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Abstract—Key-value (KV) stores based on multi-stage structures are widely deployed to organize massive amounts of easily

searchable user data. However, current KV storage systems inevitably sacrifice at least one of the performance objectives, such as

write, read, space efficiency etc., for the optimization of others. To understand the root cause of and ultimately remove such

performance disparities among the representative existing KV stores, we analyze their enabling mechanisms and classify them into two

fundamental models of data structures facilitating KV operations, namely, the multi-stage tree (MS-tree), and the multi-stage forest

(MS-forest). We build SifrDB, a KV store on a novel split forest structure, that achieves the lowest write amplification across all

workload patterns and minimizes space reservation for the compaction. To mitigate the read amplification inherent in MS-forest, we

introduce a bloom filer mechanism based on Sorted String Tables (SSTs). Furthermore, we also present a highly efficient parallel

search approach that fully exploits the access parallelism of modern flash-based storage devices to substantially boost the read

performance. Evaluation results show that under both micro and YCSB benchmarks, SifrDB outperforms its closest competitors, i.e.,

the popular MS-forest implementations, making it a highly desirable choice for the modern KV stores.

Index Terms—Key-value, multi-stage, LSM-tree, parallel search
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1 INTRODUCTION

KEY-VALUE (KV) stores have become a fundamental com-
ponent of modern storage systems supporting data-

intensive applications. Most of KV stores are implemented
based on multi-stage structures, such as LevelDB [1],
RocksDB [2], Cassandra [3], BigTable [4], HBase [5], LSM-
trie [6], PebblesDB [7], ForestDB [8], SlimDB [9], etc. Multi-
stage structures aggregate small random writes in memory
and write them to hierarchical storage levels as a set of
sequential logs that are organized as Sorted String Tables
(SSTs). The data in the lower stage are compacted into the
higher stage with increasing capacity. To accelerate lookup,
multi-stage structures maintain one or multiple logical
indexing B-trees in each stage. Multi-stage structures are
efficient for block devices including both HDDs and
SSDs [10], [11], [12]. However, our in-depth empirical study

reveals that existing implementations generally trade off at
least one performance objective in favor of the optimization
of others, resulting in large disparities in performances of
writes, reads, and space efficiency.

To understand the root cause of and ultimately remove
such performance disparities among the representative
existing KV stores, we analyze their enabling mechanisms
and identify two main structure models, namely, the multi-
stage tree (MS-tree) structure that maintains one global logi-
cal index tree in each stage, as represented by LevelDB, and
the multi-stage forest (MS-forest) structure that allows mul-
tiple logical index trees with overlapped key range in each
stage, as typified by the size-tiered compaction in Cassandra
(or Size-Tiered for brevity). In general, Size-Tiered has the
advantage of high data ingest ratio but requires extra-large
preserved space on compacting, while LevelDB is more effi-
cient for reads and runtime space requirement.

With the knowledge and insight acquired from the theo-
retical and experimental analysis based on our proposed
MS-tree/forest classification in Section 2, we build a KV
store, called SifrDB, on top of a novel split forest structure1

to address the existing problems from the perspectives of
three important performance objectives, i.e., write, read,
and space efficiency.

Specifically, SifrDB performs compaction by amethod sim-
ilar to that used in the stepped-merge [13] or the Size-
Tiered [14] implementations that are popular in modern
large-scale KV stores [3], [4], [5], to leverage the advantages of
MS-forest for randomwrites. SifrDB splits the entire-stage KV
pairs into a series of fix-sized Sorted String Tables (SSTs) with
their own internal index, referred to as the split storing in this
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paper, so as to easily and efficiently detect key-range overlap-
ping to enable sequential write optimization. Although the
MS-tree implementations have adopted the split storing
approach, to the best of our knowledge, SifrDB is the first that
applies this approach to theMS-forest model.

Furthermore, to harness the advantages of the MS-forest
while avoiding its disadvantages. SifrDB employs several
optimization techniques. First, An SST-level bloom filter
mechanism is designed to reduce the cost of searching SSTs.
Second, we design a novel parallel-search mechanism for
SifrDB to fully exploit the access parallelism of SSDs.
Finally, an early-cleaning technique is proposed to ensure
that the runtime space requirement for compaction is kept
at a minimal level, which solves a serious problem suffered
by the Size-Tiered [15]

In summary, this paper makes the following contributions:

� We present MS-tree/forest classification for existing
KV implementations based on multi-stage structure,
and then analyze their structural advantages and
disadvantages experimentally.

� We propose a new multi-stage structure, SifrDB, to
combine the advantages of MS-tree/forest structures.
We also design several techniques, as early-cleaning,
SST-level bloom filters, and parallel-search mecha-
nism, to avoid negative effects of the forest structure.

� We implement SifrDB based on LevelDB. Evaluation
results show that SifrDB outperforms the MS-forest
implementations (i.e., Size-Tiered and PebblesDB)
consistently in both microbenchmarks and YCSB,
while achieving 11� higher throughput than the MS-
tree implementations (i.e., LevelDB and RocksDB) in
randomwrites. In a data store with lowmemory pro-
vision, which has become a trend in the cloud
store [16], [17], SifrDB exhibits the best read perfor-
mance among all the implementations.

The rest of the paper is organized as follows. We intro-
duce the background and MS-tree/forest classification in
Section 2, then describe the motivation in Section 3. We

further present and evaluate SifrDB in Section 4 and Sec-
tion 5, respectively. In Section 6 we discuss related work
and conclude in Section 7.

2 BACKGROUND

2.1 MS-Tree/Forest Classification

Multi-stage structures batch random writes in memory and
sequentially write them to storage organized as hierarchy of
stages with exponential growth capacity. Each stage com-
prises one or multiple Sorted String Tables (SSTs) that con-
tain a sorted sequence of key-value pairs and a B-tree-like
storing structure, which is introduced by BigTable [4] and is
a simple but efficient mechanism for block storage devices.
An SST is always stored as an immutable file and usually
consists of two parts: the body composed of sorted KV
strings and the tail containing the index data built on top of
the sorted key-value strings. Multi-stage structures further
maintain one or multiple logical indexing trees upon SSTs in
each stage to locate requested keys. A logical index tree and
its indexing SSTs are collectively referred to as a logical tree
in the rest of the paper unless specially noted otherwise. The
key ranges of the SSTs within the same tree do not overlap.

Next, we introduce the MS-tree/forest classification that
reveals the essential properties of the existing popular KV
store implementations. It is these properties that help
anchor our proposed research.

Fig. 1 illustrates a taxonomy of popular multi-stage
implementations under the MS-tree/forest classification.
The MS-tree model means there exists only one tree in each
stage. The logical index tree within it is used to precisely
position a query key to a candidate SST. In contrast, in each
stage of the MS-forest model there exist multiple indepen-
dent trees with overlapped key-range SSTs. It means multi-
ple SSTs in a stage could involve a target key.

MS-Tree Model. MS-tree model originally is introduced as
the log-structured merge-tree [18]. For the MS-tree model,
in each stage only one sorted index tree is allowed and a
compaction on a stage Si merge-sorts the tree in Si with the

Fig. 1. A taxonomy of the popular multi-stage implementations under the MS-tree or MS-forest model. While rewriting in the MS-forest implementa-
tions only takes place across stages, it happens both across stages and within each stage in the MS-tree implementations (w1 indicates data is writ-
ten across the stages, and w2 indicates data is written within a stage).
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tree in Siþ1, and writes the resulted new tree to Siþ1. In other
words, data in the MS-tree model is re-written not only
across the stages (w1 in Fig. 1), but also within a stage (w2 in
Fig. 1). For example, in the MS-tree model demonstrated in
Fig. 1, when S1 is full, the compaction process merge-sorts
the tree in S1 and the tree in S2 to produce a new tree that is
written to S2, and the two trees that participate the merge
are deleted. After the compaction, S1 is emptied and S2

becomes larger.
MS-Forest Model. For the MS-forest model, multiple trees

with overlapped key-range are allowed in each stage (in
Fig. 1 each stage allows two trees), and a compaction on a
stage Si merge-sorts the multiple trees in Si to a new tree
that is directly written to Siþ1. Therefore, data in the MS-for-
est model is re-written only across the stages (w1 in Fig. 1).

The fundamental virtue of the MS-forest model is that it
incurs much lower write amplification than the MS-tree
model. However, the latter is more efficient for reads, as
will be detailed in the next section (Section 3) together
with the popular multi-stage tree/forest variants. The MS-
tree/forest classification not only indicates a high-level
design preference, but also helps pinpoint in benchmark
results the individual impacts of the implementations. For
example, VT-tree [19] builds on top of a MS-forest model
and uses a stitching technique to reduce write amplifica-
tion. Using the classification, we can clearly figure out
which part of the performance improvement in the bench-
mark result is from the structure effect and which part is
from the stitching technique.

2.2 Existing Implementations

Many existing MS-tree and MS-forest implementations
often use some mechanism to divide each logical tree into
SSTs in different ways to adjust the granularity of compac-
tion. These mechanisms also have a great impact on the
space requirement for compaction operation (specifically
discussed in Section 3.3). In this subsection, we just focus on
a split mechanism in MS-tree and a partition mechanism in
MS-forest. We called the two implementations as called Split
Tree and Partitioned Forest.

Split Tree. Split Tree is a common MS-tree based imple-
mentation that employs a split approach to divide the data
in each tree into a series of fix-sized SSTs with exclusive key
ranges, such as LevelDB [1].

LevelDB is an MS-tree based implementation that
employs the split mechanism to store the trees, where each
tree is stored as independent SST files with a global index
used to position a query key to a candidate SST. LevelDB
has two salient advantages over the latter by adopting the
partial merge. After selecting an SST in a stage during com-
paction, LevelDB first determines which SSTs are over-
lapped in the next stage. If not, the SST is pushed to the
next stage without rewriting its data by only updating
the global index. As a result, LevelDB is optimized for
sequential workloads. This is useful for some special work-
loads, such as the time-series data [20] collected by a sensor.
RocksDB [2] is based on a version of LevelDB and has done
many optimizations on it. Although the current version of
RocksDB can already support switching between MS-tree
and MS-forest models in each stage, we only discuss the
MS-tree version of RocksDB, which has many same features

with LevelDB, including the definition of SST and compac-
tion way.

Partitioned Forest. Partitioned Forest is a common MS-for-
est based implementation that partitions the trees in each
stage to a set of non-overlapped key ranges and the compac-
tion on a stage only merges the data within a target key
range into a new SST. Compared to merging all the trees in
one stage for a compaction, partitioned forest has a smaller
compaction granularity, and reduces time and space cost in
each compaction operation.

LSM-trie [6] is the first implementation of this kind and
uses the hashed prefix as the partition boundary to build a
trie index. ForestDB [8] also uses hash prefix to partition
and combines the advantages of trie and B+tree to optimize
the long key. Using hashed prefix as the edge of the parti-
tion guarantees the fairness of the query, but also invalid-
ates the range query operation.

PebblesDB [7] proposes to use the real keys as the parti-
tion boundaries to improve range query. However, since
the compaction in PebblesDB generates SST files with strict
respect to the boundaries, an SST file is created even only
one key falls into a partition. As a result, PebblesDB produ-
ces SST files with variable and unpredictable sizes that can
be quite small, hence introducing I/O overheads on the
block storage [21], [22].

3 MOTIVATION

In this section, three key properties are used to characterize
the holistic performance in a multi-stage structure as write
performance, read performance and space requirement. We
analyze these properties to understand the intrinsic advan-
tages and disadvantages of the MS-tree/forest classification
above. By reviewing and analyzing the pertinent implemen-
tation features of the most representative multi-stage based
KV stores, we are motivated to build SifrDB to improve
holistic performance in a multi-stage structure.

3.1 Write Amplification

Reducing write amplification is the most important research
objective for the multi-stage structures. In a typical write
process, a user sends data (i.e., user data) to the KV store
application that then persists a version of that data (i.e., app
data) to the underlying storage system. However, the appli-
cation may purposefully rearrange the data on the storage
periodically (e.g., compaction) and generates another kind
of app data, hence amplifying the write traffic relative to the
user data. The ratio of the size of the app data to that of the
user data is called write amplification, which not only
adversely affects the write performance, but also impacts
the lifetime of the flash-based storage devices.

MS-Tree Model. In MS-tree, when a stage Si is full, a com-
paction process is triggered to merge its tree to that on the
next stage Siþ1, which entails rewriting the content of the
tree from stage Si to stage Siþ1 as well as rewriting the con-
tent of stage Siþ1’s existing tree. After a number of compac-
tions that move data from Si to Siþ1, Siþ1 becomes full,
which triggers a compaction process to merge Siþ1 to Siþ2.
This process repeats itself iteratively from the top stage all
the way to the bottom one. As a result, while the user data
is sent by the user only once, this data is written multiple
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times in each stage by the MS-tree based application, caus-
ing significant write amplification.

MS-Forest Model. The MS-forest model, which has its
roots in the stepped-merge approach [13] that serves as an
alternative structure to MS-tree, allows multiple trees to
coexist within each stage. A compaction on a full stage Si

merges the multiple trees in this stage to produce a new
tree that is directly written to the next stage Siþ1 as an
additional tree, without interfering with the existing trees
of Siþ1. That is, in MS-forest, the same data is written only
once in each stage, hence incurring lower amplification
than the MS-tree model.

Generally, for both the MS-tree and MS-forest models,
the first stage’s capacity c1 is predefined and other stages’
capacities increase geometrically by a constant growth factor
f . Assuming there are N stages and the last stage is full, if

we denote the size of dataset as D, since D ¼ c1 � fN�1
f�1 , we

get N � log f
D
c1
þ log fðf � 1Þ, i.e., N ¼ OðlogfDÞ. Because of

the geometric increase of the stage capacities, the number of
rewritten times of the data in the last stage can approxi-
mately represent the overall write amplification. For MS-
forest, the data in the last stage has been written once in
each stage, leading to a write amplification of N , or logfD.
For MS-tree, the data has been written f

2 times on average in
each stage,2 incurring a write amplification of f

2 �N , or
f
2 � logfD.

The partial merge mechanism used in LevelDB (i.e., only
selecting an SST instead of the whole tree to merge) based
on the split tree does not influence the write amplification
because the ratio of the re-written data to the merged data

(re-written ratio) does not change. For example, assuming
the existing data in Siþ1 is k times larger than that in Si, a
full merge will cause a re-written ratio of kþ 1. If both Si

and Siþ1 are split to SSTs, for each SST of Si there will be k
overlapped SSTs in Siþ1, and merging an SST causes a re-
written ratio of kþ 1, the same as the full merge.

Our experiment result in Fig. 2a, which demonstrates
the write amplifications of LevelDB (representing the MS-
tree model) and Size-Tiered (representing the MS-forest
model) as a function of number of insertions with configu-
ration of different growth factors, traces the above theoreti-
cal analysis well: larger growth factor leads to higher write
amplification in LevelDB while that has the opposite effect
on Size-Tiered.

3.2 Read Degradation

In multi-stage structures, a write request (i.e., insertion,
update, or deletion) is converted to a new insertion opera-
tion, and the data from the bottommost stage is moved to
higher stages gradually in batch to avoid random writes on
the underlying storage device. The trees in different stages
have their respective priorities, and all of them are candi-
dates for a query request. A point query processing is
implemented by searching all the candidate trees serially
according to their relative priorities until the query key is
found or all the trees have been searched without finding
one. A high-priority tree (i.e., containing the latest inser-
tions) must be searched first to guarantee the validity of the
search result. In general, the multi-stage structures trade off
the read performance for write performance.

The latency of searching the trees in different stages
increases slowly due to the logN complexity of the B-tree
structure [23]. For example, searching a 2 MB tree needs 3
random I/Os, while searching a tree that is a hundred times
larger only increases one more I/O. Hence, the number of
trees a read request needs to search is critical to the query
latency. In Section 3.1 we have known that with larger
growth factor less stages are maintained. Since in MS-tree
each stage only allows one tree, less stages means less candi-
dates trees to search for a query. However, for the MS-forest
model, while the number of stages decreases logarithmi-
cally, the number of trees that are allowed in each stage
increases linearly. As a result, in the MS-forest, the total
number of candidate trees, which cause read amplification,
usually has a positive correlation with the growth factor. In
this respect, the MS-tree model is more advantageous for
read than the MS-forest model because the former needs to
search only one tree in each stage, while the latter maintains
and requires searching multiple trees in each stage, which is
validated in Fig. 3 that plots the experimental read latency
of LevelDB and Size-Tiered in the datasets generated previ-
ously with different growth factor configurations.

Fig. 2. Randomly writing to stores configured to different growth factors.
(The size of the KV pair is 116 bytes. In (b), for a 90 GB storage provi-
sion, Size-Tiered will fail at the arrows where the user data is much less
than 90 GB.).

Fig. 3. Read latency in the datasets generated previously.

2. For a stage Siþ1, it becomes full after receiving f components from
Si. Each of the components is written once when it is first merged to
Siþ1, and the xth (1 � x � f) component is written f � x times in the
subsequent merge of the remaining components until Siþ1 is full.
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Range query is an important feature of KV stores. A
range query is processed by first serially seeking each candi-
date tree to find the start key of the range, and then advanc-
ing across the trees with an election mechanism that selects
the smallest key among all the trees in each step. Perfor-
mance of range query in MS-forest also degrades more seri-
ously than that of MS-tree because more candidate trees
take more time to seek and select. For the common range
queries that scan tens to hundreds of keys, the seek process
dominates the range query overheads because it usually
involves I/Os that load blocks of KVs to memory for the
subsequent selection process.

3.3 Space Requirement for Compaction

A compaction operates on a set of SSTs by merge-sorting
their key-values to new SST file/files. The operated SSTs
cannot be deleted before the compaction is finished [1], [24].
Because the operated SST files and the new SST files both
hold the storage space, more storage space than the actual user
data, up to twice as much, must be reserved in order to guarantee
the successful processing of the compaction. Although the space
held by the operated SST files can be reclaimed eventually,
the reservation is a necessity to prevent the system from fail-
ures caused by “insufficient space”, hence leading to a low
space efficiency. For example, with the size-tiered compac-
tion in Cassandra, in the worst case exactly twice as much
free space as is used by the SSTs being compacted would be
needed, which results in only 50 percent space effi-
ciency [15]. A problem that can arise from this space ineffi-
ciency is that a server could fail when the user writes only a
dataset half the size of the provisioned storage space, which
is becoming severe in Cassandra [15]. Fig. 2b shows the stor-
age space requirement in the insertion process, which indi-
cates that Size-Tiered will fail when the user data set is only
half of the storage capacity. The partial merge based on
the split tree used in LevelDB enables low space require-
ment for a compaction. Because a partial merge involves
only a small part of the trees in the next stage regardless
of the tree’s size, the aforementioned high space reserva-
tion problem is significantly mitigated in LevelDB, and
its sibling implementation of RocksDB. For example,
with SSTs size of 2 MB and a growth factor of 10
(default in LevelDB), about 11 SSTs are involved in a
compaction (one selected SST in the lower stage and 10
estimated overlapped SSTs). Therefore, an extra reserved
space of about 22 MB is sufficient for a compaction on any
stage, a negligible size compared to the space required by
Size-Tiered for a KV store of hundreds of GBs, as can be
seen in Fig. 2b.

Space requirement in LSM-trie as partitioned forest is not
high as in the Size-Tiered. However, since LSM-trie uses
hash to partition the keys, it loses the range query feature.

Because of the different compaction mechanism, MS-for-
est has a longer turn-around time of compaction, and MS -
tree has a higher compaction frequency. In both model, the
latency of responses can be affected by compaction process-
ing. But we do not discuss this problem in this paper.
Because of the different compaction mechanism, in general,
a compaction process of MS-forest has a longer turn-around
time but lower frequency than that of MS-tree. The compac-
tion processing in both such two models potentially
increase the request latency, but can be scheduled to miti-
gate its neglect impact [25].

Summary — In the two sections above we have analyzed
the two models of MS-structures, the MS-tree and MS-forest
models, and introduced their popular implementation mod-
els as shown in Table 1. This analysis clearly suggests that
there is not a one-size-fits-all solution. In addition to the dif-
ferent levels of severity of read performance degradation,
the difference between representative MS-tree implementa-
tion LevelDB and MS-forest implementation Size-Tiered,
discussed above, implies very divergent performance
between them in write performance and space efficiency. In
what follows we now present SifrDB, a KV store that is
based on the MS-forest structure (Fig. 1) but attempts to
remedy the deficiencies of MS-forest.

4 SIFRDB

To combine the performance advantages of partitioned for-
est and split tree implementations, we proposed SifrDB
which is a unified implementation of write-optimized KV-
store based on split forest.

SifrDB is based on a split forest storing. Each stage in
SifrDB has multiple independent logical trees, each of
which is composed of a group of non-overlapped and fix-
sized SSTs. While a compaction is performed on several log-
ical trees, the actual merge is performed at the granularity of
SSTs and only involves SSTs with overlapped key ranges to
eliminate the unnecessary data re-writing under sequential
(or sequential-intensive) workloads. Note that each logical
tree of stage 1 consists of a single SST. When data is flushed
to disk, SifrDB writes these data to an SST and put it into
stage 1 as a logical tree.

More specifically, take Fig. 4 as an example, where a
compaction is performed on the two logical trees with key
ranges of 1�11 and 5�17. In this example, only the three
shaded SSTs with overlapped key ranges are merged and
re-written, while metadata of the non-overlapped SSTs
(unshaded) and the newly generated SSTs (solidly shaded)
are added to the global index of the new logical tree. The

Fig. 4. Compaction is performed on logical trees, while the merge is per-
formed on the physical SSTs.

TABLE 1
Performance Differences of Different KV Implementations

Split-tree Partitioned-forest Sifr

Write performance � @ @
Read performance @ � @
space utilization of compaction @ � @

(@ means acceptable,� means deficient,�means acceptable at some cost)
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compaction is finished by committing the information about
the deletion of the two compacted logical trees (with key
ranges of 1�11 and 5�17) and the generation of the new
logical tree (with key range of 1�17).

SifrDB performs compaction based on the MS-forest
model (as illustrated in Fig. 1), it naively inherits the forest’s
advantage, i.e., low write amplification for random writes.
On the other hand, with the split storing mechanism, SifrDB
simultaneously obtains LevelDB’s advantage for sequential
writes, which is lost in other popular forest implementa-
tions [3], [6], [7]. In addition, the design of SifrDB is also
able to achieve the effect of the stitching technique intro-
duced by VT-Tree [19] that builds a second index on top of
each tree of an MS-forest model.3 Nevertheless, VT-Tree
must deal with the garbage on the tree files that are eventu-
ally collected by rewriting the valid data (i.e., the data that
is not rewritten in the compaction) in new places. On the
contrary, SifrDB does not introduce garbage by splitting
each tree to independently stored SSTs. Moreover, SifrDB
enables early cleaning to keep the reserved space at a mini-
mum, as detailed next. In other words, SifrDB avoids not
only the additional space that VT-tree must reserve for its
compaction, but also a space that is not reclaimed timely
after the compaction.

SifrDB is based on the MS-forest model which by design
incurs much lower write amplification under randomwrites
than the MS-tree model. But it causes higher read amplifica-
tion because of the tolerance of overlapping key-indexing
range. To optimize read performance, SifrDB introduces
SST-level filter and parallel-search mechanism in Sections
4.1 and 4.2, respectively.

Besides, the need for MS-forest-based stores to merge
small tree files to larger ones (to reduce the number of can-
didate trees for reads) not only causes unnecessary rewrit-
ing of data of non-overlapped key ranges, but also requires
high operational space reservation when compacting large
files [15]. Therefore, SifrDB also provides the sequential-
workload advantage and operational space efficiency the
common MS-forest implementations lack, without sacrific-
ing the random-workload advantage of the MS-forest
model. We achieve these goals by leveraging the split stor-
ing mechanism while overcoming the challenges imposed
by the fact compactions are still performed by full merge on
the logical trees, as presented in Section 4.3.

4.1 SST-Level Filter to Reduce Read I/O

The MS-forest model allows several logical trees with over-
lapped key range in each stage. For one query operation,
compared to MS-tree model which has only one SST per
stage to involve the target data, MS-forest model scans one
SST on each logical tree. It means that MS-forest model has
k times the read amplification of MS-tree model (k is the
number of logical trees in each stage) and causes read per-
formance degradation. To reduce such read amplification,
we implement an extra bloomfilter approach called SST-level
filter as the secondary indexes of logical tree indexes to fur-
ther improve read performance. Specifically, when an SST is
built, SifrDB builds an SST-Level filter correspondingly.

When processing a query request, the candidate SSTs that
have the matched key ranges are determined first. Then
the corresponding SST-level filters can exclude most of non-
target SSTs to reduce read IOs.

Note that existing multi-stage structures have employed
block-level Bloom filter as a secondary index to quickly filter
out the non-target data blocks within an SST. The block-
level bloom filter is stored in the tail of each SST file. In
SifrDB, the SST-level filter differs from the block-level
bloom filter in two respects: location and granularity.

Location. An SST-level filter is generated once its corre-
sponding SST is created. The filter will not be updated
because SSTs are immutable. Differ from block-level filters
stored in the form of metablocks in SSTs, SST-level filters are
in-memory structures in default to reduce as much read IOs
as possible. For persistence, SifrDB stores all SST-level filters
in a specific file. So, the bloom filters can be sequentially read
from the file into the memory quickly when the system
restarts or recovers. Whenmemory space is not enough, cach-
ing only the most frequently accessed SST-Level filters in
memory is an optional tradeoff. Because the size of each filter
is fixed, the filters of requested SSTs can be easily located in
the file according to their corresponding SST number.

Granularity. Although bloom filters can be applied in a
variety of granularity (such as SST, tree and stage), we con-
sider SST as an appropriate granularity because SST is the
largest immutable unit in SifrDB. The filters can be gener-
ated or deleted as SST is generated or deleted. With larger
granularity, each compaction operation results in an over-
write of the entire filter because bloom filter cannot be par-
tially modified. Also, using SST granularity brings an
acceptable dataset/memory ratio.

In SifrDB, we set SST-level filters with 10 bits for each key
and the max size of each SST with 2 MB in default. In the
workloads with 100 byte KV pairs, the SST-level filters
require 1 percent memory space of the dataset in a default
setting while the false positive rate is 0.819 percent. Adjust-
ing the bits/key ratio can also be used for trading off mem-
ory usage and performance gain.

Some existing partitioned forest implementations (such
as PebblesDB [7]) have used SST-level filter to improve read
performance, but this technology works better in SifrDB
which is based on split forest

Even though Bloom filter is designed for memory effi-
ciency, it also consumes significant memory space for a large
data store. As a result, a bloom filter could easily take up all
the memory in a high dataset/memory ratio that is becoming
popular on SSD-based storage systems [16], [17] and cause fre-
quent I/Os for swapping. Considering that the KV pairs in
real workloads tend to be even smaller than 100 bytes [6] and
Facebook has begun to reducememory provision for its cloud
store [17] for economic reasons, third-party indexes such as
bloom filter can only be used in a limited extent. Therefore,
we design a parallel-search mechanism for SifrDB to further
exploit the read I/O capability of high IOPS of modern SSDs,
while relieving the dependence ofmemory consumption.

4.2 Parallel Search to Improve Read Performance

In this sub-section, we present a parallel-search mechanism
for SifrDB. Fig. 5 illustrates the Fix-count (FC) and Priority-
aware (PA) parallel-search schemes in SifrDB, compared

3. VT-tree is implemented based on an MS-forest model with a
growth factor of 2.
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with the traditional serialized approach where the server
thread serially searches the trees in order of their priorities
and returns once the first result is found. The serialized
approach is well suitable for hard disks with only one disk
head. In MS-forest models, the trees in lower stages and the
newer trees have higher priority.

Modern SSDs with high I/O parallelism can offer the
potential to support parallel-search approaches. In the par-
allel search approach, a server thread spawns a bundle of
background threads (referred to as search threads) on the
candidate trees. When a query operation is processed, the
server thread only puts its candidate trees into a queue in
order of priorities, and then invoke search threads to query
the SSTs of the candidate tree. Once the querying key is
found in a high-priority tree by a search thread, the server
thread can detect and return the result immediately, even
though other search threads may be still processing query-
ing on the rest of SSTs. In this case, the results of the latter
search threads are simply discard afterwards. The achieve-
ment from the parallel search is not always come free. There
are two kinds of costs introduced by the parallel search.
One is the unnecessary I/Os on the low-priority trees when
reading the keys that reside in high-priority trees, which is
evaluated in Section 5.3. The other is the CPU cost in a low
dataset/memory configuration environment, as shown by
the average CPU core time in Table 2. We can see that when
the memory provision is larger than 4 GB (equivalent to a
25:1 dataset/memory configuration), the CPU usage in
SifrDB becomes higher than that in the traditional way.

To effectively trade off performance and resource wast-
age, we further present two parallel search schemes FC and
PA. The former is configured to use a fixed number of
search threads. The latter dynamically adjusts the back-
ground search threads according to the number of candi-
date trees in current priority.

Fix-Count Scheme. FC configures a fixed number of search
threads. For example, as shown in Fig. 5b, if the query key

is in tree 2 of the stage 0. In FC scheme with 4 threads, a
search thread returns when the key is found in tree 2, but
the other 3 search threads still work in both trees in stage 0
and stage 1. The choice of the number is important for trad-
ing off efficiency and performance and relies on the hard-
ware resources, such as the number of CPU cores and SSD
internal access parallelism. When this number is too small,
the parallelism of SSD cannot be fully exploited and the
query latency could increase. On the contrary, the larger
number could lead to the parallelism wastage of both CPU
and SSD. Although in this case the delay of a query is not
affected, these search threads also cause a amount of I/Os
and memory footprint. Fig. 6 shows the query latency on a
100 GB dataset and different memory provisions as a func-
tion of the number of search threads in the environments
introduced in Section 5. The legends represents memory
configurations.

Priority-Aware Scheme. To leverage the characteristic of
multi-stage structure and save hardware resource, we
design a priority-aware parallel search. In PA scheme, the
server thread allocates a search thread to each candidate
tree in current priority. Only when the query key misses in
current trees, the next batch of searchings are triggered. As
shown in Fig. 5c, the 4 trees in the same stage are considered
in the same priority and will be searched simultaneously. If

Fig. 5. Different mechanisms for threads to search the trees. (a) The trees are searched serially in order of their priorities. (b) All of the trees are
searched concurrently by four search threads and each thread is assigned the task of searching two trees. (c) The trees are searched twice by four
search threads, each time for four trees in a stage.

TABLE 2
CPU Core Time and 95/99 Percentile Latency for Queries (“Tra” is the Traditional Way,

and “Sifr-16” is SifrDB with 16 Search Threads)

Average Core Time (ms) 95 percentile latency (ms) 99 percentile latency (ms)

Mem 256 MB 1 GB 4 GB 16 GB Cached 256 MB 1 GB 4 GB 16 GB Cached 256 MB 1 GB 4 GB 16 GB Cached

Tra 0.052 0.030 0.023 0.014 0.012 12.3 5.46 3.12 1.85 0.376 18.7 6.22 3.75 2.17 0.398
Sifr-16 0.047 0.024 0.027 0.030 0.034 2.7 1.65 1.07 0.78 0.232 3.75 1.91 1.34 0.87 0.243

Fig. 6. Query latency as a function of the number of the background
search threads with different memory provisions (100 GB dataset).
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the query operation is finished in the first batch of searching
on stage 0, three extra searching of the trees on stage 1 are
avoided. However, when the target key in the tree with low
priority, PA might perform several turns to find the key,
thus increasing the latency.

FC and PA schemes exhibit their own advantages, depend-
ing on theworkload behaviors detailed in Section 5.3.3.

Additionally, we find that the parallel algorithm still
performs better than the traditional approach even though
when all the dataset has been cached in memory. Fig. 7 illus-
trates how the efficiency of the parallel-search algorithm
degrades when the provisioned memory increases as expec-
ted. We can see that when all the data is cached, the paral-
lel-search scheme is shown to still improve the performance
by 1.7�. Tail latency is also an important metric users care
about. Long tail latency in a multi-stage structure is mainly
caused by queries that need to search multiple candidate
trees and the queried data is not in cache, which is what the
parallel search attacks. Therefore, the tail latency is likewise
improved notably, as shown by the 95 and 99 percentile
latency in Table 2.

Range Query. Range query can benefit from the parallel
search in a straightforward way. For example, the process
can start with executing a point-query for the start key of
the range to load the blocks containing the to-be-scanned
keys of the candidate trees to memory concurrently,
which can significantly speed up the scan performance.
In other words, the range query in SifrDB is composed of
a parallel point-query and a traditional range query.

4.3 Early-Cleaning to Optimize Space Efficiency

In this sub-section, we present the early-cleaning technique
designed to reclaim the operational space held by the
merged trees as early as possible, even when the compac-
tion is still under way, so that the data store service would
not fail because of ‘out-of-space’.

The idea behind early-cleaning is to safely delete the SSTs
as soon as they have been successively merged to the new
SSTs, i.e., their data have been persisted as new copies else-
where. Nevertheless, to safely enforce early-cleaning to
ensure data integrity and consistency, we must answer the
following two questions.

1) When an unexpected crash happens, how to recover
the data and guarantee data consistency?

2) How to process the read requests coming to the SSTs
that have been deleted by early-cleaning?

The answers are compaction journal and search request redi-
rection respectively, as explained below.

Compaction Journal. In the merge process, early-cleaning
is called periodically to delete the input SSTs to reclaim
the storage space. As shown in Fig. 8, early-cleaning can be
scheduled after a new SST is sealed and persisted to delete
the finished SSTs. Since the data in the deleted SSTs have
been written to the new SSTs, if a crash happens halfway
through the merge process, data consistency can be achieved
by keeping the state information of the merge process, which
is continued after the recovery. We use a small journal to
record themerge state information before executing the early-
cleaning, called compaction journal, which contains the meta-
data of the persisted SSTs in the output and the active SSTs in
the input. In fact, the metadata of the persisted SSTs are the
abuilding and uncommitted global index of the new tree.
Note that if an input SST does not overlap with other SSTs, it
is directly moved to the output and is not affected by the
cleaning process.

Although each time when a new SST is persisted pro-
vides an opportunity for early cleaning, it can be ineffec-
tive and wasteful to clean too frequently. As a default,
SifrDB sets the cleaning threshold to 10. That is, every time
when 10 SST files are persisted an early-cleaning process is
scheduled, which results in an operational space require-
ment equivalent to that of LevelDB. Users can configure a
larger cleaning threshold value, and SifrDB is able to
dynamically adjust the setting according to the amount of
available storage space.

In the recovery process, SifrDB reads the latestmerge state
information from the compaction journal and continues the
compaction merge by seeking to the correct positions of
the active input SSTs, instead of the conventional approaches
that simply discard the work that had been done before the
crash. The correct positions are determined by the biggest
key of the last newly persisted SST. Continuing-compaction
brings extra benefit for a full-merge compaction crashed in
operating on very large trees, since it can save a significant
amount of time from a restarting-compaction approach that
does thework from the beginning.

Search Request Redirection. With the early-cleaning tech-
nique, it is a challenge to serve the search requests that
come to the logical trees for which compaction is currently
ongoing because some of the SSTs may have been deleted.
To correctly serve the search requests, SifrDB redirects the
requests to the new SSTs by exploiting the abuilding global
index introduced above, referred to as redirection map. Each
time a compaction journal is committed, the redirection map
is updated to cover the newly produced SSTs. The search
for a logical tree first checks the redirection map, to determine

Fig. 7. A comparison in query latency between the traditional approach
and SifrDB’s parallel-search(FC) under different memory provisions
(100 GB dataset).

Fig. 8. Merge operation in SifrDB. Early-cleaning can be executed after a
new SST is persisted.
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if the query key falls into one of the new SSTs. If yes, the
request is redirected to access that new SST. Otherwise, the
search process will access the original SST that possibly con-
tain the query key as in the usual way.

In a case that after the search process has checked the
redirection map and decides to access the original SST, a
problem could arise if the redirection map is updated
promptly and then the early-cleaning is scheduled to delete
that SST.

To prevent such a problem from happening, we design a
“twice check” mechanism. After the search process first
checks the redirection map and decides to access the original
SST, it tags the SST and then checks the redirection map sec-
ond (the early-cleaning will not delete a tagged SST until it
is un-tagged). After the second check, if the search process
is instead redirected by the promptly updated map to access
the new SST, the original SST can be un-tagged and deleted
without trouble. Otherwise, since the search process still
decides to access the original SST according to the redirection
map, it is guaranteed that the key range of the SST is not in
the map and the SST is not in the cleaning list before the sec-
ond check, thus the search process can safely work on the
SST and un-tag it after the search finishes.

4.4 Implementation

SifrDB is implemented based on LevelDB but replaces the
core data structures and functions with the SifrDB design.
Any applications that use a store compatible with LevelDB
can replace the existing storage engine with SifrDB seam-
lessly, as the exported operation interfaces are not changed.
The key source files that are touched for the implementation
of SifrDB are listed in Table 3.

5 EVALUATION

In this section we present the evaluation results of SifrDB,
with comparisons to a broad range of multi-stage based KV
stores, including popular MS-tree implementations Lev-
elDB and RocksDB, and representative MS-forest imple-
mentations Size-Tiered (used in Cassandra) and PebblesDB
(the latest research based on the partitioned MS-forest).

5.1 Experiment Setup

The evaluation experiments are conducted on a Linux 4.4
machine equippedwith two Intel E5 14-core CPUs and 128GB
DDR4 memory. The storage subsystem used in the experi-
ments, Intel SSD DC S3520 Series, has a capacity of 480 GB

with a 400 MB/s sequential read and a 350 MB/s sequential
write speed in rawperformance, and 41K IOPS for read.

All the microbenchmark and YCSB workloads are
replayed by the db_bench toolset [26], [27]. Since Cassan-
dra does not support the db_bench and running it in the
normal mode involves network latency, we re-implement
the Size-Tiered by reusing the LevelDB code to provide a
fair comparison. We still run Cassandra for latency irrele-
vant metrics such as write amplification and space require-
ment, and verified that the results are consistent with our
re-implementation. The dataset is 118 GB in the experi-
ments, and the available memory is varied in the read
experiments to simulate different memory provisions for
the same dataset, as a large storage system can be config-
ured to have very high storage/memory ratios [6], [16].

Note that our test program uses a single thread to
send requests to KV store without batching, therefore, the
average latency of the requests can be nearly inversely-
proportional to the actual throughput. In order to evaluate
the actual read performance between of different KV
stores, the SST-level filter mechanism is disabled except for
the experiment in Section 5.3.2 and the second experiment
and Section 5.4.

5.2 Write Performance

In this sub-section we evaluate the write performance by
inserting 1 billion KV pairs to an empty store, with an
average KV size of 123 bytes (23 bytes key, and remaining
portion containing a number of bytes uniformly distributed
in the 1�200), leading to a 118 GB dataset being built at the
end. The write buffer size is set to the default value of Lev-
elDB for all stores. It should be noted that, while using a
larger write buffer can lower the write amplification to
some extent, this effect is uniform to all stores and does
not alter the overall performance trend. The growth factor
has different impacts in the MS-tree model and the MS-
forest model as analyzed in Section 3, so it is not set to the
same value for implementations based on different models.
In the experiments, we set the growth factor to 10 for the
MS-tree-based stores (an optimized value in the practical
MS-tree implementations), and to 4 for the MS-forest-based
stores4 (an optimized value in the practical MS-forest
implementations).

Fig. 9a shows the write amplification of different stores
under random and sequential writes respectively. A more
extensive set of results can be seen in Fig. 2a.

First, for the sequential workload, SifrDB induces no
write amplification, just like LevelDB and RocksDB do,
which is in sharp contrast to the other two MS-forest imple-
mentations, Size-Tiered and PebblesDB, that causes 8� and
6� write amplification respectively. This is useful in some
cloud environments such as sensor-collected data [20]. Sec-
ond, for the random workload, SifrDB, having inherited the
main advantage of the MS-forest model in random writes,
exhibits that same level of write amplification as the other
two MS-forest implementations Size-Tiered and PebblesDB
and substantially better than the MS-tree implementations.

TABLE 3
Key Source Files of LevelDB Touched to Implement SifrDB

Source file Functionality

version_edit.h Define the structure of the logical tree
version_edit.cc Encode and decode the logical tree
version_set.h Define the structures about SST-level filter

and parallel search
version_set.cc Implement SST-level filter and parallel

search
db_impl.cc Implement the compaction and early-

cleaning
merge.cc Detect whether two SSTs are overlapping

4. The growth factor in PebblesDB is the number of SSTs in a guard
that triggers the compaction.
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Intuitively, the write throughput of a system is inver-
sely proportional to its write amplification. However, there
are two other factors that can lower the write throughput,
which causes the write throughput less proportionally tied
to write amplification, as indicated in Fig. 9b. One is the
overhead on the write-ahead log, which is prominent in a
sequential write pattern [22]. The other is the file-system
overhead, which is more pronounced for small files.
Fig. 10 illustrates a snapshot of the file size distribution
of the three MS-forest implementations under random
writes. Clearly, Size-Tiered writes extra-large files to the
underlying storage, which is file-system friendly and
leads to a higher throughput than SifrDB and PebblesDB
despite of the same write amplification they induce. None-
theless, with the unified file size, SifrDB can take advan-
tage of the aligned write to eliminate the file-system
overhead, a technique proposed in LDS [22] (LDS is an
LSM-tree Direct Storage system that manages the storage
space based on the LSM-tree objects and provides simpli-
fied consistency control by leveraging the copy-on-write
nature of the LSM-tree structure. It reduces extra IOs
caused by filesystem, but only works on fix-sized SSTs).
With the aligned storing, SifrDB achieves the highest
throughput for the random workload, as shown by the
SifrDB+LDS result in Fig. 9b. As LDS naturally support
LevelDB, we also show the LevelDB+LDS result (RocksDB
is similar to LevelDB). We can see that under the random
workload, the write performance of LevelDB+LDS is still
much lower than that of the forest implementations, even
though LDS improves the performance a great deal. Note
that PebblesDB is not able to take advantage of the tech-
nique LDS provides because of its variable and unpredict-
able file size.

5.3 Read Performance

Fig. 9c shows the storage requirement of SifrDB, Size-Tiered
and LevelDB. With the early-cleaning mechanism, SifrDB
resolves the problem the Size-Tiered is facing and achieves
the same space efficiency as LevelDB. Note that the imple-
mentations based on the partitioned MS-forest such as Peb-
blesDB also does not suffer from the high space requirement
problem. Additionally, we measure the memory require-
ment in the process of writing (inserting) and present the
results in Fig. 9d. RocksDB and Size-Tiered consume much
morememory than SifrDB and LevelDB, by an order of mag-
nitude, while PebblesDB consumes two orders of magnitude
more memory than SifrDB. In fact, we set the top_level_-
bits to 31 and bit_decrement to 2 in PebblesDB, a setting
designed to optimizewrites; otherwise PebblesDBwill fail to
complete the 1-Billion insertions in the default setting (pro-
cess killed by the system for exhausting all the system mem-
ory as well as the swapping space).

5.3.1 Point Query

In this subsection, we evaluate the read performance, i.e.,
point-query of random keys. The dataset used is the one
generated in the write performance evaluation under ran-
dom workload. The numbers of the candidate trees are
listed in Table 4, which are obtained after the write process
is finished. As MS-forest implementations are required to
search more trees for a query than MS-tree ones, the former
generally have longer query latency than the latter. How-
ever, the actual result varies depending on the specific
stores and available memory provisions.

We disable the seek-triggered compaction and conduct
the experiments on each store with sufficiently long time to

Fig. 9. Figure (a) shows the overall write amplification of inserting one billion KV pairs (the circled are MS-forest based implementations), and Figure
(b) shows the overall throughput. Figure (c) and Figure (d) show the actual storage requirement and memory requirement respectively in the process
of inserting (In Figure (c) we omit the results of RocksDB and PebblesDB for clarity as their lines are overlapped in large with LevelDB and SifrDB.
System failure would happen if the storage or memory provision cannot meet the requirement).
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make sure that the performance has become stable. To fairly
compare the performance of SifrDB with the other systems
with the same memory usage, we also disable the SST-level
bloom filter but employ FC parallel scheme with 16 threads.

The evaluation results are presented in Fig. 11a in the
metric of query latency, along with read amplification pre-
sented in Fig. 11b. From the results, we can draw two con-
clusions: (1) SifrDB is more efficient under configurations
with higher dataset/memory ratios under both 256 MB and
1 GB memory provisions; (2) SifrDB consistently performs
the best among the three MS-forest implementations, out-
performing Size-Tiered and PebblesDB significantly. For
example, when the provisioned memory is 256 MB, as a
configuration of 400:1 dataset/memory ratio [16], SifrDB
achieves better performance than Size-Tiered by 4�, and
PebblesDB by 5� respectively. At a higher dataset/memory
ratio, because the memory consumption for indexes and
data are limited, the intensive requests induce cache
replacement that causes read IO. But the parallel search of
SifrDB can fully utilize I/O ability of the underlying storage.
RocksDB in the default configuration performs poorly
under low memory provision due to frequently launching
swapping I/Os. With sufficient memory provision, the
effect of parallel search of SifrDB is weakened because a sig-
nificant portion of the search operations are serviced by the
cache without I/Os. However, SifrDB still consistently out-
performs other MS-forest implementations.

With the parallel-search mechanism, SifrDB achieves
comparable performance to LevelDB even though it needs
to search 2.4� more trees than the latter. It should be noted
the bandwidth of the underlying media could limit the
query throughput. Nonetheless, we find that the parallel-

search algorithm consistently improves the read throughput
when the candidate trees are the same, and is able to fully
exploit the access parallelism of SSDs to provide speedy
responses to requests. This is particularly suitable for cases
when either request arrivals are sparse or serving high-
priority and time-critical requests, in which the requests are
served expeditiously as the bandwidth potential of SSDs
can be utilized to the fullest.

Since the MS-forest implementations need to search more
trees than the MS-tree implementations, the former incur
higher read amplification than the latter in general. PebblesDB
incurs extremely high read amplification in low memory pro-
visions, which cools off when the provision is larger than 1GB.
Comparing read amplification of SifrDB to that of Size-Tiered,
we can see that 15 percentmore unnecessary I/Os are incurred
by the former (with 16 GB memory), which is caused by fact
that some search threads of the parallel-search in SifrDB may
access the low-priority trees for a small portion of keys that
exist in a high-priority tree. Such unnecessary accesses are
expected from design principle of SifrDB and does not impact
the effectiveness of the parallel-search algorithm.

5.3.2 SST-Level Bloom Filter

When there is enough memory available, the SST-level filter
on top of the stores can be used in the memory to improve
the read performance. We have performed experiments
using the SST-Level filter with different bits/key. The
results in Fig. 12 show that in the default configuration
(10 bits/key) the read performance improved by 3.7� with
106 MB memory (10 GB dataset). The benefit is contributed
to that only one candidate tree needs to be actually searched
using SST-level filter. In such cases, SifrDB is unnecessary
to trigger the parallel search mechanism. Besides, the higher
bits/key merely slightly improves the latency but has a
larger memory footprint.

5.3.3 Parallel Search Schemes

With limitedmemory provision, even if SST-level bloom filter
has to be turned off, SifrDB still effectively grasps the high

Fig. 10. A snapshot of the physical files’ size of the three MS-forest
implementations under random writes.

TABLE 4
Number of Candidate Trees in Different Stores (in PebblesDB

the Number of Trees are Various in Different Guards)

LevelDB RocksDB Size-Tiered PebblesDB SifrDB

Trees 7 9 17 11�19 17

Fig. 11. Figure (a) shows the query latency of different stores as a function of memory provisions (MS-forest based stores are circled, i.e., the
rightmost three bars of each bar group), and Figure (b) shows the read amplification (read_IO_size/queried_data_size).
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IOPS nature of modern SSDs by parallel search. To compare
the differences between FC and PA schemes, we evaluated
the average latencywhen the query key is in 6 different stages
(as illustrated in Fig. 13). The results showed that FC exhibits
a stable latency regardless of which stage the target key
resides in, while in PA scheme the latency increases signifi-
cantly as the target stage increases. However, PA scheme
exhibits better when the key is at the lower stage. It means hot
data could benefit from PA scheme.

To clearly understand the combined effect of the parallel
search and SST-level filter, we enable SST-level filter in the
following experiment.

As shown in Fig. 14, compared to the traditional serial read,
FC scheme makes full use of the parallelism of SSD devices
and achieves 2.1� read performance improvement while in
PA scheme it achieves only 1.0� read performance improve-
ment because of the latency caused by multiple-turn thread
executions. It also verifies that the default number (i.e., 16) of
search threads is the appropriate value in FC scheme. Besides,
using SST-level filter, the performance difference of these
schemes is very small. It means the SST-level filter is more
effective for the performance than the parallel search.

5.3.4 Range Query

Range query in the common multi-stage structures is proc-
essed by (1) seeking all candidate trees one by one to find
the start key of the query; (2) comparing the keys and
advancing the search across all the candidate trees step by
step until the given number of keys are obtained. The MS-
forest model needs to seek more trees than the MS-tree
model for the start key, in addition to performing more
comparing operations in each step. As a result, the forest-
based implementations have worse performance than the
tree-based implementations in general. In our experiments,
the forest-based implementations (Size-Tiered, PebblesDB)
exhibit about half the performance of the tree-based imple-
mentations. Because SifrDB leverages the parallel-search
algorithm to speed up the tree-seeking process, it is able to
improve the range query performance by 42 percent over
the other two forest-based implementations.

Another approach to improving the read performance
(both point query and range query) is to enable seek-triggered
compaction. However, that is only efficient for read-intensive
workloads. While multi-stage structures are often used to
ingest the massive user data in write-intensive environments,
seek-triggered compaction has limited usage.

5.4 Synthetic Workloads

YCSB [28] provides a common set of workloads [29] for
evaluating the performance of cloud systems. For a work-
load, 4 threads run concurrently and each of them sends 10
K requests, with the overall throughput being measured as
the performance metric. The memory provision is suffi-
ciently high to ensure that the hot accessed keys (in the Zip-
fian and Latest distribution) are cached. In range queries of
the workload E, the scanned number of keys is uniformly
distributed between 1 and 100.

The results of the YCSB benchmarks are shown in Fig. 15.
While most of the workloads are read-dominated, when dis-
abling SST-level filters, SifrDB exhibits a lower throughput
than MS-tree implementations (RockDB and LevelDB), but
consistently outperforms the other two MS-forest imple-
mentations (Size-Tiered and PebbleDB). Specifically, work-
load E helps demonstrate the range query performance. For
each range query, SifrDB simply executes a point-query to
boost the following seek operations, which proves to be
quite efficient. Note that PebblesDB also implements a dif-
ferent parallel-seek algorithm specially for the range query,
which is shown to be less efficient than SifrDB’s.

To evaluate the effectiveness of SST-level filter and par-
allel search mechanism under the workload, we execute
the YCSB workloads with enabling/disabling the SST-level
filter respectively. As illustrated in Figs. 15 and 16, the
SST-level filter boosts the overall performance consistently
and dramatically compared to disable it. Without SST-level
filter, FC scheme still performs better on most loads. How-
ever, PA scheme performs better performance under D
workload in which 95 percent operations are reading latest
values that are stored in low stages with high-priority. As
a result, the SST-level filter can effectively improve the
read performance to make up for the read defects of MS-
forest. Enabling SST-level filter, SifrDB can achieve better
the overall performance than MS-tree because of its supe-
rior write performance.

6 RELATED WORK

Write optimized structures have become popular in large-
scale data stores [30], [31], [32], [33], [34], [35], [36], [37]. In
general, there are two families of write optimized struc-
tures. One is the fractal-trees [38], [39], [40] that buffer the

Fig. 12. Latency and memory usage of SST-level filter in different bits/
key configuration under 10 GB dataset.

Fig. 13. Average Latency of PA and FC scheme when the query key is
found on different stage.

Fig. 14. Read performance of FC and PA scheme with different number
of search threads.
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data in each intermediate node of a B-tree. The other is the
multi-stage structures that maintains a set a B-trees in differ-
ent stages, which are widely used in key-value stores [1],
[2], [3], [4], [5].

In this paper we have analyzed and classified the practi-
cal implementation models for multi-stage structures, and
presented their advantages and disadvantages for different
performance considerations.

In fact, a large body of existing studies have contributed to
the popularity of multi-stage-based KV stores [6], [7], [19],
[22], [41], [42] and most of them focus on the write amplifica-
tion of the MS-tree model under random writes. The essen-
tial reason for the MS-tree’s high write amplification is that
data must be rewritten within each stage repeatedly in order
to keep the data sorted, which is good for reads. On the con-
trary, the MS-forest model allows overlapped trees (i.e., for-
est) to avoid rewriting data within a stage. Researches that
optimize the random-write problem faced by the MS-tree
model often make use of this property of MS-forest and
allow overlapped key ranges within a stage [6], [7], [43],
hence turning into a variant of MS-forest and suffering from
the disadvantages such as a less-compact structure with
degraded read performance. VT-tree [19] proposes a stitch-
ing technique based on the MS-forest model to reduce the
write amplification under sequential/sequential-intensive
workloads by applying a secondary index, which introduces
garbage on the storage and faces high space requirement for
compaction. In addition, it does not distinguish the effect of
the stitching technique from the effect of the MS-forest
model, since it uses a tree-based implementation (LevelDB)
as the baseline for evaluation.

Whether in MS-tree or in MS-forest, request response
times can be significantly affected because of the long turn-
around time of the compaction. SILK [25] has a thorough

analysis of latency spikes caused by compaction in the MS-
tree model and introduce the notion of an I/O scheduler to
reduce this interference. For the MS-forest model, we used
the Search Request Redirection to ensure the SST file read
requests can be quickly redirected to new SST generated by
compaction. In addition, when a compaction operation
affects the overall performance of SifrDB, the compaction
process can be suspended to prioritize requests processing.
It is easy to continue the compaction process later by using
Compaction Journal.

As the overheads introduced by the storage stacks
becoming outstanding in high performance storage envi-
ronments [21], [44], aligned storing is used to optimize the
file-system overheads [22] for the implementations based
on the split-forest. Many work also exploit the new storage
medias to improve the performance of key-value stores
based on the multi-stage structures. LOCS [45] propose to
expose the internal channels of the SSDs and schedule
requests on the channels to fully exploit the SSD bandwidth.
Wisckey [46] and PebblesDB design specific algorithms to
exploit the SSD parallelism for range queries.

Other related researches have in-depth studies on the
evaluation and configuration of existing multi-stage-based
KV stores to find a better performance trade-off [17], [41],
[42]. In addition, practical systems have tried to provide
customized interfaces to reduce write amplification for spe-
cial use cases. For example, RocksDB provides the bulkload-
ing scheme [47] to ingest the large data generated in offline
or migrated from other data stores.

These works substantially advance the knowledge of
multi-stage structures, and motivate the work in this paper,
i.e., the taxonomy of current MS-structure based KV stores
and the SifrDB design.

7 DISCUSSION

As discussed in Section 3, MS-tree and MS-forest differ in
read and write performance due to their inherent struc-
tures. MS-trees such as LevelDB and RocksDB are more
suitable for workloads with high read ratio. Cassandra,
PebblesDB and other MS-forests are preferable for write-
dominant workloads.

SifrDB is based on MS-forest optimizing for write work-
loads, but uses multiple techniques to enhance read perfor-
mance and reduce space occupancy. For example, when the
memory is sufficient, SifrDB can enable SST-level filter at
the cost of memory (about 1 percent of dataset) to gain a
great improvement in reading performance, making its

Fig. 15. Throughput under YCSBworkloads (higher is better). SifrDB uses FC parallel scheme.To ensure fairness, SST-level filter in SifrDB is disabled for
the comparison of the five implementations(twoMS-tree and threeMS-forest). The results of SifrDBwith SST-level filter is also shown for reference.

Fig. 16. Latency of SifrDB in different configurations under YCSB work-
loads (lower is better).
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overall performance higher than other KV stores. When the
memory is limited and the SST-level filter is disabled, by
exploiting parallelism of underlying storage, SifrDB still can
improve the read performance comparable to MS-tree
implementation and also have the highest read performance
in MS-forest implementations. Therefore, SifrDB can be a
better uniform solution for both write and read workloads.

8 CONCLUSION

We identified two multi-stage structures, MS-tree and MS-
forest, that have opposing trade-offs for important perfor-
mance metrics. The SifrDB store we have proposed is
based on and inherits the advantage of the MS-forest
model, and avoids its disadvantages by imposing a split
storing mechanism. Additionally, we designed SST-level
filter that reduces read I/O and a parallel-search mecha-
nism that fully exploits the SSD access parallelism to boost
the read performance. Evaluation results show that SifrDB
is exceedingly competitive in large data stores.
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