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A B S T R A C T

Gears play a pivotal role in machine design. This paper proposes an algorithm to sim-
plify the shapes of planar gears. This is achieved via iterative conjugation, using precise
algebraic sweeps. The notion of shape simplification is introduced in a mathematically
rigorous manner and it is shown that the conjugation process converges, yielding a pair
of meshing gears that follow the desired motion. Simplified gear shapes may lead to
improved mechanical characteristics and reduction in manufacturing costs.

The generality of algebraic sweeps allows precise design of gears with freeform
shapes and non-uniform motion transmission. Moreover, the computational framework
proposed in this paper is versatile, with applications beyond gear design. A variety of
examples from an implementation of our algorithm, that offers topological guarantees,
are presented, which demonstrate the robustness and efficacy of our approach.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

This paper studies conjugation through the problem of design2

of a pair, G,H, of meshing gears in R2. Here conjugation refers3

to swept volume computation followed by Boolean-negation4

operation. An example is shown in Figure 1 illustrating a cam-5

follower mechanism. A cam is a non-circular disk, which ro-6

tates about a pivot, and transmits motion to the follower via7

tangential contact. The follower is restricted to undergo recip-8

rocating motion about a line. The shape of H is obtained as the9

conjugate of G. We reverse the roles of G and H and repeat.10

This leads to simplified shapes of G and H. The method of con-11

jugation also allows for design of non-circular gears which have12

non-uniform motion transmission [1]. Moreover, the conjuga-13

tion operation has a wide field of application in design of kine-14

matic pairs wherein two bodies are in motion while maintaining15

tangential contact. For instance, cam-follower mechanisms [2],16

or replacement parts for joints in human body [3], to name a17

∗Corresponding author:
e-mail: jinesh@iitmandi.ac.in (Jinesh Machchhar)

few. In order to perform conjugation, a robust computational 18

framework for sweeps is proposed. Sweeping is a fundamental 19

geometric primitive with diverse applications such as machin- 20

ing verification [4] and collision detection [5]. 21

(a)
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(b)
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(c)

G

H

Fig. 1: Design of cam-follower mechanism using conjugation. The follower, H,
shown in (a) is swept along an elliptical path, while orienting it so that its axis
stays aligned with the normal to the ellipse. The swept volume thus obtained is
Boolean-subtracted from the stock shown in (b) to obtain the elliptical cam, G,
shown in (c) along with the follower, H. The follower’s motion is restricted to
be along its axis. As the cam rotates about its center, it displaces the follower,
which stays in tangential contact.

Gears transmit motion via tangential contact. Typically, one 22
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of the pair, say G, acts as the driving gear, whose uniform cir-1

cular motion is translated into the desired motion for the driven2

gear, H. Such a pair is illustrated in Figure 2(a) and (b). The3

overall shapes as well as the geometry of the teeth of G,H dic-4

tate the motion profile of H. In other words, together, the shape5

of G and the relative motion M between G and H, implicitly6

encode the shape of H. Such a pair of meshing gears is an ex-7

ample of a conjugate pair. In contrast to traditional methods8

for design of gears and other conjugate shapes, which termi-9

nate after a single step of conjugation, our approach involves10

multiple iterations of conjugation. The shape of H obtained in11

the previous step is employed to compute a refined version of12

G. This process is repeated. We show that the iterations con-13

verge after at most two steps. As a result, the shapes of G,H are14

simplified, without altering the relative motion M. This is illus-15

trated by an example shown in Figure 2. The shape H0 shown16

in (b) is obtained as the conjugate of G0 shown in (a), along M.17

H0 is further conjugated along M−1 to obtain G1, shown in (c).18

Likewise, G1 is used to compute H1 shown in (d). G0,G1 and19

H0,H1 are shown in overlapping positions in (e) and (f). As can20

be seen, G1 is a simplified version of G0. Since H1 is identical21

to H0, the conjugation process has converged. These notions22

are formalized in Section 3.23

One way to approximate H as the conjugate of G would be24

via a series of Boolean operations. A more precise approach is25

using swept volumes. Under this scheme, the swept volume of26

G under M is computed and Boolean-subtracted from a block27

to obtain H. A number of approaches for swept volume com-28

putation have been proposed previously, but they all lack one29

or the other key ingredient, preventing a general and practical30

implementation. In particular, the requirements of tight numeri-31

cal tolerances and topological completeness render the previous32

approaches unsuitable for our purpose. We propose a swept vol-33

umes framework based on algebraic computation, upon which34

the conjugation algorithm is built. Use of B-spline functions35

for constructing algebraic equations aids in precise modeling36

of the envelope condition, only to be fed to robust constraint37

solvers which return the solution with the prescribed numerical38

tolerance and topological guarantee.39

The contribution of this work is threefold. To our knowl-40

edge, this is the first attempt at shape simplification for conju-41

gate geometries. A shape is simplified so that any region on its42

boundary, which does not come in contact with the conjugate,43

is excised. In the context of gears, this leads to tighter mesh-44

ing. Secondly, our framework accommodates design of gears45

with freeform shapes, which allow non-uniform motion trans-46

mission. Unlike previous works on gear-design, our algorithm47

provides a complete computational framework with numerical48

guarantees. Handling of local and global self-intersections en-49

sures correctness of output in difficult cases, for instance, when50

the geometry of all teeth is not identical. Finally, we propose51

a robust computer implementation for sweeps in 2D. Our alge-52

braic approach is based on B-spline functions and use of state-53

of-the-art numerical solvers to provide guarantees on the nu-54

merical precision and topological completeness, lacking in pre-55

vious works.56

The rest of the paper is organized as follows. In Section 2,57

(a)
G0

(b)
H0

(c)
G1

(d)
H1

(e)
G0,G1

(f)
H0,H1

Fig. 2: (a) The input gear G0 which has five block-like teeth. It is being swept
along motion M which consists of rotation by an angle of 2π around the center
of G0 and translation along a circle of radius twice the radius of G0 about center
of H0, with uniform speed. (b) The gear H0 obtained as the conjugate of G0
shown in (a), along M. (c) The gear G1 obtained as the conjugate of H0 shown
in (b), along M−1. (d) The gear H1 obtained as the conjugate of G1 shown in (c)
along M. (e) Gears G0 and G1 shown in overlapping positions, in red and blue
respectively. Clearly, they are not congruent. (f) Gears H0 and H1 are shown in
overlapping positions, in red and blue respectively, and are identical. Thus the
conjugation process has converged.

we survey related previous work on gear design and swept vol- 58

umes. In Section 3, our approach of iterative conjugation is 59

discussed, assuming that the initial shape G and the relative 60

motion M are given. Section 4 discusses the design of non- 61

circular gears. Some examples from an implementation of our 62

algorithm in the IRIT [6] kernel are presented, in Section 6. 63

The paper is concluded, in Section 7, with remarks on possible 64

extensions of this work. 65

2. Previous work 66

Designing of gears is well-studied [1, 7, 8, 9, 10]. One of 67

the earliest attempts at computing conjugate gears using sweeps 68

was by Litvin [11], wherein, the necessary condition for mesh- 69

ing of gears is characterized. This condition is well-known as 70

the envelope condition in the literature on sweeps [12] and in- 71
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volves the dot-product of the normal and the velocity at a point1

under consideration. Puccio et al. [13] propose an alternative2

description of the condition of meshing based on vectorial no-3

tation. The above methods are restricted to circular gears. Here4

circle refers to the overall shape of the gear, without teeth. De-5

sign of non-circular gears is considered by Litvin et al. [14] by6

computing the centrodes of the gears from the motion profiles.7

Centrodes of a pair of meshing gears are the curves which rep-8

resent the overall shape of the gears, without teeth, along which9

they make contact without slipping. Zarebski et al. [15] propose10

a method for designing non-circular gears wherein the envelope11

computation is done approximately without any error-bounds.12

Bendefy et al. [16] design gears with varying gear-ratio and13

center-distance. In their method, different portions of teeth such14

as the flank, top and bottom land are constructed separately.15

A common limitation of all the previous methods is a lack of16

computational framework by which to construct the shape of17

the conjugate gear with the prescribed numerical precision and18

topological guarantee. In particular, solving the envelope con-19

dition has been one of the primary computational bottlenecks in20

previous approaches. The envelope condition poses an under-21

constrained system of algebraic constraints whose solution re-22

mains a challenging task. Bonandrini et al. [17, 18] propose a23

computational framework which is limited to design of circular24

gears.25

Johann et al. [19] study the geometry of the conjugate flanks26

of gear teeth of arbitrary shape. The flank of a tooth is the27

leading edge of the tooth which is in contact. In their work,28

the focus is on local contact while the arrangement of teeth29

and global self-intersections resulting therefrom are not studied.30

Likewise, Litvin et al. [20] characterize the singularities on the31

envelopes of gear tooth surfaces. This approach handles local32

self-intersections but not global self-intersections. Resolving33

global self-intersections is especially important when the gears34

are not circular and the geometry of all the teeth may not be35

identical [21].36

Swept volume generation, which forms the backbone of our37

algorithm, is a classical problem in solid modeling [22, 23, 24].38

We survey some of the prominent works in this area. Blackmore39

et al. [4, 25] formulate the boundary of the swept volume as the40

solution of a differential equation. This requires the input shape41

to be in implicit form and the output surface is constructed by42

interpolating sampled points. Such an approach lacks bounds43

on the approximation error. Abdel-Malek and Yeh [26] propose44

a swept volume method based on rank deficiency condition of45

the Jacobian of the sweep map. This method readily gener-46

alizes to arbitrary dimensions. However, their approach for47

finding solutions restricts the input to analytic shapes. Erdim48

and Ilies [27, 5] give a membership test for a candidate point49

to belong inside, outside or on the boundary of the swept vol-50

ume. Singularities on the envelope in 2D case are also identi-51

fied. Their approach requires performing curve-curve intersec-52

tion for each query point. Such an approach yields a complete53

characterization of the boundary of the swept volume, but is54

computationally expensive. Rossignac et al. [28] compute the55

boundary of the swept volume by restricting the input motion56

to be a screw motion. While this leads to an efficient algorithm,57

the limitation is clear, namely, the class of admissible motions. 58

Zhang et al. [29] give a method for fast computation of swept 59

volumes but which is restricted to polygonal input solids. Pe- 60

ternell et al. [30] obtain a set of sampled points on the boundary 61

of the swept volume. They derive a formula for the evolution 62

of curves of contact, which helps bound the distance between 63

any two consecutive curves of contact. This approach, however, 64

does not give a guarantee on the completeness of the output. 65

Wallner et al. [31] propose a method for swept volume compu- 66

tation along motion specified by a set of discrete pose cloud, 67

however, their approach is limited to polyhedral shapes. Adsul 68

et al. [32] propose a computational framework for swept vol- 69

umes in parametric boundary representation format with anal- 70

ysis of local and global self-intersections. However, no topo- 71

logical guarantee is given on the completeness of the output. 72

In summary, a robust implementation of sweeps with a high de- 73

gree of numerical precision is missing. A method either restricts 74

the class of inputs, or approximates the output without bounds 75

on error. Moreover, to our knowledge, no previous approach 76

addresses the issue of solving the envelope condition - which 77

is central to swept volumes - with numerical and topological 78

guarantees. Our approach alleviates these issues. 79

3. Iterative conjugation 80

The gears G and H undergo one parameter family of rigid 81

motions MG and MH , respectively, while making tangential 82

contact with each other. The system (G,H,MG,MH) is equiv- 83

alent, up to some rigid transform, to the system (G,H,M−1
H ◦ 84

MG, I), wherein the relative motion between G and H is ap- 85

plied to G, while H stays stationary. We will denote the relative 86

motion M−1
H ◦MG by M. Similarly, another equivalent represen- 87

tation would be (G,H, I,M−1
G ◦ MH). All the discussion in this 88

paper is with respect to some fixed, global coordinate system. 89

The input to the iterative conjugation algorithm is an initial de- 90

sign for G, and the relative motion M. We employ the boundary 91

representation (B-rep) for G. 92

We will denote the boundary and the interior of a shape G by 93

∂G and Go, respectively. It is assumed that ∂G is free of self- 94

intersections. For example, G is represented by its boundary 95

in Figure 2(a). G moves along a one parameter family of rigid 96

motions M, defined as follows: 97

Definition 1. A one parameter family of rigid motions, M, 98

in R2, is a map M : [0, 1] → (S O(2),R2), such that M(t) = 99

(A(t), b(t)), where A(t) is a 2 × 2 rotation matrix and b(t) is a 100

translation vector in R2. The parameter t in this definition rep- 101

resents time. 102

The action of M on a point p ∈ R2 at time t ∈ [0, 1] is given 103

by A(t)p + b(t) and is denoted by pM(t). Likewise, the action of 104

M on G at time t is denoted by GM(t) and obtained as {A(t)p + 105

b(t)|p ∈ G}. The velocity at pM(t) will be denoted by p′M(t) and 106

is computed as A′(t)p+b′(t), where ′ denotes the derivative with 107

respect to t. If nG(p) is the outward normal to ∂G at p ∈ ∂G, 108

then the outward normal to GM(t) at pM(t) is given by A(t)nG(p) 109

and denoted by nG
M(p, t). 110

The computation of the geometry of H is performed by com- 111

puting the swept volume of G along M, defined as follows: 112
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Definition 2. The swept volume of G along a one parameter1

family of rigid motions M is defined as
⋃

t∈[0,1] GM(t) and de-2

noted by V(G,M).3

Thus, V(G,M) is the infinite union of all the transforms of4

G along M. Like G, we also use the B-rep for V(G,M). Thus,5

it suffices to compute ∂V(G,M) in order to obtain a complete6

representation of V(G,M). We make the following assumption7

for the ease of exposition, which holds from now on.8

Assumption 3. It is assumed that GM(0) = GM(1), i.e., the ini-9

tial and final position of G under M, coincide. Further, V(G,M)10

is assumed to be homeomorphic to an annulus.11

Conjugation involves computing the swept volume V(G,M),12

which is carved, i.e., Boolean-subtracted, from the stock of H,13

to obtain H. The actual shape of the stock is of little relevance14

as long as it is large enough. Whenever carving, we assume the15

stock to be the Euclidean plane, R2. Since V(G,M) is home-16

omorphic to an annulus, R2 \ V(G,M) has two components,17

one finite and another infinite. Only the finite component is of18

interest, the other one is discarded. We will denote the finite19

component of R2 \ V(G,M) by V(G,M).20

Our approach involves multiple iterations of conjugation.
Each iteration involves computing the swept volume of G (H)
and carving it from R2 to obtain the next version of H (G). The
input to the algorithm is the initial version, G0 for G, and the
relative motion M. In the first iteration, V(G0,M) is conjugated
to obtain H0, i.e. H0 = V(G0,M). In the next iteration, G1 is ob-
tained as V(H0,M−1). This process is repeated until Gi = Gi+1
and Hi = Hi+1 for all i > m for some m ≥ 0. We later show, in
Proposition 12, that no more than two iterations are necessary.
The iterative conjugation process is summarized below.

Hi = V(Gi,M), i ≥ 0, (1)

Gi = V(Hi−1,M−1), i ≥ 1. (2)

By construction, ∂Hi = ∂V(Gi,M), i ≥ 0 and ∂Gi =21

∂V(Hi−1,M−1), i ≥ 1. An example of iterative conjugation is22

shown in Figure 2 wherein G0,H0,G1 and H1 are shown in (a),23

(b), (c) and (d).24

The computation of ∂V(Gi,M) is done via the well-known25

envelope condition [33] which states that a point pM(t) ∈26

∂GiM (t) belongs to ∂V(Gi,M) only if the velocity at pM(t) is27

tangent to ∂GiM (t).28

Definition 4. A point pM(t) ∈ ∂GM(t) is said to satisfy the en-29

velope condition if E(p, t) :=
〈
p′M(t), nG

M(p, t)
〉

= 0. The set of30

points satisfying the envelope condition will be referred to as31

the envelope.32

Figure 3 illustrates an example wherein a circular disc is33

being swept along a parabolic path, shown as a dotted curve.34

The envelope curves are shown in black, green and red. Note35

that this example is given only to clearly illustrate the con-36

cept of swept volumes and does not satisfy Assumption 3, i.e.,37

GM(0) , GM(1).38

Not all points in the envelope belong to the boundary39

of the swept volume. The envelope may contain self-40

intersections [24] which need to be trimmed away in order to41

obtain the boundary of the swept volume.42

GM(0) GM(1)

M

Envelope

Fig. 3: Swept volume computation for a circular disc undergoing translation
along a parabola, shown as a dotted curve. The disc is shown at initial and
final positions in blue. The envelope curves are shown in black, green and red.
The boundary of the swept volume, which is a subset of the envelope curves, is
shown in black. Portions of envelope with local and global self-intersection are
shown in red and green.

Definition 5. While sweeping Gi along M, the envelope is said 43

to have self-intersection at a point p if there exists t ∈ [0, 1] 44

such that pM−1 (t) ∈ Go
i . 45

The above definition is equivalent to saying that p ∈ Go
M(t) 46

for some t ∈ [0, 1]. The following lemma states that such points 47

do not belong to the boundary of the swept volume. In the ex- 48

ample shown in Figure 3, the portion of envelope shown in red 49

and green has self-intersection. 50

Lemma 6. While sweeping Gi along M, if the envelope has a 51

self-intersection at a point q, then q < ∂V(Gi,M). 52

Proof. If p := qM−1 (t) ∈ Go
i , then pM(t) = q. Since p ∈ Go

i , 53

q ∈ V(Gi,M) but q < ∂V(Gi,M). The point q being obscured 54

by an interior point of GiM (t), is not on the boundary of the 55

swept volume. � 56

The set ∂V(Gi,M) is obtained after trimming away points 57

of self-intersection from the envelope. In the example of Fig- 58

ure 3, the set ∂V(G,M) is shown in black. It follows that if a 59

point, q, satisfies the envelope condition and is free from self- 60

intersection, then q ∈ ∂V(Gi,M). 61

There may exist points in ∂G0 which do not give rise to any 62

point in ∂V(G0,M), i.e., for some p ∈ ∂G0, pM(t) < ∂V(G0,M), 63

for all t ∈ [0, 1]. The reason being, p may either fail to 64

satisfy the envelope condition in Definition 4 or may get ob- 65

scured by self-intersections as in Definition 5. Interestingly, 66

Lemma 8 states that all the points in ∂Hi give rise to some point 67

in ∂V(Hi,M−1). 68

Lemma 7. If q = pM(t0) for some t0 ∈ [0, 1], then q′M−1 (t0) = 69

−p′M(t0). 70

For a proof refer to Appendix A. 71

Lemma 8. For every q ∈ ∂Hi, i ≥ 0, there exists t ∈ [0, 1] such 72

that qM−1 (t) ∈ ∂V(Hi,M−1). 73

Proof. Fix a point q ∈ ∂Hi. Since q ∈ ∂V(Gi,M), there exists
p ∈ ∂Gi and t1 ∈ [0, 1] such that pM(t1) = q. In other words,
pM(t1) satisfies the envelope condition, i.e.,〈

p′M(t1), nGi
M (p, t1)

〉
= 0. (3)
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We first show that while sweeping Hi along M−1, the point
qM−1 (t1) satisfies the envelope condition. From Lemma 7 we
know that q′M−1 (t1) = −p′M(t1). Also, it can be shown that
nHi

M−1 (q, t1) = −nGi
M (p, t1). Hence,〈

q′M−1 (t1), nHi

M−1 (q, t1)
〉

=
〈
p′M(t1), nGi

M (p, t1)
〉

= 0. (4)

Thus, we have shown that the point qM−1 (t1) = p satisfies the1

envelope condition. We now show that the point qM−1 (t1) is free2

of self-intersection. Suppose not, i.e., by Definition 5, there3

exists some t2 ∈ [0, 1] such that pM(t2) ∈ Ho
i . In other words,4

pM(t2) < V(Gi,M). However, since p ∈ ∂Gi, we have, for5

all t ∈ [0, 1], pM(t) ∈ V(Gi,M). This leads to a contradiction.6

Thus, it is proved that qM−1 (t1) satisfies the envelope condition7

and is free of self-intersection, i.e., qM−1 (t1) ∈ ∂V(Hi,M−1). �8

Lemma 8 states that all points of ∂Hi, i ≥ 0, lead to some9

point on the boundary of the swept volume ∂V(Hi,M−1) =10

∂Gi+1. This happens because each point of ∂Hi, i ≥ 0 itself11

is resulting from the sweep of Gi−1. The following corollary12

makes a similar claim for Gi, i ≥ 1.13

Corollary 9. Every point in ∂Gi leads to some point in ∂Hi for14

i ≥ 1.15

The proof is symmetric to that of Lemma 8, stated for16

∂Hi, i ≥ 1. It is important to note that Corollary 9 may not17

hold for i = 0, as explained in the paragraph before Lemma 7.18

Proposition 10. For all i ≥ 0, if p ∈ ∂Gi produces a point19

pM(t0) ∈ ∂Hi for some t0 ∈ [0, 1], then p ∈ ∂Gi+1.20

Proof. From the proof of Lemma 8, it follows that the point21

q := pM(t0) ∈ Hi produces the point qM−1 (t0) ∈ ∂Gi+1. Since22

qM−1 (t0) = p, we have that p ∈ ∂Gi+1. �23

Proposition 10 precisely identifies the set of points in Gi that24

remain invariant under the conjugation process described by25

Equations (1) and (2), i.e., the set Gi∩Gi+1. This is illustrated in26

the example of Figure 2 by showing G0 and G1 in overlapping27

positions in (e). This provides useful guidelines about how to28

go about refining the input, G0, in order to obtain the desired29

pair of gears.30

Corollary 11. For all i ≥ 0, if q ∈ ∂Hi produces a point31

qM−1 (t0) ∈ ∂Gi+1 for some t0 ∈ [0, 1], then q ∈ ∂Hi+1.32

Proposition 12. Gi = Gi+1, i ≥ 1 and Hi = Hi+1, i ≥ 0.33

Proof. That Gi = Gi+1, i ≥ 1 follows from Corollary 9 and34

Proposition 10. That Hi = Hi+1, i ≥ 0 follows from Lemma 835

and Corollary 11 . �36

Proposition 12 says that the iterative conjugation process37

converges after at most two steps. In the example of Figure 2,38

H0 and H1 are shown in overlapping positions in (f), in red and39

blue. Since H1 is identical to H0, the conjugation process has40

converged.41

4. Non-circular gears for non-uniform circular motion42

In the previous section, the method of iterative conjugation is43

exemplified using circular gears. We now focus on non-circular44

gears. Such gears enable conversion of uniform circular motion 45

of the driving gear, say G, into the desired non-uniform circular 46

motion of the driven gear, H. For the ease of discussion, we 47

again assume that the relative motion, M, between G and H is 48

given, so that H remains stationary. The design now proceeds in 49

two steps. In the first step, the overall shape of H, i.e., the shape 50

of H without teeth, is computed. This shape is referred to as the 51

centrode of H in previous literature [1]. In the second step, teeth 52

are arranged along the centrode of H, and G is obtained as the 53

conjugate of H. 54

In order to determine the centrode of H, we use the fact that
as the centrode of G moves along M, it makes tangential contact
with the centrode of H, without slipping. In other words, at any
time instant t0, the velocity of the point on the centrode of G,
which is in contact with that of H, is zero [1]. We call such a
point, a stationary point at t0. If we trace the stationary point
as the function of time t, we obtain the curve along which G,H
make tangential contact, with H stationary, i.e., we obtain the
centrode of H. This curve may be obtained as the solution to the
following algebraic equality, which is already well-known [1].

w : R2 × [0, 1]→ R2,w(p, t) := A′(t)p + b′(t) = 0 (5)

Equation (5) is a system of two algebraic equalities in three 55

variables, viz, p := (x, y) and t. We again employ the constraint 56

solvers [34] to obtain its solution curve. It is easy to see that 57

the solution set is non-empty if the rotation A(t) is not constant. 58

Further, if motion M is periodic, then the centrode is a closed 59

curve. Note that periodicity of M is stronger than Assumption 3 60

and further requires the derivatives at the end-points to coincide. 61

(a) θG →

θH

↑

0 2π
0

2π

(b)

(c)

(d)

H0

(e)

G0

Fig. 4: Design of non-circular gears. (a) Angular displacement of H as a func-
tion of that of G. (b) The centrode for H obtained by solving Equation (5).
(c) Input tooth profile for H0, modeled as a freeform B-spline curve. (d) Gear
H0 obtained by arranging 10 copies of tooth shown in (c) along the centrode in
(b). (e) The gear G0 obtained as the conjugate of H0.

Once the centrode of H is computed, teeth are arranged along 62
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this curve. The geometry and the number of teeth are specified1

by the user. This gives us the initial shape, H0 for H, which may2

be conjugated along M−1 to obtain G0. The iterations of conju-3

gation continue till convergence, as discussed in Section 3. An4

example is illustrated in Figure 4. The relative motion between5

G,H is specified as a map between the angular displacement of6

G and that of H in (a). The centrode of H obtained as the solu-7

tion of Equation (5) is shown in (b). The copies of the freeform8

tooth profile shown in (c) are arranged along the centrode of H9

to obtain the gear H0 shown in (d). The gear G0 obtained as10

the conjugate of H0 along M−1 is shown in (e). Note that, if11

the tooth profile is being arranged along a circular centrode, as12

is the case in the example shown in Figure 2, one may exploit13

the circular symmetry and reduce the amount of computation.14

However, this does not hold for centrodes which do not have15

such symmetry, for instance, the example shown in Figure 4. In16

this case the tooth profile in the conjugate gear varies, as can be17

seen in Figure 4(e).18

5. Algebraic swept volume computation19

The conjugation operation described in previous sections is20

based upon precise computation of swept volumes. In this sec-21

tion, we describe the computation of V(G,M), as in Defini-22

tion 2. B-spline functions are used for representing ∂G. The23

translation b(t) as well as the entries of the rotation matrix A(t)24

of Definition 1 are also represented using B-spline functions.25

The entries of A(t) involve trigonometric functions which we26

approximate with B-splines by employing the method of [35].27

While rational splines may be able to precisely represent cir-28

cles, the parametrization is non-uniform and does not serve the29

purpose in our case. The output, ∂V(G,M), is again represented30

using B-spline functions, within prescribed tolerance. Our al-31

gebraic approach ensures numerical precision and topological32

guarantee and consists of four major steps. The first step in-33

volves obtaining the solution set of the envelope condition given34

in Definition 4. This is described in Section 5.1. The solution35

thus obtained is oriented so that the enclosed swept volume is36

on the left side of the curve. This is described in Section 5.3.37

Next, local self-intersections in the envelope are excised, which38

is explained in Section 5.4. Finally, Section 5.5 explains the39

construction of ∂V(G,M) which involves resolving global self-40

intersections.41

5.1. Solution to the envelope equation42

Recall from Section 3 that the necessary condition for a point43

on ∂G to belong to the boundary of V(G,M) is to satisfy the44

envelope condition given by Definition 4, which we now write45

in parametric form.46

Definition 13. The gear G is represented by its boundary,47

which is a closed, regular, C1-continuous parametric curve, g :48

[0, 1] → R2, i.e., g(0) = g(1) and dg
dr (r0) , (0, 0),∀r0 ∈ [0, 1].49

Here r is the parameter of the curve g.50

From Definitions 1, 4 and 13, it follows that a point (r0, t0) in
the parametric space [0, 1] × [0, 1] satisfies the envelope condi-

tion if it satisfies the following equation.

f (r, t) := E(g(r), t) = 0. (6)

Since Equation (6) has two variables, viz. r, t, the solution, in 51

general, is of dimension one, i.e., a set of curves in the param- 52

eter space, (r, t). Equation (6) involves the dot-product of ve- 53

locity and normal. The velocity at a point (r, t) is computed 54

as A′(t)g(r) + b′(t), which is represented using B-spline func- 55

tions. Recall from Section 3 that the normal is computed as 56

A(t)nG
M , which is again represented as B-spline functions. Since 57

B-spline functions are closed under addition and multiplica- 58

tion [36], Equation (6) is represented using B-spline functions, 59

precisely. 60

We employ the constraint solver by Barton et al. [34] to ob- 61

tain the solution to Equation (6). This solver returns solutions to 62

under-constrained systems of algebraic equations with numer- 63

ical and topological guarantee. The returned solution is in the 64

form of a sequence of connected points, each of which satis- 65

fies the prescribed constraints up to user-given numerical toler- 66

ance. The distance between consecutive points too is governed 67

by user-given step-size. More importantly, the solver guaran- 68

tees that no portion, topologically, of the solution is left out, up 69

to the prescribed tolerance. This, in turn, ensures that no por- 70

tion of the envelope is missed out, up to prescribed tolerance. 71

The solution points, which are in parametric space, are mapped 72

into the object space via the map (r, t) 7→ A(t)g(r) + b(t). We 73

fit a cubic B-spline curve to the resulting points to obtain the 74

envelope curves, as in Definition 4. 75

In the simple example shown in Figure 3, the envelope curves 76

are shown in black, green and red. A non-trivial example is 77

illustrated in Figure 5. The input gear G shown in (a) is un- 78

dergoing rigid motion M which is composed of rotation about 79

the center of G and translation along a circular path. The set of 80

solution curves of Equation (6), mapped from parameter space 81

(r, t) to object space (x, y), is shown in (b). 82

5.2. Handling C1-discontinuities 83

The envelope condition prescribed by Equation (6) in Sec- 84

tion 5.1 requires ∂G to be C1-continuous. In this section, we 85

describe the computation of envelope curves arising from C1- 86

discontinuities in ∂G. Such points will be referred to as sharp 87

points in ∂G. Unlike a regular point in ∂G, a sharp point 88

in ∂G has a cone of normals. For instance, at the point p 89

in the schematic shown in Figure 6, ∂G has a cone of out- 90

ward normals bounded by n1, n2. The point p generates a 91

set of envelope curves which may be parameterized as t 7→ 92

A(t)p + b(t). Any such curve is bounded by end-points which 93

satisfy
〈
p′M(t), A(t)n1

〉
= 0 or

〈
p′M(t), A(t)n2

〉
= 0. 94

5.3. Orientating envelope curves 95

The boundary g(r) of input G is oriented so that the interior 96

Go lies on the left side of the curve. The envelope curves ob- 97

tained in Section 5.1 and 5.2 must be oriented in a consistent 98

manner. Consider a point (r0, t0) of the envelope curve and let 99

A(t0)g(r0) + b(t0) = q0. The curve is oriented so that GM(t0) is 100

on the left side of the envelope curve at the point q0. By Defini- 101

tion 2, this ensures that the swept volume is on the left side of 102

its boundary curve. 103
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(a)G

(b)

(c)

•
p

•q

(d)H

Fig. 5: Swept volume construction. (a) Input G which undergoes motion with
rotation about its center and translation along a circle. (b) The envelope curves.
(c) Envelope curves after trimming local self-intersections. (d) Portion of the
swept volume boundary, enclosing the finite region.

p

n1 n2

Fig. 6: A point p ∈ ∂G with C1-discontinuity has a cone of outward normals.

5.4. Excising local self-intersections 1

Local self-intersections are limiting cases of self- 2

intersections as in Definition 5 and lead to singularities in 3

the envelope. In regions with local self-intersections, the 4

envelope loses orientability. 5

Definition 14. Suppose a point p = qM(t0) in the envelope has 6

self-intersection. We say that p has local self-intersection if 7

∀ε > 0,∃t1 ∈ [0, 1] such that ‖t0 − t1‖ < ε and p ∈ Go
M(t1). 8

Local self-intersections in the envelope are well- 9

understood [12, 27, 32, 37]. Unlike global self-intersections, 10

local self-intersections may be detected by querying local 11

data at time t0. Local self-intersections may only arise in 12

the envelope curves described in Section 5.1. The envelope 13

curves arising from the sharp points of input, as described in 14

Section 5.2 are free of local self-intersections. While a detailed 15

exposition on local self-intersections is beyond the scope of 16

this paper, here we briefly outline the mathematical function 17

which detects local self-intersections. For details, the reader is 18

referred to previous works [12, 27, 32] which discuss this issue 19

in detail. 20

Let (r0, t0) be a point which satisfies Equation (6). Since the 21

velocity, V(r0, t0) = A′(t0)g(r0) + b′(t0), is orthogonal to the 22

normal to ∂G at this point, we have that the velocityV and the 23

tangent, T (r0, t0) = A(t0)g′(r0) to ∂G, are linearly dependent. 24

In other words, there exists a non-zero real α(r0, t0) such that 25

V(r0, t0) = α(r0, t0)T (r0, t0). The following lemma uses Equa- 26

tion (6) and furnishes a test for local self-intersections which, 27

in effect, compares the curvature of ∂G with that of the motion 28

M at a point on the envelope. In the following lemma, fr and ft 29

refer to the derivatives of f , as in Equation (6) with respect to r 30

and t. 31

Lemma 15. A point (r0, t0) satisfying the envelope condition 32

has local self-intersection if α(r0, t0) fr(r0, t0) − ft(r0, t0) < 0. 33

For proof refer to [32], Theorem 34. In the example 34

shown in Figure 3, the portion of the envelope with local self- 35

intersections is shown in red. The function in Lemma 15 is 36

computed in closed form. Hence, the trimming of regions 37

with local self-intersections is fast and numerically robust. We 38

continue the example of Figure 5 for illustration. The en- 39

velope curves shown in (b), after trimming away local self- 40

intersections, are shown in (c). This aids in reducing the com- 41

putational complexity of the next step. 42

5.5. Stitching the boundary of the swept volume 43

At this stage, the envelope curves are oriented, and regions 44

with local self-intersections discarded. It now remains to trim 45
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regions with global self-intersections and to stitch together1

curve segments which bound the swept volume. Recall from2

Assumption 3 that the swept volume is homeomorphic to an3

annulus which partitions R2 into two regions: one finite and an-4

other infinite. Here we are interested in the portion of the enve-5

lope which bounds the finite region. This is obtained as a loop,6

i.e., a closed sequence of adjacent curve segments. This step7

is similar to the computation of lower-envelopes [38, 39, 40]8

for a given set of curves. Unlike the envelope in our case,9

the lower-envelope in their case refers to a set of curves which10

lower-bound a given set of curves with respect to a given di-11

rection or distance function. However these approaches assume12

monotonicity of the input curves with respect to some direc-13

tion, which does not hold in our case. Instead, we exploit the14

rich sweep structure inherent to the envelope curves.15

The algorithm for stitching the loop is summarized in Algo-16

rithm 1. It takes as input the list of envelope curves, Crv-list, as17

explained above, and a starting-curve, St-crv, whence the con-18

struction of the loop begins. The starting-curve is obtained by19

shooting a ray from the center of the enclosed region and se-20

lecting the first curve segment which intersects this ray. Algo-21

rithm 1 iteratively finds the next curve segment which is adja-22

cent to the current segment and appends the same to the loop.23

The next segment may be in contact with the current segment24

either by transversal curve-curve intersection or touching at the25

end-points. This is illustrated in Figure 5(c) by points p and26

q. The two cases are handled by the functions FindNxtCrvIn-27

tersect and FindNxtCrvAdjacent in Algorithm 1. The construc-28

tion is complete when the loop is closed. This is illustrated in29

Figure 5(d).30

Algorithm 1 ConstructLoop(St-crv, Crv-list)

1: Loop← {St-crv};
2: Curr-crv← St-crv;
3: while TRUE do
4: Nxt-crv← FindNxtCrvIntersect(Curr-crv, Crv-list);
5: if Nxt-crv = ∅ then
6: Nxt-crv ← FindNxtCrvAdjacent(Curr-crv, Crv-

list);
7: end if
8: if Nxt-crv = St-crv then
9: break;

10: end if
11: Loop← Loop ∪ {Curr-crv};
12: Curr-crv← Nxt-crv;
13: end while
14: return Loop;

6. Results31

Here we present examples which corroborate the observa-32

tions made in the previous sections. The example shown in33

Figure 7 involves circular gears. The input gear G0 is shown in34

(a) which is modeled by a cubic B-spline curve with 228 con-35

trol points. The motion M consists of rotation by an angle of36

2π and translation along a circle of radius twice that of G0, with37

uniform speed. The shape of H0, obtained as the conjugate of 38

G0 along M, is shown in (b). It is modeled as a cubic B-spline 39

curve with 260 control points. The next version, G1, obtained as 40

the conjugate of H0 along M−1 is shown in (c). It is a cubic B- 41

spline curve with 314 control points. The shapes G0 and G1 are 42

shown in overlapping position in (d), in red and blue. G0,G1 43

being identical, the conjugation process has terminated. Each 44

iteration of conjugation took about 110 seconds on a computer 45

with Intel i5 processor and 8 GB memory. 46

An example of a non-circular gear is shown in Figure 8. Gear
G0 has seven block-like teeth and is modeled as a cubic B-
spline curve with 280 control points. It is swept along a mo-
tion M involving rotation by an angle of 2π ∗ 8

7 and translation
along an oblong shaped curve. This curve is composed of two
semi-circles connected by a pair of parallel line segments and
is parametrized as follows.

c(t) =



(
−t + π

2 , 1
)

t ∈ [0, π](
− π2 + cos(t − π

2 ), sin(t − π
2 )

)
t ∈ [π, 2π](

t − 5π
2 ,−1

)
t ∈ [2π, 3π](

π
2 + cos(t − 3π

2 ), sin(t − 3π
2 )

)
t ∈ [3π, 4π]

The resulting conjugate shape, H0, as shown in (b), has eight 47

teeth. It is a cubic B-spline curve with 350 control points. Note 48

the variation in the geometry of the teeth of H0. H0 is conju- 49

gated along M−1 to obtain G1, shown in (c). It is a cubic B- 50

spline curve with 330 control points. The shape of H1 obtained 51

from conjugation of G1, is identical to that of H0 and is not 52

shown. Each iteration of conjugation took about 120 seconds. 53

Design of a non-linear rack-pinion system is illustrated in 54

Figure 9. In such an assembly, the pinion is connected to an 55

actuator and undergoes translation along the rack as it rotates 56

about its axis. The centrode of the rack, which determines the 57

overall shape of the rack, is shown in (a). The gear G0 shown 58

in Figure 7(a) acts as the pinion. In order to compute the rel- 59

ative motion M, an approximate arc-length parametrization of 60

the centrode curve is computed by a dense sampling of points. 61

The center of G0 undergoes translation along the offset of the 62

centrode. The amount of rotation is determined by the length 63

traversed along the centrode, so that there is no slipping, as ex- 64

plained in Section 4. The shape H0 of the rack, thus obtained by 65

conjugation of G0 along M, is shown in (b). The computation 66

of conjugation took about 170 seconds. 67

Three examples for design of gears with freeform tooth 68

shapes are shown in Figure 10. The tooth profiles, modeled 69

as B-spline curves are shown in (a). Six copies of these are ar- 70

ranged along a circle to obtain the initial shapes for G0, shown 71

in (b). The gears G0 are swept along a relative motion M involv- 72

ing rotation by angle 2π about the center of G0 and translation 73

along a circle of radius twice that of G0. The resulting conjugate 74

gears H0 are shown in (c). The gears H0 are conjugated along 75

M−1 to obtain shapes for G1, shown in (d). The simplification 76

is evident by overlapping the shapes of G0,G1 as shown in (e). 77

The shape of H1 is identical to that of H0 and is not shown. 78

Such gears may be manufactured via 3D-printing, laser cutting 79

or 3-axis CNC-machining. It may be noted that involute gears 80

remain the preferred choice in a majority of cases and freeform 81

gears may be relevant only for niche applications. 82
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(a)G0 (b)
H0

(c)G1 (d)
G0,G1

Fig. 7: (a) The input gear G0 which has six approximately triangular teeth. It
is being swept along motion M which consists of rotation by an angle of 2π
and translation along a circle of radius 2, with uniform speed. (b) The gear H0
obtained as the conjugate of G0 along M. (c) The gear G1 obtained as the con-
jugate of H0, along M−1. (d) Gears G0 and G1 shown in overlapping positions,
in red and blue. Since G0 and G1 are identical, the conjugation process has
converged.

7. Conclusion1

This paper proposes a general mathematical framework for2

design of conjugate geometries. This is achieved by an in-depth3

analysis of the contact between conjugate shapes. The charac-4

terization of shape invariance leads to guarantee of convergence5

of conjugation. The mathematical framework is complemented6

by a robust computational framework with numerical and topo-7

logical guarantees. The resulting algorithm is employed in de-8

signing pairs of meshing gears with freeform shapes, that allow9

non-uniform transmission of motion. The resulting computer10

codes are used to generate a variety of examples in 2D.11

This work may be extended along several interesting direc-12

tions. Extending this framework to 3D will enlarge the field of13

application, for instance, in design of spiral bevel gears. Sliding14

between conjugate teeth profiles is an important issue related15

to gear design and most practical gears have non-zero sliding.16

While we demonstrate examples with freeform tooth geome-17

try which allows complete freedom over tooth shape, analysis18

of sliding may lead to better design. The scope of this work19

is restricted to kinematic design. Including forces in the de-20

sign process may lead to improved mechanical properties of re-21

sulting parts. Further, consideration about efficient means of22

manufacturing of freeform gears may lead to interesting design23

algorithms.24

The examples shown in Figures 2, 4, 8, 9 and 10 are animated25

at https://youtu.be/y1zesqut5Vs.26

(a)
G0

(b)
H0

(c)
G1

(d)
G0,G1

Fig. 8: (a) The input gear G0 which has seven block-like teeth. It is being swept
along motion M which consists of rotation by an angle of 2π∗ 8

7 and translation
along an oblong shaped curve, with uniform speed. (b) The gear H0 obtained
as the conjugate of G0 shown in (a). Thus, H0 has eight teeth. (c) Gear G1
obtained as the conjugate of H0 along M−1. (d) Gears G0,G1 are shown in
overlapping position, in red and blue.
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Fig. 10: Design of gears with freeform tooth shapes. (a) Tooth profiles modeled as freeform B-spline curves. (b) Initial designs for gears G0 obtained by arranging
six copies of the tooth shown in (a) around a circle. (c) The gears H0 obtained as the conjugate of G0 shown in (b) along motion M which involves rotation by angle
2π about center of G0 and translation along a circle of radius twice that of G0. (d) The gears G1 obtained as the conjugate of H0 shown in (c) along M−1. (e) Gears
G0,G1, shown in red and blue, in overlapping positions.
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The matrix A(t) being orthonormal, we have,

A(t)A−1(t) = I

⇒A′(t)A−1(t) + A(t)A−1′(t) = 0

⇒A′(t0) = −A−1′(t0). (A.1)
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The velocity at pM−1 (t) is computed as,

qM−1 (t) = A−1(t)(p − b(t))

⇒ q′M−1 (t) = A−1′(t)(p − b(t)) − A−1(t)b′(t). (A.2)

At t = t0, from Equation (A.1) and (A.2) we get,

q′M−1 (t0) = −A′(t0)p − b′(t0)
= −p′M(t0).

�1


	Introduction
	Previous work
	Iterative conjugation
	Non-circular gears for non-uniform circular motion
	Algebraic swept volume computation
	Solution to the envelope equation
	Handling C1-discontinuities
	Orientating envelope curves
	Excising local self-intersections
	Stitching the boundary of the swept volume

	Results
	Conclusion
	Acknowledgment
	Some facts about rigid motions

