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Abstract. A celebrated result concerning triangulations of a given closed 3–manifold is that any
two triangulations with the same number of vertices are connected by a sequence of so-called 2-3
and 3-2 moves. A similar result is known for ideal triangulations of topologically finite non-compact
3–manifolds. These results build on classical work that goes back to Alexander, Newman, Moise, and
Pachner. The key special case of 1–vertex triangulations of closed 3–manifolds was independently
proven by Matveev and Piergallini. The general result for closed 3–manifolds can be found in
work of Benedetti and Petronio, and Amendola gives a proof for topologically finite non-compact
3–manifolds. These results (and their proofs) are phrased in the dual language of spines.

The purpose of this note is threefold. We wish to popularise Amendola’s result; we give a
combined proof for both closed and non-compact manifolds that emphasises the dual viewpoints of
triangulations and spines; and we give a proof replacing a key general position argument due to
Matveev with a more combinatorial argument inspired by the theory of subdivisions.

1. Introduction

Suppose you have a finite number of triangles. If you identify edges in pairs such that no edge
remains unglued, then the resulting identification space looks locally like a plane and one obtains
a closed surface, a two-dimensional manifold without boundary. The classification theorem for
surfaces, which has its roots in work of Camille Jordan and August Möbius in the 1860s, states
that each closed surface is topologically equivalent to a sphere with some number of handles or
crosscaps. For example, the torus is a sphere with a single handle, and the projective plane is a
sphere with a single crosscap. A modern proof of the classification theorem is due to John Conway
and presented by Francis and Weeks [21].

Now suppose you have a finite number of tetrahedra and identify triangular faces in pairs such
that no face remains unglued. In this case, the resulting identification space is again closed (it has
no boundary). The resulting space looks everywhere like three-dimensional euclidean space except
possibly at the vertices and at mid-points of edges. This can be seen as follows.

The local picture near a vertex in the identification space can be understood by tracing the small
triangles in the tetrahedra cutting off the vertices that are identified under the face gluings (see
Figure 1). If these small triangles globally glue up to a sphere, then in the identification space the
sphere formed by the triangles bounds a ball and the vertex in the identification space looks like
the centre of a ball. In this case, the vertex is called material. However, if the triangles glue up to
a sphere with at least one handle or crosscap, then the space near this vertex looks like a cone on
this surface. Such a vertex is called ideal.

Only the cone on a sphere is a ball; the cone on a different surface is more difficult to visualise.
In general one can imagine this cone as obtained as follows. First take a product of the surface S
with an interval I. The resulting three-dimensional space has two boundary components, each a
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Figure 1. Small triangles near the vertices of the tetrahedra glue up to form a surface.

copy of S. One then collapses one of these boundary components to a point, giving the cone on the
surface. If S is orientable, one can picture the product S × I in three-dimensional euclidean space.
If S is a sphere, it is now also easy to see that after collapsing one of the boundary components,
one obtains a ball.

The situation at the midpoints of edges arises from the issue that an edge may be identified with
itself but in the opposite direction. In this case, a small neighbourhood of the midpoint of such an
edge is bounded by a projective plane (see Figure 2). If this happens, we can turn the mid-point
into an ideal vertex by subdividing the tetrahedra.

(a) A projective plane bounds the neighbour-
hood of the midpoint of an edge.

(b) After subdivision we get an ideal vertex
whose small triangles glue up to produce the
projective plane.

Figure 2

Hence we will assume that when we identify faces of a collection of tetrahedra, then the resulting
space looks everywhere like three-dimensional euclidean space except possibly at the vertices. If
all vertices are material, we have a three-dimensional manifold and if there is at least one ideal
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vertex, we have a three-dimensional pseudo-manifold. In each case, the space also comes with a
triangulation, namely the collection of tetrahedra and face pairings with the property that the only
non-manifold points are at the vertices.

Why think about triangulations? As Bill Thurston [66] puts it, “Manifolds are around us in
many guises.” We will not give the technical definition of a manifold here. A key result of Moise [49]
states that every three-dimensional manifold can be triangulated in the way described above. If
one is given a compact three-dimensional manifold with non-empty boundary and one cones each
boundary component to a point (one cone point for each boundary component), then it is a closed
three-dimensional pseudo-manifold. A relative version of Moise’s theorem allows the compact
three-dimensional manifold with boundary to be triangulated, and coning each triangulation of a
boundary component to a point gives a triangulation of the pseudo-manifold. In fact, there is a
more general definition of three-dimensional pseudo-manifolds than that considered in this paper,
where not only the vertices but also points at edges have neighbourhoods that don’t look like balls.
Such spaces arise naturally in algebraic geometry. Banagl and Friedman [6] showed that these more
general three-dimensional pseudo-manifolds can also be triangulated.

This is in contrast with higher dimensions. There is a four-dimensional manifold, called Freedman’s
E8 manifold, which was shown in the mid 1980s through work of Casson [3] to have no triangulation.
The existence of such manifolds in all dimensions greater or equal to five was recently shown by
Manolescu [46]. An overview of the so-called triangulation conjecture can be found in [44, 45].

The interest in triangulations lies in their combinatorial framework that allows the study of
geometric and topological properties of a manifold both in theory and in practice. In three-
dimensional geometry and topology this is completely general due to Moise’s result, and hence gives
a framework for proving important theoretical results [40, 24, 26, 34, 35, 36], design algorithms
for decisions problems [23, 63, 25, 32, 65, 61, 41, 18], and allows the analysis of the computational
complexity of such decision problems [28, 2, 15, 12, 62]. Triangulations also carry the geometry of
a three-manifold [52, 55, 53, 22] and allow rigorous computation of geometric invariants [54, 14, 31],
such as the volume or the length of a shortest curve that cannot be contracted to a point. In
addition, there are also numerous topological or geometric invariants that can be computed from
triangulations, see, for example, [7, 39, 13, 38]. Many of these algorithms are implemented in
publicly available software packages [16, 11].

Turaev and Viro [69, 68] showed that this can also be turned around. They define powerful
invariants of closed 3–manifolds using triangulations, and there is currently much activity in trying
to link these invariants to known topological or geometric invariants, see [51, 17] and the references
therein.

To show that a quantity computed using a triangulation is indeed independent of the triangulation
requires means to compare the quantities associated to different triangulations. A similar situation
arises in knot theory. In this case, there are quantities, properties or mathematical objects that can
be computed from a diagram, which is a particular way of drawing the knot in the plane. These
are computed using a prescribed set of rules. Reidemeister showed that any two diagrams of the
same knot are related by a particular set of moves (see Figure 3). So if the result computed before
applying any one of Reidemeister’s moves is the same as the result computed after performing that
move, then one has shown that the result is independent of the particular diagram and hence an
invariant of the knot. Examples of this are the property of tricolourability, the Jones polynomial or
the fundamental group. An excellent, elementary introduction to these ideas is given by Adams [1].
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Figure 3. Reidemeister moves. The colouring indicates that they preserves tricolourability. In particular,
the trefoil knot cannot be deformed into the unknot.

The invariants of Turaev and Viro work similarly. Suitable moves that change one triangulation
to another are the bistellar moves that have been popularised by Pachner [57]. The bistellar moves
play the role of Reidemeister’s moves in this setting. We drop down by one dimension to introduce
the bistellar moves and highlight some subtle points.

Figure 4. The 1-3 and 2-2 moves.

An interlude about surfaces. For surfaces, the corresponding moves are shown in Figure 4.
The 1-3 move introduces a vertex at the centre of a triangle and connects this to the three vertices
of the triangle, thus dividing it into three triangles. Hence the name 1-3 move. Its inverse is called a
3-1 move, and can be performed on any vertex at which three different triangles meet. The second
move is the 2-2 move. Two triangles sharing an edge can be thought of as a quadrilateral with a
diagonal drawn in. The 2-2 move changes this diagonal to the other diagonal of the quadrilateral.
Note that the 1-3 and 3-1 moves change the number of vertices, edges and triangles, whilst the
2-2 move leaves all of these quantities unchanged. There is a conceptually nice way of thinking
about these moves. The boundary of a tetrahedron has a natural triangulation with four triangles.
The above moves can be thought of as swapping any subset of triangles on the boundary of the
tetrahedron with their complementary triangles. The three bistellar moves we have just described
can be used to change a given triangulation into a different triangulation.
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However, in the setting we are interested in, one is given two different triangulations of the same
space. What does this mean? One way to interpret this is that our topological space, in this case a
surface S, comes with two sets of triangles drawn on it, and we’d like to apply the moves to change
one set to another. The immediate idea is to superimpose both triangulations. This introduces new
vertices at the places where edges of the two triangulations meet. The resulting cells may not all
be triangles, but can be easily be subdivided into triangles. So the result is a third triangulation
that is a common refinement of both triangulations. It is therefore enough to show that one can
transform a triangulation to an arbitrary refinement using the given set of moves. There is a hidden
assumption in this argument, though, namely that the edges of both triangulations only meet in
finitely many points. Think of a small disc on the surface as parameterised as the euclidean plane. It
might be that an edge in one triangulation looks like y = 0 whilst an edge in the other triangulation
looks like y = x sin( 1

x
) for x > 0 and includes the origin as a vertex. These edges meet in infinitely

many points! We appear to have gone down the rabbit hole further: given a triangulation of a
surface, one can define a smooth structure on the surface that makes the triangulation smooth.
A nice account of this is given by Thurston [66, §3.10]. So now each triangulation gives us a
smooth structure on the surface. A theorem of Whitehead says that one can indeed perturb the
triangulations in order to arrange the finite intersection property. In applying this theorem, there is
yet again a hidden assumption: that one of the triangulations may be curvy but at least sufficiently
nice with respect to the smooth structure induced on the surface by the other triangulation. To
concoct something unpleasant, imagine that an edge with respect to one triangulation looks like a
fractal curve with respect to the smooth structure induced by the other. That both triangulations
are piecewise smooth with respect to the same structure can also be arranged by a perturbation.
This was shown by Epstein [19] in 1966. Hatcher [29] recently gave a very nice proof of this fact
using the so-called Kirby torus trick. So we may (and will) assume that the triangulations have the
finite intersection property after performing a small perturbation.

How do we transform a given triangulation T0 of the closed surface S to an arbitrary subdivision
T1 of T0 only using 1-3, 2-2 and 3-1 moves? First apply a small isotopy of the triangulation T0

that keeps all vertices fixed and moves each edge to a position where it does not meet any of the
additional vertices of T1. Then repeatedly apply 1-3 moves to the isotopic copy of T0 to introduce
vertices precisely where the vertices of T1 are. Denote the resulting triangulation T′0. We now have
two triangulations of the surface that share the same set of vertices. It is now a pleasant exercise to
show that there is a sequence of 2-2 moves that transforms T′0 into a triangulation that is isotopic
to T1, again keeping the vertices fixed. So we have argued that any triangulation of a surface
can be transformed to a subdivision by first applying an isotopy fixing the vertices of the initial
triangulation, then applying a sequence of 1-3 moves followed by a sequence of 2-2 moves, and
completing with an isotopy fixing the vertices of the target triangulation. The isotopies are merely
for cosmetic reasons: they put edges neatly on top of each other, rather than roughly in the right
place. In conclusion, given two arbitrary triangulations, we can transform one to the other by
applying an isotopy, a sequence of 1-3 moves, a sequence of 2-2 moves, an isotopy, a sequence of 2-2
moves, a sequence of 3-1 moves, and finishing with an isotopy. Topological proofs of the existence of
the sequence of 2-2 moves can be found in work of Mosher [50] and Hatcher [30]. A geometric proof
using the Epstein-Penner decomposition [20] transforms each triangulation with the same number
of vertices via 2-2 moves to a canonical triangulation by first choosing a geometric structure on the
surface. This can be found in [67].

Many authors also allow combinatorial isomorphisms when moving between different triangula-
tions. These are maps from S to S that take vertices to vertices, edges to edges, and triangles to
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(a) (b) (c)

Figure 5. Two one-vertex triangulations of the torus related by a single 2-2 move, and another one-vertex
triangulation obtained by performing two more flips.

triangles. This has the following effect. Combinatorially, there is a unique one-vertex triangulation of
the torus: it has two triangles, three edges and one vertex. If one allows combinatorial isomorphism
as a move to go from one triangulation to another, then for any two one-vertex triangulations of the
torus, no bistellar moves would be required at all, but only a single combinatorial isomorphism to
go from one to another. If one is not allowed to perform any combinatorial isomorphisms but only
bistellar moves and isotopies, then there are infinitely many inequivalent one-vertex triangulations
of a torus. However, one can apply a sequence of 2-2 moves and isotopies to connect any one-vertex
triangulation to any other. See Figure 5 for an example of two such triangulations related by
a single 2-2 move. The set of all isotopy classes of one-vertex triangulations of the two–torus
connected by 2-2 moves thus has the structure of an infinite trivalent tree. In particular, for any
two such triangulations, there is a unique minimal sequence of moves connecting them. All of
this has beautiful stories in itself, of which we mention three. One story links triangulations to
geometry and the Farey tesselation of the hyperbolic plane [50, 30]. In particular, we can not
only tell any two of them apart, but can easily work out the minimal number of moves needed
to transform one to another. Another story gives a geometric interpretation of Markov triples
and diophantine equations [58, 59], see [64] for a nice account of this. A third story uses these
triangulations of the torus to construct special triangulations of the so-called lens spaces, a special
class of 3–manifolds [37, 33].

Here is another reason why one might not want to allow combinatorial isomorphisms. To return
to the analogy with knot theory, there are knots that cannot be transformed to their mirror image
by a sequence of Reidemeister moves. An example is the trefoil knot. If we allowed the operation
that takes a knot to its mirror image as an additional transformation, then the distinction between
a right-handed and a left-handed trefoil knot is lost.

Back to 3–dimensional spaces. The situation for 3–dimensional manifolds regarding common
refinements of triangulations is similar to surfaces, albeit slightly more difficult to visualise. Details
and references are given in §2.6. The moves on 3–dimensional triangulations are also completely
analogous. The 1-4 move introduces a vertex inside a tetrahedron and connects it to the four
vertices of the tetrahedron with four edges. This creates six new triangular faces, spanned by the
edges of the tetrahedron and the new vertex, and four new tetrahedra. The inverse move is called a
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4-1 move. Then there is the 2-3 move, which is performed on two different tetrahedra meeting in a
triangular face. The 2-3 move deletes this face by introducing a new edge connecting the opposite
corners of the tetrahedra. Its inverse is the 3-2 move. Each of these moves changes the number of
tetrahedra, faces and edges. However, the 2-3 and 3-2 moves do not affect the number of vertices
in the triangulation. The 1-4 and 4-1 moves only change the number of material vertices, but not
the number of ideal vertices. One may again imagine all of these moves as swapping subsets of
tetrahedra on the boundary of a 4–dimensional simplex!

Figure 6. The 1-4 and 2-3 moves.

The use of bistellar moves in the work of Pachner has its roots in the stellar moves used by
Alexander [4] and Newman [56]. The bistellar moves are equivalent to moves on a dual structure,
called a spine, due to Matveev [47]. Classically, the stellar and bistellar moves were only defined,
and results involving them only proved, for special types of triangulations that are less general than
the ones we defined above. Vertices, edges, triangular faces and tetrahedra are called simplices, and
one indicates the dimension d of a simplex by saying that it is a d–simplex. A simplex contained
in another simplex σ is said to be a face of σ. A simplicial triangulation requires any two simplices
to meet in either a face or not at all. A combinatorial triangulation has the additional requirement
that the manifold structure is completely evident from the combinatorics — this is technically
made precise by requiring that the so-called link of every simplex is a sphere. For surfaces and
3–dimensional manifolds, every simplicial triangulation is combinatorial, and the distinction is only
of relevance in higher dimensions (which are of no concern for this paper). Our triangulations are
sometimes called singular or semi-simplicial in the literature. They can be turned into simplicial
triangulations by performing at most two barycentric subdivisions. We define these in §2.5 and
show that barycentric subdivision can be achieved using the bistellar moves 1-4, 2-3 and 3-2. We
also show that stellar moves can be achieved using these moves—the caveat here is that one stellar
move may turn into an arbitrarily long sequence of bistellar moves. In this sense, there are infinitely
many stellar moves but only four bistellar moves. This discussion connects our triangulations to the
general theory of simplicial or combinatorial triangulations via bistellar moves, and we therefore
use the word triangulation throughout this paper without further qualification. We also always
allow the implicit use of isotopy — so our statements are really statements about triangulations up
to isotopy, rather than fixed triangulations. We summarise this discussion in the following theorem.

Theorem 1.1 (Alexander, Newman, Moise, Pachner). The set of all triangulations of a closed
three-dimensional manifold M is connected under 1-4, 2-3, 3-2 and 4-1 moves.

An excellent account of the history and proof of a similar result that holds in all dimensions was
recently given by Lickorish [42]. A more general definition of triangulations, and a different set of
moves, is used by Ludwig and Reitzner [43].
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Banagl and Friedman [6, Proposition 2.16] give a version of this theorem for closed three-
dimensional pseudo-manifolds starting with a more general definition of a pseudo-manifold, and
use this to extend the Turaev-Viro invariants to three-dimensional pseudo-manifolds:

Theorem 1.2 (Banagl-Friedman). The set of all triangulations of a closed three-dimensional
pseudo-manifold is connected under 1-4, 2-3, 3-2 and 4-1 moves.

We remark that in the above, the number of ideal vertices remains unchanged, but the number
of material vertices may vary. Proofs of Theorems 1.1 and 1.2 are sketched in §2.6.

The interest of results such as the above is indeed the construction of invariants. This is made
even easier by limiting the number of moves required, which is achieved by the following refinement
of Theorem 1.1 of Matveev [48] and Piergallini [60].

Theorem 1.3 (Matveev, Piergallini). The set of all triangulations of a closed three-dimensional
manifold M with exactly one material vertex is connected under 2-3 and 3-2 moves, excepting
triangulations with a single tetrahedron.

This theorem was originally stated in the dual language of spines, which we discuss in §2.7. There
are precisely three closed three-manifolds that admit a triangulation with a single tetrahedron:
the three-sphere and two other lens spaces, namely L(4, 1) and L(5, 2). See Figure 7. All of these
manifolds are orientable. Moreover, up to combinatorial equivalence, there are precisely four
triangulations with a single tetrahedron. The three-sphere has two such triangulations, but one of
them has two vertices. So the exclusion only concerns three triangulations of three three-dimensional
manifolds. No 2-3 or 3-2 moves can be applied to these triangulations.

(a) S3 (b) S3 (c) L(4, 1) (d) L(5, 2)

Figure 7. Single tetrahedron triangulations of closed manifolds.

Benedetti and Petronio [8, 9] outlined a proof of the fact that the above result also holds for
any prescribed number of material vertices in a triangulation of a 3–dimensional manifold, and
Amendola [5] shows that this extends to 3–dimensional pseudo-manifolds. In each case, key results
of Matveev [48] are used and the techniques involve the dual viewpoint of spines. The main purpose
of this note is threefold. We wish to popularise Amendola’s result; we give a proof that emphasises
the dual viewpoints of triangulations and spines; and we give a proof replacing a key general position
argument of [48] with a more combinatorial argument inspired by the theory of subdivisions.
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Theorem 1.4 (Amendola). Let M be a three-dimensional manifold or pseudo-manifold. The set
of triangulations of M with a fixed number (possibly zero) of material vertices is connected under
2-3 and 3-2 moves, excepting triangulations with a single tetrahedron.

As for the additional exceptions to the theorem: The only closed orientable three-dimensional
pseudo-manifolds having a triangulation with a single tetrahedron are the manifolds given above.
The only non-orientable pseudo-manifold having a triangulation with a single tetrahedron is the
so-called Gieseking manifold shown in Figure 8. Here, the vertex link is a Klein bottle.

0

3

2

1

Figure 8. The Gieseking manifold. Vertices are labelled by the number of arrows pointing towards the
vertex. The faces are identified by 012↔ 023 and 013↔ 123.

Theorems 1.1 and 1.2 are important connectivity results. They are useful for defining invariants
in terms of triangulations, and for building censuses of triangulations. Theorem 1.3 is a great
improvement over Theorem 1.1 in the view of the theory of 0–efficient triangulations of Jaco
and Rubinstein [36], which require only a single vertex for the most important classes of closed
three-dimensional manifolds. In the same vein, Theorem 1.4 allows us to pass between any two
triangulations with no material vertices without introducing material vertices along the way. We
also remark that Amendola [5] proves a more general theorem that keeps track of finer information
on the manifold than Theorem 1.4.

In the literature, there are a number of papers that attribute Theorem 1.4 to Matveev or
Piergallini. Personal communication with both of these authors revealed that both think they only
proved Theorem 1.3, but that their techniques may extend to that effect. This paper affirms this
belief.

We give a complete proof of Theorem 1.4. We will assume Theorems 1.1 and 1.2 (proofs are
sketched in §2.6), but we do not assume Theorem 1.3. Our main task is thus to convert any
appearance of 1-4 or 4-1 moves into sequences of 2-3 and 3-2 moves. Our contribution in reproving
Theorem 1.3 in the proof of Theorem 1.4 is to view the passage between triangulations from two
perspectives: the triangulations on the one hand and the dual notion of special spines on the other.

The structure of this paper is as follows. More examples, as well as the definitions of triangulations
and spines are given in Section 2. Here, we also describe classical constructions, such as stellar
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moves and barycentric subdivision, and outline proofs of classical results going back to Alexander
and Newman.

We set the scene in Section 3, proving a lemma that simplifies the set-up for the proof of the
main result. Whilst the main ideas for the main proof will be present, the interplay between
triangulations and spines is not yet required. The strategy for the proof of the main result is
presented in Section 4. The remainder of the paper aims at filling in the missing details. This
starts in Section 5 by discussing Matveev’s arch, and describing arch constructions as moves on
triangulations. The first serious steps in providing details are taken in Section 6, which can be
viewed as a pre-processing step for the two triangulations, reducing the problem of connecting
them to the problem of sweeping a membrane across a ball. This last task is performed in detail in
Section 7, thus completing this paper.

In writing this paper, we have considered other strategies to prove this particular connectivity
result for triangulations. Inevitably, the problem was always reduced to a situation that could not
easily be swept under the rug. In the end, we settled for sweeping across a ball, as here the generic
situation is easy to deal with and hence the overall strategy easy to follow.

2. Triangulations and spines

In the hope of providing a reference that is useful for novices in the field, we provide this section
to make this paper as self-contained as possible. We give further examples (§2.1); define manifolds
and pseudo-manifolds (§2.2) and the triangulations we consider (§2.3). We then discuss classical
moves on triangulations, namely stellar moves (§2.4) and barycentric subdivision (§2.5) and explain
how these can be performed using bistellar flips. We use these in §2.6 with sketches of proofs of
Theorems 1.1 and 1.2. The dual notion of spines (§2.7) completes the summary of background
material required for this paper.

2.1. Examples. Before we formalise the definition of a triangulation given in the introduction, we
give some examples. In the introduction, we have already seen triangulations just involving one
tetrahedron. Figure 7 shows that we can build the 3–dimensional sphere with just one tetrahedron.
A simplicial triangulation of the 3–dimensional sphere requires at least five tetrahedra. The
advantage of the more general triangulations thus lies in their efficiency.

Ideal triangulations similarly turn out to be an efficient way of encoding manifolds. An example
is given by Thurston’s ideal triangulation of the complement of the figure eight knot shown in
Figure 9. This is a space obtained by deleting the figure eight knot from the three–dimensional
sphere. One can build a pseudo-manifold with just two tetrahedra with the property that the
complement of the vertex in this pseudo-manifold is homeomorphic to the complement of the figure
eight knot. If one considers the space obtained by deleting a small regular neighbourhood of the
knot from the 3–sphere, one obtains a compact 3–manifold with boundary a torus. To divide this
into (material) tetrahedra requires ten — where now we allow some faces of tetrahedra not to be
identified so as to form the boundary.

2.2. Manifolds and pseudo-manifolds. A euclidean 3–simplex σ is the convex hull of four points
p0, p1, p2, p3 in euclidean 3–space that are in general position. What matters in our discussion is
not the euclidean, but just the affine structure. A unified discussion of simplices and subsimplices
is aided by the following definition. An n–simplex σ is the convex hull of n+ 1 affinely independent
points p0, . . . , pn in some affine space of dimension at least n. The convex hull of a subset of
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(a) (b)

Figure 9. The ideal triangulation of the complement of the figure eight knot in the three-sphere. The
shown triangles form a tube enclosing the knot.

{p0, . . . , pn} is a face or subsimplex of σ. We refer to 3–simplices as tetrahedra, 2–simplices as
triangles, 1–simplices as edges and 0–simplices as vertices.

Let ∆̃ be a finite union of pairwise disjoint euclidean 3–simplices. Every k–simplex τ in ∆̃ is
contained in a unique 3–simplex στ . A 2–simplex in ∆̃ is called a facet. Let Φ be a family of affine
isomorphisms pairing the facets in ∆̃, with the properties that ϕ ∈ Φ if and only if ϕ−1 ∈ Φ, and
every facet is the domain of a unique element of Φ. The elements of Φ are termed face pairings.

The quotient space P = ∆̃/Φ with the quotient topology is then a closed 3–dimensional pseudo-
manifold, and the quotient map is denoted p : ∆̃→ P. We will always assume that P is connected.
In the case where P is not connected, the results of this paper apply to its connected components.

If one considers any point p ∈ P that is not a vertex or a mid-point of an edge, then a small
neighbourhood of p looks like the neighbourhood of a point in 3–dimensional euclidean space. This
is easy to see for points in the interior of a tetrahedron, not too difficult for points in faces, and a
little more involved for points that lie in edges. So what makes P a pseudo-manifold is the fact
that we have no control over small neighbourhoods of its vertices, and over small neighbourhoods
of mid-points of edges. Place a small triangle in the corner of each tetrahedron so that these
triangles glue up to form a closed surface. This surface is called the link of the vertex, and the
neighbourhood of the vertex is a cone over this surface, with cone point the vertex. This cone is
a ball precisely when the surface is a sphere. We thus call a vertex material when its link is a
sphere and ideal otherwise. To see what happens at midpoints of edges, take the intersection of
the tetrahedron with a small sphere based at the midpoint. This gives a lune in the tetrahedron.
Now trace the chain of tetrahedra around this edge. With each tetrahedron, this adds another lune
until we get to the last tetrahedron. Here again, a lune is added but this is also identified to the
initial lune. There are two different ways of making the identification: one gives a sphere, and the
other gives a projective plane. In the second case, the edge is identified with itself but in opposite
orientation. To rule out this case and to align the structure of the triangulation with the structure
of our pseudo-manifolds, we require that
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(1) the restriction of the map p : ∆̃→ P to the interior of each k-simplex in ∆̃ is a homeomor-
phism for all k ∈ {0, 1, 2, 3}.

This is only a restriction on the triangulations we allow, but not on the pseudo-manifolds. The
restriction has consequences only for k = 1, indeed it only avoids the situation where an edge may
fold back onto itself, but it allows extra identifications along the boundary of a simplex. With this
requirement, the pseudo-manifold P is a manifold if and only if every vertex is material.

We still refer to the image under p of a triangle in ∆̃ as a triangle in P , but the reader should
bear in mind that this may not be an embedded triangle and have identifications along its boundary.
The same applies to tetrahedra or edges in P.

The quotient space P is studied via the map p : ∆̃ → P. The degree of the triangle, edge or
vertex τ in P is the number of preimages it has in ∆̃; equivalently, the degree of the restriction
p : p−1(τ)→ τ.

There is a more restrictive class, where such confusion cannot arise. We say that (∆̃,Φ) is
simplicial if

(1) the restriction of the map p : ∆̃ → P to each k–simplex ∆̃ is a homeomorphism for all
k ∈ {0, 1, 2, 3}, and

(2) for any two simplices τ0 and τ1 in ∆̃, p(τ0) ∩ p(τ1) is either empty or a single simplex.

2.3. Triangulations. In the previous section, we have defined a 3–dimensional manifold or pseudo-
manifold using tetrahedra. Now suppose you are given such a manifold or pseudo-manifold M. We
say that the triple T = (∆̃,Φ, h) is a triangulation of M if

h : P →M is a piecewise linear homeomorphism.
The images of vertices, edges, triangles and tetrahedra under the composition of the map p : ∆̃→ P
with h give us the vertices, edges, triangles and tetrahedra of the triangulation in M. Again, these
generally have self-identifications along their boundaries. The triangulation T = (∆̃,Φ, h) is a
simplicial triangulation of M if (∆̃,Φ) is simplicial.

We say that two triangulations T0 = (∆̃0,Φ0, h0) and T1 = (∆̃1,Φ1, h1) are equivalent or the
same if there is a simplicial bijection s : ∆̃0 → ∆̃1 such that h0 ◦ p0 ◦ s is isotopic to h1 ◦ p1. This
in particular allows the same union of tetrahedra and set of face pairings to give inequivalent
triangulations that are combinatorially equivalent.

We will be concerned with changing a given triangulation. On a formal level, this amounts to
changing a triangulation T0 = (∆̃0,Φ0, h0) of M to another triangulation T1 = (∆̃1,Φ1, h1). Such a
change can be very local, such as replacing one simplex and the associated face pairings in (∆̃0,Φ0)
with a small number of simplices and corresponding face-pairings. Or it could be a change that
replaces all simplices and face-pairings. As an example, we mention that it is always possible
to transform a triangulation into a simplicial triangulation by applying at most two barycentric
subdivisions. This replaces each 3–simplex by 24× 24 = 576 3–simplices. We give the definition in
§2.5 and show how to achieve this using 1-4, 2-3 and 3-2 moves.

In the remainder of this paper, we try to keep notation to a minimum in order to not distract
from the main ideas. A precise notation is, of course, relevant for an actual implementation in
software. There is a natural way to track vertices, edges, and so forth through a sequence of moves
on a triangulation. Our moves are typically performed topologically inside the pseudo-manifold, and
the simplices can then be disassembled to form a triangulation together with a preferred quotient
map ∆̃→M.
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2.4. Stellar moves. There are three types of stellar moves. The first type is simply the 1-4 move.
See Figure 6. It places a vertex in the interior of a tetrahedron and divides the tetrahedron into four
tetrahedra. Each of these can be viewed as a cone from a boundary face of the original tetrahedron
to the central vertex.

1-4
2-3

(a) Stellar move on a facet. (b) Stellar move on an edge.

Figure 10. Stellar moves.

The second type of stellar move is conceptually similar, this time performed on a facet τ that is
contained in two distinct tetrahedra σ0 and σ1. Here, one first performs a 1-3 move on τ. One then
subdivides each of the two tetrahedra into three by coning the triangulation of the subdivided face
to the remaining vertex. See Figure 10a. This operation can be described as an operation on ∆̃, so
it is irrelevant that some of the edges or vertices of the tetrahedra may be identified. To achieve
this move by our four bistellar moves, one can first apply a 1-4 move on σ0. The face τ is not
affected by this, and one can now perform a 2-3 move that replaces the two tetrahedra meeting in τ
with three tetrahedra meeting in an edge. The result is the same as the stellar move on the face τ.

The third move is performed on an edge e that is only contained at most once in any tetrahedron
and of degree at least two. We place a new vertex on e. In each tetrahedron, one now creates a new
triangle by coning the edge opposite e to the new vertex, thus cutting the tetrahedron into two. See
Figure 10b. Again, this operation can be done consistently in ∆̃, and so is well-defined. We need to
show how to realise this move by bistellar moves. Choose a cyclic order of the tetrahedra abutting
e, and starting with one tetrahedron label them σ0, . . . , σk. Suppose σi and σi+1 meet in e along
τi, and σk and σ0 meet in e along τk. First apply a 1-4 move on σ0. This increases the degree of e
by one. Then apply a 2-3 move along the face τ0 (interpreted as a face in the new triangulation).
This decreases the degree of e by one. Now we iteratively apply 2-3 moves along τ1, τ2, . . . , until
only τk−1 and τk are left. At this stage, e (interpreted as an edge in the resulting triangulation) has
degree three. Hence apply a 3-2 move (noting that all three tetrahedra meeting in e are distinct).
See Figure 15.

2.5. Barycentric subdivision. A barycentric subdivision can be defined inductively. A barycen-
tric subdivision of a 1–simplex introduces a vertex at its midpoint and divides it into two 1–simplices.
A barycentric subdivision of a 2–simplex introduces a vertex at its centre and cones this to the
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barycentric subdivision of its boundary. This divides it into six 2–simplices. For a 3–simplex, we
again introduce a vertex at its centre and then cone to the barycentric subdivision of its boundary,
thus dividing it into 24 3–simplices. See Figure 11.

0

0

0

1 1

1

2

(a) The result of barycentric subdivision on a
2-simplex.

(b) The result of barycentric subdivision on a 3-
simplex.

Figure 11. Barycentric subdivision.

It follows from the definition of a triangulated pseudo-manifold that one can apply this procedure
to each 3–simplex in the triangulation, and hence break the triangulation up into a finer triangulation
having 24-times as many tetrahedra. It turns out that this can be achieved using stellar moves.
Hence, by the previous section, barycentric subdivision can be realised using 1-4, 2-3, 3-2 moves on
the original triangulation.

To achieve barycentric subdivision, first apply a 1-4 move to each 3–simplex in the original
triangulation 4 to obtain a new triangulation 40 with four times as many tetrahedra. There
are facets and edges that persist from 4 to 40. On each of these facets, perform a stellar move,
giving a new triangulation 41 with three times as many tetrahedra as 40. The edges that persisted
from 4 to 40 are still present in 41. Now perform stellar moves on all of these edges, giving a
triangulation 42 with twice as many tetrahedra as 41. So in total we have 4× 3× 2 = 24 times as
many tetrahedra as we started with, and we hope the reader is convinced that the overall effect is
the same as applying a barycentric subdivision to each tetrahedron! The moves are illustrated in
Figures 12–15.

2.6. Common refinements. Even though we stated in the introduction that we will prove our
main result assuming Theorems 1.1 and 1.2, we cannot resist sketching proofs of these results.
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(d)

Figure 12. Barycentric subdivision for two-dimensional triangulations via bistellar moves.
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(b) T′ 0
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3 32

(c) 0

0

0
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(d) T′′

Figure 13. Introducing the vertices corresponding to the three- and two-dimensional simplices for the
barycentric subdivision of a three-dimensional triangulation.
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(a) Before adding the vertex corre-
sponding to an edge.
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2

2

31 e

(b) The first step is to apply a 1-4
move.

0

0

2

3

3

2

2

31

(c) The end result, after applying
the subsequent steps shown in Fig-
ure 15.

Figure 14. Introducing the vertex corresponding to a one-dimensional simplex for the barycentric
subdivision of a three-dimensional triangulation.

We are given triangulations T0 and T1 of a 3–manifold M. To apply the classical results, we
first apply two barycentric subdivisions to each in order to obtain the simplicial triangulations
T′0 = (∆̃0,Φ0, p0) and T′1 = (∆̃1,Φ1, p1) respectively. We have quotient maps p0 : ∆̃0 → M and
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(a) (b) (c) (d) (e) (f)

Figure 15. The subsequent steps in adding the vertices corresponding to the one-dimensional simplices
for the barycentric subdivision of a three-dimensional triangulation. The horizontal cross-section through
the tetrahedra is shown. Edges are drawn with a solid line, while intersections of faces with the
cross-section are drawn with a dotted line.

p1 : ∆̃1 → M. We view M as the quotient space ∆0/Φ0, so that p0 is a linear map on simplices.
The work of Moise (see also Brown [10] and Hamilton [27]) now allows us to compose p1 with an
isotopy ι : M → M so that the restriction of ι ◦ p1 is also linear on each simplex. In particular,
Alexander’s theorem [4] (see also Lickorish [42] and Turaev-Viro [69]) now allows us to transform
T′0 and T′1 to a common refinement by applying stellar moves.

We have shown above that barycentric subdivisions and stellar moves can be performed through
sequences of bistellar moves. This completes our sketch of the proof of Theorem 1.1.

The class of pseudo-manifolds considered in this paper is less general than that considered by
Banagl and Friedman [6]. Our pseudo-manifolds are merely compact manifolds with boundary,
where we have added a cone to each boundary component. It is therefore straightforward to sketch
a proof of Theorem 1.2 analogous to the above. We have the same set-up as before, and apply
two barycentric subdivisions, giving quotient maps p0 : ∆̃0 →M and p1 : ∆̃1 →M. The work of
Brown [10] (see [6, Theorem 2.13]) now allows us to compose p1 with an isotopy ι : M →M so that
the restriction of ι ◦ p1 is also linear on each simplex. Due to the topology of the pseudo-manifold,
the isolated ideal vertices are necessarily fixed under the isotopy. Alexander’s theorem again
provides stellar moves resulting in a common refinement, and we conclude as above that there is
the desired sequence of bistellar moves.

2.7. Special spines. We now describe a 2–dimensional object, a spine, that encodes M , a 3–
dimensional manifold or pseudo-manifold. To begin with, suppose you have a triangulation 4 of M,
and pass to the second barycentric subdivision 4′′ of 4. This has the following nice property. Let
v be a vertex of 4′′ that corresponds to a vertex of 4. Then the collection Lk(v) of all tetrahedra
in 4′′ containing v is a cone on a triangulated surface with cone point v, and for any two distinct
vertices of 4, the two corresponding surfaces are disjoint. Hence if we remove Lk(v) for each
vertex v of 4 from 4′′, we obtain the triangulation of a compact 3–dimensional manifold M c with
boundary, and M is obtained from M c by adding the cones on its boundary components. Hence
we can reconstruct M from M c.

One can now collapse M c onto a 2–dimensional complex S that is the union of all triangles in the
first barycentric subdivision of 4 with the property that they do not contain any vertex of 4. For
each tetrahedron of 4 this is the butterfly shown in Figure 16a. Note that M c is homeomorphic to
a regular neighbourhood of S in M c. We claim that S determines M c (and hence M) independent
of its embedding in M c. The important properties of S that make this possible are the following.

Each point in S has a neighbourhood that is homeomorphic to one of the three models shown in
Figure 16b. A point is singular if it does not have a neighbourhood homeomorphic to a disc. The
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(a) A butterfly inside
of a tetrahedron.

(b) Three different types of point on a spine. From left to right: a non-
singular point, a triple point, and a vertex.

Figure 16. Spines.

set of all singular points consists of the triple points and vertices, and is naturally a graph. The
nodes of this graph are called vertices of the spine. The complement of the set of singular points
in S is a surface, and we claim that it is a disjoint union of open discs. This comes from the local
structure: each connected component of the complement is the union of all triangles in 4′ having a
vertex on the barycentre of an edge in 4. If one removes the vertices from the singular set, then
each connected component is an interval—this is clear because we have a graph. The relationship
with the triangulation is again evident: the interval connects the barycentres of adjacent tetrahedra
through the barycentre of a common face. These properties are summarised by saying that S is a
special spine of M.

Having observed this, one can show that if S0 and S1 are special spines of M0 and M1, with the
property that S0 and S1 are homeomorphic, then M0 and M1 are homeomorphic. The reader may
find pleasure in proving this result, or can find it in Matveev’s book [48, Theorem 1.1.17].

Special spines and triangulations are dual objects: each vertex of a spine is dual to a tetrahedron;
each edge of a spine is dual to a triangle; each face of a spine is dual to an edge of the triangulation.
The complementary regions of a spine in the pseudo-manifold are dual to the vertices of the
triangulation. Indeed, each such region is the cone over a surface, where the surface is homeomorphic
to the vertex link. In particular, material vertices correspond to three-balls.

2.8. Moves on triangulations and spines. Using this duality, we should be able to view moves
performed on triangulations in the dual spine picture. For example, the bistellar moves we introduced
earlier can be seen as moves performed on spines, as shown in Figure 17. Pictures of spines are
often more flexible, with many ways to draw the same spine. Figure 18 shows an alternative picture
for the 2-3 move.

Similarly, we can see our barycentric subdivision moves (as implemented using bistellar moves)
in the dual spine picture. These are shown in Figures 19 and 20.

The spine picture is sometimes clearer than the triangulation picture when illustrating certain
sequences of moves. For example, Matveev introduces the V-move, which replaces one vertex of
a spine with three vertices. Matveev shows that the V-move can be implemented using 2-3 and
3-2 moves, assuming that a spine has more than one vertex (or dually that the triangulation has
more than one tetrahedron), see Proposition 1.2.8 of [48]. For the convenience of the reader, we
reproduce the argument in Figure 21. This sequence of moves would be confusing and difficult to
draw in the triangulation picture. (Try it!)
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1-4

4-1

(a) The 1-4 and 4-1 moves.

2-3

3-2

(b) The 2-3 and 3-2 moves.

Figure 17. Bistellar moves on triangulations and their dual special spines.

2-3

Figure 18. An alternative picture of the 2-3 move on a spine.

(a) T (b) T′ (c) (d) T′′

Figure 19. Figure 13, drawn in the dual spine picture.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 20. Figures 14 and 15, drawn in the dual spine picture.

Note that by applying symmetries of the spine in the initial drawing, we can apply any of the
three possible V-moves to any vertex of a spine that contains more than one vertex. The procedure
requires an auxilliary neighbouring vertex – any vertex in a spine has such a neighbour unless it is
incident to itself along all four arcs of triple points, but then it would be the only vertex in the
spine.

=

=

2-3
2-3

2-3
3-2

Figure 21. The V-move and its construction from 2-3 and 3-2 moves.
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3. A warm-up exercise

As a warm-up exercise for our proof of Theorem 1.4, we prove the following lemma. This
introduces some of the ideas of the main proof in an easier context, and will be useful later. In the
proof, we introduce the triangular 0-2 move and pillow marks. They give a first taste for what is
to come.

Lemma 3.1. Let TA and TB be two triangulations of a given 3–manifold M with the same number,
k, of material vertices. Then there is a sequence of triangulations TA = T1,T2, . . . ,Tn = TB, with
adjacent triangulations related by 2-3, 3-2, 1-4 and 4-1 moves, such that each triangulation Ti has
at least k material vertices.

Proof. The statement of this lemma is essentially the statement of Theorem 1.2, except that we also
require that the number of material vertices does not go below the number, k, of material vertices
that TA and TB have. We will work from a sequence S of triangulations TA = T1,T2, . . . ,Tn = TB
given to us by Theorem 1.2, and will modify it if and when the number of material vertices goes
below k.

In fact, we may assume that T2, . . . ,Tn−1 have precisely k − 1 vertices, and thus T2 is obtained
from T1 by a 1-4 move, Tn is obtained from Tn−1 by a 4-1 move, and all other moves are 2-3 and
3-2 moves. If we are able to replace this by a sequence of triangulations for which the number of
vertices is always at least k, then by induction we obtain the result.

Our tool to increase the number of vertices in a triangulation is the triangular 0-2 move. Its
reverse is the triangular 2-0 move. See Figure 22. The triangular 0-2 move is performed by ungluing
one of the triangular gluings of the triangulation, and inserting into the resulting gap a triangular
pillow – a three-ball formed from two tetrahedra, glued to each other along three faces, so that
the three-ball has an internal vertex. The triangular 0-2 move can be performed on any triangular
face of the triangulation, and implemented using a 1-4 move followed by a 3-2 move, as shown
in Figure 22. The inverse move is called the triangular 2-0 move, and can be performed on any
triangular pillow as long as the two outer faces of the pillow are not glued to each other. 1

We modify our sequence of triangulations TA = T1,T2, . . . ,Tn = TB as follows. Immediately
before the initial 4-1 move takes us to k − 1 material vertices, we perform a triangular 0-2 move
on some triangle 4 of the triangulation, increasing the number of material vertices to k + 1. If
this triangle 4 is not deleted by any of the subsequent moves taking us to Tn, then we perform
those moves as before, with the resulting triangulations modified from the original sequence by our
triangular 0-2 move. After performing the final 1-4 move (taking us to k + 1 material vertices), we
remove the triangular pillow with the triangular 2-0 move, taking us back to k material vertices,
and we have arrived at TB.

If there is no triangle of TA that persists throughout the sequence of moves then the above
process will not work. Whichever choice we make for 4, at some point a 2-3 or 3-2 move in the
sequence (or the final 4-1 move) is supposed to delete 4. However, we will be unable to perform
this move because the triangular pillow blocks it. In these cases, we must first move the triangular
pillow elsewhere.

In order to organise the argument, for each triangulation of S, we will mark a triangle with a
pillow mark, showing where we want the triangular pillow to be. We denote by T′i the marked
triangulation resulting from adding a pillow mark to the triangulation Ti. Denote the result of

1If they were glued then the entire triangulation would consist of only the triangular pillow, so performing the 2-0
move would result in a triangulation with no tetrahedra!
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=0-2

1-4 3-2

Figure 22. Above: the triangular 0-2 move adds a vertex and two tetrahedra to a triangulation. Below:
the triangular 0-2 move can be implemented using a 1-4 move applied to a tetrahedron adjacent to the
triangle, followed by a 3-2 move. We draw a bigon to show the two external faces of the triangular pillow.

inserting a triangular pillow into a marked triangulation T′i according to the pillow mark by T̂′i.
We refer to these triangulations T̂′i as waypoint triangulations. Our plan then is to build a new
sequence of triangulations Ŝ, which again connects TA to TB, but for which the number of material
vertices never goes below k. We do this by going from TA = T1 to T̂′1 via a triangular 0-2 move (i.e.
a 1-4 followed by a 3-2), then connecting each adjacent pair T̂′i and T̂′i+1 of waypoint triangulations
using 1-4, 2-3, 3-2 and 4-1 moves, then finally going from T̂′n to Tn = TB via a triangular 2-0 move
(i.e. a 2-3 followed by a 4-1).

TA T1 T2 T3 · · · Tn−1 Tn TB

T̂′1 T̂′2 T̂′3 · · · T̂′n−1 T̂′n

4−1 1−4

Figure 23. The original sequence of triangulations S is on the upper row. The modified waypoint
triangulations are below. Dashed arrows indicate sequences of 1-4, 2-3, 3-2 and 4-1 moves. All vertical
arrows indicate triangular 0-2 moves.
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First, we describe where the pillow mark is on each T′i. The idea is to have the pillow mark of
T′i move when it is involved in the bistellar move relating T′i and T′i+1. Having done this, we will
describe sequences of 1-4, 2-3, 3-2 and 4-1 moves to take each waypoint triangulation T̂′i to the
subsequent T̂′i+1. See Figure 23.

In T′1, we choose the pillow mark arbitrarily. There are two cases under which we determine the
new pillow mark on T′i+1 based on the location of the pillow mark on Ti:

If a pillow mark is on a triangle of T′i that is not deleted by the bistellar move relating Ti and
Ti+1, then we leave it where it is, duplicating it on T′i+1. If a pillow mark is on a triangle of T′i that
is deleted by the bistellar move, then we must first move it to any triangle of Ti that is not deleted
by the move. We denote the resulting marked triangulation by T′′i . This done, we perform the
bistellar move and get T′i+1, where the pillow mark doesn’t move between T′′i and T′i+1. Note that
there is always a triangle of Ti that is not deleted by the bistellar move, since every triangle on the
boundary of the region altered by a bistellar move remains after the move.

Having constructed these markings on the triangulations of S, the resulting waypoint triangula-
tions T̂′i never have fewer than k material vertices. In fact, T̂′1 and T̂′n have k + 1 vertices, while
all others have k vertices. All that remains is to show how to connect T1 to T̂′1, how to connect
T̂′i to T̂′i+1 for each subsequent pair of waypoint triangulations, and how to connect T̂′n to Tn by
sequences of 1-4, 2-3, 3-2 and 4-1 moves, without reducing the number of material vertices below k.

To connect T1 to T̂′1, we apply a triangular 0-2 move. This is implemented by a 1-4 move followed
by a 3-2 move, as shown in Figure 22, and takes us from a triangulation with k vertices to one with
k + 1 vertices. The connection between T̂′n to Tn is the same but in reverse.

In the case that we did not move the pillow mark between T′i and T′i+1, then the triangular pillow
is not in the way of the corresponding 2-3 or 3-2 move on T̂′i, and so we simply apply the move to
obtain T̂′i+1, which doesn’t alter the number of vertices. In the case that we did move the pillow
mark, we get from T̂′i to T̂′′i by first performing a triangular 0-2 move in the location of the new
pillow mark, and then perform a triangular 2-0 move to remove the old triangular pillow and obtain
T̂′i+1. Thus the number of material vertices goes up by one to k + 1 and then down by one to k in
this process, but never goes below k. Having moved the pillow mark out of the way of the 2-3 or
3-2 move that converts Ti into Ti+1, we apply the move to T̂′′i to obtain T̂′i+1, which again doesn’t
alter the number of vertices.

Making these moves connects the waypoint triangulations together, and so connects TA to TB by
a sequence of bistellar moves, in such a way that all triangulations in the sequence have at least k
material vertices. �

Remark 3.2. One might ask why we use the triangular 0-2 move to increase the number of vertices
instead of the simpler 1-4 move. The answer is that the triangular pillow is easier to “hide” from
the other Pachner moves than the result of the 1-4 move. For example, the sequence S might have
a triangulation with only two tetrahedra on which we are supposed to perform a 2-3 move. Neither
of the two tetrahedra would be valid locations to hide the extra vertex if we used the 1-4 move.

4. Proof strategy

In order to prove Theorem 1.4, suppose that we are given two triangulations, TA,TB of a given
manifold M with the same number, k say, of material vertices. By Theorems 1.1 and 1.2, we have
a sequence S of triangulations TA = T1,T2, . . . ,Tn = TB, with adjacent triangulations related by
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2-3, 3-2, 1-4 and 4-1 moves. We convert this sequence S of triangulations into another sequence Ŝ

that connects TA to TB, but that does not use 1-4 or 4-1 moves.
Note that every triangulation of the desired sequence Ŝ must have k material vertices, since the

number of vertices only changes under 1-4 and 4-1 moves. By Lemma 3.1, we may assume that
every triangulation in our sequence S has at least k material vertices, so we must avoid intermediate
triangulations with more than k material vertices. Again, as in the proof of the lemma, it suffices
to consider an innermost pair of triangulations with the property that the two triangulations have
k material vertices, and the triangulations between them k + 1. In particular, we may assume that
the first bistellar move is a 1-4 move applied to TA, followed by a sequence of 2-3 and 3-2 moves,
and the sequence is then completed with a 4-1 move resulting in TB.

We need a number of tools to achieve this, primarily the arch. The arch is a structure we can add
in to a spine (or dually a triangulation). The move of inserting an arch has the effect of connecting
together two three-dimensional regions in the complement of the spine, while only altering the
spine in a very localised fashion. Dually, this move unglues a triangular face 4 at which two (or
possibly one) tetrahedra are glued, and inserts the arch (made from a single tetrahedron). The
effect is to identify two of the three vertices incident to 4. This move cannot be achieved by 2-3
and 3-2 moves, because these moves do not change the number of vertices of the triangulation. We
discuss the arch in detail in Section 5.1.

Since the triangulations in our sequence S have at most k + 1 material vertices, we will need to
insert at most one arch in each triangulation. In order to organise the argument, we will mark the
triangle of each triangulation where we wish to insert an arch. Each such arch mark shows both
the triangle for an arch to be introduced into, and the pair of incident vertices to be connected. See
Figure 24. We denote by T′i the marked triangulation resulting from adding an arch mark to the
triangulation Ti. Dually, an arch mark is associated to an edge of the spine, and indicates which
pair of incident three-dimensional regions are to be connected by inserting the arch.

Figure 24. An arch mark on a triangle shades the triangle and adds arrows showing the vertices to be
identified by the arch.

We will choose where to put each arch mark in such a way that after performing the arch
insertions, the resulting triangulations have the same number of material vertices as TA and TB.
Denote the result of inserting an arch into a marked triangulation T′i by T̂′i. We refer to these
triangulations T̂′i as waypoint triangulations. Our plan then is to connect each adjacent pair T̂′i
and T̂′i+1 of waypoint triangulations using only 2-3 and 3-2 moves, producing a new sequence
of triangulations Ŝ, which again connects TA to TB, but that only uses 2-3 and 3-2 moves. See
Figure 25. We give the details of the proof in Section 6.
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TA T1 T2 T3 · · · Tn−1 Tn TB

T̂′2 T̂′3 · · · T̂′n−1

1−4 4−1

Figure 25. The original sequence of triangulations S is on the upper row. The waypoint triangulations
are below. Dashed arrows indicate sequences of 2-3 and 3-2 moves. All vertical arrows indicate arch
insertion moves.

5. The arch and associated constructions

Two of the tools that are key to the visual simplicity and conceptual elegance of working with
spines are Matveev’s arch and arch-with-membrane. This section describes these constructions and
their equivalent moves on triangulations.

5.1. The arch [48, page 7]. Figure 26 shows the arch, and the related structure of an arch-with-
membrane in spine form. Figure 27 shows the arch in the dual triangulation picture. Also see Fig.
1.29 of [48].

AfB

g

A′

(a) An edge of the spine. (b) An arch. (c) An arch-with-membrane.

Figure 26. Introducing an arch (i.e. going from Figure 26a to 26b) connects together the regions A
and A′. Figure 26c shows the related structure of an arch-with-membrane.

Proposition 5.1. The move of inserting an arch into a spine, connecting two distinct three-
dimensional regions, at least one of which is a three-ball, results in a spine of the same pseudo-
manifold.

Proof. We first consider the set of all triple points. It is easy to see that this is a union of open
intervals: no loops have been introduced. It is slightly more subtle to see that all of the two-
dimensional surfaces (the non-singular points) are again disks. The monogon region in Figure 26b
is a disk. The surface containing the tube is formed by starting with the two disks f and g as
shown in Figure 26a, taking their connect sum, and then cutting the result along the boundary
of the monogon. This cuts open the surface to form a disk, as long as f and g were distinct. If
f = g, then we have two cases. Consider the transverse coorientation on f pointing from A into
B. Following this coorientation around, if we find that it also points from A′ into B, then A = A′,
contradicting the fact that the two regions to be connected by the arch are distinct. If instead we
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A

A

A

A

A

B

B

B

B

Figure 27. The arch is harder to see in the dual picture of the triangulation. Here we show the shape
of the single tetrahedron. First we identify the two edges marked with a single arrow, and separately the
two edges marked with a double arrow. This produces the middle diagram: a shape with two triangular
faces on the exterior, and two cone-shaped faces on the interior. Second, we glue the two interior faces
together, which also identifies the two edges with arrows. The result has an exterior consisting of two
triangular faces, with two of the vertices of these triangles identified with each other.

find that the transverse coorientation also points from B into A′, then we find that A = B and
B = A′, so we reach the same contradiction.

Breaking symmetry, suppose that A is homeomorphic to a ball. Since A and A′ are distinct,
the result of connecting together A and A′ is homeomorphic to A′. The topology of the other
complementary regions is unchanged. �

5.2. Building an arch-with-membrane. Using 2-3 and 3-2 moves, we can make an arch-with-
membrane on any edge of a spine which has more than one vertex. The moves are applied in a
neighbourhood of a vertex of the spine incident to the edge. This is illustrated in Figure 28.

5.3. Implementing a 1-4 move followed by introducing an arch using 2-3 and 3-2 moves.
Similarly, we cannot perform a 1-4 move using only 2-3 and 3-2 moves. However, we can recreate
the result of performing a 1-4 move followed by inserting an arch using 2-3 and 3-2 moves. This is
achieved by constructing an arch-with-membrane, then applying two 2-3 moves. See Figure 29.

6. Details in the main proof

The point of time has come where we cannot further postpone diving into the intricacies of the
proof of the main theorem. This section explains how we position and, if required, move arch
marks, and how we connect waypoint triangulations with 2-3 and 3-2 moves. The overall aim is to
preprocess the triangulations in such a way, that all that remains is a step that is easy to describe
but requires work to justify in detail: sweeping a membrane across a ball, from one arch to another.
This very last step is given in §7.

6.1. Arch mark positioning. First, we describe where the arch mark is on each of T′2 through
T′n−1. Then we describe sequences of 2-3 and 3-2 moves to take T1 to T̂′2, to take each waypoint
triangulation T̂′i to the subsequent T̂′i+1, and to take T̂′n−1 to Tn.
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V-move isotopy

2-3

3-2 isotopy

Figure 28. Building an arch-with-membrane. We perform a V-move, a 2-3 move and then a 3-2
move. An isotopy moves the bigon along the tube. (In the last diagram here we have zoomed in to the
arch-with-membrane and no longer see the original vertex.) A further isotopy (not shown), pushing the
bigon in the final diagram forward gives the arch-with-membrane as shown in Figure 26c.

In each triangulation T′i, for i ∈ {2, . . . , n− 1}, the arch mark must connect a material vertex to
some other vertex (either material or ideal).2

In T′2, we choose the arch mark to connect the new vertex formed by the 1-4 move to one of the
other vertices incident to it. See Figure 30. There are a number of cases under which we determine
the new arch mark on T′i+1 based on the arch mark on T′i. If an arch mark is on a triangle that is
not deleted by the bistellar move relating Ti and Ti+1, then we leave it where it is, duplicating it
on T′i+1. If an arch mark is on a triangle that is deleted by a 2-3 or 3-2 move, then we must first
move it to another triangle of Ti that is not deleted by the move. We denote the resulting marked
triangulation by T′′i . This done, we perform the bistellar move and get T′i+1. We will require that
the arch marks on T′i and T′′i share a material vertex. This will allow us to move the arch itself
from T̂′i to T̂′′i in Section 6.3. We deal with the following cases:

(1) In the case of a 2-3 move, one triangle is removed from the interior of the six-sided polyhedron
involved in the move. An arch mark on this triangle connects together two of the three
vertices on the “equator” of the polyhedron. We move such a mark to either of the two
triangles on the boundary of the polyhedron that share the same two vertices. This done,
the arch mark connects the same two vertices together as before, so the arch marks on T′i
and T′′i share a material vertex. See Figure 31.

2Note that joining a material vertex to itself would produce an ideal vertex, and connecting two ideal vertices by
an arch would act as a connect sum on their links.
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1-4 insert arch

build arch-with-membrane

2-3

2-3

Figure 29. By building an arch-with-membrane and performing two 2-3 moves, we implement the
composition of a 1-4 move with inserting an arch while keeping the number of material vertices constant.

T1 T′2

Figure 30. We draw an arch mark to connect the vertex created by the 1-4 move to one of the existing
vertices.

(2) In the case of a 3-2 move, three triangles are removed from the interior of the six-sided
polyhedron involved in the move. An arch mark on one of these triangles is in one of two
cases: either it connects a vertex on the equator of the polyhedron to one of the two polar
vertices of the polyhedron, or it connects the two polar vertices together. In the first case,
we again move such a mark to one of the two triangles of the polyhedron that share the
same two vertices. Again, the new arch mark connects the same two vertices so the arch
marks on T′i and T′′i share a material vertex. See Figure 32a. In the second case, label the
two polar vertices N and S, and let A be one of the equatorial vertices. Without loss of
generality, assume that N is a material vertex. If A is distinct from N then we connect A
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T′i T′′i T′i+1

Figure 31. If a 2-3 move deletes the face that the arch mark is on, we move the arch mark so as to
connect the same pair of vertices before performing the 2-3 move.

T′i T′′i T′i+1

(a) Case 1. Here, we move the arch mark so as to connect the same
pair of vertices before performing the 3-2 move.

N

S

A

T′i

T′′i T′i+1

T′′i T′i+1

(b) Case 2. We take the upper path if A is distinct from N , and the
lower path if not. Here, the new arch mark may or may not connect
the same pair of vertices together as the old arch mark.

Figure 32. If a 3-2 move deletes the face that the arch mark is on, we move the arch mark before
performing the 3-2 move.

to N , again by adding an arch mark on a boundary triangle of the polyhedron. Otherwise
we connect A to S, again by adding an arch mark on a boundary triangle of the polyhedron.
By hypothesis, A = N is distinct from S. Here, the arch marks on T′i and T′′i share the
material vertex N . See Figure 32b.
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With the above moves, we can add arch marks to all triangulations T2, . . .Tn−1 in the sequence,
and produce all of the waypoint triangulations T̂′i, all of which have the same number of material
vertices as TA and TB by construction.

6.2. Moving from T1 to T̂′2. The triangulation T1 is related to T2 by a 1-4 move. we need a
sequence of 2-3 and 3-2 moves that produces the result of a 1-4 move followed by adding an arch,
converting T1 to T̂2. We gave details of this in Section 5.3.

6.3. Moving between waypoint triangulations using 2-3 and 3-2 moves. If the arch mark
does not move between T′i and T′i+1 (since the 2-3 or 3-2 move does not destroy its triangle), then
T̂′i and T̂′i+1 are related by the same 2-3 or 3-2 move, so we connect them using that move.

If however we had to move the arch mark first, via a marked triangulation T′′i , then we need
a way to move the arch via 2-3 and 3-2 moves, connecting the triangulations T̂′i and T̂′′i . Having
moved the arch, we then connect T̂′′i to T̂′i+1 by the same 2-3 or 3-2 move that connects Ti to Ti+1.

We have arranged matters so that the arch marks on T′i and T′′i share a material vertex, v say.
In the dual spine picture for Ti, there is a three-ball B dual to v since v is a material vertex. In
T̂′i, B is connected via a cylinder in the neck of the arch to the dual region R to the vertex on the
other end of the arch mark on T′i. See Figure 33a. Here the arch is to the right of the figure, and in
the middle we have drawn part of the boundary of B, as seen from within B.

First we build a arch-with-membrane (see Figure 26c) in the location of the new arch mark. This
can be made using 2-3 and 3-2 moves – see Section 5.2. The result is shown in Figure 33b. This
done, we see B with an arch glued to one end and an arch-with-membrane glued to the other.

Next, we sweep the membrane from the arch-with-membrane, through B, and into the other
arch. This turns the arch-with-membrane into an arch, and the arch into an arch-with-membrane.
See Figure 33c. Then, we deconstruct the new arch-with-membrane, following the reverse of the
sequence of moves used to build such an arch-with-membrane. Having performed these moves, we
have moved the arch. See Figure 33d. We give details of this sweep move in Section 7.

6.4. Moving from T̂′n−1 to Tn. If our arch mark is connected to the material vertex w we are
about to remove in the 4-1 move then we perform the reverse procedure to Section 6.2 and we are
done. If however the arch mark is connected to some other material vertex v, then we must do
some further work first. If v and w share an edge e, then we move the arch mark to a triangle
containing e so that it connects v to w. As in the previous section, moving the corresponding arch
can be performed by sweeping across a three-ball, here it is the three-ball dual to v. If v and w do
not share an edge, then we move w until they do. After the 4-1 move our triangulation is Tn, and
we may think of Tn−1 as Tn with one of its tetrahedra, σ say, subdivided into four. See Figure 34a.
By performing a 3-2 move on one of the four edges incident to w, we convert Tn−1 into the result
of inserting a triangular pillow into a face of Tn incident to σ. See Figure 34b. Note that we can
perform this 3-2 move because the three tetrahedra incident to this edge are distinct, since we were
able to perform a 4-1 move on them and one other tetrahedron. The 3-2 move creates a new face
that forms one of the two outer faces of the triangular pillow. By performing a 2-3 move on the
other outer face, we then get the result of subdividing a tetrahedron σ′ of Tn incident to σ. See
Figure 34c. Note that we can perform this 2-3 move because the two tetrahedra incident to the
face are distinct: one is part of the triangular pillow, while the other is not.

These two bistellar moves transport the vertex w from σ to σ′, and once again we are a 4-1 move
away from Tn. By repeatedly moving w in this way, we can arrange for v and w to share an edge.
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B
R

(a) We start with a three-ball B connected via a
cylinder in the neck of an arch to some other three-
dimensional region R.

(b) First we build an arch-with-membrane in the
desired new location for the arch.

(c) Next we sweep the membrane across B, from
the arch-with-membrane into the arch.

(d) Finally we deconstruct the resulting arch-with-
membrane.

Figure 33. Moving an arch across a material vertex, drawn in the dual spine picture.

Also note that in moving w in this way, we do not destroy the triangle containing the arch mark,
because in order to do so, w and v would already share an edge.

(a) (b) (c)

Figure 34. The vertex w can be moved from one tetrahedron of Tn to a neighbouring tetrahedron by a
3-2 move followed by a 2-3 move.

7. Moving a membrane across a ball, from one arch to another

There are two key steps at which we depart from the proofs of Matveev and Amendola in how
we sweep a membrane across a ball. We point these out in the discussion below.
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We must connect together triangulations Tα and Tβ, say, shown in dual spine form in Figures 33b
and 33c respectively. We note that this is the setting of Lemma 1.2.16 (2-cell replacement) of [48].
Matveev’s method is to slide the membrane across the ball from the arch-with-membrane into the
arch. The combinatorial changes as one slides the membrane are 2-3 and 3-2 moves, and what we
call quadrilateral 0-2 moves. In the literature this move is often called simply a “0-2 move”, but we
add the adjective “quadrilateral” to distinguish them from our triangular 0-2 move.3 Matveev refers
to a quadrilateral 0-2 move as a lune move. The implementation of the lune move in terms of 2-3
and 3-2 moves is quite subtle in full generality, due to self-gluings in the vicinity of the move. In our
setting, we will be able to avoid these subtleties (although at the cost of adding other subtleties!)
The use of 2-3, 3-2 and lune moves to sweep the membrane across the ball is also somewhat tricky.
The situation is (again) complicated by the fact that the ball may have self gluings, so when we
isotope the membrane across a self-glued face of the ball, it potentially interacts with parts of
itself meeting that face from the other side. Thus, Matveev’s proof that the moves can be done to
achieve the sweep involves a PL topology argument.

In contrast, our method is entirely combinatorial. Our strategy is to first apply moves to each of
the triangulations Tα and Tβ to convert them to triangulations T′α and T′β, which again only differ
by the position of the membrane, and for which the ball has no self-gluings. This means that we
can then organise the isotopy of the membrane from one arch to the other in a combinatorial way,
and convert T′α into T′β.

First of all, we see what to do in the case that the ball has no self-gluings.

7.1. The no self-gluings case. Again, we must get from Figure 33b to Figure 33c by sweeping
the membrane disk across the three-ball B, which we assume for the moment has no self-gluings.
Equivalently, we have to slide the boundary of the disk, a circle C, across the annulus A formed
from the boundary of the B minus the initial and final positions of the membrane. Let Cstart and
Cend be the start and end positions of C, which are therefore also the two boundary components
of A. The key point is that the pattern on the annulus A formed from the intersection of the
boundary of B with parts of the spine outside of B is a trivalent graph Γ. Let estart and eend be the
edges of Γ that intersect Cstart and Cend respectively. See Figure 35a.

We slide C across A in two stages. First, we push C off Cstart slightly into A, then choose a
spanning tree T for Γ (not including eend), and push C over T . This is achieved by a sequence of
2-3 moves, as shown in Figure 36a. Figure 35b shows the result in our example. In the second
stage, we slide C over the 2-cells of A, as follows. These 2-cells themselves form a tree T ′, dual
to T . There is one special vertex vend of T ′, corresponding to the 2-cell incident to Cend. We may
collapse T ′ onto vend by performing a sequence of quadrilateral 2-0 moves (Figure 36b shows the
reverse move). We perform a quadrilateral 2-0 move on a leaf of T ′ to remove it from the tree as
we push C over the corresponding 2-cell. Since T ′ is a tree, we can always find a leaf vertex other
than vend to perform a quadrilateral 2-0 move on.

7.2. Performing the quadrilateral 2-0 moves. In Lemma 1.2.11 of [48], Matveev shows that
the quadrilateral 0-2 move can be performed using 2-3 and 3-2 moves in a very general setting. In
this paper however, we only prove that it can be performed in our more restrictive setting.

3The name comes from the dual triangulation picture: the quadrilateral 0-2 move inserts a quadrilateral pillow
consisting of two tetrahedra, instead of the triangular pillow inserted in the triangular 0-2 move.
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Cstart

estart

eend

Cend

(a) The annulus A. The boundary of the membrane
is shown at its initial position Cstart and final po-
sition Cend, which are also the boundary curves of
A.

C

vend

(b) After pushing C over the spanning tree T .

Figure 35. The setting in which we sweep a membrane across a three-ball, from an arch-with-membrane
to another arch, assuming that the ball has no self-gluings.

2-3

(a) The 2-3 move.

0-2

(b) The quadrilateral 0-2 move.

Figure 36. Sliding the upper disk past parts of the spine below the plane is achieved by the 2-3 move
and (the inverse of the) quadrilateral 0-2 move.

Here we state the moves purely in terms of the circle intersecting the planar graph. The meaning
of “0-2”, “2-3” and “3-2” moves is as for the boundary of the upper disk moving against the boundary
of the spine below the plane, as shown in Figure 36.

See Figure 37. We have a “bump” in the curve C, which protrudes into the face f . We wish to
push the bump into g. There are always two components Astart and Aend of A− C, which contain
Cstart and Cend respectively, and we want to push the bump from the Astart side towards the Aend
side.

The bump intersects ∂g in two points, say p1 and p2. The circle C also intersects ∂g at some
other point on ∂g. This follows since if not, after the 2-0 move C would lie in the interior of the
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q1C g

p2 p1

f

Figure 37. Moves to perform a quadrilateral 2-0 move.

face g of the spine. But C cannot contract to either side since it is essential in A. Therefore g
cannot be a disk, which is a contradiction. Let q1 and q2 be the first such intersection points moving
away from the bump in the directions of p1 and p2 respectively. Let a1 and a2 be the subarcs of ∂g
between p1 and q1, and between p2 and q2 respectively. At least one of a1 and a2 does not contain
estart. Relabelling if necessary, we assume that a1 does not contain estart.

In our setting, a1 is in Astart. Therefore there are no intersections between C and a1, and by our
previous choice a1 does not contain estart. So, we can move the bump along a1 via a sequence of 2-3
and 3-2 moves, staying inside of A, as shown in Figure 37, until it is next to q1. Finally, the inverse
of a V-move removes the bump.

After performing all of these moves, the position of C is identical to its original position, except
that the original bump has been removed. This then achieves the quadrilateral 2-0 move.

In this process, we should be concerned that some moves we make might be blocked by self-
identifications in our graph Γ. It is possible that some of the edges of a1 are identified with each
other, corresponding to identifications among the sides of the face g. Note that any identification
between these edges must be orientation reversing since the graph is planar. Moreover, there can be
no identification between adjacent edges since the graph is trivalent. Each such step of the bump
from sitting in one edge to sitting in the next involves only a small neighbourhood of the vertex
between the two edges. By the above comments, there can be no identification between parts of Γ
involved in the step.
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7.3. Removing self-gluings. Now that we know how to sweep a membrane across a ball when
the ball has no self-gluings, we now have to deal with balls with self-gluings.

Fixing some notation, we have membranes mα and mβ in Tα and Tβ respectively, and the
difference in the position of the two membranes is the only difference between the two spines. Let
Tαβ = (Tα ∪mβ) = (Tβ ∪mα). See Figure 38.

The ball B is one of the connected regions of M minus the spine Tαβ. Let Rα be the other
incident region to mα, and similarly for Rβ and mβ. We have Rα 6= B 6= Rβ, although Rα may or
may not be the same region as Rβ. The 1-cell ∂mα is incident to two 2-cells other than mα, namely
fα and gα. The 2-cell fα separates B from another region Cα, while gα separates Rα from Cα. The
region Cα meets itself along a 2-cell dα associated to the arch-with-membrane. We have similar
notation for the β side of the picture. The regions Cα and Cβ may each be the same as any of the
other regions listed, including B if fα or fβ is a self-gluing of B. Moreover, we may have fα = fβ if
the intersection of the 1-skeleton of the spine with ∂B does not separate the two arches, and we
may have gα = gβ, connecting around outside of B.

gα

Cα

mα

Rα

dα

fα

B

gβ

Cβ

mβ

Rβ

dβ

fβ

Figure 38. The spine Tαβ .

Note that ∂B (before we glue up the faces of B) consists of (mα ∪mβ), together with an annulus
A. After gluing, the ball B may be glued to itself along some faces, which means that the annulus
has some faces identified.

The pattern on ∂B ∪ gα ∪ gβ formed from the intersection of the boundary of B with parts of
the spine outside of B (and parts of ∂dα and ∂dβ intersecting gα and gβ) is a trivalent graph Γ.

We will remove self-gluings of B, using moves analogous to the barycentric subdivision moves
from Section 2.5. As we modify our triangulations to remove self-gluings, we abuse notation and
continue to refer to the results of our various moves as Tα, Tβ and Tαβ. Similarly, we will maintain
the same names for the various cells of our spines, even as they are modified or moved. Having
removed all self-gluings, we move the membrane from its position in Tα to its position in Tβ,
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similarly to as in Section 7.1 (with a few modifications we will give after this section). This connects
the two triangulations.

In this process, we may do moves to Tα in the vicinity of mβ. We will alter the corresponding
moves applied to Tβ (and Tαβ), so as to give the same result. To be more precise, we will apply
various composite moves to Tα, Tβ and Tαβ. The same composite moves on these triangulations
may consist of a different sequence of bistellar moves, to deal with the fact that membranes may or
may not be present in different positions for the three spines. However, after each such composite
move, we require that the identity Tαβ = (Tα ∪mβ) = (Tβ ∪mα) holds. Our composite moves are
given in the following sections.

7.3.1. Ensure that there are no BBB spine edges. First, we will require that there are no edges
of Tαβ (thought of as a spine) whose only incident region is the ball B (“BBB-edges”). We can
remove BBB-edges as follows. First, if there is a BBB-edge then there must be a vertex v of the
spine Tαβ incident to B three times and some other region, R say, distinct from B. If no such
vertex can be found, then the BBB-edges and their incident regions form a connected component
of the manifold, which therefore contains only B. But we know that B is incident to a vertex of the
spine inside the arch-with-membrane, which is incident to Rα 6= B, a contradiction. Having found
such a vertex v, we perform a 2-3 move along its incident BBB-edge e, noting that the 2-3 move is
possible: e cannot connect v to itself since no other edge incident to v is a BBB-edge. This 2-3
move reduces the number of BBB-edges by one. By induction we can remove all BBB-edges.

If ∂dβ is a BBB-edge in Tα, then this procedure will perform a 2-3 move along it. We must
apply appropriate bistellar moves to Tβ so that Tβ is identical to Tα ∪mβ in the vicinity of mβ.
This is done by using two 2-3 moves along ∂dβ instead of just one. See Figure 39. We apply a
similar technique if ∂dα is a BBB-edge in Tβ.

(a) (b)

(c) (d) (e)

Figure 39. Top row: a 2-3 move applied to an edge. Bottom row: the same result is achieved despite a
membrane disk (shaded gray) being in the way by applying two 2-3 moves.

Having completed this step, no triangle of Tαβ (thought of as a triangulation) has three B
vertices.
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7.3.2. Thickening the 1-skeleton of B. Next, let K be the 1-skeleton of B (in Tαβ, thought of
as a spine), union the edges in ∂gα, and ∂gβ, and those edges that intersect ∂mα and ∂mβ, but
minus ∂mα and ∂mβ themselves. We wish to “thicken up” K, inspired by the implementation of
barycentric subdivision given in Section 2.5, which uses 1-4 moves. Of course we cannot perform
any 1-4 moves here, but we can perform the composition of a 1-4 move with adding an arch, as
shown in Figure 29. Moreover, since every vertex of K is incident to the region B at most twice, we
can arrange matters so that the arch is on an edge of the resulting spine which is not incident to B.
In the dual triangulation picture, we apply a 1-4 move and can indicate the arch with an arch mark.
The picture is the same as shown in Figure 30. Here, we put the arch mark on the internal triangle
incident to two non-B vertices. Following this convention, after these moves our triangulation Tα is
the result of adding arches at arch marks drawn on a triangulation T′α say, where T′α has an extra
material vertex for every 1-4 move. On T′α, we label the new vertices of the triangulation “3”, as
in the first stage of barycentric subdivision, given in Section 2.5. This thickens up the vertices of
K. To thicken up the edges of K, we continue with the barycentric subdivision procedure, adding
vertices labelled “2” to T′α, again with arches connecting the new vertices back to non-B vertices,
with arch marks placed on triangles with vertices labelled 2, 3 and a non-B 0 vertex. Again this is
always possible to do, since no face of the triangulation has three B vertices. In the second part of
this stage of barycentric subdivision, we perform a 2-3 move on a face of the triangulation with
three 0 vertices. We are able to do this without destroying one of our arch marks because all of our
arch marks are on triangles with at least one non-0 vertex. This done, we have thickened K.

When we thicken an edge that intersects ∂mα, on Tα we apply two 2-3 moves instead of one,
just as in Section 7.3.1, in order to keep up with Tβ. The same applies with α and β swapped.

Having completed this step, each face of the spine Tαβ (and also T′αβ) incident to B has all of
its incident vertices and edges distinct. Moreover, in T′αβ, no arch mark is on a triangle with a
B-vertex.

7.3.3. Thickening self-gluings of B. We now wish to continue the barycentric subdivision theme,
thickening up the faces of B that are self-gluings. For such a face, we are precisely in the setting of
adding a vertex labelled 1, as in Figure 14. Again here we implement the 1-4 and arch move on Tα
with 2-3 and 3-2 moves. The corresponding arch mark is placed on a triangle of T′α not incident to
a B vertex. In fact we may place it on a triangle with vertices labelled 1, 2 and 3. Next we follow
the subsequent steps, as shown in Figure 15. These are all 2-3 moves, deleting triangles with two B
vertices, which therefore do not have arch marks on them, and a final 3-2 move. Each of the three
triangles deleted in the final 3-2 move has a B vertex, and so again there are no arches in the way
of this move.

In this step, special handling for mα (and mβ respectively) is needed in the case that B = Cα, so
fα is a self-gluing of B. In this case, for Tβ, the membrane mα is not present, so fα = gα, and the
entire face is thickened. So, we must do the same for Tα, despite mα being in the way. To achieve
this, first of all let’s break the operation of thickening up a face, as shown in Figure 20, into two
stages.

(1) First, from Figure 20a to 20b we create a new three-cell region (here, connected via an arch
to one of the neighbouring regions).

(2) Second, from Figure 20b onwards, we expand the new region outwards, collapsing the face
away.

The data determining a face collapse move consists of
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(1) the face f to be collapsed, together with
(2) the collapsing edge of f which expands into f as f collapses.

In Figure 20b the collapsing edge is drawn dashed. In order to perform a face collapse, we require
that all vertices of the face be distinct, and that there are at least three vertices.

fα

mα

gα

(a) (b) (c)

(d) (e)

Figure 40. Collapsing a face past a membrane (shaded gray).

Figure 40 shows the effect of thickening a face fα incident to a membrane mα. (Note that this is
not a completely general picture: the degree of the remains of fα could reach three earlier than
shown, in which case we perform a 3-2 move rather than further 2-3 moves.) Now, to continue the
thickening of fα into gα, we perform a second collapsing step, this time collapsing gα, without first
creating a new region. Instead we use the region already created to thicken fα, collapsing gα with
the collapsing edge shown in Figure 40e. Note that by construction, at the start of the second
collapsing step the degree of gα is at least three, so we are able to perform the collapse: If the
degree of gα were two, then before the thickening move we would have had an arc of Γ cross ∂mα

and return, forming a bigon. But our previous moves cannot produce such a configuration.
Also note that if gα = gβ, then it is possible that we collapse gα first, which then requires us

to collapse into fα. Finally, it is also possible that we have that fα = fβ, since the graph Γ does
not separate them, and moreover that gα = gβ, connecting around outside of B. In this case, the
membrane (in either position) cannot be ignored - without it there is one face fα = fβ = gβ = gα,
which is therefore not a disk. When we collapse this face, we continue on from Figure 40e to
Figure 41a. Completing the collapse in the rest of Figure 41, we gain an extra rectangular face,
parallel to the membrane, which separates the region that expanded into fα = fβ = gβ = gα from
itself. Here, we need to do a little more work to maintain (Tα ∪mβ) = (Tβ ∪mα). In particular,
after thickening fα = fβ = gβ = gα, we have a rectangle near mα in Tα, but one near mβ in Tβ.

We can move the rectangle past a membrane using a 2-3 followed by a 3-2 move, and we can
move it around the boundary of the thickened face using similar moves. See Figure 42. Note that
although we are sliding a disk (the rectangle) through a ball (the thickened face), this is a much
simpler setting than our original problem: there are no self-identifications and the thickened face



38 J. HYAM RUBINSTEIN, HENRY SEGERMAN AND STEPHAN TILLMANN

(a) (b)

(c) (d)

Figure 41. Collapsing a face past a membrane (shaded gray) when the membrane is a self-gluing.

has a much simpler graph on its boundary. These two rectangle moves suffice to transport it from
its location near mα to its location near mβ, as long as we don’t attempt to move it past the arch
connecting the thickened face to the outside. Thankfully, we can either move the rectangle through
B or around the outside of B, and one of these two paths does pass by the arch.

(a) (b) (c)

(d) (e) (f)

Figure 42. Sliding the rectangle past a membrane (first row) or a corner of the thickened face (second
row). In both cases, this is achieved by applying a 2-3 move followed by a 3-2 move.

7.4. Modifications to moving a membrane across a ball. The only difference in the setup
here in comparison to that in Section 7.1 is that there may be more than one edge of Γ exiting
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the annulus A through each of its boundary curves Cstart and Cend: If ∂dα is a BBB-edge then in
Section 7.3.1 we remove it. The resulting spine has two edges intersecting ∂mα. When we thicken
up edges in Section 7.3.2, this again doubles the number of edges intersecting ∂mα. The same is
true for edges intersecting ∂mβ. Our algorithm is however almost identical to the one given in
Section 7.1. All we need to do is choose one of the edges intersecting Cstart to be estart, and have
the spanning tree include that estart but no other edges intersecting Cstart or Cend. The rest of the
algorithm then goes through identically.
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