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Essential loops in taut ideal triangulations
SAUL SCHLEIMER

HENRY SEGERMAN

In this note we combinatorialise a technique of Novikov. We use this to prove that,
in a three-manifold equipped with a taut ideal triangulation, any vertical or normal
loop is essential in the fundamental group.

57M05; 57M20

1 Introduction

The notion of a taut ideal triangulation of a three-manifold is due to Lackenby [7].
He combinatorialised the angle structures introduced independently by Casson and
by Rivin [12]. They in turn linearised the geometric triangulations of Thurston [13].
Each of these structures plays an important role in modern low-dimensional topology.
In particular, taut ideal triangulations have a strong connection to the subject of taut
foliations, introduced by Gabai [5], and to that of taut branched surfaces, due to
Oertel [10]. In addition to the results of Lackenby, taut ideal triangulations play a
central role in the theory of layered triangulations. One spectacular contribution has
been as a prerequisite for Agol’s theory of veering triangulations [1].

Novikov [9, Theorem 6.1] gives one of the early applications of foliations to the study
of the fundamental group of a manifold. He starts with a loop δ in good position with
respect to a foliation F . He further supposes that H : D→ M is a null-homotopy of δ ,
also in good position. Pulling back, he obtains a singular foliation H−1(F ) on the disk
D. The Poincaré–Hopf theorem gives combinatorial control of the singularities, which
translates to topological control over the homotopy. Morally, the positivity of the Euler
characteristic of the disk constrains the position of δ . We refer to [4, Chapter 9] for a
history of the subject and for detailed proofs.

We introduce a combinatorial version of the Novikov technique; instead of pulling back
a foliation we pull back a taut ideal triangulation. This gives a train track with stops in
the disk D. We so obtain a very simple proof of a variant of one of Novikov’s results.
That is, suppose that M is a three-manifold, equipped with a taut ideal triangulation T .
Let B = T (2) be the resulting branched surface in M .
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Theorem 3.3 Any loop δ in M which is vertical with respect to B is essential in
π1(M).

There is also an indirect proof of this using Novikov’s original technique [3, Theo-
rem 4.35(3)], once we observe that B carries an essential lamination which extends to a
taut foliation of M (see [6, Example 5.1] as well as [7, page 373]).

Using our techniques we also obtain a new result, as follows.

Theorem 5.1 Any loop γ in M which is normal with respect to B is essential in
π1(M).

The proof of Theorem 5.1 is more delicate than that of Theorem 3.3; new behaviour
near the boundary of D must be dealt with.

From Theorems 3.3 and 5.1 we deduce that vertical, and also normal, loops are infinite
order in the fundamental group. Note that this is a bit weaker than the conclusion in the
comparable situation of a train track τ in a surface – there loops dual to, or carried by,
τ are not only essential but also non-peripheral.

We have a simple corollary of Theorem 5.1. Let M̃ be the universal cover of M and let
B̃ be the resulting branched surface.

Corollary 1.1 Suppose that F is a connected surface (perhaps with boundary) carried
by B̃ and realised as a (perhaps finite) union of faces of B̃ . Then F is a disk.

Previous work

Gabai and Oertel prove that laminations carried by essential branched surfaces are
π1 –injective [6, Lemma 2.7]. Our Theorem 5.1 is both more and less general than their
work. We do not require a lamination. They do not require the manifold to be cusped.

Calegari [2, Remark 5.6] gives a very different combinatorial version of Theorem 3.3, in
the closed case. He introduces the notion of a local orientation; this is, in a sense, dual
to having a transverse taut branched surface B ⊂ M where all components of M − B
are taut balls.
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2 Background

Throughout the paper we will use M to denote a compact connected manifold with
non-empty boundary. All boundary components will be tori or Klein bottles. Suppose
that T is a three-dimensional triangulation; that is, a collection of model tetrahedra and
a collection of face pairings. We will also call the faces of a model tetrahedron model
faces, and similarly for its edges and vertices.

Let |T | be the quotient space: that is, we take the disjoint union of the model tetrahedra
of T and identify model faces using the face pairings. Let T (k) be the k–skeleton of
|T | . Let n(T (0)) be an open regular neighbourhood of the vertices of T . We call T a
ideal triangulation of M if |T | − n(T (0)) is homeomorphic to M .

A taut angle structure on T is an assignment of dihedral angles, zero or π , to each
model edge in T . The assignment is required to obey two conditions. The edge
equalities state that, for an edge e ∈ T (1) , the sum of the dihedral angles of its models
is 2π . The triangle equalities state that, for any model vertex, the sum of the dihedral
angles of the three adjacent model edges is π . We say that the tetrahedra of T (3) are
taut. See Figure 2.1a.

0

0

0

0

π

π

(a) A taut tetrahedron. (b) All faces meeting a single edge in B .

Figure 2.1

We deduce that every taut tetrahedron has four edges with dihedral angle zero. We call
the union of these four edges the equator of the taut tetrahedron.

Suppose now that e is an edge of T (1) . There are exactly two model edges for e with
angle π ; all others are zero. Obeying these dihedral angles, we isotope the two-skeleton
T (2) to obtain a smooth branched surface B . See Figure 2.1b. Some references
would call B a non-generic branched surface without vertices. See for example [3,
Section 6.3].

Definition 2.2 Suppose that δ is a smooth embedded loop in M , transverse to B .
Suppose that for every tetrahedron t we have that every arc d of δ ∩ t links the equator
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of t . (That is, the endpoints of d are separated in ∂t by the equator of t .) Then we say
that the loop δ is vertical with respect to B .

Definition 2.3 Suppose that γ is a smooth loop immersed in B and transverse to the
edges of B . Suppose that for every model face f of B and for every component J of
γ−1(f ), the arc J is normal in f . (That is, the endpoints of J lie in distinct edges of f .)
Then we say that the loop γ is normal with respect to B .

3 Combinatorics of null-homotopies

Suppose that δ is a loop in M which is transverse to the branched surface B . Let
D = D2 be the unit disk with the usual orientation. Suppose that H : D → M is a
null-homotopy of δ . We homotope H relative to ∂D to make H transverse to B .

We define τ = H−1(B). Thus τ is a train track in D. The switches of τ are exactly
the points of H−1(B(1)). The stops of τ are exactly the points of (H|∂D)−1(B). The
standard reference for train tracks is [11]; we also rely on [8]. We note that our track τ
does not satisfy the so-called “geometry-condition” [11, page 5], [8, page 52].

We call a connected component R of D − τ a region. Let cusps(R) and corners(R)
count the number of (necessarily outwards) cusps and corners on the boundary of R. As
a bit of terminology, we divide ∂R into sides: these are the components of ∂R minus all
outward cusps and corners. Note that a side s of R may be a union of several branches
of τ .

corners \index 1 1/2 0

0

2

4

Table 3.1: Disk regions with non-negative index, organised by the number of corners. These are
named as follows: nullgon, cusped monogon, cusped bigon, boundary bigon, boundary trigon,
and rectangle.
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We define the index of R to be

ind(R) = χ(R)− cusps(R)
2

− corners(R)
4

In Table 3.1 we give pictures of, and names to, all possible disk regions with non-negative
index. Note that index is additive under taking the union of regions [8, page 57]. Thus
the sum of the indices of the regions of D− τ is exactly χ(D); that is, one. We deduce
from this that there is at least one region R with positive index.

Let r(H) be the number of regions of D− τ . Over all null-homotopies of δ , transverse
to B , we choose H to minimise r(H). We call such an H minimal.

Lemma 3.2 Suppose that δ is a loop in M transverse to B . Suppose that H : D→ M
is a minimal null-homotopy of δ . Let τ = H−1(B). Then we have the following.

(1) All regions of D− τ are disks.

(2) If s is a side of a region R, then the interior of s meets at most one switch.

(3) No region R of D− τ is a nullgon.

(4) No region R of D− τ is a cusped monogon.

Thus, all positive index regions of D are boundary bigons.

Proof

(1) If there were a region with topology then we could compress it into the containing
tetrahedron and reduce r(H).

(2) Suppose that the interior of s meets at least two switches. All such switches in
the interior of s are preimages under H of a single edge. Hence there is a branch
b ⊂ τ so that H(b) is a non-normal arc. We homotope H in a neighbourhood of
b to make H(b) simple. This done, H(b) cuts a bigon B off of the face containing
H(b). We then homotope H across B. This does not increase r(H). If r(H) does
not decrease, then this move disconnects τ , and creates a region with topology,
contradicting (1).

(3) Suppose that R is a nullgon. If H(∂R) is disjoint from B(1) then the region
adjacent to R is not a disk, contradicting (1). It follows that ∂R consists of an
even number of branches of τ (alternating between the two faces of a tetrahedron
t on either side of a π -edge of t). But this contradicts (2).

(4) Suppose that t is the taut tetrahedron containing H(R). Let s be the boundary of R.
We deduce that the loop s crosses the equator of t exactly once, a contradiction.
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Since there are no nullgons or monogons, the only possible positive index regions are
boundary bigons.

Equipped with this we can now prove the following.

Theorem 3.3 Any loop δ in M which is vertical with respect to B is essential in
π1(M).

Proof Suppose that H : D → M is a minimal null-homotopy of the vertical loop δ .
Applying Lemma 3.2, there must be a region R of D− τ which is a boundary bigon.
Let t be the tetrahedron containing H(R). Let d = ∂R ∩ ∂D and let s = ∂R − d◦ .
From the definition of vertical, we have that H(d) links the equator of t . Therefore H(s)
crosses the equator of t an odd number of times, and thus at least once. This contradicts
the fact that ∂R has no cusps.

4 Transverse taut

In order to prove Theorem 5.1, we will use the following strengthening of the notion
of a taut structure. A transverse taut structure on T is a taut structure together with a
co-orientation on B with the following property. If model faces f and f ′ of a model
tetrahedron t share a common model edge e, then

• the edge e is part of the equator of t if and only if exactly one of the co-orientations
on f and f ′ points into t .

See Figure 4.1a. It follows that the co-orientations on faces incident to an edge change
direction precisely twice as we go around an edge. See Figure 4.1b.

Suppose that T is an ideal triangulation of a manifold M equipped with a taut structure.
We now construct a triangulation T̃ of a double cover M̃ of M . By construction, the
lift of the taut structure on T to T̃ will support a transverse taut structure.

For each taut tetrahedron t of T , we arbitrarily label the two model edges with dihedral
angle π as e′ and e′′ . In T̃ , we have two taut tetrahedra t′ and t′′ corresponding to
t . We assign a co-orientation to the model faces of t′ and t′′ in such a way that the
co-orientation points into the tetrahedron on the two model faces of t∗ incident to e∗ .
Now suppose that ti and tj are tetrahedra of T , glued to each other along model faces fi
and fj . In T̃ we have tetrahedra t′i , t′′i , t′j , and t′′j , with model faces f ′i , f ′′i , f ′j , and f ′′j ,
respectively.
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(a) Co-orientations and angles in
a transverse taut tetrahedron.

(b) Co-orientations around an edge.

Figure 4.1

We glue t′i to either t′j or t′′j as the co-orientation on f ′i agrees with f ′j or f ′′j . We
similarly glue t′′i to the remaining copy of tj . Having made all such gluings, the resulting
triangulation T̃ has a transverse taut structure by construction. It has one component if
and only if the taut structure on T does not support a transverse taut structure.

5 Proof of the main result

Theorem 5.1 Any loop γ in M which is normal with respect to B is essential in
π1(M).

Proof Suppose for a contradiction, that the normal loop γ is null-homotopic. Thus γ
lifts to a normal loop in any cover. Thus, without loss of generality, we may assume
that the taut structure on T supports a transverse taut structure. This gives us a local
notion of upwards. In particular, every model tetrahedron has two lower faces and two
upper faces, separated by its equator.

Lemma 3.2 does not apply directly to a normal loop γ . So, let A be a model annulus with
horizontal boundary circles ∂0At∂1A. Let G be a small smooth homotopy G : A→ M ,
moving γ slightly upwards. That is, G(∂0A) = γ and we define δ = G(∂1A). We
ensure that G is transverse to B away from ∂0A; also, we arrange that for each vertical
interval J in A the tangents to G(J) point upwards. We will apply Lemma 3.2 to δ .

We call δ a raised curve. We call the components of δ − B raised arcs. There are
six types of raised arc. These are shown in Figure 5.2. There is a cellulation of A
with one-skeleton ∂A ∪ G−1(B). Suppose that C is a two-cell. Let c = C ∩ ∂0A and
d = C ∩ ∂1A. Thus G(c) ⊂ γ and G(d) ⊂ δ . We say that G(c) is the lowering of the
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raised arc G(d). We record this by the lowering map, L , where L(G(d)) = G(c). Note
that G(c) may be either a single vertex, a single normal arc, or two normal arcs. Again,
see Figure 5.2.

A3

A2

A1

B1

B2 C

Figure 5.2: A taut tetrahedron containing the six possible types of raised arcs of δ . These are
drawn in (solid) green. The normal arcs (or points) of γ , namely the lowerings of the raised
arcs, are drawn in (dashed) blue. Images of the two-cells of the annulus A are shaded in light
blue. Filled green dots indicate endpoints of raised arcs on the top two faces of the tetrahedron;
open green dots indicate endpoints on the bottom two faces.

Suppose that H : D→ M is a minimal null-homotopy of δ . Recall that τ = H−1(B).
Applying Lemma 3.2 implies that D− τ has at least two boundary bigons. Applying
another small homotopy, we can retain minimality and also make H transverse to γ .

Pulling back the transverse taut structure on B by H gives a transverse orientation on
the branches of τ which is consistent across switches. Thus, for any region R of D− τ
and for any side s of R, the transverse orientation on s points either into, or out of, R.
This gives us a classification of boundary bigons. Suppose that R is a boundary bigon
and s = ∂R− ∂D is its side in τ . If the transverse orientation on s points out of R then
we call R a min-bigon. If it points into R we call R a max-bigon.

5.3 Min-bigons

Suppose that R is a min-bigon. We move γ up, across H(R), to obtain γ′ . We appeal
to Lemma 3.2(2) to ensure that γ′ is normal. Let δ′ be the corresponding raised loop
and let H′ be the new null homotopy. See Figure 5.4.
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The loop γ′ may be shorter than, the same length as, or longer than γ (see types
A1,A2 and A3 in Figure 5.2). However, H′ has exactly one fewer region. That is,
r(H′) = r(H)− 1. We repeat this process until there are no more min-bigons.

Figure 5.4: Pushing over a min-bigon of type A3 .

5.5 Max-bigons

Suppose that R0 is a max-bigon. Unlike the situation of a min-bigon, a max-bigon does
not give us a simple move to reduce complexity. The asymmetry stems from the fact
that we raised γ rather than lowered it. Instead, our plan is to uniquely associate to R0

two small subregions of D− τ , each with index −1/4. This will imply that the index
of D is at most zero. This contradiction finally proves Theorem 5.1.

We begin as follows. Let s be the side of R0 in τ . Let d0 = ∂R0 − s ⊂ ∂D. We give
d0 the (tangential) orientation it receives from D. In Figure 5.7, this orientation will
point left. Note that H(d0) ⊂ δ is a raised arc. Let c0 = L(H(d0)) be its lowering.

Claim 5.6

• The raised arc H(d0) has type C.

• The side s meets exactly one switch c′0 of τ .
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• The vertices c0 and H(c′0) cobound a sub-edge ε0 ⊂ B(1) .

Proof Let t0 be the tetrahedron containing H(R0). By the definition of a max-bigon
the transverse orientation on s points into R0 . Thus each corner of H(R0) is contained
in a lower face of t0 . Consulting Figure 5.2 we deduce that H(d0) is of type C. Thus
each corner of H(R0) is contained in its own lower face of t0 . We deduce that s meets
at least one switch of τ . By Lemma 3.2(2) the side s meets exactly one switch, which
we call c′0 .

Since H is transverse to γ , the vertices c0 and H(c′0) are distinct. They are contained
in the same edge of B(1) : namely the bottom edge e0 of t0 . In e0 they cobound a
sub-edge, which we call ε0 .

δ

γ

a

d0 d1 d2 d3 d4 d5 · · · dK

b0 b1 b2 b3 b4 b5

bK−1c0
s.

ε0

c′0 c′2 c′3 c′5 · · · c′K
Figure 5.7: A possible picture of part of the annulus A (in back), the bigons Bk (in front), and
the homotopies Fk (bottom). To lighten the notation in this figure, we have omitted applying H
to labels of subsets of D . Transverse orientations on the branches bi are shown with arrows.
Note that ε0 = ε1 , c′0 = c′1 , c′3 = c′4 , and so on.

Let a and b0 be the components of s− c′0 , where b0 meets the right endpoint of d0 .
See the leftmost region on Figure 5.7.

Now consider a sequence of regions R0,R1, . . . ,Rn that meet ∂D in the sides
d0, d1, . . . dn as we move along ∂D to the right. Define ck = L(H(dk)) ⊂ γ : the
lowering of the raised arc H(dk). Define γk = ∪k

i=0ci ⊂ γ .

Let bi be the branch of τ that meets ∂D at the right corner of Ri . We now choose
n = N such that bi−1 and bi have the same transverse orientation for 1 ≤ i < N , while
they have opposite transverse orientations for i = N . Thus, RN is at a local minimum
of γ , and we are going downhill to it from the local maximum at R0 . This downhill
condition implies that for i ∈ [1,N), the raised arc H(di) is either of type B1 or B2 .
Again, see Figure 5.2.
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Recall that all positive index regions are now max-bigons. Thus none of the Ri can
have positive index for i > 0. Let K be the smallest number for which RK has negative
index, or if there is none, then set K = N .

Claim 5.8 The region RK is not a boundary trigon.

Proof If K < N then by definition, RK has negative index, and so is not a boundary
trigon. If K = N then RN cannot be a boundary trigon since the transverse orientations
on the two sides of a boundary trigon must agree, yet RN is at a local minimum of
γ .

For all k ∈ [0,K) we define the union Bk = ∪k
i=0Ri . Define γ′k = ∂Bk− (a◦∪ b◦k ∪∂D).

(Unlike in Section 5.3, here γ′k is a push-off of only a section of γ .)

Definition 5.9 Suppose that g, h : [0, 1] → B are paths. Suppose that F : [0, 1] ×
[0, 1]→ B is a homotopy from g to h. Thus g(x) = F(x, 0) and h(x) = F(x, 1). We
say that F is transverse if whenever F(x0, t0) is contained in a (1- or 2-) cell C of B ,
we have that the trace F(x0, [0, 1]) lies in C .

Claim 5.10 For all k ∈ [1,K):

(1) The region Rk is a boundary trigon.

(2) The union Bk has exactly two corners and no cusps.

(3) There is a transverse homotopy Fk taking γk to H(γ′k).

Proof We will prove this by induction. Claim 5.6 implies the base case (for k = 1) in
a manner essentially identical to the general inductive step, so we omit its proof.

Suppose that the hypotheses hold at step k . Recall that H(dk) has type B1 or B2 , so it
has precisely one lower endpoint. Let fk be the face that contains the lower endpoint.
Let p be the endpoint of γk , and let ek be the edge of fk containing p. Let β be the
normal arc of γ immediately after p. Let fβ be the face containing β . Viewed in a
small neighbourhood of ek , the faces fβ and fk are on the same side (say the right side)
of ek , and fβ is below fk .

Let p′ be the endpoint of γ′k meeting bk . By hypothesis (3), the transverse homotopy
Fk takes p to H(p′), with trace lying in ek . Since H is transverse to ek at H(p′), we
deduce that H(D) meets both fk and fβ at H(p′). Thus p′ is a switch of τ with a cusp
immediately below bk , to the right of p′ , pointing at γ′k (which extends to the left of
p′ ). This cusp lies in Rk+1 , since bk is part of the boundary of Rk+1 . See Figure 5.7.
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If Rk+1 has negative index then k + 1 = K and we have nothing to prove. So suppose
that Rk+1 has index zero. Consulting Table 3.1 we deduce that Rk+1 is a boundary
trigon. This proves hypothesis (1). Note that hypothesis (2) follows because Bk meets
Rk+1 along bk .

Let sk+1 = ∂Rk+1 − (dk+1 ∪ b◦k ) be the remaining side of the boundary trigon
Rk+1 . By Lemma 3.2(2) there is at most one switch in the interior of sk+1 . Let
c′k+1 = sk+1 − b◦k+1 − ∂D. Note that γ′k+1 = γ′k ∪ c′k+1 .

The path H(sk+1) has endpoints H(p′) and the lower endpoint of H(dk+1). The point
H(p′) lies on the edge ek . Recall that fk+1 is the face containing the lower endpoint of
H(dk+1). There are two cases, depending on the type of H(dk+1).

• Suppose that H(dk+1) has type B1 . Then γk+1 = γk . In this case, ek is a
boundary edge of fk+1 . Since there is at most one switch in the interior of sk+1 ,
there are in fact no such switches. So sk+1 = bk+1 and c′k+1 is a single switch,
equal to p′ . We deduce that γ′k+1 = γ′k . Since γk+1 = γk and γ′k+1 = γ′k , we set
Fk+1 = Fk . See Figure 5.11a.

• Suppose that H(dk+1) has type B2 . Then γk+1 = γk ∪ ck+1 . Let tk+1 be the
tetrahedron containing H(Rk+1). In this case, the path H(sk+1) must cross the
bottom edge of tk+1 in order to get into fk+1 . Since there is at most one switch
in the interior of sk+1 , there is exactly one. Let f be other lower face of tk+1 .
Thus ck+1 is a normal arc in f . Note that H(c′k+1) is a properly immersed arc in
f , with endpoints on the same edges as those of ck+1 . Thus there is a transverse
homotopy E taking ck+1 to H(c′k+1). Reparametrising E , we set Fk+1 = Fk ∪E .
See Figure 5.11b.

This proves hypothesis (3).

Let B. = BK−1 . This is the right-bigon for R0 . We rerun the argument of Claim 5.10
to the left to obtain the left-bigon for R0 , denoted B/ .

The induction in the proof of Claim 5.10 extends to show that RK contains a cusp
pointing at γ′K−1 . The cusp lies between bK−1 and another branch on the boundary of
RK , which we call c′K . See the far right of Figure 5.7. Let Q. be a small closed regular
neighbourhood of bK−1 in RK . The boundary of the subregion Q. has four sides; we
call it a right-quadrilateral. The four sides are dK ∩ N, bK−1, cK ∩ N, and a fourth side,
s. say. Note that s. is properly embedded in RK . The quadrilateral Q. therefore has
one cusp and three corners, and so it has index −1/4. An identical argument builds the
left-quadrilateral Q/ .

Let S(R0) = Q/ ∪ B/ ∪ B. ∪ Q. .
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γ

dk+1

bk bk+1

p′

p

εk

(a) H(dk+1) has type B1 .

γ

dk+1

bk bk+1

p′

p

c′k+1

εk+1εk

(b) H(dk+1) has type B2 .

Figure 5.11: Extending the transverse homotopy Fk . As in Figure 5.7, we have omitted applying
H to labels of subsets of D .

Claim 5.12 For any max-bigons R and R′

(1) S(R) is embedded in D,

(2) if R 6= R′ then S(R) and S(R′) are disjoint, and

(3) S(R) is a rectangle.

Proof Let B/ and B. be the right- and left-bigons for R; define B′/ and B′. similarly
for R′ . Note that boundary trigons in B/ have transverse orientations on their branches
that disagree with the tangential orientation on ∂D. On the other hand, boundary trigons
in B′. have transverse orientations that agree with the tangential orientation.

This proves that B/ and B. share only one region: the max-bigon itself, and so
B = B/ ∪ B. is again a boundary bigon. The same argument shows that B and
B′ = B′/ ∪ B′. have no regions in common if R 6= R′ .

We claim that ∂B and ∂B′ are disjoint. To see this, note that ∂B consists of an arc
in ∂D, and an arc in τ . The transverse orientation on the arc in τ points into B, and
similarly for B′ .

Let Q/ , Q. , Q′/ and Q′. be the quadrilaterals for R and R′ . Since these are obtained by
taking subsets of small regular neighbourhoods of branches in ∂B and ∂B′ , these are
all pairwise disjoint (if R 6= R′ ). This proves parts (1) and (2).

Adding the subregions Q/ and Q. replaces the two corners of B with four corners, and
thus S(R) is a rectangle, and we obtain (3).

Let D′ = D− ∪S(R), where the union ranges over all max-bigons R.
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Claim 5.13 The induced cellulation of D′ has no regions of positive index.

Proof Suppose that R′ is a region of D′ having positive index. If R′ were a nullgon or
monogon, then it would be a nullgon or monogon in D, contradicting Lemma 3.2. The
region R′ is not a boundary bigon since we removed all of them. Thus R′ was created
by cutting quadrilaterals out of some region R of D− τ . Note that R′ meets τ , meets
∂D and meets ∂Q. (say) along some side s. . So R′ has at least three corners. Since its
index is positive, R′ has exactly three corners. Thus R = R′ ∪ Q. is a boundary trigon,
contradicting Claim 5.8.

Note that D′ has both outward and inward corners (a combinatorial version of the
exterior angle being 3π/2). Again following [8, page 57], we generalise our definition
of index; each inward corner adds +1/4 to the overall index. Thus D′ has non-positive
index. Since rectangles have index zero, from the additivity of index we deduce that D
has non-positive index, a contradiction. This concludes the proof of Theorem 5.1.
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