O 0 N O Gl

10
11
12
13
14
15

17

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

A Black-Box Fork-Join Latency Prediction Model
for Data-Intensive Applications

Minh Nguyen

, Sami Alesawi, Ning Li, Hao Che, Senior Member, IEEE, and Hong Jiang

, Fellow, IEEE

Abstract—The workflows of the predominant datacenter services are underlaid by various Fork-Join structures. Due to the lack of
good understanding of the performance of Fork-Join structures in general, today’s datacenters often operate under low resource
utilization to meet stringent service level objectives (SLOs), e.g., in terms of tail and/or mean latency, for such services. Hence, to
achieve high resource utilization, while meeting stringent SLOs, it is of paramount importance to be able to accurately predict the tail
and/or mean latency for a broad range of Fork-Join structures of practical interests. In this article, we propose a black-box Fork-Join
model that covers a wide range of Fork-Join structures for the prediction of tail and mean latency, called ForkTail and ForkMean,
respectively. We derive highly computational effective, empirical expressions for tail and mean latency as functions of means and
variances of task response times. Our extensive testing results based on model-based and trace-driven simulations, as well as a
real-world case study in a cloud environment demonstrate that the models can consistently predict the tail and mean latency within

20 and 15 percent prediction errors at 80 and 90 percent load levels, respectively, for heavy-tailed workloads, and at any load levels for
light-tailed workloads. Moreover, our sensitivity analysis demonstrates that such errors can be well compensated for with no more than
7 percent resource overprovisioning. Consequently, the proposed prediction model can be used as a powerful tool to aid the design of
tail-and-mean-latency guaranteed job scheduling and resource provisioning, especially at high load, for datacenter applications.

Index Terms—Tail latency, mean response time, Fork Join queuing networks, datacenter resource provisioning

1 INTRODUCTION

ORK-JOIN structures underlay many datacenter services,
Fincluding web searching, social networking, and big data
analytics. A Fork-Join structure is a critical building block in
the job processing workflow that constitutes a major part of
job processing time and hardware cost, e.g., more than two-
third of the total processing time and 90 percent hardware
cost for a Web search engine [1]. In a Fork-Join structure (see
Fig. 1), each job in an incoming flow spawns multiple tasks,
which are forked to, queued and processed at different
nodes, called Fork nodes in this paper, in parallel and its task
results are then merged at a Join node to yield the final result.
Due to barrier synchronization, the job response time is
determined by the slowest task, i.e., the tail probability,
which is hard to capture, from both modeling and measure-
ment points of view, making it extremely challenging to pre-
dict the job performance, e.g., the job tail latency.

Tail latency is considered to be the most important per-
formance measure for user-facing datacenter applications
[2], such as web searching and social networking, and nor-
mally expressed as a high percentile job response time, e.g.,

e M. Nguyen, N. Li, H. Che, and H. Jiang are with the Department of
Computer Science and Engineering, The University of Texas at Arlington,
Arlington, TX 76019. E-mail: mgnguyen@mavs.uta.edu, {ning.li, hong.
jiang|@uta.edu, hche@cse.uta.edu.

o S. Alesawi is with the Department of Computer Science and Engineering, The
University of Texas at Arlington, Arlington, TX 76019, and also with the
Faculty of Computing and Information Technology in Rabigh, King Abdulaziz
University, Jeddah 21589, Saudi Arabia. E-mail: salesawi@kau.edu.sa.

Manuscript received 29 July 2019; revised 27 Feb. 2020; accepted 3 Mar. 2020.
Date of publication 0 . 0000; date of current version 0 . 0000.

(Corresponding author: Minh Nguyen.)

Recommended for acceptance by jianfeng Zhan.

Digital Object Identifier no. 10.1109/TPDS.2020.2982137

<+

the 99th percentile response time of 200 ms. Mean latency is
also an important performance measure for big data analyt-
ics workloads which are generally scale-out by design,
involving one or multiple rounds of parallel processing of a
(massive) number of tasks and task result merging phases
with barrier synchronization, based on, e.g., MapReduce [3]
or Spark [4] frameworks. In addition, it is harder but more
important' to predict the tail and mean latency under heavy
load conditions than light ones. This is because as the load
becomes heavier, so does the tail distribution, e.g., the 99th
percentile of memcached request latencies on a server
jumps from less than 1 ms at the load of 75 percent to 1 s at
the load of 89 percent [5].

Due to the lack of good understanding of the job-vs-task
performance of such workloads, i.e., how distributed task-
level performance determines the job-level performance,
especially in the high load” region, to provide high assurance
of meeting tail-latency and/or mean-latency SLOs for such
workloads, the current practice is to overprovision resources,
which however, results in low resource utilization in data-
centers [6], [7]. For example, aggregate CPU and memory uti-
lizations in a 12,000-server Google cluster are mostly less
than 50 percent, leaving 50 and 40 percent allocated CPU

1. In the low load region, tail and/or mean latency requirements can
be easily satisfied as the available resources are abundant. In contrast,
in the heavy load region in which the leftover resource is scarce,
resource allocation with high precision must be exercised to meet user
requirements.

2. The term “load” can be generally defined as the offered workload
per unit time divided by processing capacity per unit time. In the con-
text of Fork-Join structure, it is the maximum of the loads among all the
Fork nodes.

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

39
40
4
42
43

—_

47

52
53
54
55
56
57
58
59
60

https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1445-3700
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
mailto:mqnguyen@mavs.uta.edu
mailto:ning.li@uta.edu
mailto:hong.jiang@uta.edu
mailto:hong.jiang@uta.edu
mailto:hche@cse.uta.edu
mailto:salesawi@kau.edu.sa

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

oE @ ODEoE
D
LE[T],V[T]

A Fork node as a black box

Fig. 1. Black-box Fork-Join model. Each job in the incoming flow spawns
k tasks mapped to & out of N Fork nodes. Each Fork node is treated as
a black box, completely determined by the mean and variance of the
task response time, i.e., E[T| and V[T7].

and memory resources, respectively, idle almost at all time
[6]. Similarly, in a large production cluster at Twitter, aggre-
gate CPU usage is within 20-30 percent even thought CPU
reservations are up to 80 percent and aggregate memory
usage is mostly within 40-50 percent while memory alloca-
tion consistently exceeds 75 percent [7]. Hence, how to
improve resource utilization or the load from currently less
than 50 percent to, say, 80-90 percent, while meeting strin-
gent SLOs has been a challenging issue for datacenter service
providers [7]. To this end, a key challenge to be tackled is how to
accurately capture the tail and mean latency with respect to various
Fork-Join structures at high load.

Fork-Join structures are traditionally modeled by a class
of queuing networks, known as Fork-Join queuing network
(FJQN) [8], as depicted in Fig. 1. FJQN's are white-box models
in the sense that all the Fork nodes are explicitly modeled as
queuing systems with given arrival process, queuing disci-
pline, and service time distribution. In this paper, we argue
that attempting to use FJQNs to cover a sufficiently wide
range of Fork-Join structures of practical interests is not a via-
ble solution. Instead, a black-box solution that can cover a
broad range of Fork-Join structures must be sought.

On one hand, FJQNs are notoriously difficult to solve in
general. Despite the great effort made for more than half a
century, to date, no exact solution is available even for the
simplest FJON where all the nodes are M/M/1 queues [9],
i.e., Poisson arrival process and one server with exponential
service time distribution. Although empirical solutions for
some FJQNs are available, e.g., [10], [11], [12], [13], [14], they
can only be applied to a very limited number of Fork-Join
structures, e.g., homogeneous case, the case of First-In-First-
Out (FIFO) queuing discipline, and a limited number of ser-
vice time distributions.

On the other hand, the design space of Fork-Join structures of
practical interests is vast. It encompasses (a) a wide range of
queuing disciplines and service time distributions (e.g., both
light-tailed and heavy-tailed) [8]; (b) the case with multiple
replicated servers per Fork node for failure recovery, task
load balancing, and/or redundant task issues for tail cutting
[15], [16] or fast recovery from straggling tasks [17]; (c) the
case where the number of spawned tasks per job may vary
from one job to another [18]; and (d) the case of consolidated
services, where different types of services and applications

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

may share the same datacenter cluster resources [19]. Clearly,
the existing FJONs can hardly cover such a design space in
practice.

To tackle the above challenges, in this paper, we propose
to study a black-box Fork-Join model for the prediction of job
tail and mean latency, called ForkTail and ForkMean, respec-
tively, to cover a broad range of Fork-Join structures of prac-
tical interests. By “black-box”, we mean that each Fork node
is treated as a black box, regardless of how many replicated
servers there are and how tasks are distributed, queued, and
processed inside the box. In other words, for a black-box
Fork-Join model, one can only use the task statistics measur-
able from outside of Fork nodes, e.g., the mean and variance
of the task response time (see Fig. 1). This is in stark contrast
to a white-box Fork-Join model where the exact task queuing
discipline and the service model for a Fork node must be
known. It also allows the number of spawned tasks per job,
k, to be a random integer taking values in [1, N], where N is
the maximum number of Fork nodes. As we shall see, our
black-box model can indeed adequately covers the above
design space.

However, general solutions to this model are unlikely to
exist, given the limited success in solving the white-box
FJQNs. Nevertheless, we found that for the black-box
model, empirical solutions under heavy load conditions do
exist, known as the central limit theorem for G/G/m queu-
ing systems, where the arrival process is general with inde-
pendent interarrival times, the queuing discipline is FIFO,
and there are m servers with general service time distribu-
tions, under heavy load [20], [21]. Inspired by this theorem,
we were able to demonstrate [22] that in a load region of
80 percent or higher, where resource provisioning with pre-
cision is most desirable and necessary, an empirical expres-
sion of the tail-latency for a special case of the black-box
model, i.e., k = N for all the requests, exists, which can pre-
dict the tail latencies within 15 percent error at any load lev-
els for light-tailed service time distribution and the load
level of 90 percent for heavy-tailed one in the cases (a) and
(b) in the design space mentioned above. As our sensitivity
analysis in Section 4 shows, such prediction errors can be
well compensated for with no more than 7 percent resource
overprovisioning.

The work in this paper makes the following contributions.
First, it generalizes the solution in [22] to also cover cases (c)
and (d) in the design space, hence, making it applicable to
most Fork-Join structures of practical interests. Second, it
gives the first empirical, universal solutions to tail and mean
job latencies for both black-and-white-box FJQNs at high
load and hence, it makes a contribution to the queuing net-
work theory as well. In fact, for any white-box FJQN with G/
G/1 Fork queuing servers, our approach leads to closed-
form approximate solutions, which are on par with the most
elaborate white-box solutions in terms of accuracy across the
entire load range at much lower computational complexity.
Third, comprehensive testing and verification of the pro-
posed approximations for tail and mean latency are per-
formed for all (a)-(d) Fork-Join structures, based on model-
based and trace-driven simulation, as well as a real-world
case study. Fourth, sensitivity analysis indicates that our pro-
posed solutions can lead to accurate resource provisioning
for data-intensive services and applications in a consolidated

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

219
220
221
222

224

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 3

datacenter environment at high load. Finally, preliminary
ideas are provided as to how to use this solution to facilitate
SLO-guaranteed job scheduling and resource provisioning.

The rest of the paper is organized as follows. Section 2
introduces our black-box model and ForkTail and Fork-
Mean, the empirical approximations for the tail and mean
latency, respectively. Section 3 performs extensive testing
of the accuracy of these approximations. Section 4 presents
the sensitivity analysis for the proposed approximations.
Section 5 explores the range of applicability of the proposed
solutions. Section 6 discusses how the proposed approxi-
mations may be used to facilitate effective job scheduling
and resource provisioning with tail-latency-SLO guarantee.
Section 7 reviews the related work. Finally, Section 8 con-
cludes the paper and discusses future work.

2 MODEL AND SOLUTIONS

2.1 Black-Box Model
The black-box model described in this section greatly
extends the scope of the black-box model introduced in [22]
to address the entire design space mentioned in Section 1.

Consider a black-box Fork-Join model with each job in the
incoming flow spawning k tasks mapped to k out of NV Fork
nodes, as depicted in Fig. 1. The results from all & tasks are
finally merged at a Join node (i.e., the triangle on the right).
Jobs arrive following a random arrival process with average
arrival rate A\. Each Fork node may be composed of more
than one replicated servers for task-level fault tolerance, load
balancing, tail-cutting, and/or straggler recovery. An exam-
ple Fork node with three server replicas is depicted in Fig. 1.

The above model deals with a general case where & < N.
Note that the traditional FJQNs cover only a small fraction of
this design space, i.e., k = N, homogeneous Fork nodes with
a single server per node, which is modeled as a FIFO queuing
system.

General solutions to this model are unlikely to exists. For-
tunately, we are most interested in finding solutions in high load
regions where precise resource provisioning is highly desirable
and necessary. There is a large body of research results in the
context of queuing performance in high load regions (e.g.,
see [23] and the references therein). In particular, a classic
result, known as the central limit theorem for heavy traffic
queuing systems [20], [21], states that for a G/G/m queue
under heavy load, the waiting time distribution can be
approximated by an exponential distribution. Clearly, this
theorem applies to the response time distribution as well,
since the response time distribution converges to the wait-
ing time distribution as the traffic load increases. Inspired
by this result, we postulate that for tasks mapped to a black-
box Fork node and in a high load region, the task response
time distribution Fr(z) for any arrival process and service
time distribution can be approximated as a generalized
exponential distribution function [24], as follows,

Fr(z) = (1 - ¢ "F)",

x>0, >0 >0, (1)

where « and g are shape and scale parameters, respectively.
The mean and variance of the task response time are given
by [24]

E[T] = Bly(a+1) —v(1)], 2

VIT] = Bl (1) = v'(@+ 1)), ®)
where (.) and its derivative are the digamma and poly-
gamma functions.

From Egs. (2) and (3), it is clear that the distribution in
Eq. (1) is completely determined by the mean and variance of
the task response time. In other words, the task response time
distribution can be measured by treating each Fork node as a
black box as shown in Fig. 1. The rationale behind the use of
this distribution, instead of the exponential distribution, is
that it can capture both heavy-tailed and light-tailed task
behaviors depending on the parameter settings and mean-
while, it degenerates to the exponential distribution at o = 1
and E[T] = B.In [22], we showed that this distribution signifi-
cantly outperforms the exponential distribution in terms of
tail latency predictive accuracy.

Now, with all the Fork nodes in Fig. 1 being viewed as
black boxes, the response time distribution for any job with
k tasks can be approximated using the order statistics [9] as
follows,

k k
F() =[] Fr(e) = (1 — e /%y 0
1=1

i=1

Note that the above expression is exact if the response times
for tasks mapped to different Fork nodes are independent
random variables. This, however, does not hold true for any
Fork-Join structures, simply because the sample paths of the
task arrivals at different Fork nodes are exactly the same,
not independent of one another. This is the root cause that
renders the Fork-Join models extremely difficult to solve in
general. In what follows, we introduce ForkTail and Fork-
Mean, separately, based on this approximation.

2.2 ForkTail
ForkTail was originally presented in [25]. Our postulation is
that as load reaches 80 percent or higher where precise
resource provisioning is desirable and necessary, the tail-
latency prediction errors introduced by the above assumption
will become small enough for resource provisioning purpose.
Our extensive testing results in this paper provide strong sup-
port of the postulation, making our modeling approach the
only practically viable one for tail latency prediction.

Tail latency x,, defined as the pth percentile job response
time, can be written as,

2, = FP 7 (p/100), ®)

Eq. (5) simply states that in a high load region, the tail latency
can be approximated as a function of the means and varian-
ces of task response times for all & tasks at their correspond-
ing Fork nodes, irrespective of what workloads cause the
heavy load. The implication of this is significant. It means
that this expression is applicable to a consolidated datacenter
cluster where more than one service/application share the
same cluster resources. Moreover, this expression allows tail
latency to be predicted using a limited number of job sam-
ples thanks to its dependence on the first two moments of
task response times only, i.e., the means and variances.

The results so far is general, applying to the heteroge-
neous case, where task response time distributions may be

225
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

247
248
249
250
251
252
253
254
255
256

257
258
259
260
261
262
263
264
265
266
267

269
270
271
272
273
274
275
276
277
278
279
280
281
282

283
284
285
286
287
288
289
290
291
292
293
294
295

297
298
299
300
301

303
304
305
306
307
308
309
310

312
313
314
315

317
318
319
320
321

322

323
324
325
326
327
328
329
330

332
333
334

335
336

different from one task to another, due to, e.g., the use of
heterogeneous Fork nodes and/or uneven background
workloads. As a result, the tail latency predicted by Eq. (5)
may be different from one job to another or even for two
identical jobs, as long as their respective Fork nodes do not
completely coincide with one another, or they are issued at
different times. In other words, Eq. (5) is a fine-grained tail
latency expression. For certain applications, such as offline
resource provisioning (see Section 6 for explanations) and
coarse-grained, per-service-based tail-latency prediction,
one may be more interested in the homogeneous case only.
In this case, the response time distribution can be further
simplified as,

Fl(x) = (1 — e /), (6)

This is because the means and variances given in Egs. (2)
and (3) are the same for the homogeneous case. A coarser-
grained cumulative distribution function (CDF) of the job
response time can then be written as,

Fx(z) = Fy(alk:) P(K = k),)
k;

where Fyx(z|k;) is the conditional CDF of the job response
time for jobs with £; tasks, given by Eq. (6), i.e., Fx|x(z|k;) =
F)((l‘ i)(;r), and P(K =k;) = P, is the probability that a job
spawns k; tasks.

Further assume that there are m job groups with distinct
numbers of tasks k;’s, i = 1,...,m, and corresponding prob-
abilities P;’s. We then have,

Fx(w) =Y P F& (@), ®)
i=1

Correspondingly, the tail latency for the m groups of jobs as
a whole can then be readily obtained, similar to Eq. (5), as
follows,

9)

For example, the tail latency for a given service can be pre-
dicted by collecting statistics for k;’s and P’s, as well as
mean and variance of task response time and applying
them to the tail latency expression in Eq. (9).

x, = Fy'(p/100).

2.2.1 Application to White-Box FJQNs

Clearly, the above black-box approach leads to closed-form
solutions for any white-box models whose analytical
expressions for the means and variances of task response
times are available, whether it is homogeneous or not. In
fact, our solution works for the case where different Fork
nodes may have different service time distributions and
queuing disciplines. For instance, our approach can be
applied to a large class of FJQNs, where each Fork node is
an M/G/1 queue or a more general G/G/1 queue, whose
mean and variance of the task response time can be com-
puted from Takdcs recurrence theorem [26] or the queuing
network analyzer [27], respectively.

2.3 ForkMean
While the approximations in Egs. (5) and (9) work well for
the job tail latency even for the k < N cases, it fails to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

accurately predict the job mean response time,® yielding
more than three times larger errors for the same cases stud-
ied, especially for the case of light-tailed service time distri-
butions. We find that the reason for this to happen is due to
the fact that to accurately predict the job mean response
time, the entire job response time distribution including the
tail portion must be accurately captured, as the barrier syn-
chronization tends to push the job mean response time
towards the tail part of the task response time distribution,
as the workload scales out.

On the basis of the above modeling, this section aims at
finding solutions to reduce the prediction errors for the job
mean latency. To this end, we make the following two key
observations.

Observation 1. For a wide range of Fork-Join models, the
difference between the exact tail-mean ratio and the
model-based tail-mean ratio, derived from the CDF in
Eq. (4), hereafter called the gap and denoted as A, con-
verges to a constant as the number of Fork nodes becomes
large enough. Mathematically, we have,

x, 28

P P
— ——gw =4, (10
Tm Tm

where z, and z,, are the exact pth percentile and mean of
job latency, respectively, which can be estimated by
experiments, while z§° and 7} are derived from the pre-
diction model, i.e., Eq. (4). Hence, the mean latency can be
approximated as follows,
N (11)
Ree+ A Ree+ A7

xm

where z;, ~ 25° at high loads, since ForkTail give accurate
predictions for the pth percentile at high loads, as indi-
cated in the testing results, and R*® = 25° /%

m*

Fig. 2 illustrates the gaps for systems with different task
service time distributions, including light-tailed and heavy-
tailed ones, where each Fork node is a single server, i.e., with-
out replication. As one can see, the gap converges to a
constant as N becomes sufficiently large, say, N > 100, for all
the cases. Similar trends are also observed for the systems
with 3-replica Fork nodes with Round-Robin and redundant-
task-issue dispatching policies as well as the systems with
variable numbers of forked tasks (not shown here).

Observation 2. There is a strong correlation between the tail
heaviness of service time distribution and the gap A, ie., the
heavier the tail, the smaller the gap. It is evident from Fig. 2
that the light-tailed distributions, including Exponential and
Weibull, have larger gaps than the heavy-tailed ones, includ-
ing the truncated Pareto and empirical (defined in Section 3.1).
With this observation, we make the following postulation: The
gap is much more of a function of the tail heaviness of a service
time distribution than the service time distribution itself.

From the above observations, we propose two empirical
solutions, one is white-box and the other black-box, for
the approximation of the gap, A, and hence, the job mean
response time.

3. We use the terms ‘latency’ and ‘response time’ interchangely in
this paper.

338
339
340
341
342
343
344
345
346
347
348
349
350
351

352
353
354
355
356
357

359
360
361
362
363
364

366
367
368
369

370
371
372
373
374
375
376
377
378

379
380
381
382
383
384
385
386
387

388
389
390
391

392

393
394
395
396
397
398
399
400
401
402
403
404

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 5

jal: Tail-Mean latency ratios at load of 80% ‘Weibull: Tail-Mean latency ratios at load of 80%

Truncated Pareto: Tail-Mean latency ratios at load of 80% Empirical: Tail-Mean latency ratios at load of 80%

0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 00 900 1000
Number of nodes s

Number of nodes

Exponential: Tail-Mean latency ratios at load of 90% ‘Weibull: Tail-Mean latency ratios at load of 90%

0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
er of node; Number of nodes

e
Truncated Pareto: Tail-Mean latency ratios at load of 90% Empirical: Tail-Mean latency ratios at load of 90%

1 1

0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
umb s Number of nodes

0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of nodes Number of nodes

Fig. 2. The gaps for Fork-Join systems with different service time distributions at load levels of 80 percent (upper row) and 90 percent (lower row).

2.3.1 White-Box Approach

This approach is based on the above postulation. Here we
consider a homogeneous white-box Fork-Join queuing
model where each Fork node can be modeled as a G/G/1
queue. With known interarrival and service time distribu-
tions, one can find the job response time distribution and
the corresponding tail and mean latencies, and so their ratio
R, from ForkTail. So to find the job mean latency, x,,, all
that is left to be done is to find A.

To this end, we first define tail heaviness, w(Fr). We use
Right Quantile Weight [28] which measures the tail heaviness
on the right side of a distribution, the region of interest in all
of our experiments. This tail weight measure is defined as,

Fpt (59 + ' (1 - 9) — 2F;1(0.75)

ey W

where 0.5 < ¢ < 1 and F;!(q) is quantile ¢ of task service
time distribution Fr. To capture the tail effect but still retain
a reasonable robustness, we set ¢ = 0.99.

Based on our postulation, A = A(p,w), mdependent of
Fr(z). Here p is the load. In other words, as long as w(F) =
w(F()) the two homogeneous Fork-Join models with differ-
ent service time distributions, F}) and F}), respectively, will
have the same gap. In other words, if one can find the func-
tion, A(p,w), using one distribution function with different
tail weights, this A(p,w) can then be used by any Fork-Join
models with other distribution functions to find the gap. In
this paper, we use the generalized exponential distribution in
Eq. (1) at different coefficients of variance to generate different
tail weights from Eq. (12) and the corresponding gaps and
then use nonlinear regression to find A(p, w). Table 1 shows
the gaps for different tail weights, averaged over N = 100 to
1,000 at three different load levels.

From experimental data with different distribution param-
meters, we found that the power function, ie., A = aw’ + ¢,

TABLE 1
The Gaps for Different Tail Heavinesses and Load Levels
Tail weight
Load
0.703 0.772 0.851 0918 0.962 098 0.999
75% 0486 0271 0.160 0.097 0.063 0.029 0.009
80% 0511 0.283 0.169 0.106 0.069 0.044 0.013
90% 0573 0.319 0.190 0.129 0.070 0.055 0.023

yields a very good fit to these gap-tail weight points. Fig. 3
illustrates the fitted curve at load level of 80 percent from
Table 1 with respect to the fitted points from the generalized
exponential distribution (the black points). It also shows the
actual points from other distributions, which are used for test-
ing in the experiments (the green points), relative to the fitted
curve. As one can see, the green points stay reasonably close
to the curve itself, meaning that our postulation indeed holds
true. Table 2 presents the fitted functions for the cases in
Table 1.

In summary, this white-box approach results in a closed-
form solution for the approximation of job mean latency,
which is composed of the following computation steps,

- With given E[T] and V[T], compute the tail and
mean latencies, i.e., 5 and z£ from the predicted
CDFin Eq. (4) and their corresponding ratio, i.e., R*°;

— With a given service time distribution F7, calculate
the tail weight w from Eq. (12), which is then
mapped to a A at a given load, e.g., using one of the
functions in Table 2;

— Approximate the mean latency using Eq. (11).

2.3.2 Black-Box Approach

The white-box approach above leads to closed-form solutions
for homogeneous white-box Fork-Join models with known

Gaps vs. tail weights - Load of 80%

121 « TFitted points |]
1p ¢ Testing points| 4
— Fitted curve
9087
2 0.6 xponential
< | A = 0.0322w %% + 0.0056
© 04 Weibull
02} T.Pareto
ol Empirical .
065 07 075 08 085 09 095 1

Weight (w)

Fig. 3. An example of the gap-vs-tail-weight fitted curve.

TABLE 2
Examples of Fitted A(p, w) Curves
Load Function
75% A = 0.0371w 517 — 0.0052
80% A = 0.0322w 8% 10,0056
90% A = 0.0274w851 4 0.0284

426
427
428
429
430
431
432
433
434
435
436
437
438

439
440

442
443
444
445
446

447

448
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

482

483
484
485
486
487
488
489
490
491
493
494

495

496
497

»s Erlang-2 - ForkTail vs. EAT - 99th

25

Exponential - ForkTail vs. EAT - 99th

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Hyperexponential-2 - ForkTail vs. EAT - 99th

I ForkTail-10% [ForkTail-50% [ForkTail-90% B ForkTail-10% I ForkTail-50% [ForkTail-90% B ForkTail-10% I ForkTail-50% [ForkTail-90%
20 EEMEAT-10% [EEAT-50% [_1EAT-90% 20r EEMEAT-10% EEEAT-50% [_JEAT-90% 20 [EMEAT-10% [EEAT-50% T
150 , 15F 15+ -
SR 1 SR SIS 1
:/ 5+ - \: 5+ \: S5+ -
= =} =}
E I_-J A T o I 8 [S W I - [
50 50 50
5 5 sk |
-0 1 -10F 10F i
s . . . s . . . 15 . . .
100 500 1000 100 500 1000 100 500 1000

Number of nodes

Number of nodes

Number of nodes

Fig. 4. Prediction errors for the 99th percentile response times for ForkTail and EAT.

service time distributions for Fork nodes. However, in prac-
tice, determining those distributions is nontrivial, e.g., for sys-
tems with multi-replica Fork nodes. Hence, it is necessary to
seek a black-box solution applicable to a wide range of Fork-
Join structures of practical interests.

Based on the Observation 1, i.e., A converges to a constant
as the number of Fork nodes becomes large enough, i.e.,
around 100, based on all the testing cases. This suggests that,
if for a target application, A can be measured on a small
testbed or by simulation, with 100 virtual machines/nodes, or
equivalently, a few commodity servers, e.g., 5, then the mean
latency can be predicted when the application is deployed on
a much larger number of nodes. This approach requires only
the means and variances of task response times as inputs, and
hence is a hybrid, black-box solution.

The steps taken to find the job mean latency are similar to
those for the white-box approach above except for step 2
where A is predicted by running experiments for the target
application on a system with a given number of Fork nodes,
e.g., 100, and measure the ratio gap between the results
from the experiments and the prediction model.

Compared to the white-box solution, the black-box one is
simpler and can be applied to a much wider range of Fork-
Join structures. However, as a hybrid approach, it requires to
run experiments, either via simulation or on a real testbed,
with an adequate number of Fork nodes, e.g., 100. Conse-
quently, it should be applied to large-scale systems where a
job is forked to at least hundreds of nodes, much larger than
the one used for testing. Note that the hybrid approach, which
combines analysis and simulation, is not unusual in analyzing
performance of the Fork-Join model. Indeed, it has been used
in several previous works in the literature [10], [13], [29].

3 VALIDATION

3.1 Tail Latency Prediction Validation

In this section, ForkTail is extensively validated against the
results from model-based simulation, trace-driven simula-
tion, and a case study in Amazon EC2 cloud. The validation
is performed for the systems with k = N, k£ < N, and consol-
idated services, separately. The accuracy of the prediction is
measured by the relative error between the value predicted
from ForkTail, ¢,, and the one measured from simulation or
real-system testing, ¢,,,, i.e.,

100(t, — tm,)
t’l}’ 1 ’

error =

3.1.1 Casel:k=N

A notable example for this case is Web search engine [30]
where a search request looks up keywords in a large inverted

index distributed on all the servers in the cluster. We validate
ForkTail with three testing approaches, i.e., white-box and
black-box model-based testing as well as a real-world case
study in Amazon EC2 cloud.

White-Box Model-Based Validation. Here we study the
accuracy of ForkTail when applied to homogeneous, single-
queuing-server-Fork-node Fork-Join systems with the assu-
mption that the service time distribution is known in
advance, the approach taken in all the existing works on per-
formance analysis of FJQNs [9]. The tail latency prediction
involves the following steps:

— Find the mean and variance of task response times
with the given task service time distribution;

— Substitute the above mean and variance into Egs. (2)
and (3), respectively, and solve that system of equa-
tions to find the scale and shape parameters of the
generalized exponential distribution in Eq. (1),
which is then used to approximate the task response
time distribution;

— Calculate the pth percentile of request response times
from Eq. (9).

First, we compare ForkTail against the state-of-the-art tail
latency approximation for homogeneous FJQNs [14], known
as EAT, which is derived from analytical results for single-
node and two-node systems. Fig. 4 shows the comparative
results for three service time distributions studied in [14],
i.e., Erlang-2, Exponential, and Hyperexponential-2, at the
loads of 10, 50, and 90 percent4 and numbers of nodes of
100, 500, and 1,000.

EAT provides more accurate (from a few to several per-
centage points) approximations for the 99th percentiles of
response times across all the cases studied. Much to our
surprise, our approach yields most of the errors within
10 percent, across the entire load range. Although outper-
forming our approach, EAT has its limitations. First, it can be
applied only to homogeneous FJQNs where each node can be
generally modeled as a MAP/PH/1 queuing system, i.e.,
Markovian arrival processes and phase-type service time dis-
tribution with one service center. Second, the method requires
the service time distribution to be known in advance and con-
verted into a phase-type distribution, which is nontrivial,
especially for heavy-tailed distributions [31]. Third, the
method may incur high computational complexity, depend-
ing on the selection of a constant C, whose value determines
the computational runtime and prediction accuracy. It takes

4. For EAT, the case for Hyperexponential-2 at the load of 90 percent
is not available, due to a numerical error running the code provided
in [14].

498
499
500
501
502
503
504
505
506
507
508

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

—_

—

541
542

543
544
545
546
547
548
549
550
551
552
553
554

555
556
557
558
559
560

562
563
564
565
566
567
568

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 7

Empirical - 99th - single-server

Truncated Pareto - 99th - single-server

Weibull - 99th - single-server

50F EEM10-node [J500-node 50F M I10-node [J500-node |] 50F WM 10-node [J500-node |
40 [100-node [_11000-node 40 [100-node [_11000-node 1 43&8 r I 100-node [_11000-node
5 5 5 0 ———
E- E- E-10F i
o o A ot
- - 30+
40 F
50 50 =50 ¢
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 5. Prediction errors of the 99th percentile response times for white-box systems with single-server Fork nodes.

at least 2 seconds on our testing PC (Core i7-4940MX Quad-
core, 32GB RAM) to get the resulting percentiles even at
the lesser degree of accuracy with C' =100 (more than
300 seconds at C' = 500). In contrast, our method takes less
than 5 milliseconds to compute the required percentiles. As a
result, similar to other existing white-box solutions, EAT has
limited applicability for datacenter job scheduling and
resource provisioning in practice.

To cover a sufficiently large workload space, we further
consider service time distributions with heavy tails, which
are common in practice [32] and cannot be easily dealt with
by EAT, including the following,

— Empirical distribution measured from a Google search
test leaf node provided in [32], which has a mean ser-
vice time of 4.22 ms, a coefficient of variance (CV) of
1.12, and the largest tail value of 276.6 ms;

— Truncated Pareto distribution [31] with the same mean
service time and a CV of 1.2, whose CDF is given by,

_1-(L/z)"

Fs(x)fl_(L/H>a

0<L<z<H, (13)

where « is the shape parameter; L is the lower bound;
and H is the upper bound, which is set at the maxi-
mum value of the empirical distribution above, i.e.,
H = 276.6 ms, resulting ino = 2.0119 and L = 2.14 ms.
— Weibull distribution [8], also with the same mean ser-
vice time and a CV of 1.5, whose CDF is defined as,
Fg(z) =1 — exp[=(z/B)"] (14)
where o = 0.6848 and $ = 3.2630 are shape and scale
parameters, respectively.

Fig. 5 presents the prediction errors for the 99th percentile
response times for the above cases. The Weibull distribution,
which is less heavy-tailed, consistently yields smaller errors,
well within 5 percent, for the entire load range studied, similar
to the light-tailed distribution cases studied earlier. The
empirical and truncated Pareto distributions, which are more
heavy-tailed, provide good approximations for the 99th per-
centiles at the load of 80 percent or higher, which is well
within 17 and 5 percent at the load of 80 and 90 percent,
respectively, agreeing with our postulation.

We also consider the cases with general arrival process
and general service time distribution, i.e,, G/G/1 Fork
nodes. Fig. 6 shows the prediction errors for example cases
with Erlang-2 (CV = 0.5) and Hyperexponential-2 (CV = 1.2)
arrival processes and Truncated Pareto service time distribu-
tion (CV = 3.0). Again, ForkTail yields quite accurate app-
roximations for tail latency at high load regions, i.e., above

x>0,

75 percent. The prediction results also show the same trend
for Weibull and Exponential service time distributions,
which are not shown here.

Black-Box Model-Based Validation. We now validate Fork-
Tail without making assumption on the service time distri-
bution at each Fork node. We treat each Fork node as a
black-box and empirically measure the mean and variance
of task response times at each given arrival rate A or load.
These measures are then substituted into Eqs. (2) and (3),
respectively, to find the shape and scale parameters, which
are in turn used to predict the tail latency based on Eq. (9).

For all the three heavy-tailed FJQNs studied above, we
consider two types of Fork nodes, i.e., one with single server
and the other with three replicated servers. For the one with
three servers, we explore two task dispatching policies. The
first policy is the Round-Robin (RR) policy, in which the dis-
patcher will send tasks to different server replicas in an RR
fashion. The second policy is still RR, but it also allows
redundant task issues, a well-known tail-cutting technique
[15], [16]. This policy allows one or more replications of a
task to be sent to different server replicas in the Fork node.
The replications may be sent in predetermined intervals to
avoid overloading the server replicas. In our experiments,
at most one task replication can be issued, provided that the
original one does not finish within 10 ms, which is around
the 95th percentile of the empirical distribution above.

Figs. 7, 8, and 9 present the prediction errors at different
load levels and N’s for the 99th percentile response times
for all three FJQNs with single server and three servers per
Fork node, respectively. First, we note that the prediction
errors for the cases in Fig. 7 are very close to those in Fig. 5.
This is expected as the white-box and black-box results, ide-
ally, should be identical. The differences are introduced due
to simulation and measurement errors. Second, the predic-
tion performances of the cases with three replicas and the
RR policy in Fig. 8 are also very close to those of the cases in
Fig. 7, with errors being well within 20 and 10 percent at the

Truncated Pareto - 99th - G/G/1 Truncated Pareto - 99th - G/G/1

25 [100-node 25 [100-node |~

%(5) I 1000-node %(5) I 1000-node |~
3 10 2 10 1
< : < : ol BB - -
= =
g 5 2 s |
= -10 = -10

-15 -15

20 20

25 25

50 75 80 90 50 75 80 90
Load (%) Load (%)

Fig. 6. Prediction errors of the 99th percentile response times for white-
box systems with Erlang-2 (left) and Hyperexponential-2 (right) arrival
distributions and Truncated Pareto service time distribution.

590
591
592
593
594
595
596
597
598
599

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

—

—_

627
628
629
630

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

Empmca] 99th - single-: server

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Truncated Pareto - 99th - single- server

Weibull - 99th - single-: server

50 EEM10-node [0500-node 50F [EM10-nodc [J500-node | 50F M I10-node [0500-node al

40 [100-node [_11000-node 40 [100-node [_11000-node gg r I 100-node [_11000-node 7
g g & fof 1
E- E- E-10F i
o o =

50 75 80 90
Load (%)

50 75 80 90
Load (%)

50 75 80 90
Load (%)

Fig. 7. Prediction errors of the 99th percentile response times for black-box systems with single-server Fork nodes.

Empmcal 99th - 3-server - Round- Robm

Truncated Pareto - 99th - 3-server - Round Robin

Weibull - 99th - 3-server - Round- Robm

50F MM 10-node [J500-node | 50[EEMI10-node [1500-node 50[M 10-node [0500-node
40 [EEE100-node [_11000-node 40 [EEN100-node [_11000-node ;tg r I 100-node [_11000-node
S 3 g1l |
g 5 50 my e e
= g- E-10F al
208 o M ot
-3 - =30
40+
=50 ¢
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 8. Prediction errors of the 99th percentile response times for black-box systems with 3-server Fork nodes and Round-Robin policy.

Empirical - 99th - 3-server - Red Truncated Pareto -

99th - 3-server - Redundant Weibull - 99th - 3-server - Redundant

50F EEM10-node [J500-node ' 50F EEM10-node [J500-node] 50F WM 10-node [J500-node
40 [EEN100-node [_11000-node 40 [E100-node [_11000-node 1 40 [100-node [_11000-node
30]
g g
= 0 - — T =
210t il 2.
= o0t [SAN
300 -
40+
50t
50 75 80 90 50 75 80 90 50 75 80 90

Load (%)

Load (%) Load (%)

Fig. 9. Prediction errors of the 99th percentile response times for black-box systems with 3-server Fork nodes and redundant-task-issue policy.

loads of 80 and 90 percent, respectively, for all the case stud-
ies, further affirming our postulation. The two scenarios
have similar performance because they are compared at the
same load levels, where the RR policy in the second scenario
simply balances the load among three replicas, making each
virtually identical to the single-server scenario. In contrast
to these two scenarios, Fig. 9 shows that with the application
of the tail-cutting technique, the prediction errors are sub-
stantially reduced, with less than 10 percent at the load of
80 percent or higher. This is consistent with the earlier
observation, i.e., the lighter the tail, the smaller the predic-
tion errors. This suggests that the tail-cutting techniques,
often utilized in datacenters to curb the tail effects, can help
expand the load ranges in which ForkTail can be applied.

A Case Study in Cloud. We also assess the accuracy of
ForkTail for a real case study in Amazon EC2 cloud. We
implement a simple Unix grep-like program on the Apache
Spark framework (version 2.1.0) [4]. It looks up a keyword
in a set of documents and returns the total number of lines
containing that keyword, as depicted in Fig. 10. The cluster
for the testing includes one master node using an EC2
c4.4xlarge instance and 32 or 64 worker nodes using EC2 c4.
large instances. We use a subset of the English version of
Wikipedia as the document for lookup. Each worker node
holds a shard of the document whose size is 128 MB, corre-
sponding to the default block size on Hadoop Distributed
File System (HDFS) [33]. A client, which runs a driver pro-
gram, sends a flow of keywords, each randomly sampled

from a pool of 50K keywords, to the testing cluster for
lookup. Each worker searches through its corresponding
data block to find the requested keyword and counts the
number of lines containing the keyword. The line count is
then sent back to the client program to sum up. Clearly, this
testing setup matches the black-box model.

We measure the request response time, i.e., the time it
takes to finish processing each keyword at the client. We also
collect the task response times, composed of the task waiting
time and task service time. The task waiting time is the one
between the time the request the task belongs to is sent to the
cluster and the time the task is sent to a given worker for
processing. This is because in the Spark framework, all the
tasks spawned by a request are kept in their respective

Worker 1
Executor

Data block [«

Driver Program

* o
Query Generator Manager .

‘\\:

Fig. 10. Experiment setup in Amazon EC2 cloud. Each worker should be
viewed as a blackbox as in Fig. 1.

Worker n
Executor

Data block [

syuaWNI0P eIpadnyIp

655
656
657
658
659
660
661
662
663
664
665
666
667
668

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 9

The 95.0th percentiles - 32-c4.large The 95.0th percentiles - 64-c4.large

6000

6000

e Experiment
—©—Homogeneous
—8— Heterogeneous

b Experiment
~—&—Homogeneous
—&— Heterogeneous

4000 4000

2000 2000

TABLE 3
Estimated Loads (%) for the Testbed Based
on Request Arrival Rates

y (ms)
wo,
y (ms)

.0 35 4.0 4.5 5.0 5.5 0 35 4.0 45 5.0 5.5

The 99.0th percentiles - 32-c4.large

gaél
] 0

3.0 35 4.0 4.5 5.0 55 3.0 35 4.0 45 5.0 55
Arrival rate (requests/s) Arrival rate (requests/s)

The 99.0th percentiles - 64-c4.large

[
3
3
3

@
3
3
3

Latenc;
Latenc;

4000 4000

2000 2000

Fig. 11. Predicted tail latencies for keyword occurrence counts in Ama-
zon cloud with 32 (left) and 64 (right) nodes.

virtual queues corresponding to their target workers cen-
trally. A task at the head of a virtual queue cannot be sent to
its target worker until the worker becomes idle. Hence, to
match our black-box model, the task response time must
include the task waiting time, i.e., the task queuing time plus
the task dispatching time, and the task service time, which is
the actual processing time at the worker the task is mapped
to. From the collected samples, we compute the means and
variances of task response times, which are in turn used to
derive the task response time distribution as in Eq. (1).

Ideally, the task response time distributions for all the
tasks are the same, given that the workers are identical. In
other words, one would expect that this case study is homo-
geneous. However, our measurement indicates otherwise.
A careful analysis reveals that this is mainly due to the task
scheduling mechanism in the Spark framework. Each data
block has three replicas distributed across different workers.
By default, the placement preference is to send a task to an
available worker where the data block resides. Unfortu-
nately, as the request arrival rate or load increases, more
tasks are mapped to workers that do not hold the required
data blocks for the tasks, causing long task response time
due to the need to fetch the required data blocks from the
distributed file system. This results in higher variability in
the task response time distributions among different work-
ers. Therefore, the heterogeneous model given in Eq. (4) is
found to be more appropriate in high load regions.

The above observation is confirmed by the experimental
results, presented in Fig. 11. As one can see, the heteroge-
neous model (the blue lines) gives quite accurate prediction
for both 95th and 99th percentiles at both N = 32 and 64
cases, while the prediction from the homogeneous model
(the green lines) gets worse as the load becomes higher.
Based on the heterogeneous prediction, the prediction errors
atboth V = 32 and 64 and the 99th percentile are well within
10 percent in a high load region, i.e., 60 percent or higher.
Note that the load here is measured in terms of request
arrival rate. Since the system is heterogeneous, we estimated
the equivalent loads corresponding to different arrival rates

Exponential - 99th - fixed k - 1000-node

Truncated Pareto - 99th - fixed k - 1000-node

Request arrival rates (requests/s)

#workers

3.0 3.5 4.0 4.5 5.0 5.5
32 4833 5639 6444 7250 80.56 88.61
64 50.04 5838 66.72 75.06 8340 91.74

based on the maximum value of means of task service times
across all the workers, as given in Table 3.

Finally, we note that to achieve a reasonably good confi-
dence of measurement accuracy for the 99th percentile tail
latency, we collected 80K samples in our experiments at the
maximum possible sampling rate equal to the average request
arrival rate of 5.8 per second, which translates into a measure-
ment time of 13,793 seconds or about 4 hours. It takes even
more time to run the experiments at lower arrival rates. The
average runtime across all the request arrival rates in the
experiments is about 6 hours. Due to the costly cloud services,
we have to limit our experiments to 64 worker nodes.

This example clearly demonstrates that it can be expensive
and time consuming, if practical at all, to estimate tail latency
based on direct measurement. In contrast, ForkTail is able to
do so with far fewer number of samples at much lower cost.
For example, with 800 samples collectable in less than three
minutes, we can estimate the response-time means and varian-
ces for all the tasks and hence the tail latency with reasonably
good accuracy. This means that our prediction model can
reduce the needed samples or prediction time by two orders of
magnitude than the direct measurement.

3.1.2 Case 2: Variable Number of Tasks k < N

Notable examples for this case are key-value store systems
in which a key lookup may touch only a partial number of
servers and web rendering which requires to receive web
objects or data from a group of servers in a cluster.

In this case study, we assess the accuracy of our prediction
model (i.e., Egs. (8) and (9)) for applications whose jobs may
spawn different numbers of tasks with distribution P(K = k;).
Specifically, we study two scenarios where P(K = k;) is non-
zero for a specific value of K and uniformly distributed,
respectively. We further consider three different service time
distributions: two heavy-tailed ones, the empirical and trun-
cated Pareto as in Section. 3.1.1, and a light-tailed exponential
distribution, with the same mean service time, i.e., 4.22 ms.

Scenario 1: Fixed Number of Tasks per Job. In this scenario,
we consider the cases when the number of forked tasks per
job is a fixed number k (k < N), i.e., every incoming job is

Empirical - 99th - fixed k - 1000-node

SOF EEEK=100 k=900 ' 50F EEEk=100 C_Jk=900 50f k=100 [_Jk=900 1
40 Ik =500 40 Ik =500 40 - [k = 500 y
30+ 30+ — 30+ —
o 201 = 20r 1 ~ 20 i
< 107 < 107 1 = 1or i
= 0 —— _ ./ [= 0 = 0
o =} o
E-10F E-10F g E-10F -
M0t M0t 1 H-20r 1
=30+ =30+ R 30+F 1
40+ 40 - — 40+ -
50t 50 =50t ul
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 12. Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job is fixed (k = 100, 500, 900).

708
709
710

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729

730

732
733
734
735
736
737

739
740

742
743
744
745

747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
Exp ial - 99th - uniform k - 1000-node Truncated Pareto - 99th - uniform k - 1000-node Empirical - 99th - uniform k - 1000-node
50F EEEU[S0, 1200 T U800, 1000] ' 50F EEEUIS0,120) U800, 1000] '] 50[EEmUCo, 1200 U800, 1600]

4318 r EEUr400, 6001 [JUl10,990] 40 U400, 6007 [_JUr10,990] 1 40 U400, 6007 [_JU[10,990]
3 207 2 @
< of < <
;5 0 —_— — = P S s ‘5
=-10r+ g- -
=0+ [Sa S

30+ - -

-40 -

=50 50 50

50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 13. Prediction errors of the 99th percentile response times for an 1000-node cluster when the number of tasks per job is uniformly distributed.

split into exactly & tasks which are dispatched to k randomly
selected Fork nodes in an N-node cluster.

Fig. 12 shows prediction errors for the 99th percentile
response times for an 1,000-node cluster with & = 100, 500,
and 900 tasks. ForkTail provides good prediction in high
load regions, with all the errors within 10 percent at the load
of 90 and 20 percent at the load of 80 percent for all the cases
studied. The case with the light-tailed exponential distribu-
tion gives quite accurate prediction for the entire range
under study, i.e., all within 6 percent.

Scenario 2: Uniform Distribution. Here we deal with cases
when an incoming job is forked to £ random nodes in the clus-
ter where k is randomly sampled from an integer range [a, b],
ie, ki €{a,a+1,...,b—1,b} with probability P, =P =
1/mVi, where m = b — a + 1. Therefore, the mean number of
tasksis (a +b)/2.

Fig. 13 presents prediction errors for an 1,000-node clus-
ter with & in four different ranges, i.e., [80, 120], [400, 600],
[800, 1000], and [10, 990]. The results again show that Fork-
Tail yields good approximations for the 99th percentile job
response times when the system is under heavy load, i.e.,
80 percent or higher. Furthermore, again for all the cases
with the exponential distribution, ForkTail gives accurate
predictions across the entire load range studied.

The above prediction model applies to the case where a
single tail-latency SLO is imposed on a service or applica-
tion as a whole, a practice widely adopted in industry.
However, this practice can be too coarse grained. To see
why this is true, Table 4 provides the predicted tail latencies
for some given jobs with distinct & values in a cluster of size

TABLE 4
The Predicted 99th Percentile of Latencies (ms)

Number of forked tasks
10 400 500 600 900

Exponential 291.32 44697 456.38 464.08 481.19
Truncated Pareto 448.83 705.45 720.97 733.66 761.87
Empirical 391.27 61622 629.83 64095 665.68

Distribution

TABLE 5
Errors in the 99th Percentile Prediction When Tracking Jobs
With a Given Number of Tasks at Load of 90 percent

1,000 and at the load of 90 percent. As one can see, the 99th
percentile tail latencies for jobs at different k’s can be drasti-
cally different, e.g., the 10-task and 900-task cases. This sug-
gests that even for a single application, finer grained tail
latency SLOs may need to be enforced to be effective, e.g.,
enforcing tail-latency SLOs for job groups with each having
k’s in a small range. Table 5 shows that ForkTail can indeed
provide accurate, finest-grained prediction at given £’s, i.e.,
all well within 10 percent at load of 90 percent.

3.1.3 Case 3: Consolidated Services

In this case study, we evaluate the accuracy of ForkTail when
applied to the consolidated datacenter where multiple appli-
cations, including latency-sensitive user-facing and back-
ground batch ones, share cluster resources as illlustrated in
Fig. 14. We conduct a trace-driven simulation based on a
trace file derived from the Facebook 2010 trace, a widely
adopted approach in the literature to explore datacenter
workloads [19], [34], [35]. We test the accuracy of ForkTail in
capturing the tail latency for a given target application.
Workload. The trace file is generated based on the descrip-
tion of the Facebook trace in some previously published
works [19], [34], [35]. Specifically, we first generate the num-
ber of tasks for job arrivals based on the distribution of the
job size in terms of the number of tasks per job, as suggested
in [35]. It includes nine bins of given ranges of the number of
tasks and corresponding probabilities, assuming that the
number of tasks is uniformly distributed in the range of each
bin. We then generate the mean task service time based on
the Forked task processing time information in [34]. Individ-
ual task times are drawn from a Normal distribution with
the generated mean and a standard deviation that doubles
the mean as in [19]. The resulting trace file contains a total of
two million requests, each including the following informa-
tion: request arrival time, number of forked tasks, mean task
service time, and the service times of individual forked tasks.
In the experiments, the jobs in the trace file serve as the
background workloads, which are highly diverse, involving

OO0

Number of nodes

Distribution

10 400 500 600 900
Exponential —0.861 0.052 0.433 0.647 2.791
Truncated Pareto —0.571 —-0.403 1.763 —0.489 —1.433
Empirical —2.814 —-6.929 -6.239 5322 -—6.541

’L Master

. Target jobs

I:, Other jobs

(Background jobs with
different job size distributions)

Fig. 14. Consolidated applications running on a cluster.

777
778
779
780
781
782
783
784
785

786

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 11

Trace-based simulation - 99th - k =N

50 BEE100Tnode [01000-node |
40 [500-node [_15000-node

Error (%)
(=}

50 75 80 90
Load (%)

Trace-based simulation - 99th - k = 50%N

50[B 100-node [1000-node
40 [EES500-node [15000-node

S e g

Error (%)
(=}

50 75 80 90
Load (%)

Fig. 15. Prediction errors of the 99th percentile target response times in
a consolidated workload environment when the tasks of each target job
reach all the nodes (top) and randomly reach 50 percent number of
nodes (bottom) in the cluster.

a wide range of applications with mean service times rang-
ing from a few milliseconds to thousands of seconds. The tar-
get jobs are generated at runtime using the same approach
the trace file is generated. The only difference is that the tar-
get jobs are statistically similar with the same mean service
time, to mimic a given application or simply a group of jobs
with similar statistic behaviors. For each simulation run, a
predetermined percentage, e.g., 10 percent, of target jobs are
created and fed into the cluster at random.

Simulation Settings and Results. In the simulation, the target
and background jobs are set at 10 and 90 percent of the total
number of jobs, respectively. We evaluate two cases, one
with the number of tasks per target job set at one half of the
cluster size and the other the same as the cluster size. The
tests cover multiple cluster sizes, i.e., 100, 500, 1,000, and
5,000 nodes with each having three replicated servers. All the
cases are homogeneous.

The prediction errors for the 99th percentiles of target
response times for the two case studies at loads of 50, 75, 80,
and 90 percent are shown in Fig. 15. As one can see, the pre-
diction errors are within 15 percent for all the cases studied.

Finally, we note that although the validations for tail lat-
ency prediction are exclusively focused on the 99th-percentile
tail latency, ForkTail offers similar and consistent perfor-
mance at higher percentiles, which are not shown here due to
the lack of space.

Exponential - 50-node

Exponential - 1000-node

Gamma - 1000-node

0 I Whte-box EERINT 0
5 s Cvme 50

‘Weibull - 1000-node

I White-box [EERINT
I Black-box IvMC

Error (%)
e
g3
Error (%)
Sinddoto s [
sababsoz

Load (%) Load (%)

Fig. 17. Comparison of percentage errors in mean latency approxima-
tions with M/G/1 queues for Gamma and Weibull service time
distributions.

3.2 Mean Latency Prediction Validation

In this section, we extensively validate the predicted mean
latencies from ForkMean, for both white-box and black-box
approaches, against the results from the existing white-box
solutions, the event-driven simulation experiments, and a
case study on Amazon EC2 as in Section 3.1.

3.2.1 Scenario 1: Single-Server Queues

In this scenario, we compare ForkMean with some well-
known closed-form approximations, including NT [10], VMC
[36],and VM [371].

Fig. 16 shows the comparison for the systems with 50,
1,000, and 5,000 nodes, each modeled as an M/M/1 queue,
at load levels of 50, 75, 80, and 90 percent. Overall, the NT
approximation is the most accurate one. The white-box Fork-
Mean yields errors within 5 percent for all the cases studied,
which are close to those of the NT approximation. The black-
box one that is based on the measured A’s at 100 node also
gives good approximations to mean latency even for the case
of 50 nodes, with errors within 10 percent for all the cases.
Note that, due to its high computational complexity, the VM
approximation is not included in the cases of 1,000 and 5,000
nodes. With small n’s, e.g., 50, it is a little better than the
VMC approximation but not as good as the NT one.

The NT and VMC approximations above, which are tai-
lored to M/M/1 queues, could not be applied to general ser-
vice time distributions as the prediction errors are too large to
be useful. Indeed, Fig. 17 shows that while both black-box and
white-box ForkMean solutions continue to perform well, with
errors within 10 percent, VMC and NT offer extremely poor
performance with up to 40 and 50 percent errors for Gamma
and Weibull task service time distributions, respectively.

The existing methods for the approximation of the mean
response time in the case of M/G/1 Fork-Join models are
heuristic-based [37] or hybrid-based [13], [29], i.e., combin-
ing simulation and analysis. Moreover, these works mainly
focus on light-tailed distributions, e.g., Exponential (Exp),
Erlang-2 (E2), and Hyperexponential-2 (H2). In contrast, in
addition to these distributions, ForkMean solutions are also
validated for a wide range of service time distributions.

Exponential - 5000-node

B White-box IEEINT v B White-box EEEINT B White-box EEEINT
15F @ Black-box [VMC] 151 EEBlack-box [CIVMC] 151 @ Black-box [CIVMC
10r . 10r
5 0 5 0 5
£ st | & sy £ -
10+ . 10+ -
-15+ 8 -15 ¢
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)
Fig. 16. Comparison of percentage errors in mean latency approximations where each Fork node is modeled as an M/M/1 queuing system.

840
841
842
843
844
845

846

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

12

TABLE 6
Errors for Mean Latency Prediction With M/E2/1 Queues

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

TABLE 7
Errors for Mean Latency Prediction With M/H2/1 Queues

Number of nodes

Number of nodes

Load Method Load Method
5 10 15 20 5 10 15 20
50% VM —0.806 —1.486 —1.985 —-1.827 50% VM —1.007 6.446 13.389 17.937
White-box —7.947 —6.312 —5.483 —4.934 White-box 0.869 0.945 1.881 2.118
759% VM —2.989 —4.587 —5.748 —5.637 759% VM —1.682 6.556 12.601 16.678
White-box —9.827 —7.360 —6.316 —5.104 White-box —1.255 0.975 2.091 2.574
80% VM —3.440 —5.336 —6.886 —7.400 80% VM —0.402 6.361 11.687 14.975
White-box —10.101 —7.524 —6.666 —5.922 White-box —0.106 1.503 2.563 2.753
90% VM —5.414 —7.885 —-9.039 —9.538 90% VM 0.111 4.030 6.366 8.697
White-box —11.001 —-8.110 —6.398 —5.251 White-box —0.081 1.183 1.242 1.825

To test the effectiveness of ForkMean, we first compare
our white-box solution with the heuristic approximations in
[37] for the cases of Erlang-2 (E2) and Hyperexponential-2
(H2) service time distributions with Poisson arrivals, i.e., M/
G/1 queues.

Tables 6 and 7 present the comparative results for Erlang-2
and Hyperexponential-2, respectively. Again due to the
computational complexity concerning the VM approximation,
we perform comparison only for small n’s, i.e., up to 20, the
maximum problem size studied by the authors of the VM
approximation [37], although our solution offers consistent
performance at large n’s as well. For the Erlang-2 distribution,
the VM approach gives better predictions at load level of
50 percent and lower numbers of nodes, i.e., 5 and 10 nodes,
while our solution yields comparable or better predictions for
the other settings. The accuracy of our approach outperforms
that of the VM for the Hyperexponential distribution.
Although yielding good prediction performance for systems
with small numbers of Fork nodes, the VM approximation
faces the issue of numerical instatibility and computational
complexity due to big binomial coefficients, resulting in higher
prediction errors for higher numbers of nodes, as observered
from the reported results. In additon, while the VM approxi-
mation can in theory be applied to G/G/1 queues, finding
light and heavy traffic limits for an arbitrary service time distri-
bution, e.g., Weibull or truncated Pareto, is nontrivial.

Weibull - single-server - white-box

Truncated Pareto - single-server - white-box

Fig. 18 shows the prediction accuracy of ForkMean for the
above heavy-tailed service time distributions. Both white-
box and black-box solutions yield quite accurate predictions
for less heavy-tailed distributions, i.e., Weibull, for all the
cases studied, with errors within 12 percent for all the cases.
For heavier tailed distributions, i.e., truncated Pareto and
empirical, the solutions give good approximations at high
load levels, i.e., 80 percent or higher, a region of interest for
resource provisioning. Overall, the black-box solution gives
comparably close prediction performance to that of the
white-box one. The errors are mostly within 20 and 10 percent
at the load levels of 80 and 90 percent, respectively.

The predictions for G/G/1 cases as in Section 3.1 also
show similar performance, i.e., within 20 percent errors at
the load levels of 80 percent or higher, which are not shown
here due to the lack of space.

3.2.2 Scenario 2: Systems With Replicated Servers

We now validate ForkMean for systems with 3-replica Fork
nodes. We consider two dispatching policies, i.e., Round-
Robin and redundant-task-issue, and heavy-tailed service
time distributions as in Section 3.1. The validation is run
only for the black-box solution since the exact service time
distributions for the Fork nodes are simply unknown for
such cases.

Empirical - single-server - white-box

50 EEES00-node] 50 EEE500-node
40+ EER1000-node , 40 [EE1000-node
30+ [C15000-node g 30+ [C15000-node

ol e] W]

Error (%)
S
Error (%)
(=]

50 EES00-node
40+ [1000-node
30+ [C15000-node

Error (%)
(=]

-10t { E£-10t { E£-10t -
20t { @20t { @-20t -
30t {30t {30t -
40+ 1 -0t 1 40t -

50 50 50
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)
Weibull - single-server - black-box Truncated Pareto - single-server - black-box Empirical - single-server - black-box
50F I 500-node ‘ ‘ ‘ 1 50F I 500-node ‘ ‘ 50F [500-node ‘ ‘ ‘
40 - [EE1000-node] 40 - [EE1000-node 40 - [EE1000-node
30 - [15000-node] 30 - [C15000-node 30 - [C15000-node

Oi-j_—:_il_—:;

Error (%)
>
Error (%)
(=]

-10f 1 E-10f 1 E-10f
20f 1 ®|a0f 1 ®maof
30t 1 30t 1 30t
40t 1 ot 1 ot
50t 1 -0t ; 1 -0t

Error (%)
(=]

50 75 80 90 50 75

Load (%)

Fig.

Load (%)

80 90 50 75 80 90
Load (%)

18. Errors for mean response time approximations using the white-box (upper row) and black-box (lower row) solutions.

905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

—_

921

922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

944
945

946
947
948
949
950
951
952
953
954
955
956

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 13

‘Weibull - 3-server - Round-Robin

Truncated Pareto - 3-server - Round-Robin

Empirical - 3-server - Round-Robin

50 [200-node] 50 M 200-node 50 [200-node
40 - [500-node] 40 - [500-node 40 - [500-node
gg r [_11000-node 1 30 - [11000-node ig r [__11000-node
<ot 1S <ot
= 0 TM = = 0
210t 1 E- 2.0t
s3] 20 F 4 M s3] 20+
30+ - =30
40 + 40 -
50 ¢ : : : : 50 : : : : 50 ¢ : : :
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)
Weibull - 3-server - Redundant Truncated Pareto - 3-server - Redundant Empirical - 3-server - Redundant
50 [200-node ‘ ' '] 50 EEE200-node ‘ ' ' 50 [EEE200-node ‘ ‘ ‘
40 - [500-node] 40+ [EE500-node] 40+ [EE500-node
30 [11000-node 1 30 [J1000-node 1 30 [J1000-node
< 20r 1 = 20r 1 = 20r
S 10r B me e 1 £ 10 1 £ 10t 1
~ 0 = 0 . O — e—ee— mmeS mmesr—
2.0t 1 E-of . mE] == 1 E-of
=20t =20t 1 H-0r
30+ =30+ 1 =30
40 40 40
50 ¢ : : : : 50 : : : : 50 ¢ » : : :
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 19. Errors in mean response time approximation for systems with replicated servers applying Round-Robin (upper row) and redundant-task-

issue (lower row) policies.

Fig. 19 presents the results for these cases using the
black-box approach, applying the A values measured from
the respective systems at n = 100 to the ones with 200, 500,
and 1,000 nodes. One can see that the results for the Round-
Robin cases are close to those in the previous scenario. This
is due to the fact that the Round-Robin policy mainly per-
forms load balancing between replica and thus the effective
service time distributions on the Fork nodes are almost
unchanged. In contrast, the model yields good predictions
for the redundant-task-issue policy for the entire load range
under study. This is largely because this policy curbs the
tail effects and makes the effective service time distributions
less heavy-tailed. These results agree with those from the
previous scenarios for less heavy-tailed distributions, i.e.,
Gamma and Weibull.

3.2.3 Scenario 3: Systems With Variable
Numbers of Tasks

For illustrative purposes, we validate the results on Fork-Join
models with homogeneous, single-server Fork nodes with
the above service time distributions using the black-box solu-
tion, assuming that the tasks for each incoming job is ran-
domly dispatched to 40-60 percent total number of Fork
nodes. As a result, the effective load on each Fork node is
half of that on the single-server systems in Scenario 3.2.1.
Therefore, we double the arrival rate, A, to keep the same
arrival rate on each node as in the previous cases. The results
of this scenario are shown in Fig. 20. Similar to the previous
scenarios, the black-box solution gives accurate predictions

Exponential - single-server - k=(0.4-0.6)N

Truncated Pareto - single-server - k=(0.4-0.6)N

across the entire load range for light-tailed distributions, e.g.,
Exponential, Gamma (which is not shown here), while yield-
ing good approximations for the heavy-tailed distributions,
i.e., truncated Pareto and empirical, at high load regions,
e.g., 80 percent or above.

3.2.4 Scenario 4: A Case Study on Amazon EC2

Wealso evaluate the accuracy of the black-box solution for the
case study on AWS EC2 as in Section 3.1.1. To illustrate the
effectiveness of the black-box solution for this case study, we
compute the gap for the 32-worker cluster and apply it to the
approximation of request mean response time for the case of
the 64-worker cluster. Table 8 presents the prediction errors
forthis casestudy. Again, theblack-boxmethod predicts mean
responsetime quiteaccurately when thesystemat the effective
load of 60 percent or higher, corresponding to arrival rates
greaterthan3.5requests/s.

Finally, we note that the tail effect is a recognized issue in
datacenter applications and tail-cutting techniques are often
exploited in datacenters to reduce the tail effects [1], [15],
[16], [38]. As a result, the effective service time distributions
tend to be less heavy-tailed. Therefore, ForkTail and Fork-
Mean show a great potential to be able to accurately predict
the tail and mean latencies in a wide load range in practice,
not limited to a high load region.

4 SENSITIVITY ANALYSIS

From all the experiments above, we can see that the pro-
posed approximations can be applied to a wide range of

Empirical - single-server - k=(0.4-0.6)N

50F [500-node 8 50F EEES00-node 50F EEES00-node
40 - [1000-node h 40 - [1000-node 40 - [1000-node
30 [C15000-node 1 30 [C15000-node 30 [C15000-node
< 20F < 20r r
S 107 S 107
= 0 —_—— = 0
210} g.10f 10t
M0 M0 20
30t 30t 30t
40 40 40
-50 ¢ 50 . . . -50 ¢ . . .
50 75 80 90 50 75 80 90 50 75 80 90
Load (%) Load (%) Load (%)

Fig. 20. Errors in mean response time approximation for systems with variable numbers of tasks.

957
958
959
960
961

962

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

981

982
983

984
985

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

14
TABLE 8
Errors in Mean Response Time Approximation Using the
Black-Box Solution for the Test Case on AWS
Effective load (Arrival rate (requests/s))

50.0% 58.4% 66.7% 751% 83.4% 91.7%
#workers (3.0) (3.5) 4.0) 4.5) (5.0) (5.5)
64 31.678 10489 7.817 8.874 15274 13.991

systems with reasonable prediction errors for the 99th per-
centile and mean job latency, consistently within 20 and
15 percent at the loads of 80 and 90 percent, respectively.
Now, the question yet to be answered is how much impact
these errors will have on the accuracy for resource provi-
sioning at high loads. To this end, we conduct a sensitivity
analysis of tail and mean latencies as functions of load.

We perform experiments with different load levels in the
high load region, i.e., 78 to 95 percent, for FJQNs with different
service time distributions, i.e., exponential, Weibull, truncated
Pareto, and empirical ones. Figs. 21 and 22 shows results from
both simulation and the proposed approximations for 1,000-
node systems. First, we note that the proposed models consis-
tentlyoverestimatesthetailand meanlatencies for theexponen-
tial and Weibull cases, while mostly underestimates them for
the truncated Pareto and empirical cases. In other words, the
former causes resource overprovisioning, whereas the latter
leads to resource underprovisioning. Then the question is how
much. Take the exponential case as an example, the predicted
meanlatencyat90percentloadisroughlyequaltothesimulated
one at 91 percent load. This means that the model may lead to
1 percent resource over provisioning for the exponential cases.
Following thesamelogic, itis easy to find thatfor both exponen-
tial and Weibull cases, the prediction models for both tail and
mean latency may result in no more than 1 percent resource
overprovisioning in the entire 78-95 percent load range. By the
same token, we find that for the truncated Pareto and empirical
cases, the models may cause up to 4 and 6 percent resource
underprovisioning at 80 percentload and 2 and 1 at 90 percent
load for tail and mean latency, respectively. This can be well

E ial - 99th - 1000-node Weibull - 99th - 1000-node

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

compensated forbyleavinga6 percentresourcemarginin prac-
tice. This implies that in the worst-case when the actual service
time distribution islight-tailed, our approximations may cause
upto7 percentresource overprovisioning attheloads of 80 per-
cent or higher, given that we don’t have the knowledge about
the tail-heaviness of the workload. With the prediction and the
small overprovisioning to compensate the prediction error
proposed in this paper, one can expecttorun the systematup to
90 percent instead of 50 percent resource utilization with tail
and meanlatency guarantee.

Our sensitivity analyses for the other Fork-Join structures,
which are not shown here, have led to similar conclusions.
This demonstrates the effectiveness of our prediction models
as a powerful means to facilitate multi-SLO-guaranteed, e.g.,
tail and mean latency guaranteed job scheduling and reso-
urce provisioning for datacenter applications.

5 APPLICABILITY RANGE

In this section, we want to answer the following question: In
what parameter range can our models predict the request
latency within 20 percent errors at high load? To this end, we
note that we need to focus on identifying the applicability
range on the heavy tail end, rather than the light tail end for
two reasons. First, from the extensive experiments above, we
found that our methods give quite accurate approximations
for tail and mean latency for a wide range of loads for light-
tailed distributions, e.g., Exponential, Gamma, and Erlang-2.
Second, in practice, server wokloads in datacenters exhibit
heavy-tailed distributions [15], [32]. Also, the heavy-tailed
truncated Pareto distribution given in Eq. (13) was found to
be a good fit for empirical data from server workloads [31].
Hence, in what follows, we test the applicability range of our
approximations based on this distribution.

From extensive experiments with the truncated Pareto
distribution, we found that our approximations predict the
tail and mean latencies within 20 percent errors at the loads
of 80 percent or higher, when the tail index « in Eq. (13) is
less than 2,i.e,, 0 < « < 2. This range of « was found to be
large enough to cover the server workloads in [31].

Truncated Pareto - 99th - 1000-node Empirical - 99th - 1000-node

1600 1600
1400 | —®— Simulation| 1400 | | —®— Simulation

EIZOO —=—ForkTail EIZOO —=—ForkTail
1000 215

%
S
3

600
400 ——
200 e—e—s—oETT

Tail latency (

1600
1400
£ 1200

1400 || —®— Simulation —e— Simulation
?1200 —=—ForkTail —=—ForkTail

Y

S
I3
3

o ®
338
s 3

Tail latency (s

400
200

0
78 80 82 84 86 8 90 92 94 96
Load (%)

0
78 8 8 84 86 8 90 92 94 96
Load (%)

0
78 80 82 84 8 88 90 92 94 96
Load (%)

0
78 80 82 84 8 88 90 92 94 96
Load (%)

Fig. 21. Differences in the 99th percentile response times from simulation and ForkTail for 1000-node systems with different service time distributions

and fixed number of Fork tasks.

Exponential - Mean - 1000-node Weibull - Mean - 1000-node

1000

Truncated Pareto - Mean - 1000-node Empirical - Mean - 1000-node

1000

—e— Simulation| —=—Simulation
—&—Modeling —=—Modcling

800

%
S
3

600

N
=
3

400 400

Mean latency (ms)
Mean latency (ms)

)
=1
3

1000 1000

—e— Simulation —=— Simulation
—5— Modeling 800 || —o—Modeling

800
600 600

400 400

Mean latency (ms)
Mean latency (ms)

=

200

0
78 80 82 84 8 88 90 92 94 96
Load (%)

78 80 2 84 86 88 90 92 94 96
Load (%)

0
78 80 82 84 8 88 90 92 94 96
Load (%)

0
78 80 82 84 86 88 90 92 94 96
Load (%)

Fig. 22. Differences in mean response times from the simulation and black-box ForkMean for 1000-node systems with different service time distribu-

tions and fixed number of Fork tasks.

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

1030

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

1068
1069

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 15

Fitted example for the Facebook trace Fitted example for the Google trace

10°

log(P(X > X))
log(P(X > X))

a = 0.4208

10 10° 10* 10° 10% 10° 10
log(x) log(x)

Fig. 23. Examples of fitting the truncated Pareto distribution to sampled
data from Facebook and Google traces. The plots show the complemen-
tary CDF (CCDF), which is on a log scale, to focus on the tail portion of
the distribution.

To further test if today’s datacenter workloads indeed
fall into the above range, we test the fitting of the truncated
Pareto distribution to the workload traces from Facebook
and Google provided in [19]. These traces include a mixture
of different types of workloads placed on datacenter serv-
ers. To simulate the workload on one server, we draw
10,000 random samples from each trace and fit them to the
truncated Pareto distribution based on the procedure sug-
gested in [39], which uses the (r + 1) largest-order statistics
and visual check. We found that the fitted values of o for
Google and Facebook samples are mostly within the appli-
cability range of (0,2). Fig. 23 illustrates two examples of
the fitted curves.

The above results strongly suggest that our proposed
methods can indeed serve as a useful tool for the approxi-
mation of tail and mean latency for datacenter workloads.

6 FACILITATING JOB SCHEDULING
AND RESOURCE PROVISIONING

We now discuss how our proposed approximations may be
used to facilitate both SLO-guaranteed job scheduling and
resource provisioning. We present here only the procedures
for tail latency approximation, i.e., ForkTail. The procedures
for mean latency follow similar steps since the approxima-
tion of mean latency is based on ForkTail. The proposed
ideas are preliminary and somewhat sketchy, but yet, they
do help reveal the promising prospects of our proposed
model and point directions for future studies on this topic.
Job Scheduling. We describe the ideas of how a tail-latency-
SLO-guaranteed hybrid centralized-and-distributed job
scheduler can be developed, based on ForkTail. The main
idea is to rely on distributed measurement of the means and
variances of the task response times and centralized decision
making as to how and whether the request tail-latency SLO
can be met, as depicted in Fig. 24. In the master server on the
left resides the central job scheduler to which users submit
their requests with given tail-latency SLOs. All the servers in
the cluster measures the means and variances of task
response times for tasks of different sizes or in different bins
on a continuous basis. All the servers periodically convey
their measurements to the central scheduler. Upon the arrival
of a request with a given tail-latency SLO and given k tasks to
spawn, based on Eq. (5), the central scheduler will run a
Fork-node selection algorithm to determine which k Fork
nodes should be used such that the tail-latency SLO can be
met. If such k£ Fork nodes are found, the request will be admit-
ted, otherwise, either the tail-latency SLO will be renegotiated

Fig. 24. A hybrid, centralized-and-distributed job scheduler.

or the request will be rejected. At runtime, the central sched-
uler periodically run the prediction model using the up-to-
date means and variances as input to ensure that the tail-
latency SLOs for the on-going requests continue to be met.

Resource Provisioning. ForkTail for the homogeneous case
(i.e., Egs. (8) and (9)) naturally enables a resource provision-
ing solution involving two steps: (a) the evaluation of the
task-level performance requirements to achieve a given tail-
latency SLO; and (b) the selection of an underlying platform
to meet the requirements. Here, step (a) is platform inde-
pendent and hence is portable to any datacenter platforms.

For example, consider a service deployment scenario with a
given tail-latency SLO and a minimum throughput require-
ment, R. Assuming that N, k;, and P(K = k;) for the given ser-
vice are known, Eq. (9) can be used to first translate the tail-
latency SLO into a pair, i.e., the mean and variance of the task
response time. This pair then serves as the task performance
budgets or the task-level performance requirements, which are
platform independent and portable. This completes step (a).

In step (b), a Fork node is set up, e.g., using three virtual
machine instances purchased from Amazon EC2 to form a
3-replica Fork node, loaded with a data shard in the memory.
Then run tasks at increasing task arrival rate A until the mea-
sured task mean and/or variance are about to exceed the cor-
responding budget(s). At this arrival rate A, the tail-latency
SLO is met without resource over-provisioning. In other
words, the X value at this point would be the maximum sus-
tainable task throughput, or equivalently, the request through-
put, in order to meet the tail-latency SLO. If this throughput is
greater than R, the minimum throughput requirement is also
met. This means that the resource provisioning is successful
and a cluster with 3N VM instances can be deployed. Other-
wise, repeat step (b) by using a more powerful VM instance
or with a re-negotiated tail-latency SLO and/or minimum
throughput requirement.

7 RELATED WORK

Fork-Join structures are traditionally modeled by FJQNs,
which have been studied extensively in the literature. To
date, the exact solution exists for a two-Fork-node FJQN only
[10], [40]. Most of the previous works primarily focus on the
approximation of mean response time [10], [11], [41] and its
bounds [42], [43]. For networks with general service time dis-
tribution, several works have introduced hybrid approaches
that combine analysis and simulation to derive the empirical
approximation for mean response time [10], [13].

Some analytic results are available on redundant task issues
[44], [45], [46]. They either address only a single replicated

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205

16

server subsystem with exponential task service time distribu-
tion [45] or parallel request load balancing without task
spawning [44], [46].

Tail Latency Approximation. In terms of tail-latency related
research, several works dealt with the approximation of
response time distribution assuming a simple queuing
model for each Fork node, e.g.,, M/M/1 [47] or M/M/k
[12]. Computable stochastic bounds on request waiting and
response time distributions for some FJQNs are provided in
a recent work [48]. The most interesting and relevant work
is given in [14]. The authors of this work proposed a
method, called EAT, for the approximation of tail latency
for homogeneous FJONs based on the analytical results
from single-node and two-node cases. The approximation
applies to FJQNs with any service time distribution that can
be transformed into a phase-type distribution. Although
outperforming our solutions by a few percentage points in
terms of tail prediction, its computational complexity ren-
ders it infeasible to facilitate online resource provisioning.
Moreover, this work can only cover a small fraction of the
aforementioned design space and hence, cannot be used to
facilitate resource provisioning in practice.

Mean Latency Approximation. Various works have been
proposed for the approximation of mean response time of
FJQNs using model-based or hybrid approaches. The work
in [10] introduces a hybrid approach for the approximation
of mean response time, R, for a Fork-Join model with n M/
M/1 Fork nodes (2 < n < 32) based on the exact solution for
the 2-way network [40] and simulation. In [36], the authors
proposed an approximation for mean response time based
on the optimistic and pessimistic bounds. Another approxi-
mation for mean response time of Fork-Join models with
general inter-arrival and service time distributions is pro-
posed in [37] based on light traffic interpolation and heavy
traffic limit. The light traffic interpolation is computed from
the mean response time of the Fork-Join network when there
is only a tagged job in the network, which is equivalent to the
maximum of task service time random variables. The heavy
traffic limit is postulated based on the observation of the rela-
tionship between expressions for light and heavy traffic for
1-way and 2-way networks. In [29], the authors proposed a
hybrid procedure for the approximation of mean response
time for Fork-Join models with M/G/1 queues. Indeed, this
work proposed a methodology rather than specific expres-
sions for finding mean response time. In a recent work [49], a
simulation study assessed the accuracy of the approximation
based on order statistic.

The existing approaches above are white-box solutions
targeting at individual Fork-Join models with specific queu-
ing server models. In contrast, in this paper, we propose
both white-box and black-box solutions, applicable to Fork-
Join networks with arbitrary server models.

SLO-Aware Resource Provisioning. Due to the lack of theo-
retical underpinning, the existing SLO-aware resource provi-
sioning proposals cannot provide tail and /or mean latencies
SLO guarantee by design. Instead, various techniques such
as tail-cutting techniques [15], [16], a combination of job pri-
ority and rate limiting based on network calculus [50] are
employed to indirectly provide high assurance of meeting
tail-latency SLOs. As indirect solutions, however, they can-
not ensure precise resource allocation to meet tail-latency

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

SLOs, while allowing high resource utilization, and hence
may result in resource overprovisioning. Yet, another alter-
native solution is to track the target tail-latency SLO through
online, direct tail-latency measurement and dynamic reso-
urce provisioning [51], [52]. This approach, however, may
not be effective, especially in enforcing stringent tail latency
SLOs. To see why this is true, consider the 99.9th percentile
request response time of 200 ms, i.e., probabilistically, only
one out of 1,000 requests should experience a response time
greater than 200 ms. Assume that the average request arrival
rate is 50 per second. To track, through direct tail-latency
measurement, whether this tail latency SLO is violated or
not with reasonably high confidence, one needs to collect,
e.g., 100K samples to see if there are more than 100 requests
whose response times exceed 200 ms. This, however, takes
about 100K /50 = 2000 seconds or about 33 minutes of mea-
surement time! Given possibly high volatility of datacenter
workloads, the tail latency SLO may have been violated mul-
tiple times during this measurement period, even though the
total number of requests whose response times exceeding
200 ms may be well within 100. In constrast, using our pro-
posed models, with only 20 seconds of measurement time,
one can collect 20 x 50 = 1000 task samples at individual
Fork nodes to allow a reasonably accurate estimation of the
means and variances of task response times. With moving
average for a given time window, e.g., 20 seconds, these
means and variances and hence, the 99.9th percentile, can be
updated every tens of milliseconds, making it possible to
enable fast online tail-latency-guaranteed job scheduling
and resource provisioning.

In summary, a solution that can predict the tail and/or
mean latency using a small number of samples collected in
a short period of time as input and that applies to a large
design space of Fork-Join structures must be sought, the pri-
mary motivation of the current work.

8 CONCLUSION AND FUTURE WORK

A key challenge in enabling tail-latency and/or mean-
latency SLOs for data-intensive services and applications in
datacenters is how to predict the latencies for a broad range
of Fork-Join structures underlying those services and appli-
cations. In this paper, we proposed to study a generic black-
box Fork-Join model for the approximations of tail and mean
latency that covers most Fork-Join structures of practical
interests. On the basis of a central limit theorem for queuing
servers under heavy load, we were able to arrive at approxi-
mate solutions to this model for both tail and mean latencies,
called ForkTail and ForkMean, respectively. These approxi-
mations were found to be able to predict the tail and mean
latencies for most practical scenarios consistently within
20 percent in a load region of 80 percent or higher, resulting
in at most 7 percent resource overprovisioning, making it a
powerful tool for resource provisioning at high load. Finally,
we discussed some preliminary ideas of how to make use of
the proposed prediction model to facilitate tail-latency-SLO-
guaranteed job scheduling and resource provisioning.

In our future work, based on ForkTail and ForkMean, we
shall develop both job scheduling and online/ offline resource
provisioning solutions with tail-latency and /or mean-latency
SLO guarantee.

1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240

1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

1265

1266
1267

1268

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

NGUYEN ET AL.: BLACK-BOX FORK-JOIN LATENCY PREDICTION MODEL FOR DATA-INTENSIVE APPLICATIONS 17

ACKNOWLEDGMENTS

This work is supported by the NSF under awards CCF XPS
1629625 and CCF 1704504.

REFERENCES

[1]

[2]

[3]

[4]
[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

M. Jeon et al., “Predictive parallelization: Taming tail latencies in
web search,” in Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2014, pp. 253-262.

J. Brutlag, “Speed matters for Google web search,” 2009.
[Online]. Available: https://services.google.com/fh/files/blo
gs/google_delayexp.pdf

J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Operating Syst. Des.
Implementation, 2004, pp. 137-150.

Apache spark, Accessed: Feb. 26, 2020. [Online]. Available:
https:/ /spark.apache.org

G. Blake and A. G. Saidi, “Where does the time go? Characterizing
tail latency in memcached,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw., 2015, pp. 21-31.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale,” in Proc. 3rd
ACM Symp. Cloud Comput., 2012, pp. 7:1-7:13.

C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
QoS-aware cluster management,” in Proc. 19th Int. Conf. Architec-
tural Support Program. Lang. Operating Syst., 2014, pp. 127-144.

G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks
and Markov Chains: Modeling and Performance Evaluation With Com-
puter Science Applications. Hoboken, NJ, USA: Wiley-Interscience,
2006.

A. Thomasian, “Analysis of fork/join and related queueing sys-
tems,” ACM Comput. Surv., vol. 47, no. 2, pp. 1-71, 2014.

R. Nelson and A. N. Tantawi, “Approximate analysis of fork/join
synchronization in parallel queues,” IEEE Trans. Comput., vol. 37,
no. 6, pp. 739-743, Jun. 1988.

E. Varki, “Response time analysis of parallel computer and stor-
age systems,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 11,
pp- 1146-1161, Nov. 2001.

S. S. Ko and R. F. Serfozo, “Response times in M/M/s fork-join
networks,” Advances Appl. Probability, vol. 36, no. 3, pp. 854-871,
2004.

R.]J. Chen, “A hybrid solution of fork/join synchronization in par-
allel queues,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 8,
pp- 829-845, Aug. 2001.

Z.Qiu, J. F. Pérez, and P. G. Harrison, “Beyond the mean in fork-
join queues: Efficient approximation for response-time tails,” Per-
form. Eval., vol. 91, pp. 99-116, 2015.

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74-80, 2013.

A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in Proc. 9th ACM Conf.
Emerg. Netw. Experiments Technol., 2013, pp. 283—294.

N.J. Yadwadkar, G. Ananthanarayanan, and R. Katz, “Wrangler:
Predictable and faster jobs using fewer resources,” in Proc. ACM
Symp. Cloud Comput., 2014, pp. 26:1-26:14.

R. Nishtala et al., “Scaling memcache at Facebook,” in Proc. 10th
USENIX Conf. Netw. Syst. Des. Implementation, 2013, pp. 385-398.
P. Delgado, F. Dinu, A. M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid datacenter scheduling,” in Proc. USENIX Conf.
Usenix Annu. Tech. Conf., 2015, pp. 499-510.

J. F. C. Kingman and M. F. Atiyah, “The single server queue in heavy
traffic,” Proc. Cambridge Philosophical Soc., vol. 57, pp. 902-904, 1961.

J. Kollerstrom, “Heavy traffic theory for queues with several serv-
ers. I,” J. Appl. Probability, vol. 11, no. 3, pp. 544-552, 1974.

M. Nguyen, Z. Li, F. Duan, H. Che, Y. Lei, and H. Jiang, “The Tail
at Scale: How to Predict It?” in Proc. 8th USENIX Workshop Hot
Topics Cloud Comput., 2016.

S. Sani and O. A. Daman, “Mathematical modeling in heavy traffic
queuing systems,” Amer. . Operations Res., vol. 4, pp. 340-350, 2014.
R. D. Gupta and D. Kundu, “Generalized exponential distribu-
tions,” Australian New Zealand |. Statist., vol. 41, no. 2, pp. 173-188,
1999.

M. Nguyen, S. Alesawi, N. Li, H. Che, and H. Jiang, “ForkTail: A
black-box fork-join tail latency prediction model for user-facing
datacenter workloads,” in Proc. 27th Int. Symp. High-Perform. Par-
allel Distrib. Comput., 2018, pp. 206-217.

[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

L. Kleinrock, Queueing Systems, Vol. 1: Theory. Hoboken, New
Jersey, USA: Wiley, 1975.

W. Whitt, “The queueing network analyzer,” The Bell Syst. Tech. .,
vol. 62, no. 9, pp. 2779-2815, Nov. 1983.

G. Brys, M. Hubert, and A. Struyf, “Robust measures of tail weight,”
Comput. Statist. Data Anal., vol. 50, no. 3, pp. 733759, 2006.

A. Thomasian and A. N. Tantawi, “Approximate solutions for
M/G/1 fork/join synchronization,” in Proc. 26th Conf. Winter
Simul., 1994, pp. 361-368.

L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet:
The Google cluster architecture,” IEEE Micro, vol. 23, no. 2,
pp. 22-28, 2003.

M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action, 1st ed. Cambridge, U.K.:
Cambridge Univ. Press, 2013.

D. Meisner, W. Junjie, and T. F. Wenisch, “BigHouse: A simulation
infrastructure for data center systems,” in Proc. IEEE Int. Symp.
Perform. Anal. Syst. Softw., 2012, pp. 35-45.

Apache hadoop, Accessed: Feb. 26, 2020. [Online]. Available:
https:/ /hadoop.apache.org

Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical process-
ing in big data systems: A cross-industry study of MapReduce
workloads,” Proc. VLDB Endowment, vol. 5, no. 12, pp. 1802-1813,
Aug. 2012.

M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265-278.

E. Varki, A. Merchant, and H. Chen, “The M/M/1 fork-join queue
with variable sub-tasks,” 2002. [Online]. Available: http://www.
cs.unh.edu/ varki/publication /2002-nov-open.pdf

S. Varma and A. M. Makowski, “Interpolation approximations
for symmetric fork-join queues,” Perform. Eval., vol. 20, no. 1/3,
pp. 245-265, 1994.

L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail
latency in cloud data stores via adaptive replica selection,” in Proc.
12th USENIX Conf. Netw. Syst. Des. Implementation, 2015, pp. 513-527.
I. Aban, M. Meerschaert, and A. Panorska, “Parameter estimation
for the truncated pareto distribution,” J. Amer. Statist. Assoc.,
vol. 101, no. 473, pp. 270-277, 2006.

L. Flatto and S. Hahn, “Two parallel queues created by arrivals with
two demands I,” SIAM |. Appl. Math., vol. 44, no. 5, pp. 1041-1053,
1984.

F. Alomari and D. A. Menasce, “Efficient response time approxi-
mations for multiclass fork and join queues in open and closed
queuing networks,” IEEE Trans. Parallel Distributed Syst., vol. 25,
no. 6, pp. 1437-1446, Jun. 2014.

S. Balsamo, L. Donatiello, and N. M. Van Dijk, “Bound perfor-
mance models of heterogeneous parallel processing systems,”
IEEE Trans. Parallel Distributed Syst., vol. 9, no. 10, pp. 1041-1056,
Oct. 1998.

R. J. Chen, “An upper bound solution for homogeneous fork/join
queuing systems,” IEEE Trans. Parallel Distributed Syst., vol. 22,
no. 5, pp. 874-878, May 2011.

D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for
fast response times in parallel computation,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 42, no. 1, pp. 599-600, Jun. 2014.

K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytia,
and A. Scheller-Wolf, “Reducing latency via redundant requests:
Exact analysis,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model.
Comput. Syst., 2015, pp. 347-360.

Z.Qiu and J. F. Perez, “Evaluating the effectiveness of replication
for tail-tolerance,” in Proc. 15th IEEE/ACM Int. Symp. Cluster Cloud
Grid Comput., 2015, pp. 443-452.

S. Balsamo and I. Mura, “Approximate response time distribution
in Fork and Join systems,” in Proc. ACM SIGMETRICS Joint Int.
Conf. Meas. Model. Comput. Syst., 1995, pp. 305-306.

A. Rizk, F. Poloczek, and F. Ciucu, “Computable bounds in fork-
join queueing systems,” in Proc. ACM SIGMETRICS Int. Conf.
Meas. Model. Comput. Syst., 2015, pp. 335-346.

A. Lebrecht and W. J. Knottenbelt, “Response time approxima-
tions in fork-join queues,” in Proc. 23rd Annu. UK Perform. Eng.
Workshop, 2007.

T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger, “PriorityMeister: Tail latency QoS for shared
networked storage,” in Proc. ACM Symp. Cloud Comput., 2014,
pp. 29:1-29:14.

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://spark.apache.org
https://hadoop.apache.org
http://www.cs.unh.edu/ varki/publication/2002-nov-open.pdf
http://www.cs.unh.edu/ varki/publication/2002-nov-open.pdf

1416
1417
1418
1419
1420
1421

1422
1423
1424
1425
1426
1427
1428
1429
1430

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466

18

[51] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica,
“Cake: Enabling high-level SLOs on shared storage systems,” in
Proc. 3rd ACM Symp. Cloud Comput., 2012, pp. 14:1-14:14.

A. D. Ferguson, P. Bodik, E. Boutin, and R. Fonseca, “Jockey:
Guaranteed job latency in data parallel clusters,” in Proc. 7th ACM
Eur. Conf. Comput. Syst., 2012, pp. 99-112.

[52]

Minh Nguyen received the BS and MS degrees in
electrical engineering from the Ho Chi Minh City
University of Technology, Vietnam; and the PhD
degree in computer engineering from the Univer-
sity of Texas at Arlington, Arlington, Texas. He is
currently a lead hardware integration engineer at
Ikon Technologies. His current research interests
include datacenter resource management and job
scheduling, edge computing, loT, and smart cities.

Sami Alesawi received the BS degree in computer
engineering and the MS degree in computer sci-
ence from King Abdulaziz University, Jeddah,
Saudi Arabia, and the PhD degree from The Uni-
versity of Texas at Arlington, Arlington, Texas. He
is currently working as an assistant professor at the
Faculty of Computing and Information Technology
in Rabigh, King Abdulaziz University, Saudi Arabia.
His current research interests include datacenter
resource management and job scheduling.

Ning Li received the BSc degree in computer sci-
ence from Jiangsu University, China; the MSc
degree in computer engineering from the Nanjing
University of Science and Technology, China; and
the PhD degree in computer system architecture
from the Huazhong University of Science and
Technology, China. He is currently working as a
post-doc research associate with the University of
Texas at Arlington, Arlington, Texas. His research
interests include virtualization, quality of service,
cloud computing and storage systems.

Hao Che (Senior Member, IEEE) received the BS
degree from Nanjing University, Nanjing, China;
the MS degree in physics from the University of
Texas at Arlington, Arlington, Texas; and the
PhD degree in electrical engineering from the
University of Texas at Austin, Austin, Texas. He
is currently a full professor in the Department of
Computer Science and Engineering, University of
Texas at Arlington, Texas. Prior to joining UTA,
he was a system architect with Santera Systems,
Inc. in Plano (2000-2002) and an assistant pro-
fessor of electrical engineering at the Pennsylvania State University
(1998 to 2000). His current research interests include network architec-
ture and Internet traffic control, datacenter resource management and
job scheduling, edge computing and loT.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Hong Jiang (Fellow, IEEE) received the BSc
degree in computer engineering from the Huazhong
University of Science and Technology, Wuhan,
China; the MASc degree in computer engineering
from the University of Toronto, Toronto, Canada;
and the PhD degree in computer science from the
Texas A&M University, College Station, Texas. He
is currently chair and Wendell H. Nedderman
Endowed professor of Computer Science and Engi-
neering Department, University of Texas at Arling-
ton, Arlington, Texas. Prior to joining UTA, he
served as a program director at National Science Foundation (2013-2015)
and he was at University of Nebraska-Lincoln since 1991, where he was
Willa Cather professor of Computer Science and Engineering. He has grad-
uated 17 PhD students and supervised 20 post-doctoral fellows and visiting
scholars. He is currently supervising/co-supervising more than 10 PhD stu-
dents and post-doc fellows. His present research interests include computer
architecture, computer storage systems and parallel I/O, high-performance
computing, big data computing, and cloud and edge computing. He is an
associate editor of the /EEE Transactions on Computers and recently
served as an associate editor of the IEEE Transactions on Parallel and Dis-
tributed Systems. He has more than 300 publications in major journals and
international Conferences in these areas, including the /IEEE Transactions
on Parallel and Distributed Systems, IEEE Transactions on Computers,
Proceedings of IEEE, ACM Transactions on Architecture and Code Optimi-
zation, the ACM Transactions on Storage, USENIX ATC, FAST,
EUROSYS, ISCA, MICRO, SOCC, LISA, SIGMETRICS, ICDE, DATE,
ICDCS, IPDPS, MIDDLEWARE, OOPLAS, ECOOP, SC, ICS, HPDC,
INFOCOM, ICPP, etc., and his research has been supported by NSF and
industry. He is a member of the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

1497
1498

