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Purpose. Spatiotemporal fractionation schemes for photon radiotherapy have recently arisen as a10

promising technique for healthy tissue sparing. Because spatiotemporally fractionated treatments

have a characteristic pattern of delivering high doses to different parts of the tumor in each fraction,

uncertainty in patient positioning is an even more pressing concern than in conventional uniform

fractionation. Until now, such concerns in patient setup uncertainty have not been addressed in the

context of spatiotemporal fractionation.15

Methods. A stochastic optimization model is used to incorporate patient setup uncertainty to op-

timize spatiotemporally fractionated plans using expected penalties for deviations from prescription

values. First, a robust uniform reference plan is optimized with a stochastic optimization model.

Then, a spatiotemporal plan is optimized with a constrained stochastic optimization model that

minimizes a primary clinical objective and constrains the spatiotemporal plan to be at least as good20

as the uniform reference plan with respect to all other objectives. A discrete probability distribution

is defined to characterize the random setup error occurring in each fraction. For the optimization

of uniform plans, the expected penalties are computed exactly by exploiting the symmetry of the

fractions, and for the spatiotemporal plans, quasi-Monte Carlo sampling is used to approximate the

expectation.25

Results. Using five clinical liver cases it is demonstrated that spatiotemporally fractionated treat-

ment plans maintain the same robust tumor coverage as a stochastic uniform reference plan and

exhibit a reduction in the expected mean BED of the uninvolved liver. This is observed for a spec-

trum of probability distributions of random setup errors with shifts in the patient position of up to

5 mm from the nominal position. For probability distributions with small variance in the patient30

position, the spatiotemporal plans exhibit an 8-30% reduction in expected mean BED in the healthy

liver tissue for shifts up to 2.5 mm and reductions of 5-25% for shifts up to 5 mm.

Conclusions. In the presence of patient setup uncertainty, spatiotemporally fractionated treatment

plans exhibit the same robust tumor coverage as their uniformly fractionated counterparts and still

retain the benefit in sparing healthy tissues.35
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I. INTRODUCTION

Spatiotemporal fractionation schemes have recently arisen as a promising treatment technique for photon radiother-

apy for healthy tissue sparing [1, 2]. Unlike conventional fractionation, spatiotemporally fractionated treatments alter

the dose distribution in each fraction in an attempt to optimally exploit the fractionation effect and approximate an

ideal treatment that would simultaneously hypofractionate the tumor while delivering a conventionally fractionated40

dose to healthy tissues. Spatiotemporal fractionation schemes achieve this by delivering high single-fraction doses to

different parts of the tumor in each fraction while avoiding a similar localized hypofractionation in the healthy tissue.

Thereby, a lower cumulative physical dose is required compared to conventional treatments, which translates into a

net reduction of biological dose in the normal tissue.

Previous work has demonstrated the efficacy of spatiotemporal fractionation and its potential to reduce the treat-45

ment impact on healthy tissues. It was initially proposed for proton therapy treatments [3, 4], with the rationale that

the dose in the entrance region of a proton beam is approximately independent of the beam’s range, and therefore the

proximal and distal parts of the tumor can be irradiated to higher doses in separate fractions without similarly hy-

pofractionating the entrance region. Subsequently, it was shown that healthy tissue sparing can also be achieved with

spatiotemporal fractionation in photon radiotherapy. Specifically, the benefit for photon therapy has been demon-50

strated in stereotactic body radiotherapy of liver tumors in cases where the uninvolved liver is the main dose-limiting

organ [5] and in radiosurgery for large cerebral arteriovenous malformations [2]. The rationale, however, is somewhat

different than for proton treatments. In this case, using a sufficiently large number of beams (or arc therapy delivery),

treatment plans can be created in such a way that the fractions deliver high single-fraction doses to complementary

parts of the target volume while creating a similar dose bath in the surrounding normal tissue. The regions that55

receive dose in each fraction need not have an identifying geometric feature and are not predetermined; instead, they

are identified by the treatment optimization algorithm.

A pressing question that was raised but not addressed in earlier studies on spatiotemporal planning is the impact

of dose delivery uncertainty. In all prior work, the benefit from spatiotemporally fractionated photon plans is a result

of their characteristic pattern of delivering high single-fraction doses to small parts of the tumor. The resulting sharp60

dose gradients need to be meticulously aligned in different fractions in order to avoid potentially compromising tumor

control. As the regions receiving high dose in each fraction are not predetermined, but are the result of the treatment

plan optimization, this issue cannot be addressed using margins around the treated volumes. In this work, we study

the impact of random setup uncertainty on spatiotemporal treatments. We utilize stochastic optimization techniques

to directly incorporate setup uncertainty in the treatment planning optimization problem. When this uncertainty is65

properly accounted for, spatiotemporal photon plans can be computed that achieve substantial normal tissue sparing

compared to conventional plans while being as robust against random setup uncertainty as their conventionally

fractionated counterparts. We briefly discuss other sources of uncertainty in Section IV.

The problem of patient setup uncertainty is not new in the context of IMRT and IMPT. For a recent, comprehensive

review of the subject, the reader is referred to [6]. Previous work utilizes stochastic optimization techniques to handle70

uncertainties in radiotherapy treatments by constraining or optimizing the expected values of quantities such as

quadratic penalty functions [7, 8], expected values of TCP-based objective functions [9], or objective functions based

on an approximation of the expected cumulative dose [10]. Another stochastic optimization approach is to use a mean
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and variance constraint for each voxel to ensure robust target coverage [11]. In the current work we use a scenario-based

model with expectations of penalty functions to account for the uncertainty in patient positioning, and use, when75

necessary, scenario sampling to approximate the expected values. An important difference between spatiotemporal

and conventional fractionation lies in the importance of random errors, i.e. setup errors that are different from fraction

to fraction. In conventional fractionation, random errors have a minor impact compared to systematic errors, i.e. a

setup error that is the same in each fraction. Since spatiotemporal fractionation delivers a distinct dose distribution

in each fraction, random errors are both more important and computationally more challenging to account for.80

A. Fractionation and the BED model

The most widely used mathematical model of the fractionation effect is the biologically effective dose (BED) model

[12], which is based on the linear-quadratic model of a tissue’s response to radiation over the course of multiple

fractions. The cumulative BED delivered to a voxel v in a treatment with T fractions is defined as

bv =

T∑
t=1

(
dvt +

d2
vt

(α/β)v

)
, (1)85

where dvt is the physical dose delivered to voxel v in fraction t, and (α/β)v is a tissue-specific parameter; see, e.g., [13].

As usual in the conventional fluence map optimization problem of IMRT, the delivered physical dose dvt is a linear

function of the fluence map xt delivered in fraction t. Formally, letting dt be the vector of dose values (dvt)v∈V , we

have dt = Dxt, with the dose-influence matrix D ∈ R|V |×B , where V is the set of patient voxels and B is the number

of beamlets. Similarly, the vector of cumulative BED values is denoted (bv)v∈V .90

The BED model postulates that treatments with identical cumulative BED are iso-effective in the tumor and iso-

toxic in the healthy tissue. Clinical prescriptions specifying a number of (uniform) fractions and physical doses can

thus be converted to cumulative BED prescriptions and thereby generalized to spatiotemporal fractionation schemes.

The optimization models in this work utilize standard piecewise quadratic penalty functions to penalize the violation

of clinical constraints. To penalize BED that falls below a prescription value blov or exceeds a prescription value bhi
v95

in voxel v, the penalty functions are (blov − bv)2
+ and (bv − bhi

v )2
+, respectively, where (y)+ denotes the positive part

max{0, y}. Similar expressions can be used to penalize, for example, excessive mean BED in an organ. Spatiotemporal

planning models using a BED-based variant of the generalized equivalent uniform dose (gEUD) can also be considered

(see, e.g., [14]), but will not be used in this paper.

B. Modeling dose delivery uncertainty100

Random setup errors, along with other sources of uncertainty in dose delivery, can be modeled as uncertainty in

the dose-influence matrix D. We use the notation Ω for the set of possible setup errors, or scenarios, and Dω for

the realization of D in scenario ω ∈ Ω. Under random setup uncertainty, the patient positioning error is potentially

different in each fraction, and it is convenient to think of each scenario as a T -dimensional vector ω = (ω1, . . . , ωT ).

The associated probability function is denoted by P . For simplicity, in this paper we will work with finitely many105

discrete scenarios, that is, Ω ⊂ RT is a finite set, and each scenario ω has a positive probability P (ω).
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With the dose-influence matrix being a random variable, the physical dose and the cumulative BED in each voxel

also become random variables. The cumulative BED for voxel v in scenario ω is

bωv =
T∑
t=1

(
dωtvt +

(dωtvt )
2

(α/β)v

)
. (2)

As a result, the plan quality that we aim to optimize is also random. Following [15] and many others, we quantify plan110

quality by the expected value of an appropriately chosen penalty function that penalizes deviation from prescribed

BED values, such as the piecewise quadratic penalty functions in Section I A above. For example, to ensure that the

cumulative BED delivered to a particular voxel remains above a prescribed value blov with sufficiently high probability,

we may minimize (or constrain) the quantity

EP
[
(blov − bv)2

+

]
. (3)115

To lighten the notation, for the rest of the paper, we shall drop the subscript P from the expected values, as the

probability distribution is always the same.

II. MATERIALS AND METHODS

A. Stochastic optimization of uniformly fractionated treatments

To ensure a fair comparison between spatiotemporal fractionation and uniform fractionation, uniformly fractionated120

treatment plans are optimized using the same BED-based prescriptions and the same stochastic model of random setup

uncertainty as the spatiotemporal plans. The benefit of spatiotemporal fractionation can be evaluated by comparing

the spatiotemporal plans to their robust uniformly fractionated counterparts. In our optimization models, all clinical

objectives are implemented using standard piecewise quadratic penalty functions. Structures that are sufficiently

distant from the target volumes are likely to be nearly or entirely unaffected by random setup uncertainty; it is125

sufficient to consider only the nominal scenario in the objectives involving these structures. The objectives concerning

target structures and nearby volumes are implemented using expected piecewise quadratic penalties.

Let I+ and I− denote the index sets of the clinical objectives associated with structures that are assigned an

expected penalty for the BED exceeding the prescription amount bhi or BED falling below a prescription amount blo,

respectively. Let Im be the index set for the clinical objectives penalizing mean BED exceeding mhi. Similarly, let130

Ī+, Ī−, and Īm denote the index sets of the clinical objectives that involve nominal penalty values. Let the set I

be the union of the six aforementioned index sets. Let Vi be the set of voxels associated with the objective i ∈ I,

with V = ∪i∈IVi denoting the set of all patient voxels considered in the optimization model. Lastly, let ω̄ denote the

nominal scenario.

Piecewise quadratic penalty functions Fi(·) are used to mathematically define the clinical objectives, either for the
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nominal scenario ω̄ or the expected value over all scenarios:

Fi(b) =



∑
v∈Vi

(
bω̄v − bhi

iv

)2
+

∀i ∈ Ī+

∑
v∈Vi

(
bloiv − bω̄v

)2
+

∀i ∈ Ī−

(
1
|Vi|

∑
v∈Vi

bω̄v −mhi
i

)2

+

∀i ∈ Īm

E

[ ∑
v∈Vi

(
bv − bhi

iv

)2
+

]
∀i ∈ I+

E

[ ∑
v∈Vi

(
bloiv − bv

)2
+

]
∀i ∈ I−

E

( 1
|Vi|

∑
v∈Vi

bv −mhi
i

)2

+

 ∀i ∈ Im.

Using this notation, the uniformly fractionated reference plans are obtained by solving optimization problems of the135

form

min
x,d,b

∑
i∈I

qiFi(b)

s.t. bωv =
T∑
t=1

(
dωtvt +

(dωtvt )
2

(α/β)v

)
∀ v ∈ V, ω = (ω1, . . . , ωT ) ∈ Ω

dωt = Dωtx ∀ω ∈ Ω, t = 1, . . . , T

x ≥ 0,

(4)

with the penalty weights qi ≥ 0 reflecting the relative importance of each clinical objective. The variables dωvt and bωv

can be eliminated using the equality constraints; this yields an optimization problem with the fluence x as the only

variable, and the only constraint is the nonnegativity of the fluence.140

In a similar manner to [4], we verify that the BED-based optimization model for uniformly fractionated treatment

plans is convex in the domain of “reasonable” doses d for all typical α/β values and number of fractions T . Because

the BED is a monotone increasing function of the physical dose and the piecewise quadratic penalties are convex

functions of the BED, the only potentially problematic term of the objective function is the underdose penalty whose

deterministic form is f(bv) = q
(
blov − bv

)2
+

= q
(
blov − T

(
dv +

d2v
α/β

))2

+
for a single voxel v. This is not a convex145

function of the physical dose. However, it can be seen that ∂2f
∂d2v

> 0 for physical dose values dv that satisfy

dv > −
α/β

2
+

1√
3

√
(α/β)blov
T

+
(α/β)2

4
. (5)

For the parameter values used in the current work (blov = 100 Gy, α/β = 10 for the tumor, and T = 5, as detailed later

in Section II D), the above expression yields a lower bound of 3.66 Gy on the physical dose in order for the uniform

model to be convex, which is not a binding constraint in the tumor, where the prescription BED blov and number of150

fractions T correspond to dv = 10 Gy of physical dose per fraction. More generally, we may compare the lower bound

in (5) with the prescribed per-fraction dose dlo
v corresponding to a BED of blov delivered in T fractions, which is given
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by the formula

dlo
v = −

α/β

2
+

√
(α/β)blov
T

+
(α/β)2

4
. (6)

This reveals that regardless of the parameters blov , α/β, and T , the underdose penalty is convex for per-fraction dose155

values satisfying

dv > dlo
v /
√

3, (7)

which is reasonably required from every acceptable uniformly fractionated plan.

In the stochastic model, the expected value of the underdose penalty is the probability-weighted linear combination

of deterministic quadratic underdose penalties; thus, a sufficient condition for the convexity of the stochastic model160

(4) is that the per-fraction dose values satisfy (7) in every scenario.

B. Stochastic optimization model for spatiotemporal treatments

It is straightforward to formulate an optimization model analogous to (4) to compute an optimal robust spa-

tiotemporal plan, with only two small changes to the model (4). First, the fluence map in each fraction t needs to

be a separate vector of decision variables xt, and then the corresponding random physical dose dωt is computed as165

dωt = Dωtxt. One way to compare spatiotemporal treatment plans with uniform reference plans would be to optimize

both plans for the same objective function (i.e. the same set of objective weights qi). However, improvements in

terms of quadratic penalty functions are difficult to interpret. In the application to liver tumors in Section II D, we

instead quantify the benefit of spatiotemporal fractionation via the mean BED reduction in the healthy liver for a

fixed BED delivered to the tumor. To that end, we minimize the objective function corresponding to the primary170

clinical objective (the mean liver BED) while constraining the remaining penalty function values to be at least as good

as the penalty values in the uniform reference plan. This ensures that the benefit from spatiotemporal fractionation

is measured in terms of a single, interpretable, scalar quantity representing the primary clinical objective, and that

the measured benefit does not come at the cost of sacrificing other clinical objectives.

Next, we provide the mathematical details for this formulation. Without loss of generality, let V1 denote the voxel175

set associated with the primary clinical objective and let F1 be the corresponding penalty function. Let b∗ denote

the BED distribution of the uniformly fractionated reference plan, with Fi(b
∗) the value of the i-th penalty function

evaluated with the uniform plan. For all clinical objectives aside from the primary clinical objective, we constrain

the spatiotemporally fractionated treatment plan to have a smaller or equal penalty function value than the uniform

reference plan. Then the optimization model for spatiotemporally fractionated plans can be written as follows:180

min
x,d,b

F1(b)

s.t. Fi(b) ≤ Fi(b∗) ∀i ∈ I, i 6= 1

bωv =

T∑
t=1

(
dωtvt +

(dωtvt )
2

(α/β)v

)
∀v ∈ V, ω = (ω1, . . . , ωT ) ∈ Ω

dωt = Dωtxt ∀ω ∈ Ω, t = 1, . . . , T

xt ≥ 0 t = 1, . . . , T.

(8)
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Unlike the optimization model for uniformly fractionated treatments, the spatiotemporal optimization model is

nonconvex, and the solutions to this model can only be certified to be locally optimal. For spatiotemporal planning

without uncertainty, it has been shown that in spite of the nonconvexity, locally optimal solutions achieve nearly all

of the potential benefit of healthy tissue sparing with spatiotemporal fractionation [14, 16].185

C. Modeling random patient setup uncertainty

We model uncertainty in patient positioning by considering scenarios in which the patient is shifted slightly from

the nominal position.

1. Probability distributions of patient position

First, let us consider a one-dimensional probability distribution of the patient’s position when the setup uncertainty190

is restricted to one axis of motion. For computational convenience, we assume that the patient is shifted an integer

number of voxels on either side of the nominal position. Let ps be the probability that the patient’s position is s

voxels away from the nominal position. (Thus, p0 is the probability of the patient being in the nominal position.) We

assume that the probabilities ps satisfy

ps = γ|s|p0 s ∈ S (9)195

for some parameter γ ∈ [0, 1] and a finite set S ⊂ Z. In particular, the patient positioning error is assumed to be

symmetric and bounded, with its mode in the nominal position. The parameter γ allows us to consider a spectrum

of probability distributions. As γ increases, the probabilities of larger errors increase. When γ = 0, the probability

of the nominal scenario is 1, and all other shifts have probability zero. At the other extreme, γ = 1, the nominal

scenario and all shifts have an equal probability of occurring. In all of our experiments, S ⊂ {−2,−1, 0, 1, 2}.200

We assume that the patient positioning errors along each axis are independent. Considering |S| scenarios for the

error along each of the n axes, the number of scenarios for the patient position in one fraction is |S|n. In a treatment

with T fractions, the number of scenarios is |S|n×T . For example, in some of our computational experiments, a five-

fraction treatment plan is computed that allows the patient position to be shifted up to two voxels from the nominal

position in either direction, in two dimensions. The number of distinct scenarios in these experiments is 52×5 ≈ 107.205

2. Computing the expected penalty values

Because we use a finitely-supported probability distribution, the expected values of the penalty functions can be

computed exactly as a finite sum over the scenarios. However, the large number of scenarios in the spatiotemporal

models becomes prohibitive during optimization, as the time required to compute the penalty function values and

their gradients is proportional to the number of scenarios. This can be mitigated by scenario sampling. Because210

the dimension of the uncertainty, nT , is small (in our experiments, n = 2 and T = 5), we use quasi-Monte Carlo

(QMC) integration, rather than Monte Carlo, to sample the scenarios and approximate expected penalty values. QMC

integration methods, which use evenly distributed pseudo-random samples from the domain of integration, are known
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to have a better rate of convergence than Monte Carlo when the dimension of uncertainty (the number of integration

variables) is small. In particular, we use a standard rank-one QMC lattice rule with a random shift [17].215

We note that for uniformly fractionated plans, scenario sampling is not necessary to evaluate the expected penalty

values. In a uniformly fractionated treatment, every permutation of the T shifts in a scenario ω = (ω1, . . . , ωT ) will

yield the same cumulative BED because the same fluence map is delivered in each fraction, and the cumulative BED

is not dependent on the order of the fractions. Thus, after a penalty is evaluated for a particular sequence of T shifts,

its weight can be adjusted to account for all permutations of that shift sequence. Formally, let Ω̂ ⊂ Ω be the set of220

scenarios ω̂ = (ω̂1, . . . , ω̂T ) such that every scenario ω = (ω1, . . . , ωT ) ∈ Ω is a permutation of exactly one scenario in

Ω̂; furthermore, for each ω̂ ∈ Ω̂, let N(ω̂) be the number of scenarios in Ω that are a permutation of ω̂, and let P (ω)

be the probability of scenario ω. Then the expectation of the penalty function F satisfies

E [F (bv)] =
∑
ω∈Ω

P (ω)F (bωv ) =
∑
ω̂∈Ω̂

N(ω̂)P (ω̂)F (bω̂v ). (10)

Even with T as little as 5, Ω̂ is substantially smaller than Ω, which vastly reduces the number of function evaluations225

required to compute the exact expected value. For example, in our experiments with 2-dimensional patients and

patient positioning errors up to 2 voxels in either direction along both axes, the number of scenarios can be reduced

from 510 ≈ 107 to 118 755. This eliminates the need for scenario sampling in the optimization models for uniformly

fractionated treatments because the expected penalty value over all scenarios can be exactly computed in each iteration

of the optimization algorithm.230

D. Numerical experiments with clinical liver cases

We computed uniformly fractionated and spatiotemporally fractionated treatment plans for five two-dimensional

slices of liver tumors that represent a variety of patient geometries. The same cases were also used in [16]. In this

work, we considered patient setup errors in the two-dimensional transverse plane; we did not consider superior-inferior

motion of the patient that would move the voxels out of the transverse slice.235

1. Clinical liver cases and prescriptions

In Cases 1, 2, and 3, the lesion is centrally located within the liver, which is the primary dose-limiting organ. Case

1 has a large lesion within the liver, Case 2 has a small lesion, and Case 3 contains two separate lesions. In Case 4,

the liver abuts the chest wall, and in Case 5, the chest wall, kidney, and GI tract are near the tumor. The patient

geometries can be found in Figure 1.240

In each of the five cases, an α/β ratio of 10 was used for the target structure and an α/β ratio of 4 was used for

all healthy tissues. Five-fraction treatments were optimized to be consistent with common clinical practice. The

optimization models incorporated the following clinical objectives:

• Minimize the expected mean BED in the uninvolved liver, defined as the liver minus the GTV.

• Penalize the expected shortfall from 100 Gy BED in the GTV. This corresponds to 50 Gy of physical dose245

delivered in 5 fractions.
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• Minimize the nominal BED in the unclassified tissue.

• For Cases 4 & 5: Penalize excess of 96.25 Gy BED in the chest wall in the nominal scenario. This is equivalent

to 35 Gy of physical dose in 5 fractions.

• For Cases 4 & 5: A conformal plan was desired, with a prescribed linear falloff from 175 Gy BED to 15 Gy BED250

in 3 cm in the nominal scenario. This is equivalent to a falloff from 50 Gy to 10 Gy of physical dose in 3 cm.

• For Case 5: Minimize the nominal BED in the kidneys.

BED excess and shortfall were penalized quadratically (from a threshold of 0 Gy if not specified otherwise), as detailed

in Section II A.

The nominal dose-influence matrix D was obtained using the Quadrant Infinite Beam (QIB) dose calculation algo-255

rithm implemented in CERR version 5.2 [18]. In this work we considered two dose grids: one that was downsampled

from the CT resolution by a factor of two, and one that matched the full CT resolution. For all five cases, the two-

dimensional slices contain approximately 12,000 voxels in the downsampled cases and approximately 50,000 voxels

in the full-resolution cases. Recall that the patient setup error is modeled as error in the dose-influence matrix, so

each scenario ω ∈ Ω has its corresponding matrix Dω. Instead of repeating the dose calculation for every possible260

position of the patient to explicitly find each Dω, we adopt the static dose cloud assumption, which is commonly used

in treatment planning optimization [6, 19]. Under this assumption, the position of the patient does not affect the

dose distribution, and if a shift of a patient occurs, the nominal dose distribution is delivered to the shifted patient.

This assumption improves the computational efficiency: each Dω can be assembled from the rows of the nominal D

with no additional dose calculation. The static dose cloud assumption may not be applicable for superficial tumors265

or for tumors near interfaces of tissues with starkly different densities, but the assumption is reasonable for these

clinical liver cases because the treatment area is composed of mostly homogeneous tissue. In cases with a tumor in

the superior part of the liver close to the lung, it may be most practical to adopt the static dose cloud approximation

for the treatment plan optimization and employ a more accurate dose calculation in the final stages of optimization

and plan evaluation.270

2. Probability distributions of patient shifts

In this work we considered a spectrum of probability distributions on three different supports. On the downsampled

dose grid, we considered probability distributions supported on 1- and 2-voxel shifts, and the voxel sizes for these

experiments were 2.54 mm × 2.54 mm for the first four cases and 2.18 mm × 2.18 mm for Case 5. With other

treatment sites in mind that have smaller setup uncertainties, we also ran a set of experiments without downsampling275

and using the full CT resolution with probability distributions supported on 1-voxel shifts. These experiments used

a voxel size of 1.27 mm × 1.27 mm for Cases 1–4 and 1.09 mm × 1.09 mm for Case 5. In all of the experiments,

we assumed that the range and probability distribution of the random setup error is the same along the two axes of

motion.

As described in Section II C 1, the parameter γ is used to adjust the probabilities of each point in the support of the280

distribution. Values of γ that correspond to several values for the variance σ2 of the shifts are chosen to illustrate the
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benefit of spatiotemporal fractionation across a spectrum of probability distributions. (The variance is measured in

units of voxels instead of mm.) In the distributions of 1-voxel shifts, the variance ranges from 0 to a maximum value

of 2/3, and for the 2-voxel distributions, the variance ranges from 0 to 2. This corresponds to nominal optimization

when the variance is 0 to a uniform probability distribution of the shifts when the variance is maximized.285

3. Optimizing robust uniformly fractionated reference plans

Uniformly fractionated treatment plans with 21 equispaced coplanar beams were optimized to approximate a high-

quality VMAT plan delivering the modulated fluence maps over multiple small arc sectors [20]. We optimized the

beamlet weights of a single row of a 1 cm × 1 cm grid of beamlets. Each of the five cases had a few hundred beamlets.

Uniformly fractionated treatment plans were optimized for six values of σ2 for 2-voxel shifts and five values of σ2
290

for 1-voxel shifts. The optimization problem (4) in Section II A was solved to global optimality using the solver

L-BFGS-B [21]. As detailed in Section II C 2, the quasi-Monte Carlo approximations for the expected GTV penalty

are not necessary because the exact penalty values can be computed by taking advantage of the symmetry of the

fractions. For probability distributions supported on 1-voxel shifts, the exact penalties can be calculated with 1287

scenarios, and the optimization runtimes were on the order of a few minutes. For probability distributions supported295

on 2-voxel shifts, the calculation of the exact penalty values required 118 755 scenarios, which yielded runtimes of up

to 28 hours.

The uniformly fractionated treatment plans served as high-quality reference plans that were used as a point of

comparison for the spatiotemporally fractionated plans optimized in the next section. To ensure that the uniformly

fractionated plans were sufficiently robust, the penalty weights qi in the objective function of (4) were adjusted so300

that in each of the cases, there was a 95% probability that 95% of the GTV received the prescribed 100 Gy BED.

4. Optimizing robust spatiotemporal plans

After the uniformly fractionated reference plans were computed, the optimization problem (8) in Section II B

was solved to compute robust spatiotemporal treatment plans. Because of the large number of scenarios in the

spatiotemporal models, we used quasi-Monte Carlo sampling to approximate the expected GTV penalty, as described305

in Section II C 2. Locally optimal spatiotemporal plans were obtained by solving the optimization problem (8) using

an in-house implementation of the augmented Lagrangian method, which is an iterative method for solving nonlinearly

constrained nonlinear optimization problems with a primal-dual approach; for details, the reader is referred to [22,

Sec. 6.4]. We used a scenario sample of 2048 lattice points for each iteration of the augmented Lagrangian algorithm

and a large sample of 524 288 lattice points to evaluate the constraint violation for the multiplier updates. Runtimes310

ranged from a few hours with the 1-voxel shift distributions to 43 hours for the 2-voxel shift distributions with the

largest value of gamma.
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5. Computing equieffective dose

For an interpretable comparison between spatiotemporally fractionated treatment plans and their uniformly frac-

tionated reference plans, we compute the equivalent dose DEQ5 of the expected BED. The DEQ5 is the physical dose

distribution that if delivered in 5 uniform fractions would yield the same BED as the expected BED for each voxel;

i.e. the DEQ5 is the quantity satisfying

E
[
5d

(
1 +

d
α/β

)]
= DEQ5 +

(DEQ5)2/5
α/β

for uniformly fractionated plans and

E

[
5∑
t=1

(
dt +

d2
t

α/β

)]
= DEQ5 +

(DEQ5)2/5
α/β

for spatiotemporal plans.

III. RESULTS315

The benefit of spatiotemporal fractionation is measured by the reduction in expected mean liver BED in the healthy

liver tissue from the uniform reference plan. By construction, the spatiotemporal plans have the same plan quality as

the uniform reference plan with respect to all other clinical objectives. Tables I, II, and III summarize the mean liver

BED reductions in spatiotemporal plans for all of the cases and probability distributions in our numerical experiments.

Table I contains the reductions for probability distributions supported on shifts up to 2 voxels (approximately 5 mm)320

in each axis, and Tables II and III display the reductions in mean liver BED of spatiotemporal plans for probability

distributions supported on 1-voxel shifts for downsampled (approximately 2.5 mm) and full-resolution (approximately

1.25 mm) dose grids. For reference, the tables also report the mean liver BED reductions that could be obtained in

the case that no uncertainty is present.

As expected, the benefit of spatiotemporal fractionation decreases with larger setup uncertainty. However, when the325

variance in the patient position is small, spatiotemporally fractionated plans maintain a large reduction in expected

mean liver BED. With the downsampled dose grid, for the smallest nonzero σ2, Case 4 displays the largest reduction of

24.9% for 2-voxel shifts, while Case 5 has the smallest reduction of 4.9%. The former corresponds to a DEQ5 reduction

from 19.3 to 16.6 Gy, while the latter corresponds to a DEQ5 reduction from 33.0 to 32.1 Gy. The reductions are

even larger for spatiotemporal plans with 1-voxel shifts on both the downsampled and the full-resolution dose grid.330

This suggests that the magnitude of the largest undetected random patient setup error is just as important as the

variance of the setup error.

As the variance σ2 increases, the fractions of the spatiotemporal plans become increasingly uniform. As seen in

Figure 2a, the fractional doses are highly modulated for the smaller variances, i.e. each fraction delivers a very

high dose to complementary parts of the tumor. As the variance increases, the fractional dose distributions become335

more uniform, i.e. each fraction delivers a significant dose to most of the target volume. This trend is expected

because more uniform dose distributions help maintain robustness against greater misalignment of the fractional dose

distributions. This explains the decreasing benefit of spatiotemporal fractionation over uniform reference plans as σ2
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increases. These trends in the dose distributions were observed in all of the five cases; see additional figures in the

Supplement.340

In Figure 2b, the DEQ5 of the expected BED for Case 3 is plotted for the spatiotemporal plan for three σ2 values.

The robust treatment plans exhibit a “margin” of higher dose around the GTV to maintain robustness despite the

fact that there is no explicit margin, such as the PTV, contoured around the GTV. As seen in the figure, the width

of the “margin” around the GTV increases as the variance σ2 of patient shifts increases. The stochastic optimization

model adjusts the width of the margin around the GTV depending on the probabilities of patient shifts, and this345

margin is optimized to exactly maintain robustness but also to avoid unduly irradiating the healthy liver with too

large a margin.

Figure 3 shows the evolution of the optimal treatment plans as the variance of patient shifts increases by comparing

the DEQ5 of the expected BED for uniform and spatiotemporal plans. As σ2 increases, the spatiotemporal plan

becomes more similar to the uniformly fractionated plan, and the benefit in healthy tissue sparing decreases. This350

trend can also be observed in the dose-volume histogram (DVH) curves in Figure 4. In this figure, we observe that

as σ2 increases, the curves for the uniform and spatiotemporal plans move closer to one another.

A key feature of the robust spatiotemporal plans is that the reduction in mean BED in the healthy liver tissue occurs

simultaneously with equally robust coverage of the tumor. In all of the cases presented in this work, the spatiotemporal

plan meets the same robustness criterion as its uniform reference plan: there is at least a 95% probability that 95%355

of the GTV receives 100 Gy BED. In most cases we found that even though the spatiotemporal plan and the uniform

plan have equal expected GTV penalties, the spatiotemporal plans generally have a higher probability that 95% of the

GTV receives the prescription 100 Gy BED. In addition, in most cases the spatiotemporal plan has a higher expected

mean GTV BED than the uniformly fractionated reference plan.

The similar robustness between the two fractionation schemes can be seen in Figure 5, which displays a DVH plot360

for the DEQ5 values comparing the uniform reference plan and the spatiotemporally fractionated treatment plan for

Case 3. Figure 5 displays a “cloud” of DVH curves that shows the DVH curve for every scenario in a sample with

4096 scenarios. The spatiotemporal plan exhibits more variability in the tumor, as evidenced through a greater spread

of DVH curves, but we notice that the variability occurs in the region of higher DEQ5. The spatiotemporal plan

maintains the same robust GTV coverage as the uniform reference plan in the critical region around DEQ5 of 50 Gy.365

DVH plots similar to Figure 4 and Figure 5 for the remaining cases can be found in the Supplement.

IV. DISCUSSION

Benefit and potential applications of spatiotemporal fractionation. Spatiotemporal fractionation improves the ratio

of tumor versus normal tissue BED by achieving partial hypofractionation in the tumor along with more uniform

fractionation in normal tissues. Consequently, potential clinical applications of spatiotemporal fractionation are370

tumors that are eligible for hypofractionation, i.e. lesions treated with SBRT and SRS. In contrast, treatment sites

that rely on fractionation to protect dose-limiting normal tissues within the target volume, such as most head and

neck cancers or glioblastoma, are not suited. In addition, spatiotemporal fractionation mostly improves on the mean

BED to the surrounding normal tissues rather than the maximum BED adjacent to the target volume. Based on

these considerations, large liver tumors where the prescription dose is limited by the mean dose to the non-involved375
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liver represent one of the most promising clinical applications of spatiotemporal fractionation - except for the problem

of motion uncertainty, which is particularly pressing for liver tumors.

Prior to this work, the potential benefit of spatiotemporal fractionation was shown, but the problem of uncertainty

was previously unaddressed. In this work we have demonstrated that spatiotemporal fractionation schemes retain

a portion of their benefit in healthy tissue sparing even in the presence of random patient setup uncertainty. As380

expected, the benefit of spatiotemporal fractionation decreases with increasing setup uncertainty. However, even with

patient positioning errors of up to 5 mm along both axes, spatiotemporal fractionation schemes yielded a reduction in

the expected mean liver BED over uniformly fractionated plans in each case, without any compromise in robustness

or in the other clinical objectives. For smaller setup errors of 1-2 mm, which are applicable for intracranial lesions,

a large portion of the benefit remains. Therefore, brain lesions treated with SRS such as large AVMs, benign brain385

tumors, and large cerebral metastases represent promising applications of spatiotemporal fractionation.

Practical treatment planning. Spatiotemporal plans computed in this study were obtained following a two-step

procedure: the computation of a BED-based uniformly fractionated reference plan followed by the optimization of the

spatiotemporal plan using model (8). The primary limitation of this procedure for practical treatment planning is the

computation time required for optimization, in particular the time required to compute the optimal solution to model390

(8). This is a constrained optimization model with nonlinear nonconvex constraints, which we were only able to solve

in reasonable time after sufficient simplifications to the model (two-dimensional geometry, coarse MLC resolution,

static dose cloud assumption). In this study, the two-step approach was necessary to carefully quantify the benefit

of spatiotemporal fractionation over conventional IMRT. However, in a clinical setting, where it is not necessary to

compare the two fractionation schemes, spatiotemporal plans could be computed by simply minimizing a weighted395

sum of (BED-based) piecewise quadratic penalty functions subject to no constraints other than the nonnegativity of

the fluence, similarly to model (4). These optimization problems can be solved much faster; in fact, our augmented

Lagrangian algorithm to solve model (8) relies on iteratively solving a large number of bound-constrained optimization

problems. The primary aim of this work is to establish that robust spatiotemporal treatments can maintain a benefit

in healthy tissue sparing. Future studies evaluating the feasibility of incorporating spatiotemporal planning in the400

clinical workflow may focus on more efficient computational methods for spatiotemporal planning under uncertainty

using the bound-constrained formulation, which should allow the computation of spatiotemporal treatment plans in

a more realistic setting (three-dimensional geometry, high-resolution beamlet and dose grid).

Measures of robustness. In our optimization models, the expected value of the piecewise quadratic penalty of

underdose in the GTV is used as the primary measure of the robustness of a treatment plan. The constraints in the405

spatiotemporal optimization model are active at the solution, which means that the expected penalty values for the

GTV are equal in the uniform and spatiotemporal treatment plans. Thus, with respect to the expected GTV penalty

robustness measure, the uniformly fractionated treatment plans and the spatiotemporal plans are equally robust. In

practice, robustness of a treatment plan is often assessed with a DVH-like criterion, such as the probability that

95% of the GTV receives the prescription BED [23, 24]. An exact optimization model with a DVH-based robustness410

measure would require a very large mixed-integer program with binary variables for all of the GTV voxels in every

scenario, which is computationally intractable. In our models we used the expected GTV penalty to have a tractable

measure of robustness, but after the optimization we also evaluated the robustness of the optimal solutions using

DVH criteria. We have found that in nearly every experiment, the spatiotemporal plans are more robust than the
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uniform reference plans with respect to this robustness measure. Thus, the healthy tissue sparing could potentially415

be even higher than reported if the spatiotemporal plans and the uniform plans were equally robust with respect to

the DVH-based robustness criterion.

Other sources of uncertainty. In this work, we focus on random setup uncertainty. Setup errors that are different

between fractions yield a misalignment of BED contributions from different fractions, and hence represent the main

concern in spatiotemporal fractionation. In addition, random errors could not be accounted for via margins because the420

dose distributions per fraction are determined during the optimization and not beforehand. In future work, systematic

errors should also be included in robust treatment plan optimization. However, systematic errors lead to a shift (rather

than a degradation) of the cumulative BED distribution. Therefore, systematic errors affect spatiotemporal treatments

in the same way as conventional treatments, and could, in principle, be mitigated via PTV margins. For the application

to liver tumors, intrafraction motion of the tumor due to respiration represents an additional uncertainty. However,425

modern treatment devices such as MR-linacs, which allow for gated treatment based on real-time MR imaging, may

be used to mitigate such uncertainties.

V. CONCLUSION

We have demonstrated that in the presence of random patient setup uncertainty, robust spatiotemporally fraction-

ated treatments can be optimized using a stochastic optimization model. These treatments maintain the same robust430

tumor coverage as their uniformly fractionated counterparts, while achieving a benefit in healthy tissue sparing.
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σ2

Case description 0 1
4

1
2

1 3
2

2

1 Large central lesion 26.8 8.3 5.5 4.1 3.0 2.7

2 Small lesion 32.4 13.6 12.3 8.8 7.9 6.9

3 Two small lesions 28.6 11.6 9.4 7.5 6.0 4.6

4 Lesion abutting ch. wall 50.1 24.9 19.2 14.1 11.6 10.7

5 Lesion abutting GI tract 23.6 4.9 3.0 1.1 1.1 1.0

TABLE I. Percent reductions in expected mean liver BED of spatiotemporal plans over uniformly fractionated plans for

probability distributions supported on 2-voxel shifts in either axis of the transverse plane. The variance σ2 of patient shifts

ranges from 0, where the nominal position has probability 1, to 2, where there is an equal probability of shifting to the 25

points around the nominal position. The voxel sizes are 2.54 mm × 2.54 mm for Cases 1-4 and 2.18 mm × 2.18 mm for Case 5.

σ2

Case description 0 1
6

1
3

1
2

2
3

1 Large central lesion 26.8 10.1 8.3 6.8 6.1

2 Small lesion 32.4 16.6 16.4 15.8 15.1

3 Two small lesions 28.6 14.5 12.9 12.0 11.2

4 Lesion abutting ch. wall 50.1 29.9 25.7 23.5 21.0

5 Lesion abutting GI tract 23.6 7.7 5.4 4.2 3.2

TABLE II. Percent reductions in expected mean liver BED of spatiotemporal plans over uniformly fractionated plans for

probability distributions supported on 1-voxel shifts in either axis of the transverse plane. The variance σ2 of patient shifts

ranges from 0, where the nominal position has probability 1, to 2/3, where there is an equal probability of shifting to the 9

points around the nominal position. The voxel sizes are 2.54 mm × 2.54 mm for Cases 1-4 and 2.18 mm × 2.18 mm for Case 5.

σ2

Case description 0 1
6

1
3

1
2

2
3

1 Large central lesion 25.6 17.5 15.0 13.2 12.4

2 Small lesion 34.4 28.5 26.0 24.6 23.6

3 Two small lesions 28.6 22.8 20.7 19.4 18.6

4 Lesion abutting ch. wall 50.0 43.0 39.8 37.6 35.9

5 Lesion abutting GI tract 25.5 17.6 14.4 12.7 11.8

TABLE III. Percent reductions in expected mean liver BED of spatiotemporal plans over uniformly fractionated plans for

probability distributions supported on 1-voxel shifts in either axis of the transverse plane with the full-resolution dose grid.

The variance σ2 of patient shifts ranges from 0, where the nominal position has probability 1, to 2/3, where there is an equal

probability of shifting to the 9 points around the nominal position. The voxel sizes are 1.27 mm × 1.27 mm for Cases 1-4 and

1.09 mm × 1.09 mm for Case 5.
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FIG. 1. Patient geometries for each of the five cases. The structures contoured on the CT scan are the liver (red), GTV

(orange), chest wall (light green), large and small bowel (yellow), stomach (dark blue), esophagus (light blue), kidneys (purple),

spinal cord (light brown), heart (magenta), and duodenum (dark green).



18

FIG. 2. (a) Physical dose distributions for the five fractions of the optimal spatiotemporal treatment plans for Case 3 with

three different values for the variance of patient shifts, plotted in the nominal scenario. Each column contains a spatiotemporal

treatment plan that was optimized with a different value of σ2. As the variance increases, the fractional doses go from highly

modulated to more uniform. (b) Distributions of DEQ5 for the expected BED of the plans. All numerical values are shown in

Gy.
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FIG. 3. DEQ5 distributions visualizing the benefit of the robust spatiotemporal plans from Figure 2. (a) Distributions of DEQ5

for the expected BED of the uniformly fractionated plans for Case 3, for three different values of the variance of patient shifts.

(b) Distributions of DEQ5 for the expected BED of the spatiotemporal plans. (c) The DEQ5 for the uniform plans minus the

DEQ5 of the spatiotemporal plans. All numerical values are shown in Gy.

0 10 20 30 40 50 60 70

DEQ5 [Gy]

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n
a
l 
v
o
lu

m
e

FIG. 4. Dose-volume histogram (DVH) curves for the DEQ5 of expected BED for the GTV and healthy liver in Case 3, with

three values of the variance σ2 of patient shifts. The solid lines are the curves for the uniform plans and the dashed lines are

for the spatiotemporal plans. As σ2 increases, the healthy liver sparing deteriorates and the uniform and spatiotemporal DVH

curves become closer together.
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FIG. 5. A comparison of dose-volume histograms (DVHs) for the DEQ5 of the BED for (a) the uniform reference plan, and (b)

the spatiotemporal plan, for Case 3 with variance σ2 = 2 of patient shifts up to two voxels from the nominal position. Each

curve in the DVH “cloud” is the curve for a single scenario in a sample of 4096 scenarios. The spatiotemporal plan exhibits

more variability in the regions of high BED, as evidenced by the greater spread of the curves, but the two treatment plans

match in the important shoulder region around a DEQ5 of 50 Gy.


