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4 Abstract—The workflows of the predominant datacenter services are underlaid by various Fork-Join structures. Due to the lack of

5 good understanding of the performance of Fork-Join structures in general, today’s datacenters often operate under low resource

6 utilization to meet stringent service level objectives (SLOs), e.g., in terms of tail and/or mean latency, for such services. Hence, to

7 achieve high resource utilization, while meeting stringent SLOs, it is of paramount importance to be able to accurately predict the tail

8 and/or mean latency for a broad range of Fork-Join structures of practical interests. In this article, we propose a black-box Fork-Join

9 model that covers a wide range of Fork-Join structures for the prediction of tail and mean latency, called ForkTail and ForkMean,

10 respectively. We derive highly computational effective, empirical expressions for tail and mean latency as functions of means and

11 variances of task response times. Our extensive testing results based on model-based and trace-driven simulations, as well as a

12 real-world case study in a cloud environment demonstrate that the models can consistently predict the tail and mean latency within

13 20 and 15 percent prediction errors at 80 and 90 percent load levels, respectively, for heavy-tailed workloads, and at any load levels for

14 light-tailed workloads. Moreover, our sensitivity analysis demonstrates that such errors can be well compensated for with no more than

15 7 percent resource overprovisioning. Consequently, the proposed prediction model can be used as a powerful tool to aid the design of

16 tail-and-mean-latency guaranteed job scheduling and resource provisioning, especially at high load, for datacenter applications.

17 Index Terms—Tail latency, mean response time, Fork Join queuing networks, datacenter resource provisioning

Ç

18 1 INTRODUCTION

19 FORK-JOIN structures underlay many datacenter services,
20 including web searching, social networking, and big data
21 analytics. A Fork-Join structure is a critical building block in
22 the job processing workflow that constitutes a major part of
23 job processing time and hardware cost, e.g., more than two-
24 third of the total processing time and 90 percent hardware
25 cost for a Web search engine [1]. In a Fork-Join structure (see
26 Fig. 1), each job in an incoming flow spawns multiple tasks,
27 which are forked to, queued and processed at different
28 nodes, called Fork nodes in this paper, in parallel and its task
29 results are thenmerged at a Join node to yield the final result.
30 Due to barrier synchronization, the job response time is
31 determined by the slowest task, i.e., the tail probability,
32 which is hard to capture, from both modeling and measure-
33 ment points of view, making it extremely challenging to pre-
34 dict the job performance, e.g., the job tail latency.
35 Tail latency is considered to be the most important per-
36 formance measure for user-facing datacenter applications
37 [2], such as web searching and social networking, and nor-
38 mally expressed as a high percentile job response time, e.g.,

39the 99th percentile response time of 200 ms. Mean latency is
40also an important performance measure for big data analyt-
41ics workloads which are generally scale-out by design,
42involving one or multiple rounds of parallel processing of a
43(massive) number of tasks and task result merging phases
44with barrier synchronization, based on, e.g., MapReduce [3]
45or Spark [4] frameworks. In addition, it is harder but more
46important1 to predict the tail and mean latency under heavy
47load conditions than light ones. This is because as the load
48becomes heavier, so does the tail distribution, e.g., the 99th
49percentile of memcached request latencies on a server
50jumps from less than 1 ms at the load of 75 percent to 1 s at
51the load of 89 percent [5].
52Due to the lack of good understanding of the job-vs-task
53performance of such workloads, i.e., how distributed task-
54level performance determines the job-level performance,
55especially in the high load2 region, to provide high assurance
56of meeting tail-latency and/or mean-latency SLOs for such
57workloads, the current practice is to overprovision resources,
58which however, results in low resource utilization in data-
59centers [6], [7]. For example, aggregate CPU andmemory uti-
60lizations in a 12,000-server Google cluster are mostly less
61than 50 percent, leaving 50 and 40 percent allocated CPU
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1. In the low load region, tail and/or mean latency requirements can
be easily satisfied as the available resources are abundant. In contrast,
in the heavy load region in which the leftover resource is scarce,
resource allocation with high precision must be exercised to meet user
requirements.

2. The term “load” can be generally defined as the offered workload
per unit time divided by processing capacity per unit time. In the con-
text of Fork-Join structure, it is the maximum of the loads among all the
Fork nodes.
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62 and memory resources, respectively, idle almost at all time
63 [6]. Similarly, in a large production cluster at Twitter, aggre-
64 gate CPU usage is within 20–30 percent even thought CPU
65 reservations are up to 80 percent and aggregate memory
66 usage is mostly within 40–50 percent while memory alloca-
67 tion consistently exceeds 75 percent [7]. Hence, how to
68 improve resource utilization or the load from currently less
69 than 50 percent to, say, 80-90 percent, while meeting strin-
70 gent SLOs has been a challenging issue for datacenter service
71 providers [7]. To this end, a key challenge to be tackled is how to
72 accurately capture the tail and mean latency with respect to various
73 Fork-Join structures at high load.
74 Fork-Join structures are traditionally modeled by a class
75 of queuing networks, known as Fork-Join queuing network
76 (FJQN) [8], as depicted in Fig. 1. FJQNs arewhite-boxmodels
77 in the sense that all the Fork nodes are explicitly modeled as
78 queuing systems with given arrival process, queuing disci-
79 pline, and service time distribution. In this paper, we argue
80 that attempting to use FJQNs to cover a sufficiently wide
81 range of Fork-Join structures of practical interests is not a via-
82 ble solution. Instead, a black-box solution that can cover a
83 broad range of Fork-Join structuresmust be sought.
84 On one hand, FJQNs are notoriously difficult to solve in
85 general. Despite the great effort made for more than half a
86 century, to date, no exact solution is available even for the
87 simplest FJQN where all the nodes are M/M/1 queues [9],
88 i.e., Poisson arrival process and one server with exponential
89 service time distribution. Although empirical solutions for
90 some FJQNs are available, e.g., [10], [11], [12], [13], [14], they
91 can only be applied to a very limited number of Fork-Join
92 structures, e.g., homogeneous case, the case of First-In-First-
93 Out (FIFO) queuing discipline, and a limited number of ser-
94 vice time distributions.
95 On the other hand, the design space of Fork-Join structures of
96 practical interests is vast. It encompasses (a) a wide range of
97 queuing disciplines and service time distributions (e.g., both
98 light-tailed and heavy-tailed) [8]; (b) the case with multiple
99 replicated servers per Fork node for failure recovery, task

100 load balancing, and/or redundant task issues for tail cutting
101 [15], [16] or fast recovery from straggling tasks [17]; (c) the
102 case where the number of spawned tasks per job may vary
103 from one job to another [18]; and (d) the case of consolidated
104 services, where different types of services and applications

105may share the same datacenter cluster resources [19]. Clearly,
106the existing FJQNs can hardly cover such a design space in
107practice.
108To tackle the above challenges, in this paper, we propose
109to study a black-box Fork-Join model for the prediction of job
110tail andmean latency, called ForkTail and ForkMean, respec-
111tively, to cover a broad range of Fork-Join structures of prac-
112tical interests. By “black-box”, we mean that each Fork node
113is treated as a black box, regardless of how many replicated
114servers there are and how tasks are distributed, queued, and
115processed inside the box. In other words, for a black-box
116Fork-Join model, one can only use the task statistics measur-
117able from outside of Fork nodes, e.g., the mean and variance
118of the task response time (see Fig. 1). This is in stark contrast
119to a white-box Fork-Joinmodel where the exact task queuing
120discipline and the service model for a Fork node must be
121known. It also allows the number of spawned tasks per job,
122k, to be a random integer taking values in ½1; N �, where N is
123the maximum number of Fork nodes. As we shall see, our
124black-box model can indeed adequately covers the above
125design space.
126However, general solutions to this model are unlikely to
127exist, given the limited success in solving the white-box
128FJQNs. Nevertheless, we found that for the black-box
129model, empirical solutions under heavy load conditions do
130exist, known as the central limit theorem for G/G/m queu-
131ing systems, where the arrival process is general with inde-
132pendent interarrival times, the queuing discipline is FIFO,
133and there are m servers with general service time distribu-
134tions, under heavy load [20], [21]. Inspired by this theorem,
135we were able to demonstrate [22] that in a load region of
13680 percent or higher, where resource provisioning with pre-
137cision is most desirable and necessary, an empirical expres-
138sion of the tail-latency for a special case of the black-box
139model, i.e., k ¼ N for all the requests, exists, which can pre-
140dict the tail latencies within 15 percent error at any load lev-
141els for light-tailed service time distribution and the load
142level of 90 percent for heavy-tailed one in the cases (a) and
143(b) in the design space mentioned above. As our sensitivity
144analysis in Section 4 shows, such prediction errors can be
145well compensated for with no more than 7 percent resource
146overprovisioning.
147Thework in this papermakes the following contributions.
148First, it generalizes the solution in [22] to also cover cases (c)
149and (d) in the design space, hence, making it applicable to
150most Fork-Join structures of practical interests. Second, it
151gives the first empirical, universal solutions to tail and mean
152job latencies for both black-and-white-box FJQNs at high
153load and hence, it makes a contribution to the queuing net-
154work theory as well. In fact, for anywhite-box FJQNwith G/
155G/1 Fork queuing servers, our approach leads to closed-
156form approximate solutions, which are on par with the most
157elaborate white-box solutions in terms of accuracy across the
158entire load range at much lower computational complexity.
159Third, comprehensive testing and verification of the pro-
160posed approximations for tail and mean latency are per-
161formed for all (a)–(d) Fork-Join structures, based on model-
162based and trace-driven simulation, as well as a real-world
163case study. Fourth, sensitivity analysis indicates that our pro-
164posed solutions can lead to accurate resource provisioning
165for data-intensive services and applications in a consolidated

Fig. 1. Black-box Fork-Join model. Each job in the incoming flow spawns
k tasks mapped to k out of N Fork nodes. Each Fork node is treated as
a black box, completely determined by the mean and variance of the
task response time, i.e., E½T � and V½T �.
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166 datacenter environment at high load. Finally, preliminary
167 ideas are provided as to how to use this solution to facilitate
168 SLO-guaranteed job scheduling and resource provisioning.
169 The rest of the paper is organized as follows. Section 2
170 introduces our black-box model and ForkTail and Fork-
171 Mean, the empirical approximations for the tail and mean
172 latency, respectively. Section 3 performs extensive testing
173 of the accuracy of these approximations. Section 4 presents
174 the sensitivity analysis for the proposed approximations.
175 Section 5 explores the range of applicability of the proposed
176 solutions. Section 6 discusses how the proposed approxi-
177 mations may be used to facilitate effective job scheduling
178 and resource provisioning with tail-latency-SLO guarantee.
179 Section 7 reviews the related work. Finally, Section 8 con-
180 cludes the paper and discusses future work.

181 2 MODEL AND SOLUTIONS

182 2.1 Black-Box Model

183 The black-box model described in this section greatly
184 extends the scope of the black-box model introduced in [22]
185 to address the entire design space mentioned in Section 1.
186 Consider a black-box Fork-Join model with each job in the
187 incoming flow spawning k tasks mapped to k out of N Fork
188 nodes, as depicted in Fig. 1. The results from all k tasks are
189 finally merged at a Join node (i.e., the triangle on the right).
190 Jobs arrive following a random arrival process with average
191 arrival rate �. Each Fork node may be composed of more
192 than one replicated servers for task-level fault tolerance, load
193 balancing, tail-cutting, and/or straggler recovery. An exam-
194 ple Fork nodewith three server replicas is depicted in Fig. 1.
195 The above model deals with a general case where k � N .
196 Note that the traditional FJQNs cover only a small fraction of
197 this design space, i.e., k ¼ N , homogeneous Fork nodes with
198 a single server per node, which is modeled as a FIFO queuing
199 system.
200 General solutions to this model are unlikely to exists. For-
201 tunately, we are most interested in finding solutions in high load
202 regions where precise resource provisioning is highly desirable
203 and necessary. There is a large body of research results in the
204 context of queuing performance in high load regions (e.g.,
205 see [23] and the references therein). In particular, a classic
206 result, known as the central limit theorem for heavy traffic
207 queuing systems [20], [21], states that for a G/G/m queue
208 under heavy load, the waiting time distribution can be
209 approximated by an exponential distribution. Clearly, this
210 theorem applies to the response time distribution as well,
211 since the response time distribution converges to the wait-
212 ing time distribution as the traffic load increases. Inspired
213 by this result, we postulate that for tasks mapped to a black-
214 box Fork node and in a high load region, the task response
215 time distribution FT ðxÞ for any arrival process and service
216 time distribution can be approximated as a generalized
217 exponential distribution function [24], as follows,

FT ðxÞ ¼ ð1� e�x=bÞa; x > 0; a > 0; b > 0; (1)
219219

220 where a and b are shape and scale parameters, respectively.
221 Themean and variance of the task response time are given
222 by [24]

E½T � ¼ b½cðaþ 1Þ � cð1Þ�; (2)224224

225V½T � ¼ b2½c0ð1Þ � c0ðaþ 1Þ�; (3)
227227

228where cð:Þ and its derivative are the digamma and poly-
229gamma functions.
230From Eqs. (2) and (3), it is clear that the distribution in
231Eq. (1) is completely determined by the mean and variance of
232the task response time. In other words, the task response time
233distribution can be measured by treating each Fork node as a
234black box as shown in Fig. 1. The rationale behind the use of
235this distribution, instead of the exponential distribution, is
236that it can capture both heavy-tailed and light-tailed task
237behaviors depending on the parameter settings and mean-
238while, it degenerates to the exponential distribution at a ¼ 1
239andE½T � ¼ b. In [22], we showed that this distribution signifi-
240cantly outperforms the exponential distribution in terms of
241tail latency predictive accuracy.
242Now, with all the Fork nodes in Fig. 1 being viewed as
243black boxes, the response time distribution for any job with
244k tasks can be approximated using the order statistics [9] as
245follows,

F
ðkÞ
X ðxÞ ¼

Yk

i¼1

FTiðxÞ ¼
Yk

i¼1

ð1� e�x=biÞai : (4)

247247

248Note that the above expression is exact if the response times
249for tasks mapped to different Fork nodes are independent
250random variables. This, however, does not hold true for any
251Fork-Join structures, simply because the sample paths of the
252task arrivals at different Fork nodes are exactly the same,
253not independent of one another. This is the root cause that
254renders the Fork-Join models extremely difficult to solve in
255general. In what follows, we introduce ForkTail and Fork-
256Mean, separately, based on this approximation.

2572.2 ForkTail

258ForkTail was originally presented in [25]. Our postulation is
259that as load reaches 80 percent or higher where precise
260resource provisioning is desirable and necessary, the tail-
261latency prediction errors introduced by the above assumption
262will become small enough for resource provisioning purpose.
263Our extensive testing results in this paper provide strong sup-
264port of the postulation, making our modeling approach the
265only practically viable one for tail latency prediction.
266Tail latency xp, defined as the pth percentile job response
267time, can be written as,

xp ¼ F
ðkÞ
X

�1
p=100ð Þ: (5)

269269

270Eq. (5) simply states that in a high load region, the tail latency
271can be approximated as a function of the means and varian-
272ces of task response times for all k tasks at their correspond-
273ing Fork nodes, irrespective of what workloads cause the
274heavy load. The implication of this is significant. It means
275that this expression is applicable to a consolidated datacenter
276cluster where more than one service/application share the
277same cluster resources. Moreover, this expression allows tail
278latency to be predicted using a limited number of job sam-
279ples thanks to its dependence on the first two moments of
280task response times only, i.e., themeans and variances.
281The results so far is general, applying to the heteroge-
282neous case, where task response time distributions may be
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283 different from one task to another, due to, e.g., the use of
284 heterogeneous Fork nodes and/or uneven background
285 workloads. As a result, the tail latency predicted by Eq. (5)
286 may be different from one job to another or even for two
287 identical jobs, as long as their respective Fork nodes do not
288 completely coincide with one another, or they are issued at
289 different times. In other words, Eq. (5) is a fine-grained tail
290 latency expression. For certain applications, such as offline
291 resource provisioning (see Section 6 for explanations) and
292 coarse-grained, per-service-based tail-latency prediction,
293 one may be more interested in the homogeneous case only.
294 In this case, the response time distribution can be further
295 simplified as,

F
ðkÞ
X ðxÞ ¼ ð1� e�x=bÞka: (6)

297297

298 This is because the means and variances given in Eqs. (2)
299 and (3) are the same for the homogeneous case. A coarser-
300 grained cumulative distribution function (CDF) of the job
301 response time can then be written as,

FXðxÞ ¼
X

ki

FXjKðxjkiÞP ðK ¼ kiÞ; (7)

303303

304 where FXjKðxjkiÞ is the conditional CDF of the job response
305 time for jobs with ki tasks, given by Eq. (6), i.e., FXjKðxjkiÞ ¼
306 F

ðkiÞ
X ðxÞ, and P ðK ¼ kiÞ ¼ Pi is the probability that a job

307 spawns ki tasks.
308 Further assume that there are m job groups with distinct
309 numbers of tasks ki’s, i ¼ 1; . . .;m, and corresponding prob-
310 abilities Pi’s. We then have,

FXðxÞ ¼
Xm

i¼1

Pi � F ðkiÞ
X ðxÞ: (8)

312312

313 Correspondingly, the tail latency for the m groups of jobs as
314 a whole can then be readily obtained, similar to Eq. (5), as
315 follows,

xp ¼ F�1
X ðp=100Þ: (9)

317317

318 For example, the tail latency for a given service can be pre-
319 dicted by collecting statistics for ki’s and Pi’s, as well as
320 mean and variance of task response time and applying
321 them to the tail latency expression in Eq. (9).

322 2.2.1 Application to White-Box FJQNs

323 Clearly, the above black-box approach leads to closed-form
324 solutions for any white-box models whose analytical
325 expressions for the means and variances of task response
326 times are available, whether it is homogeneous or not. In
327 fact, our solution works for the case where different Fork
328 nodes may have different service time distributions and
329 queuing disciplines. For instance, our approach can be
330 applied to a large class of FJQNs, where each Fork node is
331 an M/G/1 queue or a more general G/G/1 queue, whose
332 mean and variance of the task response time can be com-
333 puted from Tak�acs recurrence theorem [26] or the queuing
334 network analyzer [27], respectively.

335 2.3 ForkMean

336 While the approximations in Eqs. (5) and (9) work well for
337 the job tail latency even for the k < N cases, it fails to

338accurately predict the job mean response time,3 yielding
339more than three times larger errors for the same cases stud-
340ied, especially for the case of light-tailed service time distri-
341butions. We find that the reason for this to happen is due to
342the fact that to accurately predict the job mean response
343time, the entire job response time distribution including the
344tail portion must be accurately captured, as the barrier syn-
345chronization tends to push the job mean response time
346towards the tail part of the task response time distribution,
347as the workload scales out.
348On the basis of the above modeling, this section aims at
349finding solutions to reduce the prediction errors for the job
350mean latency. To this end, we make the following two key
351observations.

352Observation 1. For a wide range of Fork-Join models, the
353difference between the exact tail-mean ratio and the
354model-based tail-mean ratio, derived from the CDF in
355Eq. (4), hereafter called the gap and denoted as D, con-
356verges to a constant as the number of Fork nodes becomes
357large enough.Mathematically, we have,

xp

xm
� xge

p

xge
m
¼ D; (10)

359359

360where xp and xm are the exact pth percentile and mean of
361job latency, respectively, which can be estimated by
362experiments, while xge

p and xge
m are derived from the pre-

363diction model, i.e., Eq. (4). Hence, the mean latency can be
364approximated as follows,

xm ¼ xp

Rge þ D
� xgep

Rge þ D
; (11)

366366

367where xp � xge
p at high loads, since ForkTail give accurate

368predictions for the pth percentile at high loads, as indi-
369cated in the testing results, and Rge ¼ xge

p =x
ge
m .

370Fig. 2 illustrates the gaps for systems with different task
371service time distributions, including light-tailed and heavy-
372tailed ones, where each Fork node is a single server, i.e., with-
373out replication. As one can see, the gap converges to a
374constant asN becomes sufficiently large, say,N � 100, for all
375the cases. Similar trends are also observed for the systems
376with 3-replica Fork nodes with Round-Robin and redundant-
377task-issue dispatching policies as well as the systems with
378variable numbers of forked tasks (not shown here).

379Observation 2. There is a strong correlation between the tail
380heaviness of service time distribution and the gap D, i.e., the
381heavier the tail, the smaller the gap. It is evident from Fig. 2
382that the light-tailed distributions, including Exponential and
383Weibull, have larger gaps than the heavy-tailed ones, includ-
384ing the truncatedPareto and empirical (defined in Section 3.1).
385With this observation,wemake the followingpostulation: The
386gap ismuchmoreof a functionof the tail heaviness of a service
387timedistribution than the service timedistribution itself.

388From the above observations, we propose two empirical
389solutions, one is white-box and the other black-box, for
390the approximation of the gap, D, and hence, the job mean
391response time.

3. We use the terms ‘latency’ and ‘response time’ interchangely in
this paper.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
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393 This approach is based on the above postulation. Here we
394 consider a homogeneous white-box Fork-Join queuing
395 model where each Fork node can be modeled as a G/G/1
396 queue. With known interarrival and service time distribu-
397 tions, one can find the job response time distribution and
398 the corresponding tail and mean latencies, and so their ratio
399 Rge, from ForkTail. So to find the job mean latency, xm, all
400 that is left to be done is to find D.
401 To this end, we first define tail heaviness, wðFT Þ. We use
402 Right QuantileWeight [28] whichmeasures the tail heaviness
403 on the right side of a distribution, the region of interest in all
404 of our experiments. This tail weightmeasure is defined as,

wðFT Þ ¼
F�1
T

1þq
2

� �þ F�1
T 1� q

2

� �� 2F�1
T ð0:75Þ

F�1
T

1þq
2

� �� F�1
T 1� q

2

� � ; (12)

406406

407 where 0:5 < q < 1 and F�1
T ðqÞ is quantile q of task service

408 time distribution FT . To capture the tail effect but still retain
409 a reasonable robustness, we set q ¼ 0:99.
410 Based on our postulation, D ¼ Dðr; wÞ, independent of
411 FT ðxÞ. Here r is the load. In other words, as long as wðF ð1Þ

T Þ ¼
412 wðF ð2Þ

T Þ, the two homogeneous Fork-Join models with differ-
413 ent service time distributions, F

ð1Þ
T and F

ð2Þ
T , respectively, will

414 have the same gap. In other words, if one can find the func-
415 tion, Dðr; wÞ, using one distribution function with different
416 tail weights, this Dðr; wÞ can then be used by any Fork-Join
417 models with other distribution functions to find the gap. In
418 this paper, we use the generalized exponential distribution in
419 Eq. (1) at different coefficients of variance to generate different
420 tail weights from Eq. (12) and the corresponding gaps and
421 then use nonlinear regression to find Dðr; wÞ. Table 1 shows
422 the gaps for different tail weights, averaged over N ¼ 100 to
423 1,000 at three different load levels.
424 From experimental data with different distribution param-
425 meters, we found that the power function, i.e., D ¼ awb þ c,

426yields a very good fit to these gap-tail weight points. Fig. 3
427illustrates the fitted curve at load level of 80 percent from
428Table 1 with respect to the fitted points from the generalized
429exponential distribution (the black points). It also shows the
430actual points from other distributions, which are used for test-
431ing in the experiments (the green points), relative to the fitted
432curve. As one can see, the green points stay reasonably close
433to the curve itself, meaning that our postulation indeed holds
434true. Table 2 presents the fitted functions for the cases in
435Table 1.
436In summary, this white-box approach results in a closed-
437form solution for the approximation of job mean latency,
438which is composed of the following computation steps,

439– With given E½T � and V½T �, compute the tail and
440mean latencies, i.e., xge

p and xge
m from the predicted

441CDF in Eq. (4) and their corresponding ratio, i.e., Rge;
442– With a given service time distribution FT , calculate
443the tail weight w from Eq. (12), which is then
444mapped to a D at a given load, e.g., using one of the
445functions in Table 2;
446– Approximate the mean latency using Eq. (11).

4472.3.2 Black-Box Approach

448The white-box approach above leads to closed-form solutions
449for homogeneous white-box Fork-Join models with known

TABLE 1
The Gaps for Different Tail Heavinesses and Load Levels

Tail weight
Load

0.703 0.772 0.851 0.918 0.962 0.986 0.999

75% 0.486 0.271 0.160 0.097 0.063 0.029 0.009
80% 0.511 0.283 0.169 0.106 0.069 0.044 0.013
90% 0.573 0.319 0.190 0.129 0.070 0.055 0.023

Fig. 2. The gaps for Fork-Join systems with different service time distributions at load levels of 80 percent (upper row) and 90 percent (lower row).

Fig. 3. An example of the gap-vs-tail-weight fitted curve.

TABLE 2
Examples of Fitted Dðr; wÞ Curves

Load Function

75% D ¼ 0:0371w�7:517 � 0:0052
80% D ¼ 0:0322w�8:008 þ 0:0056
90% D ¼ 0:0274w�8:654 þ 0:0284

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 5
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451 tice, determining those distributions is nontrivial, e.g., for sys-
452 tems with multi-replica Fork nodes. Hence, it is necessary to
453 seek a black-box solution applicable to a wide range of Fork-
454 Join structures of practical interests.
455 Based on the Observation 1, i.e., D converges to a constant
456 as the number of Fork nodes becomes large enough, i.e.,
457 around 100, based on all the testing cases. This suggests that,
458 if for a target application, D can be measured on a small
459 testbed or by simulation, with 100 virtual machines/nodes, or
460 equivalently, a few commodity servers, e.g., 5, then the mean
461 latency can be predicted when the application is deployed on
462 a much larger number of nodes. This approach requires only
463 the means and variances of task response times as inputs, and
464 hence is a hybrid, black-box solution.
465 The steps taken to find the job mean latency are similar to
466 those for the white-box approach above except for step 2
467 where D is predicted by running experiments for the target
468 application on a system with a given number of Fork nodes,
469 e.g., 100, and measure the ratio gap between the results
470 from the experiments and the prediction model.
471 Compared to the white-box solution, the black-box one is
472 simpler and can be applied to a much wider range of Fork-
473 Join structures. However, as a hybrid approach, it requires to
474 run experiments, either via simulation or on a real testbed,
475 with an adequate number of Fork nodes, e.g., 100. Conse-
476 quently, it should be applied to large-scale systems where a
477 job is forked to at least hundreds of nodes, much larger than
478 the one used for testing. Note that the hybrid approach, which
479 combines analysis and simulation, is not unusual in analyzing
480 performance of the Fork-Join model. Indeed, it has been used
481 in several previousworks in the literature [10], [13], [29].

482 3 VALIDATION

483 3.1 Tail Latency Prediction Validation

484 In this section, ForkTail is extensively validated against the
485 results from model-based simulation, trace-driven simula-
486 tion, and a case study in Amazon EC2 cloud. The validation
487 is performed for the systems with k ¼ N , k � N , and consol-
488 idated services, separately. The accuracy of the prediction is
489 measured by the relative error between the value predicted
490 from ForkTail, tp, and the one measured from simulation or
491 real-system testing, tm, i.e.,

error ¼ 100ðtp � tmÞ
tm

:

493493

494

495 3.1.1 Case 1: k ¼ N

496 A notable example for this case is Web search engine [30]
497 where a search request looks up keywords in a large inverted

498index distributed on all the servers in the cluster.We validate
499ForkTail with three testing approaches, i.e., white-box and
500black-box model-based testing as well as a real-world case
501study in Amazon EC2 cloud.
502White-Box Model-Based Validation. Here we study the
503accuracy of ForkTail when applied to homogeneous, single-
504queuing-server-Fork-node Fork-Join systems with the assu-
505mption that the service time distribution is known in
506advance, the approach taken in all the existing works on per-
507formance analysis of FJQNs [9]. The tail latency prediction
508involves the following steps:

509– Find the mean and variance of task response times
510with the given task service time distribution;
511– Substitute the above mean and variance into Eqs. (2)
512and (3), respectively, and solve that system of equa-
513tions to find the scale and shape parameters of the
514generalized exponential distribution in Eq. (1),
515which is then used to approximate the task response
516time distribution;
517– Calculate the pth percentile of request response times
518from Eq. (9).
519First, we compare ForkTail against the state-of-the-art tail
520latency approximation for homogeneous FJQNs [14], known
521as EAT, which is derived from analytical results for single-
522node and two-node systems. Fig. 4 shows the comparative
523results for three service time distributions studied in [14],
524i.e., Erlang-2, Exponential, and Hyperexponential-2, at the
525loads of 10, 50, and 90 percent4 and numbers of nodes of
526100, 500, and 1,000.
527EAT provides more accurate (from a few to several per-
528centage points) approximations for the 99th percentiles of
529response times across all the cases studied. Much to our
530surprise, our approach yields most of the errors within
53110 percent, across the entire load range. Although outper-
532forming our approach, EAT has its limitations. First, it can be
533applied only to homogeneous FJQNs where each node can be
534generally modeled as a MAP/PH/1 queuing system, i.e.,
535Markovian arrival processes and phase-type service time dis-
536tributionwith one service center. Second, themethod requires
537the service time distribution to be known in advance and con-
538verted into a phase-type distribution, which is nontrivial,
539especially for heavy-tailed distributions [31]. Third, the
540method may incur high computational complexity, depend-
541ing on the selection of a constant C, whose value determines
542the computational runtime and prediction accuracy. It takes

Fig. 4. Prediction errors for the 99th percentile response times for ForkTail and EAT.

4. For EAT, the case for Hyperexponential-2 at the load of 90 percent
is not available, due to a numerical error running the code provided
in [14].
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of543 at least 2 seconds on our testing PC (Core i7-4940MX Quad-

544 core, 32GB RAM) to get the resulting percentiles even at
545 the lesser degree of accuracy with C ¼ 100 (more than
546 300 seconds at C ¼ 500). In contrast, our method takes less
547 than 5 milliseconds to compute the required percentiles. As a
548 result, similar to other existing white-box solutions, EAT has
549 limited applicability for datacenter job scheduling and
550 resource provisioning in practice.
551 To cover a sufficiently large workload space, we further
552 consider service time distributions with heavy tails, which
553 are common in practice [32] and cannot be easily dealt with
554 by EAT, including the following,

555 – Empirical distributionmeasured from aGoogle search
556 test leaf node provided in [32], which has a mean ser-
557 vice time of 4.22 ms, a coefficient of variance (CV) of
558 1.12, and the largest tail value of 276.6ms;
559 – Truncated Pareto distribution [31] with the samemean
560 service time and a CV of 1.2, whose CDF is given by,

FSðxÞ ¼ 1� ðL=xÞa
1� ðL=HÞa 0 � L � x � H; (13)

562562

563 where a is the shape parameter; L is the lower bound;
564 and H is the upper bound, which is set at the maxi-
565 mum value of the empirical distribution above, i.e.,
566 H ¼ 276:6ms, resulting ina ¼ 2:0119 andL ¼ 2:14ms.
567 – Weibull distribution [8], also with the samemean ser-
568 vice time and a CV of 1.5, whose CDF is defined as,

FSðxÞ ¼ 1� exp½�ðx=bÞa� x � 0; (14)
570570

571 where a ¼ 0:6848 and b ¼ 3:2630 are shape and scale
572 parameters, respectively.
573 Fig. 5 presents the prediction errors for the 99th percentile
574 response times for the above cases. The Weibull distribution,
575 which is less heavy-tailed, consistently yields smaller errors,
576 wellwithin 5 percent, for the entire load range studied, similar
577 to the light-tailed distribution cases studied earlier. The
578 empirical and truncated Pareto distributions, which are more
579 heavy-tailed, provide good approximations for the 99th per-
580 centiles at the load of 80 percent or higher, which is well
581 within 17 and 5 percent at the load of 80 and 90 percent,
582 respectively, agreeingwith our postulation.
583 We also consider the cases with general arrival process
584 and general service time distribution, i.e., G/G/1 Fork
585 nodes. Fig. 6 shows the prediction errors for example cases
586 with Erlang-2 (CV = 0.5) and Hyperexponential-2 (CV = 1.2)
587 arrival processes and Truncated Pareto service time distribu-
588 tion (CV = 3.0). Again, ForkTail yields quite accurate app-
589 roximations for tail latency at high load regions, i.e., above

59075 percent. The prediction results also show the same trend
591for Weibull and Exponential service time distributions,
592which are not shown here.
593Black-Box Model-Based Validation. We now validate Fork-
594Tail without making assumption on the service time distri-
595bution at each Fork node. We treat each Fork node as a
596black-box and empirically measure the mean and variance
597of task response times at each given arrival rate � or load.
598These measures are then substituted into Eqs. (2) and (3),
599respectively, to find the shape and scale parameters, which
600are in turn used to predict the tail latency based on Eq. (9).
601For all the three heavy-tailed FJQNs studied above, we
602consider two types of Fork nodes, i.e., one with single server
603and the other with three replicated servers. For the one with
604three servers, we explore two task dispatching policies. The
605first policy is the Round-Robin (RR) policy, in which the dis-
606patcher will send tasks to different server replicas in an RR
607fashion. The second policy is still RR, but it also allows
608redundant task issues, a well-known tail-cutting technique
609[15], [16]. This policy allows one or more replications of a
610task to be sent to different server replicas in the Fork node.
611The replications may be sent in predetermined intervals to
612avoid overloading the server replicas. In our experiments,
613at most one task replication can be issued, provided that the
614original one does not finish within 10 ms, which is around
615the 95th percentile of the empirical distribution above.
616Figs. 7, 8, and 9 present the prediction errors at different
617load levels and N ’s for the 99th percentile response times
618for all three FJQNs with single server and three servers per
619Fork node, respectively. First, we note that the prediction
620errors for the cases in Fig. 7 are very close to those in Fig. 5.
621This is expected as the white-box and black-box results, ide-
622ally, should be identical. The differences are introduced due
623to simulation and measurement errors. Second, the predic-
624tion performances of the cases with three replicas and the
625RR policy in Fig. 8 are also very close to those of the cases in
626Fig. 7, with errors being well within 20 and 10 percent at the

Fig. 5. Prediction errors of the 99th percentile response times for white-box systems with single-server Fork nodes.

Fig. 6. Prediction errors of the 99th percentile response times for white-
box systems with Erlang-2 (left) and Hyperexponential-2 (right) arrival
distributions and Truncated Pareto service time distribution.
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627 loads of 80 and 90 percent, respectively, for all the case stud-
628 ies, further affirming our postulation. The two scenarios
629 have similar performance because they are compared at the
630 same load levels, where the RR policy in the second scenario
631 simply balances the load among three replicas, making each
632 virtually identical to the single-server scenario. In contrast
633 to these two scenarios, Fig. 9 shows that with the application
634 of the tail-cutting technique, the prediction errors are sub-
635 stantially reduced, with less than 10 percent at the load of
636 80 percent or higher. This is consistent with the earlier
637 observation, i.e., the lighter the tail, the smaller the predic-
638 tion errors. This suggests that the tail-cutting techniques,
639 often utilized in datacenters to curb the tail effects, can help
640 expand the load ranges in which ForkTail can be applied.
641 A Case Study in Cloud. We also assess the accuracy of
642 ForkTail for a real case study in Amazon EC2 cloud. We
643 implement a simple Unix grep-like program on the Apache
644 Spark framework (version 2.1.0) [4]. It looks up a keyword
645 in a set of documents and returns the total number of lines
646 containing that keyword, as depicted in Fig. 10. The cluster
647 for the testing includes one master node using an EC2
648 c4.4xlarge instance and 32 or 64 worker nodes using EC2 c4.
649 large instances. We use a subset of the English version of
650 Wikipedia as the document for lookup. Each worker node
651 holds a shard of the document whose size is 128 MB, corre-
652 sponding to the default block size on Hadoop Distributed
653 File System (HDFS) [33]. A client, which runs a driver pro-
654 gram, sends a flow of keywords, each randomly sampled

655from a pool of 50K keywords, to the testing cluster for
656lookup. Each worker searches through its corresponding
657data block to find the requested keyword and counts the
658number of lines containing the keyword. The line count is
659then sent back to the client program to sum up. Clearly, this
660testing setup matches the black-box model.
661We measure the request response time, i.e., the time it
662takes to finish processing each keyword at the client. We also
663collect the task response times, composed of the task waiting
664time and task service time. The task waiting time is the one
665between the time the request the task belongs to is sent to the
666cluster and the time the task is sent to a given worker for
667processing. This is because in the Spark framework, all the
668tasks spawned by a request are kept in their respective

Fig. 7. Prediction errors of the 99th percentile response times for black-box systems with single-server Fork nodes.

Fig. 8. Prediction errors of the 99th percentile response times for black-box systems with 3-server Fork nodes and Round-Robin policy.

Fig. 9. Prediction errors of the 99th percentile response times for black-box systems with 3-server Fork nodes and redundant-task-issue policy.

Fig. 10. Experiment setup in Amazon EC2 cloud. Each worker should be
viewed as a blackbox as in Fig. 1.
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670 trally. A task at the head of a virtual queue cannot be sent to
671 its target worker until the worker becomes idle. Hence, to
672 match our black-box model, the task response time must
673 include the task waiting time, i.e., the task queuing time plus
674 the task dispatching time, and the task service time, which is
675 the actual processing time at the worker the task is mapped
676 to. From the collected samples, we compute the means and
677 variances of task response times, which are in turn used to
678 derive the task response time distribution as in Eq. (1).
679 Ideally, the task response time distributions for all the
680 tasks are the same, given that the workers are identical. In
681 other words, one would expect that this case study is homo-
682 geneous. However, our measurement indicates otherwise.
683 A careful analysis reveals that this is mainly due to the task
684 scheduling mechanism in the Spark framework. Each data
685 block has three replicas distributed across different workers.
686 By default, the placement preference is to send a task to an
687 available worker where the data block resides. Unfortu-
688 nately, as the request arrival rate or load increases, more
689 tasks are mapped to workers that do not hold the required
690 data blocks for the tasks, causing long task response time
691 due to the need to fetch the required data blocks from the
692 distributed file system. This results in higher variability in
693 the task response time distributions among different work-
694 ers. Therefore, the heterogeneous model given in Eq. (4) is
695 found to be more appropriate in high load regions.
696 The above observation is confirmed by the experimental
697 results, presented in Fig. 11. As one can see, the heteroge-
698 neous model (the blue lines) gives quite accurate prediction
699 for both 95th and 99th percentiles at both N ¼ 32 and 64
700 cases, while the prediction from the homogeneous model
701 (the green lines) gets worse as the load becomes higher.
702 Based on the heterogeneous prediction, the prediction errors
703 at bothN ¼ 32 and 64 and the 99th percentile are well within
704 10 percent in a high load region, i.e., 60 percent or higher.
705 Note that the load here is measured in terms of request
706 arrival rate. Since the system is heterogeneous, we estimated
707 the equivalent loads corresponding to different arrival rates

708based on the maximum value of means of task service times
709across all the workers, as given in Table 3.
710Finally, we note that to achieve a reasonably good confi-
711dence of measurement accuracy for the 99th percentile tail
712latency, we collected 80K samples in our experiments at the
713maximumpossible sampling rate equal to the average request
714arrival rate of 5.8 per second, which translates into a measure-
715ment time of 13,793 seconds or about 4 hours. It takes even
716more time to run the experiments at lower arrival rates. The
717average runtime across all the request arrival rates in the
718experiments is about 6 hours. Due to the costly cloud services,
719we have to limit our experiments to 64worker nodes.
720This example clearly demonstrates that it can be expensive
721and time consuming, if practical at all, to estimate tail latency
722based on direct measurement. In contrast, ForkTail is able to
723do so with far fewer number of samples at much lower cost.
724For example, with 800 samples collectable in less than three
725minutes, we can estimate the response-timemeans and varian-
726ces for all the tasks and hence the tail latency with reasonably
727good accuracy. This means that our prediction model can
728reduce the needed samples or prediction time by two orders of
729magnitude than the directmeasurement.

7303.1.2 Case 2: Variable Number of Tasks k � N

731Notable examples for this case are key-value store systems
732in which a key lookup may touch only a partial number of
733servers and web rendering which requires to receive web
734objects or data from a group of servers in a cluster.
735In this case study, we assess the accuracy of our prediction
736model (i.e., Eqs. (8) and (9)) for applications whose jobs may
737spawn different numbers of tasks with distributionP ðK ¼ kiÞ.
738Specifically, we study two scenarios where P ðK ¼ kiÞ is non-
739zero for a specific value of K and uniformly distributed,
740respectively. We further consider three different service time
741distributions: two heavy-tailed ones, the empirical and trun-
742cated Pareto as in Section. 3.1.1, and a light-tailed exponential
743distribution,with the samemean service time, i.e., 4.22ms.
744Scenario 1: Fixed Number of Tasks per Job. In this scenario,
745we consider the cases when the number of forked tasks per
746job is a fixed number k (k � N), i.e., every incoming job is

Fig. 11. Predicted tail latencies for keyword occurrence counts in Ama-
zon cloud with 32 (left) and 64 (right) nodes.

TABLE 3
Estimated Loads (%) for the Testbed Based

on Request Arrival Rates

Request arrival rates (requests/s)
#workers

3.0 3.5 4.0 4.5 5.0 5.5

32 48.33 56.39 64.44 72.50 80.56 88.61
64 50.04 58.38 66.72 75.06 83.40 91.74

Fig. 12. Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job is fixed (k ¼ 100; 500; 900).
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748 selected Fork nodes in anN-node cluster.
749 Fig. 12 shows prediction errors for the 99th percentile
750 response times for an 1,000-node cluster with k ¼ 100, 500,
751 and 900 tasks. ForkTail provides good prediction in high
752 load regions, with all the errors within 10 percent at the load
753 of 90 and 20 percent at the load of 80 percent for all the cases
754 studied. The case with the light-tailed exponential distribu-
755 tion gives quite accurate prediction for the entire range
756 under study, i.e., all within 6 percent.
757 Scenario 2: Uniform Distribution. Here we deal with cases
758 when an incoming job is forked to k randomnodes in the clus-
759 ter where k is randomly sampled from an integer range ½a; b�,
760 i.e., ki 2 fa; aþ 1; . . .; b� 1; bg with probability Pi ¼ P ¼
761 1=m8i, where m ¼ b� aþ 1. Therefore, the mean number of
762 tasks is ðaþ bÞ=2.
763 Fig. 13 presents prediction errors for an 1,000-node clus-
764 ter with k in four different ranges, i.e., [80, 120], [400, 600],
765 [800, 1000], and [10, 990]. The results again show that Fork-
766 Tail yields good approximations for the 99th percentile job
767 response times when the system is under heavy load, i.e.,
768 80 percent or higher. Furthermore, again for all the cases
769 with the exponential distribution, ForkTail gives accurate
770 predictions across the entire load range studied.
771 The above prediction model applies to the case where a
772 single tail-latency SLO is imposed on a service or applica-
773 tion as a whole, a practice widely adopted in industry.
774 However, this practice can be too coarse grained. To see
775 why this is true, Table 4 provides the predicted tail latencies
776 for some given jobs with distinct k values in a cluster of size

7771,000 and at the load of 90 percent. As one can see, the 99th
778percentile tail latencies for jobs at different k’s can be drasti-
779cally different, e.g., the 10-task and 900-task cases. This sug-
780gests that even for a single application, finer grained tail
781latency SLOs may need to be enforced to be effective, e.g.,
782enforcing tail-latency SLOs for job groups with each having
783k’s in a small range. Table 5 shows that ForkTail can indeed
784provide accurate, finest-grained prediction at given k’s, i.e.,
785all well within 10 percent at load of 90 percent.

7863.1.3 Case 3: Consolidated Services

787In this case study, we evaluate the accuracy of ForkTail when
788applied to the consolidated datacenter where multiple appli-
789cations, including latency-sensitive user-facing and back-
790ground batch ones, share cluster resources as illlustrated in
791Fig. 14. We conduct a trace-driven simulation based on a
792trace file derived from the Facebook 2010 trace, a widely
793adopted approach in the literature to explore datacenter
794workloads [19], [34], [35]. We test the accuracy of ForkTail in
795capturing the tail latency for a given target application.
796Workload. The trace file is generated based on the descrip-
797tion of the Facebook trace in some previously published
798works [19], [34], [35]. Specifically, we first generate the num-
799ber of tasks for job arrivals based on the distribution of the
800job size in terms of the number of tasks per job, as suggested
801in [35]. It includes nine bins of given ranges of the number of
802tasks and corresponding probabilities, assuming that the
803number of tasks is uniformly distributed in the range of each
804bin. We then generate the mean task service time based on
805the Forked task processing time information in [34]. Individ-
806ual task times are drawn from a Normal distribution with
807the generated mean and a standard deviation that doubles
808the mean as in [19]. The resulting trace file contains a total of
809two million requests, each including the following informa-
810tion: request arrival time, number of forked tasks, mean task
811service time, and the service times of individual forked tasks.
812In the experiments, the jobs in the trace file serve as the
813background workloads, which are highly diverse, involving

Fig. 13. Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job is uniformly distributed.

TABLE 4
The Predicted 99th Percentile of Latencies (ms)

Number of forked tasks
Distribution

10 400 500 600 900

Exponential 291.32 446.97 456.38 464.08 481.19
Truncated Pareto 448.83 705.45 720.97 733.66 761.87
Empirical 391.27 616.22 629.83 640.95 665.68

TABLE 5
Errors in the 99th Percentile Prediction When Tracking Jobs

With a Given Number of Tasks at Load of 90 percent

Number of nodes
Distribution

10 400 500 600 900

Exponential �0.861 0.052 0.433 0.647 2.791
Truncated Pareto �0.571 �0.403 1.763 �0.489 �1.433
Empirical �2.814 �6.929 �6.239 �5.322 �6.541

Fig. 14. Consolidated applications running on a cluster.
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814 a wide range of applications with mean service times rang-
815 ing from a fewmilliseconds to thousands of seconds. The tar-
816 get jobs are generated at runtime using the same approach
817 the trace file is generated. The only difference is that the tar-
818 get jobs are statistically similar with the same mean service
819 time, to mimic a given application or simply a group of jobs
820 with similar statistic behaviors. For each simulation run, a
821 predetermined percentage, e.g., 10 percent, of target jobs are
822 created and fed into the cluster at random.
823 Simulation Settings and Results. In the simulation, the target
824 and background jobs are set at 10 and 90 percent of the total
825 number of jobs, respectively. We evaluate two cases, one
826 with the number of tasks per target job set at one half of the
827 cluster size and the other the same as the cluster size. The
828 tests cover multiple cluster sizes, i.e., 100, 500, 1,000, and
829 5,000 nodes with each having three replicated servers. All the
830 cases are homogeneous.
831 The prediction errors for the 99th percentiles of target
832 response times for the two case studies at loads of 50, 75, 80,
833 and 90 percent are shown in Fig. 15. As one can see, the pre-
834 diction errors are within 15 percent for all the cases studied.
835 Finally, we note that although the validations for tail lat-
836 ency prediction are exclusively focused on the 99th-percentile
837 tail latency, ForkTail offers similar and consistent perfor-
838 mance at higher percentiles, which are not shown here due to
839 the lack of space.

8403.2 Mean Latency Prediction Validation

841In this section, we extensively validate the predicted mean
842latencies from ForkMean, for both white-box and black-box
843approaches, against the results from the existing white-box
844solutions, the event-driven simulation experiments, and a
845case study on Amazon EC2 as in Section 3.1.

8463.2.1 Scenario 1: Single-Server Queues

847In this scenario, we compare ForkMean with some well-
848known closed-form approximations, including NT [10], VMC
849[36], andVM [37].
850Fig. 16 shows the comparison for the systems with 50,
8511,000, and 5,000 nodes, each modeled as an M/M/1 queue,
852at load levels of 50, 75, 80, and 90 percent. Overall, the NT
853approximation is themost accurate one. The white-box Fork-
854Mean yields errors within 5 percent for all the cases studied,
855which are close to those of the NT approximation. The black-
856box one that is based on the measured D’s at 100 node also
857gives good approximations to mean latency even for the case
858of 50 nodes, with errors within 10 percent for all the cases.
859Note that, due to its high computational complexity, the VM
860approximation is not included in the cases of 1,000 and 5,000
861nodes. With small n’s, e.g., 50, it is a little better than the
862VMC approximation but not as good as theNT one.
863The NT and VMC approximations above, which are tai-
864lored to M/M/1 queues, could not be applied to general ser-
865vice time distributions as the prediction errors are too large to
866be useful. Indeed, Fig. 17 shows thatwhile both black-box and
867white-box ForkMean solutions continue to performwell, with
868errors within 10 percent, VMC and NT offer extremely poor
869performance with up to 40 and 50 percent errors for Gamma
870andWeibull task service time distributions, respectively.
871The existing methods for the approximation of the mean
872response time in the case of M/G/1 Fork-Join models are
873heuristic-based [37] or hybrid-based [13], [29], i.e., combin-
874ing simulation and analysis. Moreover, these works mainly
875focus on light-tailed distributions, e.g., Exponential (Exp),
876Erlang-2 (E2), and Hyperexponential-2 (H2). In contrast, in
877addition to these distributions, ForkMean solutions are also
878validated for a wide range of service time distributions.

Fig. 15. Prediction errors of the 99th percentile target response times in
a consolidated workload environment when the tasks of each target job
reach all the nodes (top) and randomly reach 50 percent number of
nodes (bottom) in the cluster.

Fig. 16. Comparison of percentage errors in mean latency approximations where each Fork node is modeled as an M/M/1 queuing system.

Fig. 17. Comparison of percentage errors in mean latency approxima-
tions with M/G/1 queues for Gamma and Weibull service time
distributions.
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879 To test the effectiveness of ForkMean, we first compare
880 our white-box solution with the heuristic approximations in
881 [37] for the cases of Erlang-2 (E2) and Hyperexponential-2
882 (H2) service time distributions with Poisson arrivals, i.e., M/
883 G/1 queues.
884 Tables 6 and 7 present the comparative results for Erlang-2
885 and Hyperexponential-2, respectively. Again due to the
886 computational complexity concerning the VM approximation,
887 we perform comparison only for small n’s, i.e., up to 20, the
888 maximum problem size studied by the authors of the VM
889 approximation [37], although our solution offers consistent
890 performance at large n’s as well. For the Erlang-2 distribution,
891 the VM approach gives better predictions at load level of
892 50 percent and lower numbers of nodes, i.e., 5 and 10 nodes,
893 while our solution yields comparable or better predictions for
894 the other settings. The accuracy of our approach outperforms
895 that of the VM for the Hyperexponential distribution.
896 Although yielding good prediction performance for systems
897 with small numbers of Fork nodes, the VM approximation
898 faces the issue of numerical instatibility and computational
899 complexity due to big binomial coefficients, resulting in higher
900 prediction errors for higher numbers of nodes, as observered
901 from the reported results. In additon, while the VM approxi-
902 mation can in theory be applied to G/G/1 queues, finding
903 light andheavy traffic limits for an arbitrary service time distri-
904 bution, e.g.,Weibull or truncated Pareto, is nontrivial.

905Fig. 18 shows the prediction accuracy of ForkMean for the
906above heavy-tailed service time distributions. Both white-
907box and black-box solutions yield quite accurate predictions
908for less heavy-tailed distributions, i.e., Weibull, for all the
909cases studied, with errors within 12 percent for all the cases.
910For heavier tailed distributions, i.e., truncated Pareto and
911empirical, the solutions give good approximations at high
912load levels, i.e., 80 percent or higher, a region of interest for
913resource provisioning. Overall, the black-box solution gives
914comparably close prediction performance to that of the
915white-box one. The errors aremostlywithin 20 and 10 percent
916at the load levels of 80 and 90 percent, respectively.
917The predictions for G/G/1 cases as in Section 3.1 also
918show similar performance, i.e., within 20 percent errors at
919the load levels of 80 percent or higher, which are not shown
920here due to the lack of space.

9213.2.2 Scenario 2: Systems With Replicated Servers

922We now validate ForkMean for systems with 3-replica Fork
923nodes. We consider two dispatching policies, i.e., Round-
924Robin and redundant-task-issue, and heavy-tailed service
925time distributions as in Section 3.1. The validation is run
926only for the black-box solution since the exact service time
927distributions for the Fork nodes are simply unknown for
928such cases.

TABLE 6
Errors for Mean Latency Prediction With M/E2/1 Queues

Number of nodes
Load Method

5 10 15 20

50% VM �0.806 �1.486 �1.985 �1.827
White-box �7.947 �6.312 �5.483 �4.934

75% VM �2.989 �4.587 �5.748 �5.637
White-box �9.827 �7.360 �6.316 �5.104

80% VM �3.440 �5.336 �6.886 �7.400
White-box �10.101 �7.524 �6.666 �5.922

90% VM �5.414 �7.885 �9.039 �9.538
White-box �11.001 �8.110 �6.398 �5.251

TABLE 7
Errors for Mean Latency Prediction With M/H2/1 Queues

Number of nodes
Load Method

5 10 15 20

50% VM �1.007 6.446 13.389 17.937
White-box 0.869 0.945 1.881 2.118

75% VM �1.682 6.556 12.601 16.678
White-box �1.255 0.975 2.091 2.574

80% VM �0.402 6.361 11.687 14.975
White-box �0.106 1.503 2.563 2.753

90% VM 0.111 4.030 6.366 8.697
White-box �0.081 1.183 1.242 1.825

Fig. 18. Errors for mean response time approximations using the white-box (upper row) and black-box (lower row) solutions.
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929 Fig. 19 presents the results for these cases using the
930 black-box approach, applying the D values measured from
931 the respective systems at n ¼ 100 to the ones with 200, 500,
932 and 1,000 nodes. One can see that the results for the Round-
933 Robin cases are close to those in the previous scenario. This
934 is due to the fact that the Round-Robin policy mainly per-
935 forms load balancing between replica and thus the effective
936 service time distributions on the Fork nodes are almost
937 unchanged. In contrast, the model yields good predictions
938 for the redundant-task-issue policy for the entire load range
939 under study. This is largely because this policy curbs the
940 tail effects and makes the effective service time distributions
941 less heavy-tailed. These results agree with those from the
942 previous scenarios for less heavy-tailed distributions, i.e.,
943 Gamma andWeibull.

944 3.2.3 Scenario 3: Systems With Variable

945 Numbers of Tasks

946 For illustrative purposes, we validate the results on Fork-Join
947 models with homogeneous, single-server Fork nodes with
948 the above service time distributions using the black-box solu-
949 tion, assuming that the tasks for each incoming job is ran-
950 domly dispatched to 40–60 percent total number of Fork
951 nodes. As a result, the effective load on each Fork node is
952 half of that on the single-server systems in Scenario 3.2.1.
953 Therefore, we double the arrival rate, �, to keep the same
954 arrival rate on each node as in the previous cases. The results
955 of this scenario are shown in Fig. 20. Similar to the previous
956 scenarios, the black-box solution gives accurate predictions

957across the entire load range for light-tailed distributions, e.g.,
958Exponential, Gamma (which is not shown here), while yield-
959ing good approximations for the heavy-tailed distributions,
960i.e., truncated Pareto and empirical, at high load regions,
961e.g., 80 percent or above.

9623.2.4 Scenario 4: A Case Study on Amazon EC2

963Wealso evaluate the accuracyof theblack-box solution for the
964case study on AWS EC2 as in Section 3.1.1. To illustrate the
965effectiveness of the black-box solution for this case study, we
966compute the gap for the 32-worker cluster and apply it to the
967approximation of request mean response time for the case of
968the 64-worker cluster. Table 8 presents the prediction errors
969forthiscasestudy.Again,theblack-boxmethodpredictsmean
970responsetimequiteaccuratelywhenthesystemattheeffective
971load of 60 percent or higher, corresponding to arrival rates
972greaterthan3.5requests/s.
973Finally, we note that the tail effect is a recognized issue in
974datacenter applications and tail-cutting techniques are often
975exploited in datacenters to reduce the tail effects [1], [15],
976[16], [38]. As a result, the effective service time distributions
977tend to be less heavy-tailed. Therefore, ForkTail and Fork-
978Mean show a great potential to be able to accurately predict
979the tail and mean latencies in a wide load range in practice,
980not limited to a high load region.

9814 SENSITIVITY ANALYSIS

982From all the experiments above, we can see that the pro-
983posed approximations can be applied to a wide range of

Fig. 19. Errors in mean response time approximation for systems with replicated servers applying Round-Robin (upper row) and redundant-task-
issue (lower row) policies.

Fig. 20. Errors in mean response time approximation for systems with variable numbers of tasks.
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985 centile and mean job latency, consistently within 20 and
986 15 percent at the loads of 80 and 90 percent, respectively.
987 Now, the question yet to be answered is how much impact
988 these errors will have on the accuracy for resource provi-
989 sioning at high loads. To this end, we conduct a sensitivity
990 analysis of tail and mean latencies as functions of load.
991 We perform experiments with different load levels in the
992 high load region, i.e., 78 to 95percent, for FJQNswithdifferent
993 service timedistributions, i.e., exponential,Weibull, truncated
994 Pareto, and empirical ones. Figs. 21 and 22 shows results from
995 both simulation and the proposed approximations for 1,000-
996 node systems. First, we note that the proposedmodels consis-
997 tentlyoverestimatesthetailandmeanlatenciesfortheexponen-
998 tial and Weibull cases, while mostly underestimates them for
999 the truncated Pareto and empirical cases. In other words, the

1000 former causes resource overprovisioning, whereas the latter
1001 leads to resourceunderprovisioning. Then thequestion is how
1002 much. Take the exponential case as an example, the predicted
1003 meanlatencyat90percentloadisroughlyequaltothesimulated
1004 one at 91 percent load. This means that the model may lead to
1005 1 percent resource over provisioning for the exponential cases.
1006 Followingthesamelogic, it iseasytofindthatforbothexponen-
1007 tial andWeibull cases, the predictionmodels for both tail and
1008 mean latency may result in no more than 1 percent resource
1009 overprovisioning in the entire 78–95percent load range.By the
1010 sametoken,wefindthat for the truncatedParetoandempirical
1011 cases, the models may cause up to 4 and 6 percent resource
1012 underprovisioning at 80percent load and 2 and 1 at 90percent
1013 load for tail and mean latency, respectively. This can be well

1014compensatedforbyleavinga6percentresourcemargininprac-
1015tice. This implies that in theworst-casewhen the actual service
1016timedistribution is light-tailed,ourapproximationsmaycause
1017upto7percentresourceoverprovisioningatthe loadsof80per-
1018cent or higher, given that we don’t have the knowledge about
1019the tail-heaviness of theworkload.With theprediction and the
1020small overprovisioning to compensate the prediction error
1021proposedinthispaper,onecanexpecttorunthesystematupto
102290 percent instead of 50 percent resource utilization with tail
1023andmeanlatencyguarantee.
1024Our sensitivity analyses for the other Fork-Join structures,
1025which are not shown here, have led to similar conclusions.
1026This demonstrates the effectiveness of our predictionmodels
1027as a powerful means to facilitate multi-SLO-guaranteed, e.g.,
1028tail and mean latency guaranteed job scheduling and reso-
1029urce provisioning for datacenter applications.

10305 APPLICABILITY RANGE

1031In this section, we want to answer the following question: In
1032what parameter range can our models predict the request
1033latency within 20 percent errors at high load? To this end, we
1034note that we need to focus on identifying the applicability
1035range on the heavy tail end, rather than the light tail end for
1036two reasons. First, from the extensive experiments above, we
1037found that our methods give quite accurate approximations
1038for tail and mean latency for a wide range of loads for light-
1039tailed distributions, e.g., Exponential, Gamma, and Erlang-2.
1040Second, in practice, server wokloads in datacenters exhibit
1041heavy-tailed distributions [15], [32]. Also, the heavy-tailed
1042truncated Pareto distribution given in Eq. (13) was found to
1043be a good fit for empirical data from server workloads [31].
1044Hence, in what follows, we test the applicability range of our
1045approximations based on this distribution.
1046From extensive experiments with the truncated Pareto
1047distribution, we found that our approximations predict the
1048tail and mean latencies within 20 percent errors at the loads
1049of 80 percent or higher, when the tail index a in Eq. (13) is
1050less than 2, i.e., 0 < a < 2. This range of a was found to be
1051large enough to cover the server workloads in [31].

TABLE 8
Errors in Mean Response Time Approximation Using the

Black-Box Solution for the Test Case on AWS

Effective load (Arrival rate (requests/s))

50.0% 58.4% 66.7% 75.1% 83.4% 91.7%

#workers (3.0) (3.5) (4.0) (4.5) (5.0) (5.5)
64 31.678 10.489 7.817 8.874 15.274 13.991

Fig. 21. Differences in the 99th percentile response times from simulation and ForkTail for 1000-node systems with different service time distributions
and fixed number of Fork tasks.

Fig. 22. Differences in mean response times from the simulation and black-box ForkMean for 1000-node systems with different service time distribu-
tions and fixed number of Fork tasks.
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1053 fall into the above range, we test the fitting of the truncated
1054 Pareto distribution to the workload traces from Facebook
1055 and Google provided in [19]. These traces include a mixture
1056 of different types of workloads placed on datacenter serv-
1057 ers. To simulate the workload on one server, we draw
1058 10,000 random samples from each trace and fit them to the
1059 truncated Pareto distribution based on the procedure sug-
1060 gested in [39], which uses the ðrþ 1Þ largest-order statistics
1061 and visual check. We found that the fitted values of a for
1062 Google and Facebook samples are mostly within the appli-
1063 cability range of ð0; 2Þ. Fig. 23 illustrates two examples of
1064 the fitted curves.
1065 The above results strongly suggest that our proposed
1066 methods can indeed serve as a useful tool for the approxi-
1067 mation of tail and mean latency for datacenter workloads.

1068 6 FACILITATING JOB SCHEDULING

1069 AND RESOURCE PROVISIONING

1070 We now discuss how our proposed approximations may be
1071 used to facilitate both SLO-guaranteed job scheduling and
1072 resource provisioning. We present here only the procedures
1073 for tail latency approximation, i.e., ForkTail. The procedures
1074 for mean latency follow similar steps since the approxima-
1075 tion of mean latency is based on ForkTail. The proposed
1076 ideas are preliminary and somewhat sketchy, but yet, they
1077 do help reveal the promising prospects of our proposed
1078 model and point directions for future studies on this topic.
1079 Job Scheduling.We describe the ideas of how a tail-latency-
1080 SLO-guaranteed hybrid centralized-and-distributed job
1081 scheduler can be developed, based on ForkTail. The main
1082 idea is to rely on distributed measurement of the means and
1083 variances of the task response times and centralized decision
1084 making as to how and whether the request tail-latency SLO
1085 can be met, as depicted in Fig. 24. In the master server on the
1086 left resides the central job scheduler to which users submit
1087 their requests with given tail-latency SLOs. All the servers in
1088 the cluster measures the means and variances of task
1089 response times for tasks of different sizes or in different bins
1090 on a continuous basis. All the servers periodically convey
1091 theirmeasurements to the central scheduler. Upon the arrival
1092 of a request with a given tail-latency SLO and given k tasks to
1093 spawn, based on Eq. (5), the central scheduler will run a
1094 Fork-node selection algorithm to determine which k Fork
1095 nodes should be used such that the tail-latency SLO can be
1096 met. If such k Fork nodes are found, the request will be admit-
1097 ted, otherwise, either the tail-latency SLOwill be renegotiated

1098or the request will be rejected. At runtime, the central sched-
1099uler periodically run the prediction model using the up-to-
1100date means and variances as input to ensure that the tail-
1101latency SLOs for the on-going requests continue to bemet.
1102Resource Provisioning. ForkTail for the homogeneous case
1103(i.e., Eqs. (8) and (9)) naturally enables a resource provision-
1104ing solution involving two steps: (a) the evaluation of the
1105task-level performance requirements to achieve a given tail-
1106latency SLO; and (b) the selection of an underlying platform
1107to meet the requirements. Here, step (a) is platform inde-
1108pendent and hence is portable to any datacenter platforms.
1109For example, consider a service deployment scenario with a
1110given tail-latency SLO and a minimum throughput require-
1111ment,R. Assuming thatN , ki, andP ðK ¼ kiÞ for the given ser-
1112vice are known, Eq. (9) can be used to first translate the tail-
1113latency SLO into a pair, i.e., the mean and variance of the task
1114response time. This pair then serves as the task performance
1115budgets or the task-level performance requirements, which are
1116platform independent and portable. This completes step (a).
1117In step (b), a Fork node is set up, e.g., using three virtual
1118machine instances purchased from Amazon EC2 to form a
11193-replica Fork node, loaded with a data shard in the memory.
1120Then run tasks at increasing task arrival rate � until the mea-
1121sured task mean and/or variance are about to exceed the cor-
1122responding budget(s). At this arrival rate �, the tail-latency
1123SLO is met without resource over-provisioning. In other
1124words, the � value at this point would be the maximum sus-
1125tainable task throughput, or equivalently, the request through-
1126put, in order to meet the tail-latency SLO. If this throughput is
1127greater than R, the minimum throughput requirement is also
1128met. This means that the resource provisioning is successful
1129and a cluster with 3N VM instances can be deployed. Other-
1130wise, repeat step (b) by using a more powerful VM instance
1131or with a re-negotiated tail-latency SLO and/or minimum
1132throughput requirement.

11337 RELATED WORK

1134Fork-Join structures are traditionally modeled by FJQNs,
1135which have been studied extensively in the literature. To
1136date, the exact solution exists for a two-Fork-node FJQN only
1137[10], [40]. Most of the previous works primarily focus on the
1138approximation of mean response time [10], [11], [41] and its
1139bounds [42], [43]. For networkswith general service time dis-
1140tribution, several works have introduced hybrid approaches
1141that combine analysis and simulation to derive the empirical
1142approximation formean response time [10], [13].
1143Some analytic results are available on redundant task issues
1144[44], [45], [46]. They either address only a single replicated

Fig. 23. Examples of fitting the truncated Pareto distribution to sampled
data from Facebook and Google traces. The plots show the complemen-
tary CDF (CCDF), which is on a log scale, to focus on the tail portion of
the distribution.

Fig. 24. A hybrid, centralized-and-distributed job scheduler.
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1145 server subsystem with exponential task service time distribu-
1146 tion [45] or parallel request load balancing without task
1147 spawning [44], [46].
1148 Tail Latency Approximation. In terms of tail-latency related
1149 research, several works dealt with the approximation of
1150 response time distribution assuming a simple queuing
1151 model for each Fork node, e.g., M/M/1 [47] or M/M/k
1152 [12]. Computable stochastic bounds on request waiting and
1153 response time distributions for some FJQNs are provided in
1154 a recent work [48]. The most interesting and relevant work
1155 is given in [14]. The authors of this work proposed a
1156 method, called EAT, for the approximation of tail latency
1157 for homogeneous FJQNs based on the analytical results
1158 from single-node and two-node cases. The approximation
1159 applies to FJQNs with any service time distribution that can
1160 be transformed into a phase-type distribution. Although
1161 outperforming our solutions by a few percentage points in
1162 terms of tail prediction, its computational complexity ren-
1163 ders it infeasible to facilitate online resource provisioning.
1164 Moreover, this work can only cover a small fraction of the
1165 aforementioned design space and hence, cannot be used to
1166 facilitate resource provisioning in practice.
1167 Mean Latency Approximation. Various works have been
1168 proposed for the approximation of mean response time of
1169 FJQNs using model-based or hybrid approaches. The work
1170 in [10] introduces a hybrid approach for the approximation
1171 of mean response time, Rn, for a Fork-Join model with n M/
1172 M/1 Fork nodes (2 � n � 32) based on the exact solution for
1173 the 2-way network [40] and simulation. In [36], the authors
1174 proposed an approximation for mean response time based
1175 on the optimistic and pessimistic bounds. Another approxi-
1176 mation for mean response time of Fork-Join models with
1177 general inter-arrival and service time distributions is pro-
1178 posed in [37] based on light traffic interpolation and heavy
1179 traffic limit. The light traffic interpolation is computed from
1180 the mean response time of the Fork-Join network when there
1181 is only a tagged job in the network, which is equivalent to the
1182 maximum of task service time random variables. The heavy
1183 traffic limit is postulated based on the observation of the rela-
1184 tionship between expressions for light and heavy traffic for
1185 1-way and 2-way networks. In [29], the authors proposed a
1186 hybrid procedure for the approximation of mean response
1187 time for Fork-Join models with M/G/1 queues. Indeed, this
1188 work proposed a methodology rather than specific expres-
1189 sions for findingmean response time. In a recent work [49], a
1190 simulation study assessed the accuracy of the approximation
1191 based on order statistic.
1192 The existing approaches above are white-box solutions
1193 targeting at individual Fork-Join models with specific queu-
1194 ing server models. In contrast, in this paper, we propose
1195 both white-box and black-box solutions, applicable to Fork-
1196 Join networks with arbitrary server models.
1197 SLO-Aware Resource Provisioning. Due to the lack of theo-
1198 retical underpinning, the existing SLO-aware resource provi-
1199 sioning proposals cannot provide tail and/or mean latencies
1200 SLO guarantee by design. Instead, various techniques such
1201 as tail-cutting techniques [15], [16], a combination of job pri-
1202 ority and rate limiting based on network calculus [50] are
1203 employed to indirectly provide high assurance of meeting
1204 tail-latency SLOs. As indirect solutions, however, they can-
1205 not ensure precise resource allocation to meet tail-latency

1206SLOs, while allowing high resource utilization, and hence
1207may result in resource overprovisioning. Yet, another alter-
1208native solution is to track the target tail-latency SLO through
1209online, direct tail-latency measurement and dynamic reso-
1210urce provisioning [51], [52]. This approach, however, may
1211not be effective, especially in enforcing stringent tail latency
1212SLOs. To see why this is true, consider the 99.9th percentile
1213request response time of 200 ms, i.e., probabilistically, only
1214one out of 1,000 requests should experience a response time
1215greater than 200 ms. Assume that the average request arrival
1216rate is 50 per second. To track, through direct tail-latency
1217measurement, whether this tail latency SLO is violated or
1218not with reasonably high confidence, one needs to collect,
1219e.g., 100K samples to see if there are more than 100 requests
1220whose response times exceed 200 ms. This, however, takes
1221about 100K/50 = 2000 seconds or about 33 minutes of mea-
1222surement time! Given possibly high volatility of datacenter
1223workloads, the tail latency SLOmay have been violatedmul-
1224tiple times during this measurement period, even though the
1225total number of requests whose response times exceeding
1226200 ms may be well within 100. In constrast, using our pro-
1227posed models, with only 20 seconds of measurement time,
1228one can collect 20	 50 ¼ 1000 task samples at individual
1229Fork nodes to allow a reasonably accurate estimation of the
1230means and variances of task response times. With moving
1231average for a given time window, e.g., 20 seconds, these
1232means and variances and hence, the 99.9th percentile, can be
1233updated every tens of milliseconds, making it possible to
1234enable fast online tail-latency-guaranteed job scheduling
1235and resource provisioning.
1236In summary, a solution that can predict the tail and/or
1237mean latency using a small number of samples collected in
1238a short period of time as input and that applies to a large
1239design space of Fork-Join structures must be sought, the pri-
1240mary motivation of the current work.

12418 CONCLUSION AND FUTURE WORK

1242A key challenge in enabling tail-latency and/or mean-
1243latency SLOs for data-intensive services and applications in
1244datacenters is how to predict the latencies for a broad range
1245of Fork-Join structures underlying those services and appli-
1246cations. In this paper, we proposed to study a generic black-
1247box Fork-Join model for the approximations of tail andmean
1248latency that covers most Fork-Join structures of practical
1249interests. On the basis of a central limit theorem for queuing
1250servers under heavy load, we were able to arrive at approxi-
1251mate solutions to this model for both tail andmean latencies,
1252called ForkTail and ForkMean, respectively. These approxi-
1253mations were found to be able to predict the tail and mean
1254latencies for most practical scenarios consistently within
125520 percent in a load region of 80 percent or higher, resulting
1256in at most 7 percent resource overprovisioning, making it a
1257powerful tool for resource provisioning at high load. Finally,
1258we discussed some preliminary ideas of how to make use of
1259the proposed prediction model to facilitate tail-latency-SLO-
1260guaranteed job scheduling and resource provisioning.
1261In our future work, based on ForkTail and ForkMean, we
1262shall develop both job scheduling and online/offline resource
1263provisioning solutions with tail-latency and/ormean-latency
1264SLO guarantee.
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