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Essential loops in taut ideal triangulations

SAUL SCHLEIMER
HENRY SEGERMAN

In this note we combinatorialise a technique of Novikov. We use this to prove that,
in a three-manifold equipped with a taut ideal triangulation, any vertical or normal
loop is essential in the fundamental group.

57M05; 57TM20

1 Introduction

The notion of a taut ideal triangulation of a three-manifold is due to Lackenby [7].
He combinatorialised the angle structures introduced independently by Casson and
by Rivin [12]. They in turn linearised the geometric triangulations of Thurston [13].
Each of these structures plays an important role in modern low-dimensional topology.
In particular, taut ideal triangulations have a strong connection to the subject of taut
foliations, introduced by Gabai [5], and to that of taut branched surfaces, due to
Oertel [10]. In addition to the results of Lackenby, taut ideal triangulations play a
central role in the theory of layered triangulations. One spectacular contribution has
been as a prerequisite for Agol’s theory of veering triangulations [1].

Novikov [9, Theorem 6.1] gives one of the early applications of foliations to the study
of the fundamental group of a manifold. He starts with a loop d in good position with
respect to a foliation . He further supposes that H: D — M is a null-homotopy of &,
also in good position. Pulling back, he obtains a singular foliation H~!(F) on the disk
D. The Poincaré—Hopf theorem gives combinatorial control of the singularities, which
translates to topological control over the homotopy. Morally, the positivity of the Euler
characteristic of the disk constrains the position of §. We refer to [4, Chapter 9] for a
history of the subject and for detailed proofs.

We introduce a combinatorial version of the Novikov technique; instead of pulling back
a foliation we pull back a taut ideal triangulation. This gives a train track with stops in
the disk D. We so obtain a very simple proof of a variant of one of Novikov’s results.
That is, suppose that M is a three-manifold, equipped with a taut ideal triangulation 7.
Let B = T® be the resulting branched surface in M.
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Theorem 3.3 Any loop 6 in M which is vertical with respect to 3 is essential in
m(M).

There is also an indirect proof of this using Novikov’s original technique [3, Theo-
rem 4.35(3)], once we observe that BB carries an essential lamination which extends to a
taut foliation of M (see [6, Example 5.1] as well as [7, page 373]).

Using our techniques we also obtain a new result, as follows.

Theorem 5.1 Any loop v in M which is normal with respect to B is essential in
m(M).

The proof of Theorem 5.1 is more delicate than that of Theorem 3.3; new behaviour
near the boundary of D must be dealt with.

From Theorems 3.3 and 5.1 we deduce that vertical, and also normal, loops are infinite
order in the fundamental group. Note that this is a bit weaker than the conclusion in the
comparable situation of a train track 7 in a surface — there loops dual to, or carried by,
T are not only essential but also non-peripheral.

We have a simple corollary of Theorem 5.1. Let M be the universal cover of M and let
B be the resulting branched surface.

Corollary 1.1 Suppose that F is a connected surface (perhaps with boundary) carried
by B and realised as a (perhaps finite) union of faces of B. Then F is a disk. |

Previous work

Gabai and Oertel prove that laminations carried by essential branched surfaces are
m—injective [6, Lemma 2.7]. Our Theorem 5.1 is both more and less general than their
work. We do not require a lamination. They do not require the manifold to be cusped.

Calegari [2, Remark 5.6] gives a very different combinatorial version of Theorem 3.3, in
the closed case. He introduces the notion of a local orientation; this is, in a sense, dual
to having a transverse taut branched surface 5 C M where all components of M — 3
are taut balls.
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2 Background

Throughout the paper we will use M to denote a compact connected manifold with
non-empty boundary. All boundary components will be tori or Klein bottles. Suppose
that 7 is a three-dimensional triangulation; that is, a collection of model tetrahedra and
a collection of face pairings. We will also call the faces of a model tetrahedron model
faces, and similarly for its edges and vertices.

Let |7| be the quotient space: that is, we take the disjoint union of the model tetrahedra
of 7 and identify model faces using the face pairings. Let 7® be the k—skeleton of
|T|. Let n(T©®) be an open regular neighbourhood of the vertices of 7. We call T a
ideal triangulation of M if | T| — n(T®) is homeomorphic to M.

A taut angle structure on T is an assignment of dihedral angles, zero or 7, to each
model edge in 7. The assignment is required to obey two conditions. The edge
equalities state that, for an edge e € TV, the sum of the dihedral angles of its models
is 27. The triangle equalities state that, for any model vertex, the sum of the dihedral
angles of the three adjacent model edges is 7. We say that the tetrahedra of 7 are
taut. See Figure 2.1a.

)

(a) A taut tetrahedron. (b) All faces meeting a single edge in .

Figure 2.1

We deduce that every taut tetrahedron has four edges with dihedral angle zero. We call
the union of these four edges the equator of the taut tetrahedron.

Suppose now that e is an edge of 7!, There are exactly two model edges for e with
angle ; all others are zero. Obeying these dihedral angles, we isotope the two-skeleton
T@ to obtain a smooth branched surface B. See Figure 2.1b. Some references
would call B a non-generic branched surface without vertices. See for example [3,
Section 6.3].

Definition 2.2 Suppose that ¢ is a smooth embedded loop in M, transverse to B.
Suppose that for every tetrahedron ¢ we have that every arc d of § N ¢ links the equator
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of ¢. (That is, the endpoints of d are separated in Ot by the equator of ¢.) Then we say
that the loop ¢ is vertical with respect to B.

Definition 2.3 Suppose that ~ is a smooth loop immersed in 5 and transverse to the
edges of B. Suppose that for every model face f of B and for every component J of
v~ Y(f), the arc J is normal in f. (That is, the endpoints of J lie in distinct edges of f.)
Then we say that the loop + is normal with respect to 5.

3 Combinatorics of null-homotopies

Suppose that ¢ is a loop in M which is transverse to the branched surface B. Let
D = D? be the unit disk with the usual orientation. Suppose that H: D — M is a
null-homotopy of . We homotope H relative to D to make H transverse to B.

We define 7 = H~!(B). Thus 7 is a train track in D. The switches of T are exactly
the points of H~1(B"). The stops of T are exactly the points of (H|0D)~'(B). The
standard reference for train tracks is [11]; we also rely on [8]. We note that our track 7
does not satisfy the so-called “geometry-condition” [11, page 5], [8, page 52].

We call a connected component R of D — 7 a region. Let cusps(R) and corners(R)
count the number of (necessarily outwards) cusps and corners on the boundary of R. As
a bit of terminology, we divide OR into sides: these are the components of OR minus all
outward cusps and corners. Note that a side s of R may be a union of several branches
of 7.

corners \index 1 1/2 0
o 1O O <>
: A A
4

Table 3.1: Disk regions with non-negative index, organised by the number of corners. These are
named as follows: nullgon, cusped monogon, cusped bigon, boundary bigon, boundary trigon,
and rectangle.
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We define the index of R to be
cusps(R)  corners(R)

2 4
In Table 3.1 we give pictures of, and names to, all possible disk regions with non-negative
index. Note that index is additive under taking the union of regions [8, page 57]. Thus
the sum of the indices of the regions of D — 7 is exactly x(D); that is, one. We deduce
from this that there is at least one region R with positive index.

ind(R) = x(R) —

Let r(H) be the number of regions of D — 7. Over all null-homotopies of §, transverse
to BB, we choose H to minimise r(H). We call such an H minimal.

Lemma 3.2 Suppose that ¢ is a loop in M transverse to B. Suppose that H: D — M
is a minimal null-homotopy of §. Let 7 = H~'(B). Then we have the following.

(1) All regions of D — 7 are disks.
(2) If s is a side of a region R, then the interior of s meets at most one switch.
(3) Noregion R of D — 7 is a nullgon.

(4) Noregion R of D — 7 is a cusped monogon.

Thus, all positive index regions of D are boundary bigons.

Proof

(1) If there were a region with topology then we could compress it into the containing
tetrahedron and reduce r(H).

(2) Suppose that the interior of s meets at least two switches. All such switches in
the interior of s are preimages under H of a single edge. Hence there is a branch
b C 7 so that H(b) is a non-normal arc. We homotope H in a neighbourhood of
b to make H(b) simple. This done, H(b) cuts a bigon B off of the face containing
H(b). We then homotope H across B. This does not increase r(H). If r(H) does
not decrease, then this move disconnects 7, and creates a region with topology,
contradicting (1).

(3) Suppose that R is a nullgon. If H(OR) is disjoint from B then the region
adjacent to R is not a disk, contradicting (1). It follows that OR consists of an
even number of branches of 7 (alternating between the two faces of a tetrahedron
t on either side of a m-edge of ¢). But this contradicts (2).

(4) Suppose that ¢ is the taut tetrahedron containing H(R). Let s be the boundary of R.
We deduce that the loop s crosses the equator of ¢ exactly once, a contradiction.
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Since there are no nullgons or monogons, the only possible positive index regions are
boundary bigons. a

Equipped with this we can now prove the following.

Theorem 3.3 Any loop 6 in M which is vertical with respect to B is essential in
T (M).

Proof Suppose that H: D — M is a minimal null-homotopy of the vertical loop 9.
Applying Lemma 3.2, there must be a region R of D — 7 which is a boundary bigon.
Let ¢ be the tetrahedron containing H(R). Let d = ORN ID and let s = OR — d°.
From the definition of vertical, we have that H(d) links the equator of . Therefore H(s)
crosses the equator of ¢ an odd number of times, and thus at least once. This contradicts
the fact that OR has no cusps. |

4 Transverse taut

In order to prove Theorem 5.1, we will use the following strengthening of the notion
of a taut structure. A fransverse taut structure on T is a taut structure together with a
co-orientation on B with the following property. If model faces f and f of a model
tetrahedron ¢ share a common model edge e, then

o the edge e is part of the equator of ¢ if and only if exactly one of the co-orientations
on f and f’ points into £.

See Figure 4.1a. It follows that the co-orientations on faces incident to an edge change
direction precisely twice as we go around an edge. See Figure 4.1b.

Suppose that 7 is an ideal triangulation of a manifold M equipped with a taut structure.
We now construct a triangulation 7 of a double cover M of M. By construction, the
lift of the taut structure on 7 to 7 will support a transverse taut structure.

For each taut tetrahedron ¢ of T, we arbitrarily label the two model edges with dihedral
angle 7 as ¢ and ¢”. In T, we have two taut tetrahedra ¢ and #’ corresponding to
t. We assign a co-orientation to the model faces of ¢ and 7’ in such a way that the
co-orientation points into the tetrahedron on the two model faces of #* incident to e*.
Now suppose that #; and ¢; are tetrahedra of 7, glued to each other along model faces f;
and fj. In T we have tetrahedra i, 1, tj’., and tj’.’ , with model faces f/, f!’, j’ , and j” ,

respectively.
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) -

(a) Co-orientations and angles in (b) Co-orientations around an edge.
a transverse taut tetrahedron.

Figure 4.1

We glue 7/ to either # or ¢/

; or # as the co-orientation on f; agrees with f; or f'. We
similarly glue 7/’ to the remaining copy of #;. Having made all such gluings, the resulting
triangulation 7 has a transverse taut structure by construction. It has one component if

and only if the taut structure on 7 does not support a transverse taut structure.

5 Proof of the main result

Theorem 5.1 Any loop v in M which is normal with respect to B is essential in
™ (M) .

Proof Suppose for a contradiction, that the normal loop ~ is null-homotopic. Thus ~
lifts to a normal loop in any cover. Thus, without loss of generality, we may assume
that the taut structure on 7 supports a transverse taut structure. This gives us a local
notion of upwards. In particular, every model tetrahedron has two lower faces and two
upper faces, separated by its equator.

Lemma 3.2 does not apply directly to a normal loop . So, let A be a model annulus with
horizontal boundary circles 9pA LI 0;A. Let G be a small smooth homotopy G: A — M,
moving v slightly upwards. That is, G(0pA) = v and we define § = G(0;A4). We
ensure that G is transverse to B away from OpA ; also, we arrange that for each vertical
interval J in A the tangents to G(J) point upwards. We will apply Lemma 3.2 to .

We call § a raised curve. We call the components of 6 — B raised arcs. There are
six fypes of raised arc. These are shown in Figure 5.2. There is a cellulation of A
with one-skeleton JA U G~!(B). Suppose that C is a two-cell. Let ¢ = C N JpA and
d=CnN0oA. Thus G(c) C v and G(d) C 6. We say that G(c) is the lowering of the
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raised arc G(d). We record this by the lowering map, L, where L(G(d)) = G(c). Note
that G(c) may be either a single vertex, a single normal arc, or two normal arcs. Again,
see Figure 5.2.

Figure 5.2: A taut tetrahedron containing the six possible types of raised arcs of §. These are
drawn in (solid) green. The normal arcs (or points) of v, namely the lowerings of the raised
arcs, are drawn in (dashed) blue. Images of the two-cells of the annulus A are shaded in light
blue. Filled green dots indicate endpoints of raised arcs on the top two faces of the tetrahedron;
open green dots indicate endpoints on the bottom two faces.

Suppose that H: D — M is a minimal null-homotopy of 6. Recall that 7 = H~'(B).
Applying Lemma 3.2 implies that D — 7 has at least two boundary bigons. Applying
another small homotopy, we can retain minimality and also make H transverse to -y.

Pulling back the transverse taut structure on B by H gives a transverse orientation on
the branches of 7 which is consistent across switches. Thus, for any region R of D — 7
and for any side s of R, the transverse orientation on s points either into, or out of, R.
This gives us a classification of boundary bigons. Suppose that R is a boundary bigon
and s = OR — 0D is its side in 7. If the transverse orientation on s points out of R then
we call R a min-bigon. If it points into R we call R a max-bigon.

5.3 Min-bigons

Suppose that R is a min-bigon. We move - up, across H(R), to obtain v'. We appeal
to Lemma 3.2(2) to ensure that +/ is normal. Let ¢’ be the corresponding raised loop
and let H' be the new null homotopy. See Figure 5.4.
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The loop +' may be shorter than, the same length as, or longer than + (see types
A1,A; and A3 in Figure 5.2). However, H' has exactly one fewer region. That is,
r(H") = r(H) — 1. We repeat this process until there are no more min-bigons.

\

Figure 5.4: Pushing over a min-bigon of type As.

5.5 Max-bigons

Suppose that Ry is a max-bigon. Unlike the situation of a min-bigon, a max-bigon does
not give us a simple move to reduce complexity. The asymmetry stems from the fact
that we raised -y rather than lowered it. Instead, our plan is to uniquely associate to Ry
two small subregions of D — 7, each with index —1/4. This will imply that the index
of D is at most zero. This contradiction finally proves Theorem 5.1.

We begin as follows. Let s be the side of Ry in 7. Let dy = ORy — s C 9D. We give
dp the (tangential) orientation it receives from D. In Figure 5.7, this orientation will
point left. Note that H(dy) C § is a raised arc. Let ¢o = L(H(dp)) be its lowering.

Claim 5.6

e The raised arc H(dp) has type C.

e The side s meets exactly one switch c{, of 7.

Algebraic & Geometric Topology XX (20XX)
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e The vertices ¢o and H(c{,) cobound a sub-edge ey C B,

Proof Let 7y be the tetrahedron containing H(Ry). By the definition of a max-bigon
the transverse orientation on s points into Ry. Thus each corner of H(Ryp) is contained
in a lower face of fy. Consulting Figure 5.2 we deduce that H(dp) is of type C. Thus
each corner of H(R))) is contained in its own lower face of 7. We deduce that s meets
at least one switch of 7. By Lemma 3.2(2) the side s meets exactly one switch, which
we call cj).

Since H is transverse to -y, the vertices co and H (cg) are distinct. They are contained
in the same edge of B!): namely the bottom edge ¢y of 7y. In e they cobound a
sub-edge, which we call €. |

do d d» di3 di ds e
bo
co
€
¢y ¢4 e ch *

Figure 5.7: A possible picture of part of the annulus A (in back), the bigons By, (in front), and
the homotopies Fy (bottom). To lighten the notation in this figure, we have omitted applying H
to labels of subsets of D. Transverse orientations on the branches b; are shown with arrows.
Note that €y = €1, ¢, = ¢, ¢§ = ¢}, and so on.

di

Sp

S
T

.l.occ.l.'c.l.....n

Let a and by be the components of s — ¢, where by meets the right endpoint of dj.
See the leftmost region on Figure 5.7.

Now consider a sequence of regions Rg,Rj,...,R, that meet OD in the sides
do,dy, . ..d, as we move along 9D to the right. Define ¢, = L(H(dy)) C ~v: the
lowering of the raised arc H(dy). Define v, = Uf.‘:Oc,- C 7.

Let b; be the branch of 7 that meets dD at the right corner of R;. We now choose
n = N such that b;_; and b; have the same transverse orientation for 1 < i < N, while
they have opposite transverse orientations for i = N. Thus, Ry is at a local minimum
of v, and we are going downhill to it from the local maximum at Ry. This downhill
condition implies that for i € [1, N), the raised arc H(d,;) is either of type B; or Bj.
Again, see Figure 5.2.
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Recall that all positive index regions are now max-bigons. Thus none of the R; can
have positive index for i > 0. Let K be the smallest number for which Rx has negative
index, or if there is none, then set K = N.

Claim 5.8 The region Rk is not a boundary trigon.

Proof If K < N then by definition, Rgx has negative index, and so is not a boundary
trigon. If K = N then Ry cannot be a boundary trigon since the transverse orientations
on the two sides of a boundary trigon must agree, yet Ry is at a local minimum of

- O

For all k € [0, K) we define the union B, = Ui.‘:OR,-. Define v, = 0By — (a° Uby UOD).
(Unlike in Section 5.3, here -y is a push-off of only a section of ~.)

Definition 5.9 Suppose that g, /: [0,1] — B are paths. Suppose that F: [0, 1] x
[0,1] — B is a homotopy from g to 4. Thus g(x) = F(x,0) and h(x) = F(x,1). We
say that F is transverse if whenever F(xp, f) is contained in a (1- or 2-) cell C of B,
we have that the trace F(xg, [0, 1]) lies in C.

Claim 5.10 For all £k € [1, K):

(1) The region Ry is a boundary trigon.
(2) The union By has exactly two corners and no cusps.

(3) There is a transverse homotopy Fj taking 7, to H(fy,’c).

Proof We will prove this by induction. Claim 5.6 implies the base case (for k = 1) in
a manner essentially identical to the general inductive step, so we omit its proof.

Suppose that the hypotheses hold at step k. Recall that H(d}) has type By or By, so it
has precisely one lower endpoint. Let f; be the face that contains the lower endpoint.
Let p be the endpoint of ~;, and let ¢; be the edge of f; containing p. Let § be the
normal arc of v immediately after p. Let f3 be the face containing 3. Viewed in a
small neighbourhood of ey, the faces fg and f; are on the same side (say the right side)
of ek, and f3 is below fj.

Let p’ be the endpoint of ; meeting b;. By hypothesis (3), the transverse homotopy
Fy takes p to H(p'), with trace lying in e;. Since H is transverse to e, at H(p'), we
deduce that H(D) meets both f; and f3 at H(p'). Thus p’ is a switch of 7 with a cusp
immediately below by, to the right of p’, pointing at ; (which extends to the left of
p’). This cusp lies in Ry 1, since by is part of the boundary of Ry ;. See Figure 5.7.
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If Ry has negative index then k + 1 = K and we have nothing to prove. So suppose
that Ry has index zero. Consulting Table 3.1 we deduce that Ry, is a boundary
trigon. This proves hypothesis (1). Note that hypothesis (2) follows because By meets
Ry along by.

Let sg+1 = ORxy1 — (di41 U by) be the remaining side of the boundary trigon
Riy1. By Lemma 3.2(2) there is at most one switch in the interior of s;;. Let
i1 = Sk+1 — bpyy — OD. Note that v | = v, Ucjy -

The path H(s1) has endpoints H(p) and the lower endpoint of H(dy1). The point
H(p') lies on the edge e;. Recall that fi; is the face containing the lower endpoint of
H(di+1). There are two cases, depending on the type of H(dg+1)-

e Suppose that H(dyy1) has type B;. Then Y441 = 7. In this case, ¢ is a
boundary edge of fi1. Since there is at most one switch in the interior of s, 1,
there are in fact no such switches. So sy4+1 = bg4+1 and cjc 11 is a single switch,
equal to p’. We deduce that vy, ; = 7;. Since Y1 = Yk and v, ;| = Vi, we set
Fi41 = Fy. See Figure 5.11a.

e Suppose that H(dy+1) has type Bo. Then i1 = % U cky1. Let 41 be the
tetrahedron containing H(Ry41). In this case, the path H(s1) must cross the
bottom edge of #4; in order to get into fi4. Since there is at most one switch
in the interior of s, there is exactly one. Let f be other lower face of f1.
Thus ¢y 1 is a normal arc in f. Note that H(c;_ ) is a properly immersed arc in
f, with endpoints on the same edges as those of ci4;. Thus there is a transverse
homotopy E taking c41 to H(c), +1)- Reparametrising E, we set Fiy1 = FrUE.
See Figure 5.11b.

This proves hypothesis (3). |

Let B, = Bg_1. This is the right-bigon for Ry. We rerun the argument of Claim 5.10
to the left to obtain the left-bigon for Ry, denoted B.

The induction in the proof of Claim 5.10 extends to show that Rx contains a cusp
pointing at yx_,. The cusp lies between bx_; and another branch on the boundary of
Rk, which we call c%. See the far right of Figure 5.7. Let Q;, be a small closed regular
neighbourhood of bx_1 in Rg. The boundary of the subregion Q. has four sides; we
call it a right-quadrilateral. The four sides are dx NN, bg_1,cx N N, and a fourth side,
s, say. Note that s, is properly embedded in Rg. The quadrilateral Q. therefore has
one cusp and three corners, and so it has index —1/4. An identical argument builds the
left-quadrilateral Q.

Algebraic & Geometric Topology XX (20XX)
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diy1 diy

by

€k

/ /

p P Gy
(a) H(dk+1) has type By . (b) H(dk+1) has type Ba.

Figure 5.11: Extending the transverse homotopy F. As in Figure 5.7, we have omitted applying
H to labels of subsets of D.

Claim 5.12 For any max-bigons R and R’

(1) S(R) is embedded in D,
(2) if R # R’ then S(R) and S(R’) are disjoint, and
(3) S(R) is a rectangle.

Proof Let B, and B, be the right- and left-bigons for R; define B/, and B. similarly
for R'. Note that boundary trigons in B, have transverse orientations on their branches
that disagree with the tangential orientation on dD. On the other hand, boundary trigons
in B have transverse orientations that agree with the tangential orientation.

This proves that B, and B, share only one region: the max-bigon itself, and so
B = B4 U B, is again a boundary bigon. The same argument shows that B and
B’ = B/ U B], have no regions in common if R # R'.

We claim that 9B and OB’ are disjoint. To see this, note that OB consists of an arc
in 0D, and an arc in 7. The transverse orientation on the arc in 7 points into B, and
similarly for B’.

Let Qq, Os, Q) and Q. be the quadrilaterals for R and R’. Since these are obtained by
taking subsets of small regular neighbourhoods of branches in 9B and OB’, these are
all pairwise disjoint (if R # R’). This proves parts (1) and (2).

Adding the subregions Q4 and Q. replaces the two corners of B with four corners, and
thus S(R) is a rectangle, and we obtain (3). O

Let D' = D — US(R), where the union ranges over all max-bigons R.
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Claim 5.13 The induced cellulation of D’ has no regions of positive index.

Proof Suppose that R’ is a region of D’ having positive index. If R" were a nullgon or
monogon, then it would be a nullgon or monogon in D, contradicting Lemma 3.2. The
region R’ is not a boundary bigon since we removed all of them. Thus R’ was created
by cutting quadrilaterals out of some region R of D — 7. Note that R’ meets 7, meets
OD and meets Q. (say) along some side s,. So R’ has at least three corners. Since its
index is positive, R’ has exactly three corners. Thus R = R’ U Q. is a boundary trigon,
contradicting Claim 5.8. |

Note that D’ has both outward and inward corners (a combinatorial version of the
exterior angle being 37 /2). Again following [8, page 57], we generalise our definition
of index; each inward corner adds +1/4 to the overall index. Thus D’ has non-positive
index. Since rectangles have index zero, from the additivity of index we deduce that D
has non-positive index, a contradiction. This concludes the proof of Theorem 5.1. O
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