70%. Because an SSD’s lifespan is directly ment where redirected SSD-writes are written to exactly one
proportional to the amount of data written to it. HDD instead of tens of HDDs in the B node.

Figure 18 plots the 99t"-percentile write latency of three
write operations with SWR. Compared with the average
5.3 Write Performance latency, SWR has shown a significant and consistent positive
effect on the tail latency performance. In Figure 18a through
18¢, the 99t"-percentile write latencies of external SSD-writes
with SWR, are reduced by up to 37% for Al, 47% for A2,
44% for B, 12% for C1, and 14% for C2. Similarly, the tail
latencies of internal SSD-writes are decreased obviously.
However, the 99t"-percentile write latency differences of
external HDD-writes between SWR, and SWB are bigger
than that of the average latency. The tail latency with SWR,
is nearly three times that with SWB in B, from 66 ms to 160
ms. This result suggests that the HDD competition between
external HDD-writes and redirected SSD-writes greatly ag-
gravates the tail latency performance of HDD. However, the
HDD-writes competition can be significantly alleviated by
forwarding most of these writes to the remaining tens of
HDDs in node B. To verify this approach, we add another
HDD to relieve the IO burden of the single HDD. As seen in
Figure 19, both the average and 99t"-percentile write latency
decrease dramatically.

We measure the average and 99t"-percentile write latency

with SWB and SWR in five WSNs. We take the SWB mode
as the baseline and present the SWR performance normalized
to that of SWB. We measure the average and 99" -percentile
tail of request write latency for each type of write operations
to show the effect of SWR on the write performance. SWR
is shown to reduce the average and 99t"-percentile latencies
of all SSD-writes by up to 13% and 47% respectively.

Figure 17 shows the average write latency for each opera-
tion (except external HDD-writes in A set because they have
less than 3 records in one hour) with SWR. We find that in
almost all nodes, the performance differences of external SSD-
writes between SWR and SWB are application-dependent
and relatively small (i.e., between -10% and +13%). It in-
dicates that SWR does not significantly affect the average
latencies of WSNs.

Figure 17a, 17b and 17c show that, in A1, A2 and B, the
average write latencies of internal SSD-writes with SWR
are reduced by up to 52%, 11% and 19%. Because SWR
reduces waiting delays for internal SSD-writes by redirecting

1.0

external large 10 writes. In the other two WSNs with SWR, >

the average write latencies of internal SSD-write are nearly % 08r s S /_//'/

the same as SWB. ] E —-— Average
Figure 17¢ shows that SWR can almost double the write ol 99™-percentile

latency of HDD-writes in B, from 5ms to 9.3ms. This is be- g

cause the HDDs in B are much busier than in other WSNs. S o2r

Figure 6 shows that the external HDD-writes in B account 0.0 18 1a 12 1

for much higher percentage of all external writes than other p

nodes. Therefore, those SSD-writes redirected to HDDs by . h . .
Figure 19: The average and 99'"-percentile write latency of External

SWR will C,O mpete W,lth the original externa',l HDD_Wr,lt?eS’ HDD-Writes of SWR scheduling upon two HDDs in node B (Normal-
thus increasing the write latency. The HDD write competition ized to SWB)
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Additionally, we also find that, the change of p has a sig-
nificant impact on the 99t"-percentile tail latency, especially
for internal SSD-writes. Based on our earlier analysis, when
the blocked requests are internal SSD-writes which are small
and intensive, the block size threshold S decreases faster as
p increases.This raises the possibility of redirecting more
blocked internal SSD-writes. Therefore, a high value of p is
actually beneficial for intensive and small requests, resulting
in improved tail latency of internal SSD-writes. In contrast,
p does not dramatically affect the performance of external
SSD-writes, since it has a wide range of size distribution.

To better understand the latency of redirected writes (e.g.,
external and internal SSD-writes) with SWR, Figure 20 shows
the write latency increases of the redirected writes in average
and the 99'M-percentile tail latencies. The relative latencies
in these two cases are increased by up to 8 and 11 times
respectively, compared to their original SSD-writes under
SWB, due to the relatively long write-latency of HDDs. In
the worst case, the average latency of such a few writes (0.7%)
in B can increase from 0.94 ms with SWB to 7.29 ms with
SWR, of which both the value and percentage are lower than
the SLA objectives (e.g., 50ms at the average [13]) in clouds.

In summary, SWR provides significant benefits in reduc-
tions of both data written to SSDs and tail-latency. These
benefits come at the expense of a tiny percentage of writes
(up to 2% as shown in Table 5) whose latencies are increased.
However, such a cost is arguably quite acceptable and neces-
sary because it trades for vastly increased SSD performance
and lifespans without violating the SLA. Additionally, the
redirect conditions can also be adjusted, e.g., a larger size
threshold and a longer queue length, to effectively reduce the
number of redirected writes but with decreased benefit on
reducing data written to SSDs. The cloud administrators or
users can determine the tradeoff.

6 RELATED WORK

To our knowledge, no prior work presents the detailed write
behavior analysis on hybrid storage nodes in production
clouds. Our work makes up this research field. Nevertheless,
our work is related to the following efforts. Next, we briefly
discuss related work on hybrid storage and tail latency in
storage systems.

Hybrid storage. Previous SSD-HDD hybrid designs mainly
focus on using SSD as a cache layer [2, 10, 11, 32]. Griffin
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[23] employs HDDs as a write cache for SSDs to extend SSD
lifetimes. Ursa [12] further uses SSDs for primary storage and
HDDs as backup. SWR. considers SSDs as write buffer while
directly and selectively writing data into HDDs according to
runtime disk queues.

Tail latency in storage systems. Several works improve
read tail latencies [20, 24] by cache and data replication.
RobinHood[1] repurposes the existing cache layer in the mul-
titier system to directly address request tail latency by dy-
namically partitioning the cache. Earlier works [22, 28, 33]
ensure latency SLOs using centralized components and/or
complex modeling. [15] manages tail latency of datacenter-
scale file systems. SWR focuses on write tail latency within
WSNs and designs disk queue scheduling at runtime.

7 CONCLUSION

Hybrid storage nodes play a critical role in providing high
performance and low cost for cloud providers. However, the
behaviors of these nodes are not fully understood in real
production clouds. In this paper, we analyzed real production
traces from Alibaba Pangu, and found that some hybrid
storage nodes have write-dominated workload behaviors. We
revealed that current request serve mode in such nodes leads
to SSD overuse and long-tail latency. Based on our findings,
we proposed an IO scheduling mechanism and performed a
trace-driven evaluation, which selectively forward large SSD
write requests to HDDs and dynamically optimize for small
and intensive burst requests.
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