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ARTICLE INFO ABSTRACT

Gears play a pivotal role in machine design. This paper proposes an algorithm to sim-
plify the shapes of planar gears. This is achieved via iterative conjugation, using precise
algebraic sweeps. The notion of shape simplification is introduced in a mathematically
rigorous manner and it is shown that the conjugation process converges, yielding a pair
of meshing gears that follow the desired motion. Simplified gear shapes may lead to
improved mechanical characteristics and reduction in manufacturing costs.

The generality of algebraic sweeps allows precise design of gears with freeform
shapes and non-uniform motion transmission. Moreover, the computational framework
proposed in this paper is versatile, with applications beyond gear design. A variety of
examples from an implementation of our algorithm, that offers topological guarantees,
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are presented, which demonstrate the robustness and efficacy of our approach.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

This paper studies conjugation through the problem of design
of a pair, G, H, of meshing gears in R2. Here conjugation refers
to swept volume computation followed by Boolean-negation
operation. An example is shown in Figure 1 illustrating a cam-
follower mechanism. A cam is a non-circular disk, which ro-
tates about a pivot, and transmits motion to the follower via
tangential contact. The follower is restricted to undergo recip-
rocating motion about a line. The shape of H is obtained as the
conjugate of G. We reverse the roles of G and H and repeat.
This leads to simplified shapes of G and H. The method of con-
jugation also allows for design of non-circular gears which have
non-uniform motion transmission [1]. Moreover, the conjuga-
tion operation has a wide field of application in design of kine-
matic pairs wherein two bodies are in motion while maintaining
tangential contact. For instance, cam-follower mechanisms [2],
or replacement parts for joints in human body [3], to name a

*Corresponding author:
e-mail: jinesh@iitmandi.ac.in (Jinesh Machchhar)

few. In order to perform conjugation, a robust computational
framework for sweeps is proposed. Sweeping is a fundamental
geometric primitive with diverse applications such as machin-
ing verification [4] and collision detection [5].

G Stock

(a) (b) (©

Fig. 1: Design of cam-follower mechanism using conjugation. The follower, H,
shown in (a) is swept along an elliptical path, while orienting it so that its axis
stays aligned with the normal to the ellipse. The swept volume thus obtained is
Boolean-subtracted from the stock shown in (b) to obtain the elliptical cam, G,
shown in (c) along with the follower, H. The follower’s motion is restricted to
be along its axis. As the cam rotates about its center, it displaces the follower,
which stays in tangential contact.

Gears transmit motion via tangential contact. Typically, one
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of the pair, say G, acts as the driving gear, whose uniform cir-
cular motion is translated into the desired motion for the driven
gear, H. Such a pair is illustrated in Figure 2(a) and (b). The
overall shapes as well as the geometry of the teeth of G, H dic-
tate the motion profile of H. In other words, together, the shape
of G and the relative motion M between G and H, implicitly
encode the shape of H. Such a pair of meshing gears is an ex-
ample of a conjugate pair. In contrast to traditional methods
for design of gears and other conjugate shapes, which termi-
nate after a single step of conjugation, our approach involves
multiple iterations of conjugation. The shape of H obtained in
the previous step is employed to compute a refined version of
G. This process is repeated. We show that the iterations con-
verge after at most two steps. As a result, the shapes of G, H are
simplified, without altering the relative motion M. This is illus-
trated by an example shown in Figure 2. The shape Hy shown
in (b) is obtained as the conjugate of Gy shown in (a), along M.
H, is further conjugated along M~ to obtain G, shown in (c).
Likewise, G is used to compute H; shown in (d). Gy,G; and
Hy, H, are shown in overlapping positions in (e) and (f). As can
be seen, G is a simplified version of Gy. Since H| is identical
to Hy, the conjugation process has converged. These notions
are formalized in Section 3.

One way to approximate H as the conjugate of G would be
via a series of Boolean operations. A more precise approach is
using swept volumes. Under this scheme, the swept volume of
G under M is computed and Boolean-subtracted from a block
to obtain H. A number of approaches for swept volume com-
putation have been proposed previously, but they all lack one
or the other key ingredient, preventing a general and practical
implementation. In particular, the requirements of tight numeri-
cal tolerances and topological completeness render the previous
approaches unsuitable for our purpose. We propose a swept vol-
umes framework based on algebraic computation, upon which
the conjugation algorithm is built. Use of B-spline functions
for constructing algebraic equations aids in precise modeling
of the envelope condition, only to be fed to robust constraint
solvers which return the solution with the prescribed numerical
tolerance and topological guarantee.

The contribution of this work is threefold. To our knowl-
edge, this is the first attempt at shape simplification for conju-
gate geometries. A shape is simplified so that any region on its
boundary, which does not come in contact with the conjugate,
is excised. In the context of gears, this leads to tighter mesh-
ing. Secondly, our framework accommodates design of gears
with freeform shapes, which allow non-uniform motion trans-
mission. Unlike previous works on gear-design, our algorithm
provides a complete computational framework with numerical
guarantees. Handling of local and global self-intersections en-
sures correctness of output in difficult cases, for instance, when
the geometry of all teeth is not identical. Finally, we propose
a robust computer implementation for sweeps in 2D. Our alge-
braic approach is based on B-spline functions and use of state-
of-the-art numerical solvers to provide guarantees on the nu-
merical precision and topological completeness, lacking in pre-
vious works.

The rest of the paper is organized as follows. In Section 2,

oL
oL

Hy, H

Fig. 2: (a) The input gear Go which has five block-like teeth. It is being swept
along motion M which consists of rotation by an angle of 27 around the center
of Gy and translation along a circle of radius twice the radius of Gy about center
of Hp, with uniform speed. (b) The gear Hy obtained as the conjugate of Gg
shown in (a), along M. (c) The gear G obtained as the conjugate of Hy shown
in (b), along M. (d) The gear H; obtained as the conjugate of G| shown in (c)
along M. (e) Gears Gy and G| shown in overlapping positions, in red and blue
respectively. Clearly, they are not congruent. (f) Gears Hy and H; are shown in
overlapping positions, in red and blue respectively, and are identical. Thus the
conjugation process has converged.

we survey related previous work on gear design and swept vol-
umes. In Section 3, our approach of iterative conjugation is
discussed, assuming that the initial shape G and the relative
motion M are given. Section 4 discusses the design of non-
circular gears. Some examples from an implementation of our
algorithm in the IRIT [6] kernel are presented, in Section 6.
The paper is concluded, in Section 7, with remarks on possible
extensions of this work.

2. Previous work

Designing of gears is well-studied [1, 7, 8, 9, 10]. One of
the earliest attempts at computing conjugate gears using sweeps
was by Litvin [11], wherein, the necessary condition for mesh-
ing of gears is characterized. This condition is well-known as
the envelope condition in the literature on sweeps [12] and in-
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volves the dot-product of the normal and the velocity at a point
under consideration. Puccio et al. [13] propose an alternative
description of the condition of meshing based on vectorial no-
tation. The above methods are restricted to circular gears. Here
circle refers to the overall shape of the gear, without teeth. De-
sign of non-circular gears is considered by Litvin et al. [14] by
computing the centrodes of the gears from the motion profiles.
Centrodes of a pair of meshing gears are the curves which rep-
resent the overall shape of the gears, without teeth, along which
they make contact without slipping. Zarebski et al. [15] propose
a method for designing non-circular gears wherein the envelope
computation is done approximately without any error-bounds.
Bendefy et al. [16] design gears with varying gear-ratio and
center-distance. In their method, different portions of teeth such
as the flank, top and bottom land are constructed separately.
A common limitation of all the previous methods is a lack of
computational framework by which to construct the shape of
the conjugate gear with the prescribed numerical precision and
topological guarantee. In particular, solving the envelope con-
dition has been one of the primary computational bottlenecks in
previous approaches. The envelope condition poses an under-
constrained system of algebraic constraints whose solution re-
mains a challenging task. Bonandrini et al. [17, 18] propose a
computational framework which is limited to design of circular
gears.

Johann et al. [19] study the geometry of the conjugate flanks
of gear teeth of arbitrary shape. The flank of a tooth is the
leading edge of the tooth which is in contact. In their work,
the focus is on local contact while the arrangement of teeth
and global self-intersections resulting therefrom are not studied.
Likewise, Litvin et al. [20] characterize the singularities on the
envelopes of gear tooth surfaces. This approach handles local
self-intersections but not global self-intersections. Resolving
global self-intersections is especially important when the gears
are not circular and the geometry of all the teeth may not be
identical [21].

Swept volume generation, which forms the backbone of our
algorithm, is a classical problem in solid modeling [22, 23, 24].
We survey some of the prominent works in this area. Blackmore
et al. [4, 25] formulate the boundary of the swept volume as the
solution of a differential equation. This requires the input shape
to be in implicit form and the output surface is constructed by
interpolating sampled points. Such an approach lacks bounds
on the approximation error. Abdel-Malek and Yeh [26] propose
a swept volume method based on rank deficiency condition of
the Jacobian of the sweep map. This method readily gener-
alizes to arbitrary dimensions. However, their approach for
finding solutions restricts the input to analytic shapes. Erdim
and Ilies [27, 5] give a membership test for a candidate point
to belong inside, outside or on the boundary of the swept vol-
ume. Singularities on the envelope in 2D case are also identi-
fied. Their approach requires performing curve-curve intersec-
tion for each query point. Such an approach yields a complete
characterization of the boundary of the swept volume, but is
computationally expensive. Rossignac et al. [28] compute the
boundary of the swept volume by restricting the input motion
to be a screw motion. While this leads to an efficient algorithm,

the limitation is clear, namely, the class of admissible motions.
Zhang et al. [29] give a method for fast computation of swept
volumes but which is restricted to polygonal input solids. Pe-
ternell et al. [30] obtain a set of sampled points on the boundary
of the swept volume. They derive a formula for the evolution
of curves of contact, which helps bound the distance between
any two consecutive curves of contact. This approach, however,
does not give a guarantee on the completeness of the output.
Wallner et al. [31] propose a method for swept volume compu-
tation along motion specified by a set of discrete pose cloud,
however, their approach is limited to polyhedral shapes. Adsul
et al. [32] propose a computational framework for swept vol-
umes in parametric boundary representation format with anal-
ysis of local and global self-intersections. However, no topo-
logical guarantee is given on the completeness of the output.
In summary, a robust implementation of sweeps with a high de-
gree of numerical precision is missing. A method either restricts
the class of inputs, or approximates the output without bounds
on error. Moreover, to our knowledge, no previous approach
addresses the issue of solving the envelope condition - which
is central to swept volumes - with numerical and topological
guarantees. Our approach alleviates these issues.

3. Iterative conjugation

The gears G and H undergo one parameter family of rigid
motions Mg and My, respectively, while making tangential
contact with each other. The system (G, H, Mg, My) is equiv-
alent, up to some rigid transform, to the system (G, H, Ml;l °
Mg, I), wherein the relative motion between G and H is ap-
plied to G, while H stays stationary. We will denote the relative
motion M1_1] o Mg by M. Similarly, another equivalent represen-
tation would be (G, H,1, M;;' o My). All the discussion in this
paper is with respect to some fixed, global coordinate system.
The input to the iterative conjugation algorithm is an initial de-
sign for G, and the relative motion M. We employ the boundary
representation (B-rep) for G.

We will denote the boundary and the interior of a shape G by
0G and G°, respectively. It is assumed that dG is free of self-
intersections. For example, G is represented by its boundary
in Figure 2(a). G moves along a one parameter family of rigid
motions M, defined as follows:

Definition 1. A one parameter family of rigid motions, M,
in R?, is amap M : [0,1] = (SO(2),R?), such that M(r) =
(A(1), b(1)), where A(t) is a 2 X 2 rotation matrix and b(t) is a
translation vector in R?. The parameter 7 in this definition rep-
resents time.

The action of M on a point p € R? at time ¢ € [0, 1] is given
by A(f)p + b(t) and is denoted by py,(#). Likewise, the action of
M on G at time ¢ is denoted by Gy, () and obtained as {A(#)p +
b(t)|p € G}. The velocity at py(¢) will be denoted by p’,(¢) and
is computed as A’(f)p+b’(t), where ’ denotes the derivative with
respect to . If n%(p) is the outward normal to dG at p € G,
then the outward normal to G (?) at py(2) is given by A(t)n(p)
and denoted by n (p, 1).

The computation of the geometry of H is performed by com-
puting the swept volume of G along M, defined as follows:
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Definition 2. The swept volume of G along a one parameter
family of rigid motions M is defined as | J,¢[01) Gm(?) and de-
noted by V(G, M).

Thus, V(G, M) is the infinite union of all the transforms of
G along M. Like G, we also use the B-rep for V(G, M). Thus,
it suffices to compute dV(G, M) in order to obtain a complete
representation of V(G, M). We make the following assumption
for the ease of exposition, which holds from now on.

Assumption 3. It is assumed that G (0) = Gy (1), i.e., the ini-
tial and final position of G under M, coincide. Further, V(G, M)
is assumed to be homeomorphic to an annulus.

Conjugation involves computing the swept volume V(G, M),
which is carved, i.e., Boolean-subtracted, from the stock of H,
to obtain H. The actual shape of the stock is of little relevance
as long as it is large enough. Whenever carving, we assume the
stock to be the Euclidean plane, R2. Since V(G, M) is home-
omorphic to an annulus, R? \ V(G, M) has two components,
one finite and another infinite. Only the finite component is of
interest, the other one is discarded. We will denote the finite
component of R? \ V(G, M) by V(G, M).

Our approach involves multiple iterations of conjugation.
Each iteration involves computing the swept volume of G (H)
and carving it from R to obtain the next version of H (G). The
input to the algorithm is the initial version, Gy for G, and the
relative motion M. In the first iteration, V(Gy, M) is conjugated
to obtain Hy, i.e. Hy = V(Gy, M). In the next iteration, G is ob-
tained as V(Hy, M~1). This process is repeated until G; = Gy
and H; = H;, for all i > m for some m > 0. We later show, in
Proposition 12, that no more than two iterations are necessary.
The iterative conjugation process is summarized below.

H; =V(G;, M), i20, 6]
G;=V(Hi-1,M™), iz 1. @

oV(G;,M),i > 0 and 0G; =
OV(H;_1,M~),i > 1. An example of iterative conjugation is
shown in Figure 2 wherein G, Hy, G| and H, are shown in (a),
(b), (c) and (d).

The computation of dV(G;, M) is done via the well-known
envelope condition [33] which states that a point py(f) €
0G;, (1) belongs to dV(G;, M) only if the velocity at py(?) is
tangent to 0G;,, (¢).

By construction, 0H; =

Definition 4. A point py(#) € G y(?) is said to satisfy the en-
velope condition if &(p, 1) := <pjw(t), n%(p, t)> = 0. The set of
points satisfying the envelope condition will be referred to as
the envelope.

Figure 3 illustrates an example wherein a circular disc is
being swept along a parabolic path, shown as a dotted curve.
The envelope curves are shown in black, green and red. Note
that this example is given only to clearly illustrate the con-
cept of swept volumes and does not satisfy Assumption 3, i.e.,
Gu(0) # Gy (D).

Not all points in the envelope belong to the boundary
of the swept volume. The envelope may contain self-
intersections [24] which need to be trimmed away in order to
obtain the boundary of the swept volume.

Gu(0) Gu(1)

Envelope

Fig. 3: Swept volume computation for a circular disc undergoing translation
along a parabola, shown as a dotted curve. The disc is shown at initial and
final positions in blue. The envelope curves are shown in black, green and red.
The boundary of the swept volume, which is a subset of the envelope curves, is
shown in black. Portions of envelope with local and global self-intersection are
shown in red and green.

Definition 5. While sweeping G; along M, the envelope is said
to have self-intersection at a point p if there exists ¢ € [0, 1]
such that py-1(2) € GY.

The above definition is equivalent to saying that p € G¢,(?)
for some 7 € [0, 1]. The following lemma states that such points
do not belong to the boundary of the swept volume. In the ex-
ample shown in Figure 3, the portion of envelope shown in red
and green has self-intersection.

Lemma 6. While sweeping G; along M, if the envelope has a
self-intersection at a point q, then q ¢ OV(G;, M).

Proof. If p := qy-1(¢) € G?, then py(t) = q. Since p € G,
q € V(G;, M) but g ¢ 0V(G;, M). The point g being obscured
by an interior point of G;,(f), is not on the boundary of the
swept volume. O

The set dV(G;, M) is obtained after trimming away points
of self-intersection from the envelope. In the example of Fig-
ure 3, the set 0V(G, M) is shown in black. It follows that if a
point, g, satisfies the envelope condition and is free from self-
intersection, then g € dV(G;, M).

There may exist points in dGy which do not give rise to any
point in dV(Gy, M), i.e., for some p € Gy, py(t) ¢ 0V(Gy, M),
for all + € [0,1]. The reason being, p may either fail to
satisfy the envelope condition in Definition 4 or may get ob-
scured by self-intersections as in Definition 5. Interestingly,
Lemma 8 states that all the points in dH; give rise to some point
in V(H;, M~").

Lemma 7. If g = py(ty) for some ty € [0, 1], then CI;W (ty) =
=piy(to).
For a proof refer to Appendix A.

Lemma 8. For every q € 0H;,i > 0, there exists t € [0, 1] such
that gy (t) € OV(H;, M™1).

Proof. Fix a point g € dH;. Since g € dV(G;, M), there exists
p € 9G; and t; € [0, 1] such that py(t;) = ¢. In other words,
pu(ty) satisfies the envelope condition, i.e.,

(Ph(t),n§i(p, 1)) = 0. 3)
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We first show that while sweeping H; along M~!, the point
gu-1(t1) satisfies the envelope condition. From Lemma 7 we
know that q;w,l(tl) = —-p),(t1). Also, it can be shown that

ny (g, 1) = —ng;(p, h). Hence,

(@@ (@) = (Pl nGi(pt)) = 0. (@)

Thus, we have shown that the point g,,-1(f;) = p satisfies the
envelope condition. We now show that the point g,,-1(#;) is free
of self-intersection. Suppose not, i.e., by Definition 5, there
exists some #, € [0, 1] such that py(#2) € H?. In other words,
pu(tz) ¢ V(G;, M). However, since p € dG;, we have, for
all r € [0, 1], py(?) € V(G;, M). This leads to a contradiction.
Thus, it is proved that g,,-1(#;) satisfies the envelope condition
and is free of self-intersection, i.e., gy-1(¢;) € OV(H, M™"). O

Lemma 8 states that all points of dH;,i > 0, lead to some
point on the boundary of the swept volume OV(H;, M~!) =
0G;,1. This happens because each point of dH;,i > 0 itself
is resulting from the sweep of G;_;. The following corollary
makes a similar claim for G;,i > 1.

Corollary 9. Every point in G; leads to some point in 0H; for
i>1

The proof is symmetric to that of Lemma 8, stated for
O0H;,i > 1. It is important to note that Corollary 9 may not
hold for i = 0, as explained in the paragraph before Lemma 7.

Proposition 10. For all i > 0, if p € 0G; produces a point
pu(to) € OH,; for some ty € [0, 1], then p € G 41.

Proof. From the proof of Lemma 8, it follows that the point
q = pu(to) € H; produces the point gy-1(tp) € 0G;. Since
qu-1(to) = p, we have that p € G, . O

Proposition 10 precisely identifies the set of points in G; that
remain invariant under the conjugation process described by
Equations (1) and (2), i.e., the set G;N G, . This is illustrated in
the example of Figure 2 by showing Gy and G in overlapping
positions in (e). This provides useful guidelines about how to
go about refining the input, Gy, in order to obtain the desired
pair of gears.

Corollary 11. For all i > 0, if g € 0H; produces a point
qu-1(ty) € 0G4 for some ty € [0, 1], then g € OH4.

PI‘OpOSitiOIl 12. G; =Gy, i>1and H; = Hiy1, i > 0.

Proof. That G; = Gjy1, i = 1 follows from Corollary 9 and
Proposition 10. That H; = H;y1, i > 0 follows from Lemma 8
and Corollary 11 . ]

Proposition 12 says that the iterative conjugation process
converges after at most two steps. In the example of Figure 2,
Hy and H, are shown in overlapping positions in (f), in red and
blue. Since H; is identical to Hy, the conjugation process has
converged.

4. Non-circular gears for non-uniform circular motion

In the previous section, the method of iterative conjugation is
exemplified using circular gears. We now focus on non-circular

2r

gears. Such gears enable conversion of uniform circular motion
of the driving gear, say G, into the desired non-uniform circular
motion of the driven gear, H. For the ease of discussion, we
again assume that the relative motion, M, between G and H is
given, so that H remains stationary. The design now proceeds in
two steps. In the first step, the overall shape of H, i.e., the shape
of H without teeth, is computed. This shape is referred to as the
centrode of H in previous literature [1]. In the second step, teeth
are arranged along the centrode of H, and G is obtained as the
conjugate of H.

In order to determine the centrode of H, we use the fact that
as the centrode of G moves along M, it makes tangential contact
with the centrode of H, without slipping. In other words, at any
time instant #y, the velocity of the point on the centrode of G,
which is in contact with that of H, is zero [1]. We call such a
point, a stationary point at ty. If we trace the stationary point
as the function of time #, we obtain the curve along which G, H
make tangential contact, with H stationary, i.e., we obtain the
centrode of H. This curve may be obtained as the solution to the
following algebraic equality, which is already well-known [1].

wiR?x[0,1] > REwip,n):=AOp+b®) =0 (5

Equation (5) is a system of two algebraic equalities in three
variables, viz, p := (x,y) and . We again employ the constraint
solvers [34] to obtain its solution curve. It is easy to see that
the solution set is non-empty if the rotation A(¢) is not constant.
Further, if motion M is periodic, then the centrode is a closed
curve. Note that periodicity of M is stronger than Assumption 3
and further requires the derivatives at the end-points to coincide.

1
" / N\
©
0
0 @ % 2 (b)
Hy Go
@ ©

Fig. 4: Design of non-circular gears. (a) Angular displacement of H as a func-
tion of that of G. (b) The centrode for H obtained by solving Equation (5).
(c) Input tooth profile for Hp, modeled as a freeform B-spline curve. (d) Gear
H obtained by arranging 10 copies of tooth shown in (c) along the centrode in
(b). (e) The gear G obtained as the conjugate of Hy.

Once the centrode of H is computed, teeth are arranged along

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

6 Preprint Submitted for review / Computers & Graphics (2020)

this curve. The geometry and the number of teeth are specified
by the user. This gives us the initial shape, Hy for H, which may
be conjugated along M~ to obtain G,. The iterations of conju-
gation continue till convergence, as discussed in Section 3. An
example is illustrated in Figure 4. The relative motion between
G, H is specified as a map between the angular displacement of
G and that of H in (a). The centrode of H obtained as the solu-
tion of Equation (5) is shown in (b). The copies of the freeform
tooth profile shown in (c) are arranged along the centrode of H
to obtain the gear Hy shown in (d). The gear G, obtained as
the conjugate of Hy along M~! is shown in (e). Note that, if
the tooth profile is being arranged along a circular centrode, as
is the case in the example shown in Figure 2, one may exploit
the circular symmetry and reduce the amount of computation.
Howeyver, this does not hold for centrodes which do not have
such symmetry, for instance, the example shown in Figure 4. In
this case the tooth profile in the conjugate gear varies, as can be
seen in Figure 4(e).

5. Algebraic swept volume computation

The conjugation operation described in previous sections is
based upon precise computation of swept volumes. In this sec-
tion, we describe the computation of V(G, M), as in Defini-
tion 2. B-spline functions are used for representing G. The
translation b(¢) as well as the entries of the rotation matrix A(¢)
of Definition 1 are also represented using B-spline functions.
The entries of A(f) involve trigonometric functions which we
approximate with B-splines by employing the method of [35].
While rational splines may be able to precisely represent cir-
cles, the parametrization is non-uniform and does not serve the
purpose in our case. The output, dV(G, M), is again represented
using B-spline functions, within prescribed tolerance. Our al-
gebraic approach ensures numerical precision and topological
guarantee and consists of four major steps. The first step in-
volves obtaining the solution set of the envelope condition given
in Definition 4. This is described in Section 5.1. The solution
thus obtained is oriented so that the enclosed swept volume is
on the left side of the curve. This is described in Section 5.3.
Next, local self-intersections in the envelope are excised, which
is explained in Section 5.4. Finally, Section 5.5 explains the
construction of dV(G, M) which involves resolving global self-
intersections.

5.1. Solution to the envelope equation

Recall from Section 3 that the necessary condition for a point
on dG to belong to the boundary of V(G, M) is to satisfy the
envelope condition given by Definition 4, which we now write
in parametric form.

Definition 13. The gear G is represented by its boundary,
which is a closed, regular, C'-continuous parametric curve, g :
[0,1] — R?, i.e., g(0) = g(1) and %(ro) # (0,0),¥ry € [0, 1].
Here r is the parameter of the curve g.

From Definitions 1, 4 and 13, it follows that a point (ry, #p) in
the parametric space [0, 1] X [0, 1] satisfies the envelope condi-

tion if it satisfies the following equation.

f@r 0 :=&@g(r),n =0. (6)

Since Equation (6) has two variables, viz. r,t, the solution, in
general, is of dimension one, i.e., a set of curves in the param-
eter space, (r,t). Equation (6) involves the dot-product of ve-
locity and normal. The velocity at a point (7, 7) is computed
as A’(t)g(r) + b'(t), which is represented using B-spline func-
tions. Recall from Section 3 that the normal is computed as
A(t)nfl, which is again represented as B-spline functions. Since
B-spline functions are closed under addition and multiplica-
tion [36], Equation (6) is represented using B-spline functions,
precisely.

We employ the constraint solver by Barton et al. [34] to ob-
tain the solution to Equation (6). This solver returns solutions to
under-constrained systems of algebraic equations with numer-
ical and topological guarantee. The returned solution is in the
form of a sequence of connected points, each of which satis-
fies the prescribed constraints up to user-given numerical toler-
ance. The distance between consecutive points too is governed
by user-given step-size. More importantly, the solver guaran-
tees that no portion, topologically, of the solution is left out, up
to the prescribed tolerance. This, in turn, ensures that no por-
tion of the envelope is missed out, up to prescribed tolerance.
The solution points, which are in parametric space, are mapped
into the object space via the map (r,7) — A()g(r) + b(t). We
fit a cubic B-spline curve to the resulting points to obtain the
envelope curves, as in Definition 4.

In the simple example shown in Figure 3, the envelope curves
are shown in black, green and red. A non-trivial example is
illustrated in Figure 5. The input gear G shown in (a) is un-
dergoing rigid motion M which is composed of rotation about
the center of G and translation along a circular path. The set of
solution curves of Equation (6), mapped from parameter space
(r, 1) to object space (x,y), is shown in (b).

5.2. Handling C'-discontinuities

The envelope condition prescribed by Equation (6) in Sec-
tion 5.1 requires G to be C'-continuous. In this section, we
describe the computation of envelope curves arising from C'-
discontinuities in dG. Such points will be referred to as sharp
points in dG. Unlike a regular point in G, a sharp point
in G has a cone of normals. For instance, at the point p
in the schematic shown in Figure 6, dG has a cone of out-
ward normals bounded by n;,n,. The point p generates a
set of envelope curves which may be parameterized as ¢ —
A(f)p + b(¢). Any such curve is bounded by end-points which

satisfy (p}, (1), A(On1 ) = 0 or (p}, (1), A(hmy) = 0.

5.3. Orientating envelope curves

The boundary g(r) of input G is oriented so that the interior
G* lies on the left side of the curve. The envelope curves ob-
tained in Section 5.1 and 5.2 must be oriented in a consistent
manner. Consider a point (ry, #y) of the envelope curve and let
A(ty)g(ro) + b(tg) = go. The curve is oriented so that Gy, (%)) is
on the left side of the envelope curve at the point go. By Defini-
tion 2, this ensures that the swept volume is on the left side of
its boundary curve.
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Fig. 5: Swept volume construction. (a) Input G which undergoes motion with
rotation about its center and translation along a circle. (b) The envelope curves.
(c) Envelope curves after trimming local self-intersections. (d) Portion of the
swept volume boundary, enclosing the finite region.

n s S om

Fig. 6: A point p € dG with C!-discontinuity has a cone of outward normals.

5.4. Excising local self-intersections

Local self-intersections are limiting cases of self-
intersections as in Definition 5 and lead to singularities in
the envelope. In regions with local self-intersections, the
envelope loses orientability.

Definition 14. Suppose a point p = g(#) in the envelope has
self-intersection. We say that p has local self-intersection if
Ye > 0,3t € [0, 1] such that |tg — #|| < € and p € G,(t1).

Local self-intersections in the envelope are well-
understood [12, 27, 32, 37]. Unlike global self-intersections,
local self-intersections may be detected by querying local
data at time #). Local self-intersections may only arise in
the envelope curves described in Section 5.1. The envelope
curves arising from the sharp points of input, as described in
Section 5.2 are free of local self-intersections. While a detailed
exposition on local self-intersections is beyond the scope of
this paper, here we briefly outline the mathematical function
which detects local self-intersections. For details, the reader is
referred to previous works [12, 27, 32] which discuss this issue
in detail.

Let (ro, #p) be a point which satisfies Equation (6). Since the
velocity, V(ro, ty) = A’(ty)g(ro) + b’'(ty), is orthogonal to the
normal to JG at this point, we have that the velocity V and the
tangent, 7 (ro, o) = A(fo)g’(ro) to 0G, are linearly dependent.
In other words, there exists a non-zero real a(ry,fy) such that
V(ro, t9) = a(ro, to)7T (1o, to). The following lemma uses Equa-
tion (6) and furnishes a test for local self-intersections which,
in effect, compares the curvature of dG with that of the motion
M at a point on the envelope. In the following lemma, f, and f;
refer to the derivatives of f, as in Equation (6) with respect to r
and .

Lemma 15. A point (ro, ty) satisfying the envelope condition
has local self-intersection if a(ry, to) fr(ro, to) — fi(ro, tp) < O.

For proof refer to [32], Theorem 34. In the example
shown in Figure 3, the portion of the envelope with local self-
intersections is shown in red. The function in Lemma 15 is
computed in closed form. Hence, the trimming of regions
with local self-intersections is fast and numerically robust. We
continue the example of Figure 5 for illustration. The en-
velope curves shown in (b), after trimming away local self-
intersections, are shown in (c). This aids in reducing the com-
putational complexity of the next step.

5.5. Stitching the boundary of the swept volume
At this stage, the envelope curves are oriented, and regions
with local self-intersections discarded. It now remains to trim
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regions with global self-intersections and to stitch together
curve segments which bound the swept volume. Recall from
Assumption 3 that the swept volume is homeomorphic to an
annulus which partitions R? into two regions: one finite and an-
other infinite. Here we are interested in the portion of the enve-
lope which bounds the finite region. This is obtained as a loop,
i.e., a closed sequence of adjacent curve segments. This step
is similar to the computation of lower-envelopes [38, 39, 40]
for a given set of curves. Unlike the envelope in our case,
the lower-envelope in their case refers to a set of curves which
lower-bound a given set of curves with respect to a given di-
rection or distance function. However these approaches assume
monotonicity of the input curves with respect to some direc-
tion, which does not hold in our case. Instead, we exploit the
rich sweep structure inherent to the envelope curves.

The algorithm for stitching the loop is summarized in Algo-
rithm 1. It takes as input the list of envelope curves, Crv-list, as
explained above, and a starting-curve, St-crv, whence the con-
struction of the loop begins. The starting-curve is obtained by
shooting a ray from the center of the enclosed region and se-
lecting the first curve segment which intersects this ray. Algo-
rithm 1 iteratively finds the next curve segment which is adja-
cent to the current segment and appends the same to the loop.
The next segment may be in contact with the current segment
either by transversal curve-curve intersection or touching at the
end-points. This is illustrated in Figure 5(c) by points p and
q. The two cases are handled by the functions FindNxtCrvIn-
tersect and FindNxtCrvAdjacent in Algorithm 1. The construc-
tion is complete when the loop is closed. This is illustrated in
Figure 5(d).

Algorithm 1 ConstructLoop(St-crv, Crv-list)

1: Loop « {St-crv};

2: Curr-crv < St-crv;

3: while TRUE do

4: Nxt-crv <« FindNxtCrvIntersect(Curr-crv, Crv-list);
5: if Nxt-crv = () then

6: Nxt-crv < FindNxtCrvAdjacent(Curr-crv, Crv-

list);
7: end if
8 if Nxt-crv = St-crv then
: break;

10: end if

11: Loop < Loop U {Curr-crv};

12: Curr-crv < Nxt-crv;

13: end while
14: return Loop;

6. Results

Here we present examples which corroborate the observa-
tions made in the previous sections. The example shown in
Figure 7 involves circular gears. The input gear Gy is shown in
(a) which is modeled by a cubic B-spline curve with 228 con-
trol points. The motion M consists of rotation by an angle of
2m and translation along a circle of radius twice that of G, with

uniform speed. The shape of Hj, obtained as the conjugate of
Gy along M, is shown in (b). It is modeled as a cubic B-spline
curve with 260 control points. The next version, G, obtained as
the conjugate of Hy along M~! is shown in (c). It is a cubic B-
spline curve with 314 control points. The shapes Gy and G, are
shown in overlapping position in (d), in red and blue. Gy, G,
being identical, the conjugation process has terminated. Each
iteration of conjugation took about 110 seconds on a computer
with Intel i5 processor and 8 GB memory.

An example of a non-circular gear is shown in Figure 8. Gear
Gy has seven block-like teeth and is modeled as a cubic B-
spline curve with 280 control points. It is swept along a mo-
tion M involving rotation by an angle of 2 = § and translation
along an oblong shaped curve. This curve is composed of two
semi-circles connected by a pair of parallel line segments and
is parametrized as follows.

(-r+5.1) t€[0,7]
0 = (% +cos(t - Z).sin(t - 5)) 1€ [x,2n]
- (f—57”»—1> t € [2m, 3n]

(% + cos(t = 3),sin(t — 3)) 1 € [37,47]

The resulting conjugate shape, Hy, as shown in (b), has eight
teeth. It is a cubic B-spline curve with 350 control points. Note
the variation in the geometry of the teeth of Hy. Hj is conju-
gated along M~! to obtain Gy, shown in (c). It is a cubic B-
spline curve with 330 control points. The shape of H; obtained
from conjugation of Gy, is identical to that of Hy and is not
shown. Each iteration of conjugation took about 120 seconds.

Design of a non-linear rack-pinion system is illustrated in
Figure 9. In such an assembly, the pinion is connected to an
actuator and undergoes translation along the rack as it rotates
about its axis. The centrode of the rack, which determines the
overall shape of the rack, is shown in (a). The gear Gy shown
in Figure 7(a) acts as the pinion. In order to compute the rel-
ative motion M, an approximate arc-length parametrization of
the centrode curve is computed by a dense sampling of points.
The center of Gy undergoes translation along the offset of the
centrode. The amount of rotation is determined by the length
traversed along the centrode, so that there is no slipping, as ex-
plained in Section 4. The shape H of the rack, thus obtained by
conjugation of G¢ along M, is shown in (b). The computation
of conjugation took about 170 seconds.

Three examples for design of gears with freeform tooth
shapes are shown in Figure 10. The tooth profiles, modeled
as B-spline curves are shown in (a). Six copies of these are ar-
ranged along a circle to obtain the initial shapes for G, shown
in (b). The gears Gy are swept along a relative motion M involv-
ing rotation by angle 27 about the center of Gy and translation
along a circle of radius twice that of Gy. The resulting conjugate
gears Hj are shown in (c). The gears H are conjugated along
M~! to obtain shapes for G, shown in (d). The simplification
is evident by overlapping the shapes of G¢, G| as shown in (e).
The shape of H; is identical to that of Hy and is not shown.
Such gears may be manufactured via 3D-printing, laser cutting
or 3-axis CNC-machining. It may be noted that involute gears
remain the preferred choice in a majority of cases and freeform
gears may be relevant only for niche applications.

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82



20

21

22

23

24

25

26

Preprint Submitted for review / Computers & Graphics (2020) 9

sl
stecls

Fig. 7: (a) The input gear Gp which has six approximately triangular teeth. It
is being swept along motion M which consists of rotation by an angle of 2w
and translation along a circle of radius 2, with uniform speed. (b) The gear Hy
obtained as the conjugate of G along M. (c) The gear G| obtained as the con-
jugate of Hy, along M~". (d) Gears Gy and G shown in overlapping positions,
in red and blue. Since Gy and G are identical, the conjugation process has
converged.

7. Conclusion

This paper proposes a general mathematical framework for
design of conjugate geometries. This is achieved by an in-depth
analysis of the contact between conjugate shapes. The charac-
terization of shape invariance leads to guarantee of convergence
of conjugation. The mathematical framework is complemented
by a robust computational framework with numerical and topo-
logical guarantees. The resulting algorithm is employed in de-
signing pairs of meshing gears with freeform shapes, that allow
non-uniform transmission of motion. The resulting computer
codes are used to generate a variety of examples in 2D.

This work may be extended along several interesting direc-
tions. Extending this framework to 3D will enlarge the field of
application, for instance, in design of spiral bevel gears. Sliding
between conjugate teeth profiles is an important issue related
to gear design and most practical gears have non-zero sliding.
While we demonstrate examples with freeform tooth geome-
try which allows complete freedom over tooth shape, analysis
of sliding may lead to better design. The scope of this work
is restricted to kinematic design. Including forces in the de-
sign process may lead to improved mechanical properties of re-
sulting parts. Further, consideration about efficient means of
manufacturing of freeform gears may lead to interesting design
algorithms.

The examples shown in Figures 2, 4, 8, 9 and 10 are animated
athttps://youtu.be/ylzesqutbVs.

Gy

Hy

Gy

Fig. 8: (a) The input gear G which has seven block-like teeth. It is being swept
along motion M which consists of rotation by an angle of 27 % and translation
along an oblong shaped curve, with uniform speed. (b) The gear Hy obtained
as the conjugate of Gy shown in (a). Thus, Hy has eight teeth. (c) Gear G
obtained as the conjugate of Hp along M. (d) Gears Gy, G; are shown in
overlapping position, in red and blue.
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Fig. 10: Design of gears with freeform tooth shapes. (a) Tooth profiles modeled as freeform B-spline curves. (b) Initial designs for gears G obtained by arranging
six copies of the tooth shown in (a) around a circle. (c) The gears Hy obtained as the conjugate of Gy shown in (b) along motion M which involves rotation by angle
27 about center of G and translation along a circle of radius twice that of Go. (d) The gears G| obtained as the conjugate of Hy shown in (c) along M~!. (e) Gears
Go,G1, shown in red and blue, in overlapping positions.
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Appendix A. Some facts about rigid motions

Proof of Lemma 7: Assume without loss of generality that
A(tg) = I and b(ty) = 0. Thus, at ¢ = 1y, we have,

pu(to) = A(to)p + b(ty) = p = q.

The matrix A(f) being orthonormal, we have,

ADA\ (D =1
SAOATN O+ ADA () =0

=A"(t) = A" (1) (A.1)
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The velocity at py-1(¢) is computed as,

g1 () = A7 (t)(p - b(D))
= ¢ (1) = A7V (O(p = b(1)) = AN ()b (2). (A.2)

At t = 1y, from Equation (A.1) and (A.2) we get,

g1 (t0) = =A’(to)p — b’ (to)
= —py(to).
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