

Conjugate shape simplification via precise algebraic planar sweeps toward gear design

Jinesh Machchhar^{a,*}, Henry Segerman^b, Gershon Elber^c

^aIndian Institute of Technology Mandi, Himachal Pradesh, India

^bOklahoma State University, Stillwater, OK, USA

^cTechnion - Israel Institute of Technology, Haifa, Israel

ARTICLE INFO

Article history:

Received May 3, 2020

Keywords: Swept volumes, B-splines, algebraic computation, freeform shapes, constraint solving

ABSTRACT

Gears play a pivotal role in machine design. This paper proposes an algorithm to simplify the shapes of planar gears. This is achieved via iterative conjugation, using precise algebraic sweeps. The notion of shape simplification is introduced in a mathematically rigorous manner and it is shown that the conjugation process converges, yielding a pair of meshing gears that follow the desired motion. Simplified gear shapes may lead to improved mechanical characteristics and reduction in manufacturing costs.

The generality of algebraic sweeps allows precise design of gears with freeform shapes and non-uniform motion transmission. Moreover, the computational framework proposed in this paper is versatile, with applications beyond gear design. A variety of examples from an implementation of our algorithm, that offers topological guarantees, are presented, which demonstrate the robustness and efficacy of our approach.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

This paper studies conjugation through the problem of design of a pair, G, H , of meshing gears in \mathbb{R}^2 . Here conjugation refers to swept volume computation followed by Boolean-negation operation. An example is shown in Figure 1 illustrating a cam-follower mechanism. A cam is a non-circular disk, which rotates about a pivot, and transmits motion to the follower via tangential contact. The follower is restricted to undergo reciprocating motion about a line. The shape of H is obtained as the conjugate of G . We reverse the roles of G and H and repeat. This leads to simplified shapes of G and H . The method of conjugation also allows for design of non-circular gears which have non-uniform motion transmission [1]. Moreover, the conjugation operation has a wide field of application in design of kinematic pairs wherein two bodies are in motion while maintaining tangential contact. For instance, cam-follower mechanisms [2], or replacement parts for joints in human body [3], to name a

few. In order to perform conjugation, a robust computational framework for sweeps is proposed. Sweeping is a fundamental geometric primitive with diverse applications such as machining verification [4] and collision detection [5].

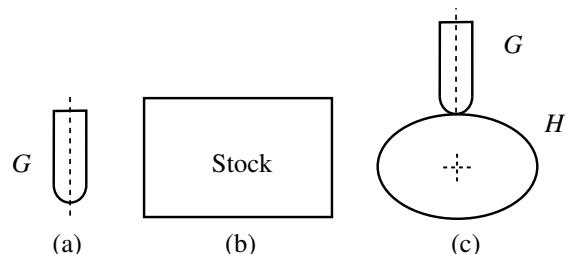


Fig. 1: Design of cam-follower mechanism using conjugation. The follower, H , shown in (a) is swept along an elliptical path, while orienting it so that its axis stays aligned with the normal to the ellipse. The swept volume thus obtained is Boolean-subtracted from the stock shown in (b) to obtain the elliptical cam, G , shown in (c) along with the follower, H . The follower's motion is restricted to be along its axis. As the cam rotates about its center, it displaces the follower, which stays in tangential contact.

*Corresponding author:
e-mail: jinesh@iitmmandi.ac.in (Jinesh Machchhar)

of the pair, say G , acts as the driving gear, whose uniform circular motion is translated into the desired motion for the driven gear, H . Such a pair is illustrated in Figure 2(a) and (b). The overall shapes as well as the geometry of the teeth of G, H dictate the motion profile of H . In other words, together, the shape of G and the relative motion M between G and H , implicitly encode the shape of H . Such a pair of meshing gears is an example of a conjugate pair. In contrast to traditional methods for design of gears and other conjugate shapes, which terminate after a single step of conjugation, our approach involves multiple iterations of conjugation. The shape of H obtained in the previous step is employed to compute a refined version of G . This process is repeated. We show that the iterations converge after at most two steps. As a result, the shapes of G, H are simplified, without altering the relative motion M . This is illustrated by an example shown in Figure 2. The shape H_0 shown in (b) is obtained as the conjugate of G_0 shown in (a), along M . H_0 is further conjugated along M^{-1} to obtain G_1 , shown in (c). Likewise, G_1 is used to compute H_1 shown in (d). G_0, G_1 and H_0, H_1 are shown in overlapping positions in (e) and (f). As can be seen, G_1 is a simplified version of G_0 . Since H_1 is identical to H_0 , the conjugation process has converged. These notions are formalized in Section 3.

One way to approximate H as the conjugate of G would be via a series of Boolean operations. A more precise approach is using swept volumes. Under this scheme, the swept volume of G under M is computed and Boolean-subtracted from a block to obtain H . A number of approaches for swept volume computation have been proposed previously, but they all lack one or the other key ingredient, preventing a general and practical implementation. In particular, the requirements of tight numerical tolerances and topological completeness render the previous approaches unsuitable for our purpose. We propose a swept volumes framework based on algebraic computation, upon which the conjugation algorithm is built. Use of B-spline functions for constructing algebraic equations aids in precise modeling of the envelope condition, only to be fed to robust constraint solvers which return the solution with the prescribed numerical tolerance and topological guarantee.

The contribution of this work is threefold. To our knowledge, this is the first attempt at shape simplification for conjugate geometries. A shape is simplified so that any region on its boundary, which does not come in contact with the conjugate, is excised. In the context of gears, this leads to tighter meshing. Secondly, our framework accommodates design of gears with freeform shapes, which allow non-uniform motion transmission. Unlike previous works on gear-design, our algorithm provides a complete computational framework with numerical guarantees. Handling of local and global self-intersections ensures correctness of output in difficult cases, for instance, when the geometry of all teeth is not identical. Finally, we propose a robust computer implementation for sweeps in 2D. Our algebraic approach is based on B-spline functions and use of state-of-the-art numerical solvers to provide guarantees on the numerical precision and topological completeness, lacking in previous works.

The rest of the paper is organized as follows. In Section 2,

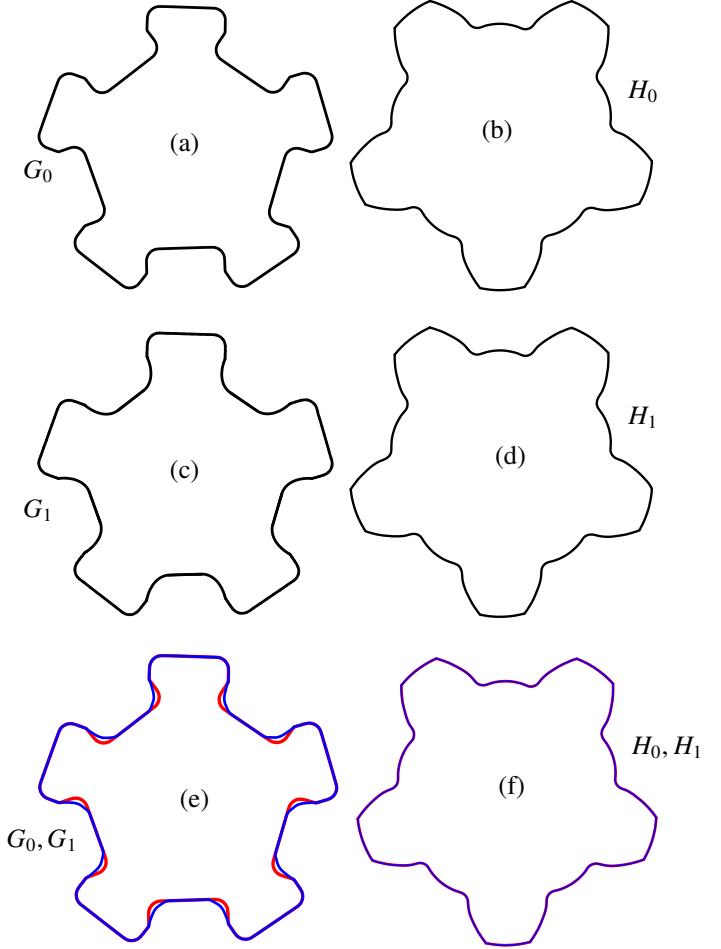


Fig. 2: (a) The input gear G_0 which has five block-like teeth. It is being swept along motion M which consists of rotation by an angle of 2π around the center of G_0 and translation along a circle of radius twice the radius of G_0 about center of H_0 , with uniform speed. (b) The gear H_0 obtained as the conjugate of G_0 shown in (a), along M . (c) The gear G_1 obtained as the conjugate of H_0 shown in (b), along M^{-1} . (d) The gear H_1 obtained as the conjugate of G_1 shown in (c) along M . (e) Gears G_0 and G_1 shown in overlapping positions, in red and blue respectively. Clearly, they are not congruent. (f) Gears H_0 and H_1 are shown in overlapping positions, in red and blue respectively, and are identical. Thus the conjugation process has converged.

we survey related previous work on gear design and swept volumes. In Section 3, our approach of iterative conjugation is discussed, assuming that the initial shape G and the relative motion M are given. Section 4 discusses the design of non-circular gears. Some examples from an implementation of our algorithm in the IRIT [6] kernel are presented, in Section 6. The paper is concluded, in Section 7, with remarks on possible extensions of this work.

2. Previous work

Designing of gears is well-studied [1, 7, 8, 9, 10]. One of the earliest attempts at computing conjugate gears using sweeps was by Litvin [11], wherein, the necessary condition for meshing of gears is characterized. This condition is well-known as the *envelope condition* in the literature on sweeps [12] and in-

1 solves the dot-product of the normal and the velocity at a point
 2 under consideration. Puccio et al. [13] propose an alternative
 3 description of the condition of meshing based on vectorial no-
 4 tation. The above methods are restricted to circular gears. Here
 5 circle refers to the overall shape of the gear, without teeth. De-
 6 sign of non-circular gears is considered by Litvin et al. [14] by
 7 computing the *centrodes* of the gears from the motion profiles.
 8 Centrodes of a pair of meshing gears are the curves which rep-
 9 resent the overall shape of the gears, without teeth, along which
 10 they make contact without slipping. Zarebski et al. [15] propose
 11 a method for designing non-circular gears wherein the envelope
 12 computation is done approximately without any error-bounds.
 13 Bendefy et al. [16] design gears with varying gear-ratio and
 14 center-distance. In their method, different portions of teeth such
 15 as the flank, top and bottom land are constructed separately.
 16 A common limitation of all the previous methods is a lack of
 17 computational framework by which to construct the shape of
 18 the conjugate gear with the prescribed numerical precision and
 19 topological guarantee. In particular, solving the envelope con-
 20 dition has been one of the primary computational bottlenecks in
 21 previous approaches. The envelope condition poses an under-
 22 constrained system of algebraic constraints whose solution re-
 23 mains a challenging task. Bonandrini et al. [17, 18] propose a
 24 computational framework which is limited to design of circular
 25 gears.

26 Johann et al. [19] study the geometry of the conjugate flanks
 27 of gear teeth of arbitrary shape. The *flank* of a tooth is the
 28 leading edge of the tooth which is in contact. In their work,
 29 the focus is on local contact while the arrangement of teeth
 30 and global self-intersections resulting therefrom are not studied.
 31 Likewise, Litvin et al. [20] characterize the singularities on the
 32 envelopes of gear tooth surfaces. This approach handles local
 33 self-intersections but not global self-intersections. Resolving
 34 global self-intersections is especially important when the gears
 35 are not circular and the geometry of all the teeth may not be
 36 identical [21].

37 Swept volume generation, which forms the backbone of our
 38 algorithm, is a classical problem in solid modeling [22, 23, 24].
 39 We survey some of the prominent works in this area. Blackmore
 40 et al. [4, 25] formulate the boundary of the swept volume as the
 41 solution of a differential equation. This requires the input shape
 42 to be in implicit form and the output surface is constructed by
 43 interpolating sampled points. Such an approach lacks bounds
 44 on the approximation error. Abdel-Malek and Yeh [26] propose
 45 a swept volume method based on rank deficiency condition of
 46 the Jacobian of the sweep map. This method readily generalizes
 47 to arbitrary dimensions. However, their approach for
 48 finding solutions restricts the input to analytic shapes. Erdim
 49 and Ilies [27, 5] give a membership test for a candidate point
 50 to belong inside, outside or on the boundary of the swept vol-
 51 ume. Singularities on the envelope in 2D case are also identi-
 52 fied. Their approach requires performing curve-curve intersec-
 53 tion for each query point. Such an approach yields a complete
 54 characterization of the boundary of the swept volume, but is
 55 computationally expensive. Rossignac et al. [28] compute the
 56 boundary of the swept volume by restricting the input motion
 57 to be a screw motion. While this leads to an efficient algorithm,

58 the limitation is clear, namely, the class of admissible motions.
 59 Zhang et al. [29] give a method for fast computation of swept
 60 volumes but which is restricted to polygonal input solids. Pe-
 61 tternell et al. [30] obtain a set of sampled points on the boundary
 62 of the swept volume. They derive a formula for the evolution
 63 of curves of contact, which helps bound the distance between
 64 any two consecutive curves of contact. This approach, however,
 65 does not give a guarantee on the completeness of the output.
 66 Wallner et al. [31] propose a method for swept volume computa-
 67 tion along motion specified by a set of discrete pose cloud,
 68 however, their approach is limited to polyhedral shapes. Adsul
 69 et al. [32] propose a computational framework for swept vol-
 70 umes in parametric boundary representation format with anal-
 71 ysis of local and global self-intersections. However, no topo-
 72 logical guarantee is given on the completeness of the output.
 73 In summary, a robust implementation of sweeps with a high de-
 74 gree of numerical precision is missing. A method either restricts
 75 the class of inputs, or approximates the output without bounds
 76 on error. Moreover, to our knowledge, no previous approach
 77 addresses the issue of solving the envelope condition - which
 78 is central to swept volumes - with numerical and topological
 79 guarantees. Our approach alleviates these issues.

3. Iterative conjugation

80 The gears G and H undergo one parameter family of rigid
 81 motions M_G and M_H , respectively, while making tangential
 82 contact with each other. The system (G, H, M_G, M_H) is equiv-
 83 alent, up to some rigid transform, to the system $(G, H, M_H^{-1} \circ$
 84 $M_G, I)$, wherein the relative motion between G and H is ap-
 85 plied to G , while H stays stationary. We will denote the relative
 86 motion $M_H^{-1} \circ M_G$ by M . Similarly, another equivalent repres-
 87 entation would be $(G, H, I, M_G^{-1} \circ M_H)$. All the discussion in this
 88 paper is with respect to some fixed, global coordinate system.
 89 The input to the iterative conjugation algorithm is an initial de-
 90 sign for G , and the relative motion M . We employ the boundary
 91 representation (B-rep) for G .

92 We will denote the boundary and the interior of a shape G by
 93 ∂G and G^o , respectively. It is assumed that ∂G is free of self-
 94 intersections. For example, G is represented by its boundary
 95 in Figure 2(a). G moves along a one parameter family of rigid
 96 motions M , defined as follows:

97 **Definition 1.** A one parameter family of rigid motions, M ,
 98 in \mathbb{R}^2 , is a map $M : [0, 1] \rightarrow (SO(2), \mathbb{R}^2)$, such that $M(t) =$
 99 $(A(t), b(t))$, where $A(t)$ is a 2×2 rotation matrix and $b(t)$ is a
 100 translation vector in \mathbb{R}^2 . The parameter t in this definition rep-
 101 presents time.

102 The action of M on a point $p \in \mathbb{R}^2$ at time $t \in [0, 1]$ is given
 103 by $A(t)p + b(t)$ and is denoted by $p_M(t)$. Likewise, the action of
 104 M on G at time t is denoted by $G_M(t)$ and obtained as $\{A(t)p +$
 105 $b(t) | p \in G\}$. The velocity at $p_M(t)$ will be denoted by $p'_M(t)$ and
 106 is computed as $A'(t)p + b'(t)$, where ' denotes the derivative with
 107 respect to t . If $n^G(p)$ is the outward normal to ∂G at $p \in \partial G$,
 108 then the outward normal to $G_M(t)$ at $p_M(t)$ is given by $A(t)n^G(p)$
 109 and denoted by $n_M^G(p, t)$.

110 The computation of the geometry of H is performed by com-
 111 puting the swept volume of G along M , defined as follows:

1 **Definition 2.** The **swept volume** of G along a one parameter
2 family of rigid motions M is defined as $\bigcup_{t \in [0,1]} G_M(t)$ and de-
3 noted by $V(G, M)$.

4 Thus, $V(G, M)$ is the infinite union of all the transforms of
5 G along M . Like G , we also use the B-rep for $V(G, M)$. Thus,
6 it suffices to compute $\partial V(G, M)$ in order to obtain a complete
7 representation of $V(G, M)$. We make the following assumption
8 for the ease of exposition, which holds from now on.

9 **Assumption 3.** It is assumed that $G_M(0) = G_M(1)$, i.e., the ini-
10 tial and final position of G under M , coincide. Further, $V(G, M)$
11 is assumed to be homeomorphic to an annulus.

12 Conjugation involves computing the swept volume $V(G, M)$,
13 which is *carved*, i.e., Boolean-subtracted, from the *stock* of H ,
14 to obtain H . The actual shape of the stock is of little relevance
15 as long as it is large enough. Whenever carving, we assume the
16 stock to be the Euclidean plane, \mathbb{R}^2 . Since $V(G, M)$ is homeo-
17 morphic to an annulus, $\mathbb{R}^2 \setminus V(G, M)$ has two components,
18 one finite and another infinite. Only the finite component is of
19 interest, the other one is discarded. We will denote the finite
20 component of $\mathbb{R}^2 \setminus V(G, M)$ by $\overline{V}(G, M)$.

Our approach involves multiple iterations of conjugation. Each iteration involves computing the swept volume of G (H) and carving it from \mathbb{R}^2 to obtain the next version of H (G). The input to the algorithm is the initial version, G_0 for G , and the relative motion M . In the first iteration, $V(G_0, M)$ is conjugated to obtain H_0 , i.e. $H_0 = \overline{V}(G_0, M)$. In the next iteration, G_1 is obtained as $\overline{V}(H_0, M^{-1})$. This process is repeated until $G_i = G_{i+1}$ and $H_i = H_{i+1}$ for all $i > m$ for some $m \geq 0$. We later show, in Proposition 12, that no more than two iterations are necessary. The iterative conjugation process is summarized below.

$$H_i = \overline{V}(G_i, M), \quad i \geq 0, \quad (1)$$

$$G_i = \overline{V}(H_{i-1}, M^{-1}), \quad i \geq 1. \quad (2)$$

21 By construction, $\partial H_i = \overline{\partial V(G_i, M)}$, $i \geq 0$ and $\partial G_i =$
22 $\overline{\partial V(H_{i-1}, M^{-1})}$, $i \geq 1$. An example of iterative conjugation is
23 shown in Figure 2 wherein G_0, H_0, G_1 and H_1 are shown in (a),
24 (b), (c) and (d).

25 The computation of $\partial V(G_i, M)$ is done via the well-known
26 envelope condition [33] which states that a point $p_M(t) \in$
27 $\partial G_{i_M}(t)$ belongs to $\partial V(G_i, M)$ only if the velocity at $p_M(t)$ is
28 tangent to $\partial G_{i_M}(t)$.

29 **Definition 4.** A point $p_M(t) \in \partial G_M(t)$ is said to satisfy the **en-
30 velope condition** if $\mathcal{E}(p, t) := \langle p'_M(t), n_M^G(p, t) \rangle = 0$. The set of
31 points satisfying the envelope condition will be referred to as
32 the **envelope**.

33 Figure 3 illustrates an example wherein a circular disc is
34 being swept along a parabolic path, shown as a dotted curve.
35 The envelope curves are shown in black, green and red. Note
36 that this example is given only to clearly illustrate the con-
37 cept of swept volumes and does not satisfy Assumption 3, i.e.,
38 $G_M(0) \neq G_M(1)$.

39 Not all points in the envelope belong to the boundary of the
40 swept volume. The envelope may contain self-
41 intersections [24] which need to be trimmed away in order to
42 obtain the boundary of the swept volume.

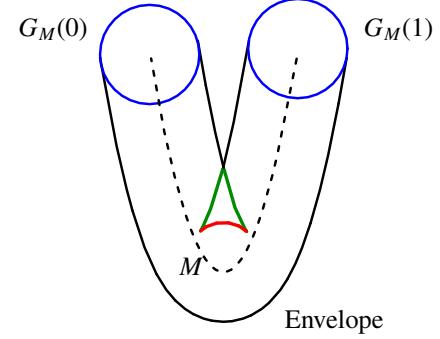


Fig. 3: Swept volume computation for a circular disc undergoing translation along a parabolic path, shown as a dotted curve. The disc is shown at initial and final positions in blue. The envelope curves are shown in black, green and red. The boundary of the swept volume, which is a subset of the envelope curves, is shown in black. Portions of envelope with local and global self-intersection are shown in red and green.

43 **Definition 5.** While sweeping G_i along M , the envelope is said
44 to have **self-intersection** at a point p if there exists $t \in [0, 1]$
45 such that $p_{M^{-1}}(t) \in G_i^o$.

46 The above definition is equivalent to saying that $p \in G_M^o(t)$
47 for some $t \in [0, 1]$. The following lemma states that such points
48 do not belong to the boundary of the swept volume. In the ex-
49 ample shown in Figure 3, the portion of envelope shown in red and
50 green has self-intersection.

51 **Lemma 6.** While sweeping G_i along M , if the envelope has a
52 self-intersection at a point q , then $q \notin \partial V(G_i, M)$.

53 *Proof.* If $p := q_{M^{-1}}(t) \in G_i^o$, then $p_M(t) = q$. Since $p \in G_i^o$,
54 $q \in V(G_i, M)$ but $q \notin \partial V(G_i, M)$. The point q being obscured
55 by an interior point of $G_{i_M}(t)$, is not on the boundary of the
56 swept volume. \square

57 The set $\partial V(G_i, M)$ is obtained after trimming away points
58 of self-intersection from the envelope. In the example of Figure
59 3, the set $\partial V(G_i, M)$ is shown in black. It follows that if a
60 point, q , satisfies the envelope condition and is free from self-
61 intersection, then $q \in \partial V(G_i, M)$.

62 There may exist points in ∂G_0 which do not give rise to any
63 point in $\partial V(G_0, M)$, i.e., for some $p \in \partial G_0$, $p_M(t) \notin \partial V(G_0, M)$,
64 for all $t \in [0, 1]$. The reason being, p may either fail to
65 satisfy the envelope condition in Definition 4 or may get ob-
66 scured by self-intersections as in Definition 5. Interestingly,
67 Lemma 8 states that all the points in ∂H_i give rise to some point
68 in $\partial V(H_i, M^{-1})$.

69 **Lemma 7.** If $q = p_M(t_0)$ for some $t_0 \in [0, 1]$, then $q'_{M^{-1}}(t_0) =$
70 $-p'_M(t_0)$.

For a proof refer to Appendix A.

71 **Lemma 8.** For every $q \in \partial H_i$, $i \geq 0$, there exists $t \in [0, 1]$ such
72 that $q_{M^{-1}}(t) \in \partial V(H_i, M^{-1})$.

73 *Proof.* Fix a point $q \in \partial H_i$. Since $q \in \partial V(G_i, M)$, there exists
74 $p \in \partial G_i$ and $t_1 \in [0, 1]$ such that $p_M(t_1) = q$. In other words,
75 $p_M(t_1)$ satisfies the envelope condition, i.e.,

$$\langle p'_M(t_1), n_M^G(p, t_1) \rangle = 0. \quad (3)$$

We first show that while sweeping H_i along M^{-1} , the point $q_{M^{-1}}(t_1)$ satisfies the envelope condition. From Lemma 7 we know that $q'_{M^{-1}}(t_1) = -p'_M(t_1)$. Also, it can be shown that $n_{M^{-1}}^{H_i}(q, t_1) = -n_M^{G_i}(p, t_1)$. Hence,

$$\langle q'_{M^{-1}}(t_1), n_{M^{-1}}^{H_i}(q, t_1) \rangle = \langle p'_M(t_1), n_M^{G_i}(p, t_1) \rangle = 0. \quad (4)$$

1 Thus, we have shown that the point $q_{M^{-1}}(t_1) = p$ satisfies the
2 envelope condition. We now show that the point $q_{M^{-1}}(t_1)$ is free
3 of self-intersection. Suppose not, i.e., by Definition 5, there
4 exists some $t_2 \in [0, 1]$ such that $p_M(t_2) \in H_i^o$. In other words,
5 $p_M(t_2) \notin V(G_i, M)$. However, since $p \in \partial G_i$, we have, for
6 all $t \in [0, 1]$, $p_M(t) \in V(G_i, M)$. This leads to a contradiction.
7 Thus, it is proved that $q_{M^{-1}}(t_1)$ satisfies the envelope condition
8 and is free of self-intersection, i.e., $q_{M^{-1}}(t_1) \in \partial V(H_i, M^{-1})$. \square

9 Lemma 8 states that all points of $\partial H_i, i \geq 0$, lead to some
10 point on the boundary of the swept volume $\partial V(H_i, M^{-1}) =$
11 ∂G_{i+1} . This happens because each point of $\partial H_i, i \geq 0$ itself
12 is resulting from the sweep of G_{i-1} . The following corollary
13 makes a similar claim for $G_i, i \geq 1$.

14 **Corollary 9.** *Every point in ∂G_i leads to some point in ∂H_i for
15 $i \geq 1$.*

16 The proof is symmetric to that of Lemma 8, stated for
17 $\partial H_i, i \geq 1$. It is important to note that Corollary 9 may not
18 hold for $i = 0$, as explained in the paragraph before Lemma 7.

19 **Proposition 10.** *For all $i \geq 0$, if $p \in \partial G_i$ produces a point
20 $p_M(t_0) \in \partial H_i$ for some $t_0 \in [0, 1]$, then $p \in \partial G_{i+1}$.*

21 *Proof.* From the proof of Lemma 8, it follows that the point
22 $q := p_M(t_0) \in H_i$ produces the point $q_{M^{-1}}(t_0) \in \partial G_{i+1}$. Since
23 $q_{M^{-1}}(t_0) = p$, we have that $p \in \partial G_{i+1}$. \square

24 Proposition 10 precisely identifies the set of points in G_i that
25 remain invariant under the conjugation process described by
26 Equations (1) and (2), i.e., the set $G_i \cap G_{i+1}$. This is illustrated in
27 the example of Figure 2 by showing G_0 and G_1 in overlapping
28 positions in (e). This provides useful guidelines about how to
29 go about refining the input, G_0 , in order to obtain the desired
30 pair of gears.

31 **Corollary 11.** *For all $i \geq 0$, if $q \in \partial H_i$ produces a point
32 $q_{M^{-1}}(t_0) \in \partial G_{i+1}$ for some $t_0 \in [0, 1]$, then $q \in \partial H_{i+1}$.*

33 **Proposition 12.** $G_i = G_{i+1}, i \geq 1$ and $H_i = H_{i+1}, i \geq 0$.

34 *Proof.* That $G_i = G_{i+1}, i \geq 1$ follows from Corollary 9 and
35 Proposition 10. That $H_i = H_{i+1}, i \geq 0$ follows from Lemma 8
36 and Corollary 11. \square

37 Proposition 12 says that the iterative conjugation process
38 converges after at most two steps. In the example of Figure 2,
39 H_0 and H_1 are shown in overlapping positions in (f), in red and
40 blue. Since H_1 is identical to H_0 , the conjugation process has
41 converged.

4. Non-circular gears for non-uniform circular motion

43 In the previous section, the method of iterative conjugation is
44 exemplified using circular gears. We now focus on non-circular

45 gears. Such gears enable conversion of uniform circular motion
46 of the driving gear, say G , into the desired non-uniform circular
47 motion of the driven gear, H . For the ease of discussion, we
48 again assume that the relative motion, M , between G and H is
49 given, so that H remains stationary. The design now proceeds in
50 two steps. In the first step, the overall shape of H , i.e., the shape
51 of H without teeth, is computed. This shape is referred to as the
52 *centrode* of H in previous literature [1]. In the second step, teeth
53 are arranged along the centrode of H , and G is obtained as the
54 conjugate of H .

55 In order to determine the centrode of H , we use the fact that
56 as the centrode of G moves along M , it makes tangential contact
57 with the centrode of H , without slipping. In other words, at any
58 time instant t_0 , the velocity of the point on the centrode of G ,
59 which is in contact with that of H , is zero [1]. We call such a
60 point, a *stationary point* at t_0 . If we trace the stationary point
61 as the function of time t , we obtain the curve along which G, H
make tangential contact, with H stationary, i.e., we obtain the
centrode of H . This curve may be obtained as the solution to the
following algebraic equality, which is already well-known [1].

$$w : \mathbb{R}^2 \times [0, 1] \rightarrow \mathbb{R}^2, w(p, t) := A'(t)p + b'(t) = 0 \quad (5)$$

62 Equation (5) is a system of two algebraic equalities in three
63 variables, viz, $p := (x, y)$ and t . We again employ the constraint
64 solvers [34] to obtain its solution curve. It is easy to see that
65 the solution set is non-empty if the rotation $A(t)$ is not constant.
66 Further, if motion M is periodic, then the centrode is a closed
67 curve. Note that periodicity of M is stronger than Assumption 3
68 and further requires the derivatives at the end-points to coincide.

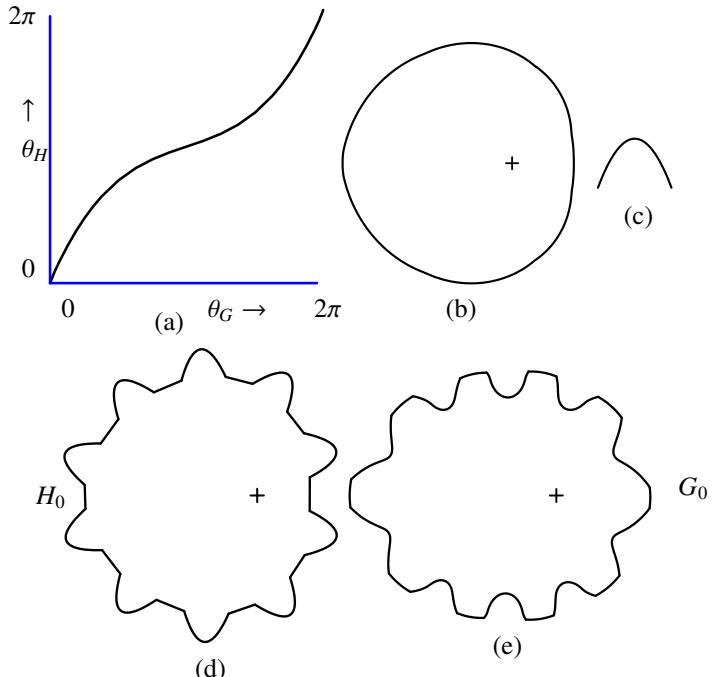


Fig. 4: Design of non-circular gears. (a) Angular displacement of H as a function of that of G . (b) The centrode for H obtained by solving Equation (5). (c) Input tooth profile for H_0 , modeled as a freeform B-spline curve. (d) Gear H_0 obtained by arranging 10 copies of tooth shown in (c) along the centrode in (b). (e) The gear G_0 obtained as the conjugate of H_0 .

69 Once the centrode of H is computed, teeth are arranged along

45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61

62

1 this curve. The geometry and the number of teeth are specified
 2 by the user. This gives us the initial shape, H_0 for H , which may
 3 be conjugated along M^{-1} to obtain G_0 . The iterations of conjugation
 4 continue till convergence, as discussed in Section 3. An example is illustrated in Figure 4. The relative motion between
 5 G, H is specified as a map between the angular displacement of
 6 G and that of H in (a). The centrode of H obtained as the solution of Equation (5) is shown in (b). The copies of the freeform
 7 tooth profile shown in (c) are arranged along the centrode of H
 8 to obtain the gear H_0 shown in (d). The gear G_0 obtained as
 9 the conjugate of H_0 along M^{-1} is shown in (e). Note that, if
 10 the tooth profile is being arranged along a circular centrode, as
 11 is the case in the example shown in Figure 2, one may exploit
 12 the circular symmetry and reduce the amount of computation.
 13 However, this does not hold for centrodes which do not have
 14 such symmetry, for instance, the example shown in Figure 4. In
 15 this case the tooth profile in the conjugate gear varies, as can be
 16 seen in Figure 4(e).

19 5. Algebraic swept volume computation

20 The conjugation operation described in previous sections is
 21 based upon precise computation of swept volumes. In this section,
 22 we describe the computation of $V(G, M)$, as in Definition 2. B-spline functions are used for representing ∂G . The
 23 translation $b(t)$ as well as the entries of the rotation matrix $A(t)$
 24 of Definition 1 are also represented using B-spline functions.
 25 The entries of $A(t)$ involve trigonometric functions which we
 26 approximate with B-splines by employing the method of [35].
 27 While rational splines may be able to precisely represent circles,
 28 the parametrization is non-uniform and does not serve the
 29 purpose in our case. The output, $\partial V(G, M)$, is again represented
 30 using B-spline functions, within prescribed tolerance. Our
 31 algebraic approach ensures numerical precision and topological
 32 guarantee and consists of four major steps. The first step in-
 33 volves obtaining the solution set of the envelope condition given
 34 in Definition 4. This is described in Section 5.1. The solution
 35 thus obtained is oriented so that the enclosed swept volume is
 36 on the left side of the curve. This is described in Section 5.3.
 37 Next, local self-intersections in the envelope are excised, which
 38 is explained in Section 5.4. Finally, Section 5.5 explains the
 39 construction of $\partial V(G, M)$ which involves resolving global self-
 40 intersections.
 41

42 5.1. Solution to the envelope equation

43 Recall from Section 3 that the necessary condition for a point
 44 on ∂G to belong to the boundary of $V(G, M)$ is to satisfy the
 45 envelope condition given by Definition 4, which we now write
 46 in parametric form.

47 **Definition 13.** The gear G is represented by its boundary,
 48 which is a closed, regular, C^1 -continuous parametric curve, $g : [0, 1] \rightarrow \mathbb{R}^2$, i.e., $g(0) = g(1)$ and $\frac{dg}{dr}(r_0) \neq (0, 0), \forall r_0 \in [0, 1]$.
 49 Here r is the parameter of the curve g .

50 From Definitions 1, 4 and 13, it follows that a point (r_0, t_0) in
 51 the parametric space $[0, 1] \times [0, 1]$ satisfies the envelope condi-

52 tion if it satisfies the following equation.

$$53 f(r, t) := \mathcal{E}(g(r), t) = 0. \quad (6)$$

54 Since Equation (6) has two variables, viz. r, t , the solution, in
 55 general, is of dimension one, i.e., a set of curves in the parame-
 56 ter space, (r, t) . Equation (6) involves the dot-product of ve-
 57 locity and normal. The velocity at a point (r, t) is computed
 58 as $A'(t)g(r) + b'(t)$, which is represented using B-spline func-
 59 tions. Recall from Section 3 that the normal is computed as
 60 $A(t)n_M^G$, which is again represented as B-spline functions. Since
 61 B-spline functions are closed under addition and multiplication
 62 [36], Equation (6) is represented using B-spline functions,
 63 precisely.

64 We employ the constraint solver by Barton et al. [34] to ob-
 65 tain the solution to Equation (6). This solver returns solutions to
 66 under-constrained systems of algebraic equations with numer-
 67 ical and topological guarantee. The returned solution is in the
 68 form of a sequence of connected points, each of which satis-
 69 fies the prescribed constraints up to user-given numerical toler-
 70 ance. The distance between consecutive points too is governed
 71 by user-given step-size. More importantly, the solver guaran-
 72 tees that no portion, topologically, of the solution is left out, up
 73 to the prescribed tolerance. This, in turn, ensures that no por-
 74 tion of the envelope is missed out, up to prescribed tolerance.
 75 The solution points, which are in parametric space, are mapped
 76 into the object space via the map $(r, t) \mapsto A(t)g(r) + b(t)$. We
 77 fit a cubic B-spline curve to the resulting points to obtain the
 78 envelope curves, as in Definition 4.

79 In the simple example shown in Figure 3, the envelope curves
 80 are shown in black, green and red. A non-trivial example is
 81 illustrated in Figure 5. The input gear G shown in (a) is un-
 82 dergoing rigid motion M which is composed of rotation about
 83 the center of G and translation along a circular path. The set of
 84 solution curves of Equation (6), mapped from parameter space
 85 (r, t) to object space (x, y) , is shown in (b).

86 5.2. Handling C^1 -discontinuities

87 The envelope condition prescribed by Equation (6) in Sec-
 88 tion 5.1 requires ∂G to be C^1 -continuous. In this section, we
 89 describe the computation of envelope curves arising from C^1 -
 90 discontinuities in ∂G . Such points will be referred to as *sharp*
 91 points in ∂G . Unlike a regular point in ∂G , a sharp point
 92 in ∂G has a cone of normals. For instance, at the point p
 93 in the schematic shown in Figure 6, ∂G has a cone of out-
 94 ward normals bounded by n_1, n_2 . The point p generates a
 95 set of envelope curves which may be parameterized as $t \mapsto$
 96 $A(t)p + b(t)$. Any such curve is bounded by end-points which
 97 satisfy $\langle p'_M(t), A(t)n_1 \rangle = 0$ or $\langle p'_M(t), A(t)n_2 \rangle = 0$.

98 5.3. Orientating envelope curves

99 The boundary $g(r)$ of input G is oriented so that the interior
 100 G^o lies on the left side of the curve. The envelope curves ob-
 101 tained in Section 5.1 and 5.2 must be oriented in a consistent
 102 manner. Consider a point (r_0, t_0) of the envelope curve and let
 103 $A(t_0)g(r_0) + b(t_0) = q_0$. The curve is oriented so that $G_M(t_0)$ is
 104 on the left side of the envelope curve at the point q_0 . By Defi-
 105 nition 2, this ensures that the swept volume is on the left side of
 106 its boundary curve.

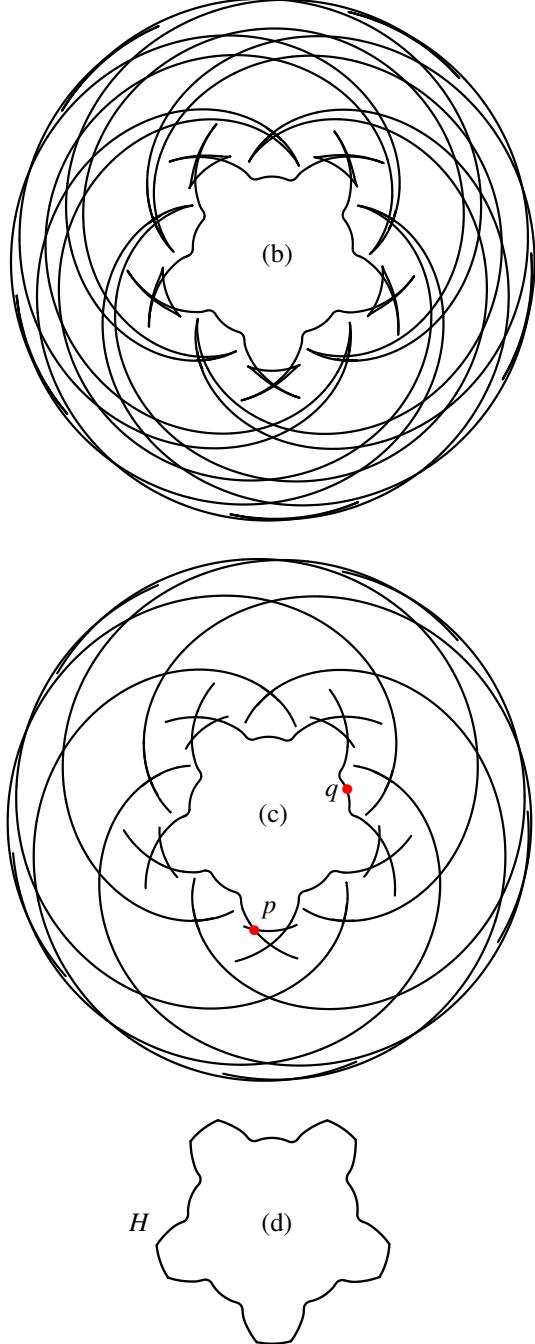


Fig. 5: Swept volume construction. (a) Input G which undergoes motion with rotation about its center and translation along a circle. (b) The envelope curves. (c) Envelope curves after trimming local self-intersections. (d) Portion of the swept volume boundary, enclosing the finite region H .

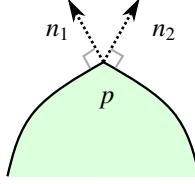


Fig. 6: A point $p \in \partial G$ with C^1 -discontinuity has a cone of outward normals.

5.4. Excising local self-intersections

Local self-intersections are limiting cases of self-intersections as in Definition 5 and lead to singularities in the envelope. In regions with local self-intersections, the envelope loses orientability.

Definition 14. Suppose a point $p = q_M(t_0)$ in the envelope has self-intersection. We say that p has *local self-intersection* if $\forall \epsilon > 0, \exists t_1 \in [0, 1]$ such that $\|t_0 - t_1\| < \epsilon$ and $p \in G_M^o(t_1)$.

Local self-intersections in the envelope are well-understood [12, 27, 32, 37]. Unlike global self-intersections, local self-intersections may be detected by querying local data at time t_0 . Local self-intersections may only arise in the envelope curves described in Section 5.1. The envelope curves arising from the sharp points of input, as described in Section 5.2 are free of local self-intersections. While a detailed exposition on local self-intersections is beyond the scope of this paper, here we briefly outline the mathematical function which detects local self-intersections. For details, the reader is referred to previous works [12, 27, 32] which discuss this issue in detail.

Let (r_0, t_0) be a point which satisfies Equation (6). Since the velocity, $\mathcal{V}(r_0, t_0) = A'(t_0)g(r_0) + b'(t_0)$, is orthogonal to the normal to ∂G at this point, we have that the velocity \mathcal{V} and the tangent, $\mathcal{T}(r_0, t_0) = A(t_0)g'(r_0)$ to ∂G , are linearly dependent. In other words, there exists a non-zero real $\alpha(r_0, t_0)$ such that $\mathcal{V}(r_0, t_0) = \alpha(r_0, t_0)\mathcal{T}(r_0, t_0)$. The following lemma uses Equation (6) and furnishes a test for local self-intersections which, in effect, compares the curvature of ∂G with that of the motion M at a point on the envelope. In the following lemma, f_r and f_t refer to the derivatives of f , as in Equation (6) with respect to r and t .

Lemma 15. A point (r_0, t_0) satisfying the envelope condition has local self-intersection if $\alpha(r_0, t_0)f_r(r_0, t_0) - f_t(r_0, t_0) < 0$.

For proof refer to [32], Theorem 34. In the example shown in Figure 3, the portion of the envelope with local self-intersections is shown in red. The function in Lemma 15 is computed in closed form. Hence, the trimming of regions with local self-intersections is fast and numerically robust. We continue the example of Figure 5 for illustration. The envelope curves shown in (b), after trimming away local self-intersections, are shown in (c). This aids in reducing the computational complexity of the next step.

5.5. Stitching the boundary of the swept volume

At this stage, the envelope curves are oriented, and regions with local self-intersections discarded. It now remains to trim

regions with global self-intersections and to stitch together curve segments which bound the swept volume. Recall from Assumption 3 that the swept volume is homeomorphic to an annulus which partitions \mathbb{R}^2 into two regions: one finite and another infinite. Here we are interested in the portion of the envelope which bounds the finite region. This is obtained as a loop, i.e., a closed sequence of adjacent curve segments. This step is similar to the computation of *lower-envelopes* [38, 39, 40] for a given set of curves. Unlike the envelope in our case, the lower-envelope in their case refers to a set of curves which lower-bound a given set of curves with respect to a given direction or distance function. However these approaches assume monotonicity of the input curves with respect to some direction, which does not hold in our case. Instead, we exploit the rich sweep structure inherent to the envelope curves.

The algorithm for stitching the loop is summarized in Algorithm 1. It takes as input the list of envelope curves, *Crv-list*, as explained above, and a starting-curve, *St-crv*, whence the construction of the loop begins. The starting-curve is obtained by shooting a ray from the center of the enclosed region and selecting the first curve segment which intersects this ray. Algorithm 1 iteratively finds the next curve segment which is adjacent to the current segment and appends the same to the loop. The next segment may be in contact with the current segment either by transversal curve-curve intersection or touching at the end-points. This is illustrated in Figure 5(c) by points *p* and *q*. The two cases are handled by the functions *FindNxtCrvIntersect* and *FindNxtCrvAdjacent* in Algorithm 1. The construction is complete when the loop is closed. This is illustrated in Figure 5(d).

Algorithm 1 ConstructLoop(*St-crv*, *Crv-list*)

```

1: Loop  $\leftarrow \{St\text{-}crv\};
2: Curr-crv  $\leftarrow St\text{-}crv;
3: while TRUE do
4:   Nxt-crv  $\leftarrow$  FindNxtCrvIntersect(Curr-crv, Crv-list);
5:   if Nxt-crv =  $\emptyset$  then
6:     Nxt-crv  $\leftarrow$  FindNxtCrvAdjacent(Curr-crv, Crv-list);
7:   end if
8:   if Nxt-crv = St-crv then
9:     break;
10:   end if
11:   Loop  $\leftarrow$  Loop  $\cup \{Curr\text{-}crv\};
12:   Curr-crv  $\leftarrow$  Nxt-crv;
13: end while
14: return Loop;$$$ 
```

6. Results

Here we present examples which corroborate the observations made in the previous sections. The example shown in Figure 7 involves circular gears. The input gear G_0 is shown in (a) which is modeled by a cubic B-spline curve with 228 control points. The motion M consists of rotation by an angle of 2π and translation along a circle of radius twice that of G_0 , with

uniform speed. The shape of H_0 , obtained as the conjugate of G_0 along M , is shown in (b). It is modeled as a cubic B-spline curve with 260 control points. The next version, G_1 , obtained as the conjugate of H_0 along M^{-1} is shown in (c). It is a cubic B-spline curve with 314 control points. The shapes G_0 and G_1 are shown in overlapping position in (d), in red and blue. G_0, G_1 being identical, the conjugation process has terminated. Each iteration of conjugation took about 110 seconds on a computer with Intel i5 processor and 8 GB memory.

An example of a non-circular gear is shown in Figure 8. Gear G_0 has seven block-like teeth and is modeled as a cubic B-spline curve with 280 control points. It is swept along a motion M involving rotation by an angle of $2\pi * \frac{8}{7}$ and translation along an oblong shaped curve. This curve is composed of two semi-circles connected by a pair of parallel line segments and is parametrized as follows.

$$c(t) = \begin{cases} \left(-t + \frac{\pi}{2}, 1\right) & t \in [0, \pi] \\ \left(-\frac{\pi}{2} + \cos(t - \frac{\pi}{2}), \sin(t - \frac{\pi}{2})\right) & t \in [\pi, 2\pi] \\ \left(t - \frac{5\pi}{2}, -1\right) & t \in [2\pi, 3\pi] \\ \left(\frac{\pi}{2} + \cos(t - \frac{3\pi}{2}), \sin(t - \frac{3\pi}{2})\right) & t \in [3\pi, 4\pi] \end{cases}$$

The resulting conjugate shape, H_0 , as shown in (b), has eight teeth. It is a cubic B-spline curve with 350 control points. Note the variation in the geometry of the teeth of H_0 . H_0 is conjugated along M^{-1} to obtain G_1 , shown in (c). It is a cubic B-spline curve with 330 control points. The shape of H_1 obtained from conjugation of G_1 , is identical to that of H_0 and is not shown. Each iteration of conjugation took about 120 seconds.

Design of a non-linear rack-pinion system is illustrated in Figure 9. In such an assembly, the pinion is connected to an actuator and undergoes translation along the rack as it rotates about its axis. The centrole of the rack, which determines the overall shape of the rack, is shown in (a). The gear G_0 shown in Figure 7(a) acts as the pinion. In order to compute the relative motion M , an approximate arc-length parametrization of the centrole curve is computed by a dense sampling of points. The center of G_0 undergoes translation along the offset of the centrole. The amount of rotation is determined by the length traversed along the centrole, so that there is no slipping, as explained in Section 4. The shape H_0 of the rack, thus obtained by conjugation of G_0 along M , is shown in (b). The computation of conjugation took about 170 seconds.

Three examples for design of gears with freeform tooth shapes are shown in Figure 10. The tooth profiles, modeled as B-spline curves are shown in (a). Six copies of these are arranged along a circle to obtain the initial shapes for G_0 , shown in (b). The gears G_0 are swept along a relative motion M involving rotation by angle 2π about the center of G_0 and translation along a circle of radius twice that of G_0 . The resulting conjugate gears H_0 are shown in (c). The gears H_0 are conjugated along M^{-1} to obtain shapes for G_1 , shown in (d). The simplification is evident by overlapping the shapes of G_0, G_1 as shown in (e). The shape of H_1 is identical to that of H_0 and is not shown. Such gears may be manufactured via 3D-printing, laser cutting or 3-axis CNC-machining. It may be noted that involute gears remain the preferred choice in a majority of cases and freeform gears may be relevant only for niche applications.

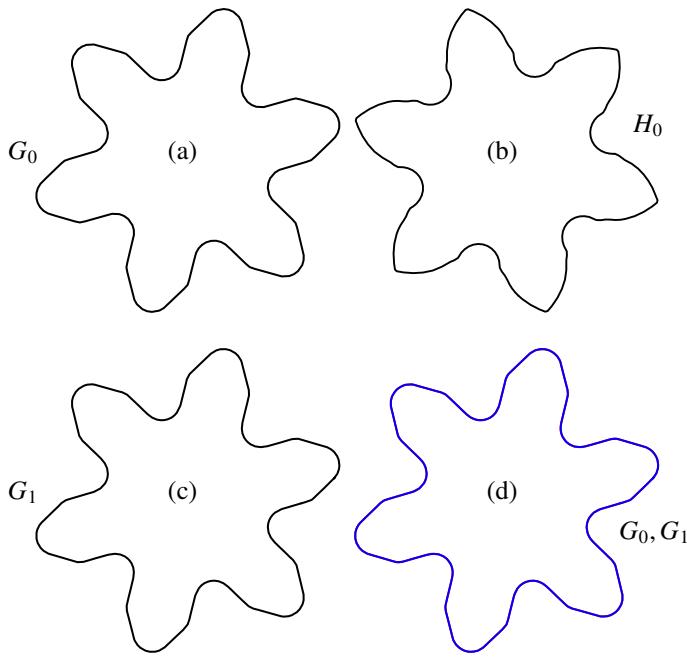


Fig. 7: (a) The input gear G_0 which has six approximately triangular teeth. It is being swept along motion M which consists of rotation by an angle of 2π and translation along a circle of radius 2, with uniform speed. (b) The gear H_0 obtained as the conjugate of G_0 along M . (c) The gear G_1 obtained as the conjugate of H_0 , along M^{-1} . (d) Gears G_0 and G_1 shown in overlapping positions, in red and blue. Since G_0 and G_1 are identical, the conjugation process has converged.

7. Conclusion

This paper proposes a general mathematical framework for design of conjugate geometries. This is achieved by an in-depth analysis of the contact between conjugate shapes. The characterization of shape invariance leads to guarantee of convergence of conjugation. The mathematical framework is complemented by a robust computational framework with numerical and topological guarantees. The resulting algorithm is employed in designing pairs of meshing gears with freeform shapes, that allow non-uniform transmission of motion. The resulting computer codes are used to generate a variety of examples in 2D.

This work may be extended along several interesting directions. Extending this framework to 3D will enlarge the field of application, for instance, in design of spiral bevel gears. Sliding between conjugate teeth profiles is an important issue related to gear design and most practical gears have non-zero sliding. While we demonstrate examples with freeform tooth geometry which allows complete freedom over tooth shape, analysis of sliding may lead to better design. The scope of this work is restricted to kinematic design. Including forces in the design process may lead to improved mechanical properties of resulting parts. Further, consideration about efficient means of manufacturing of freeform gears may lead to interesting design algorithms.

The examples shown in Figures 2, 4, 8, 9 and 10 are animated at <https://youtu.be/y1zesqut5Vs>.

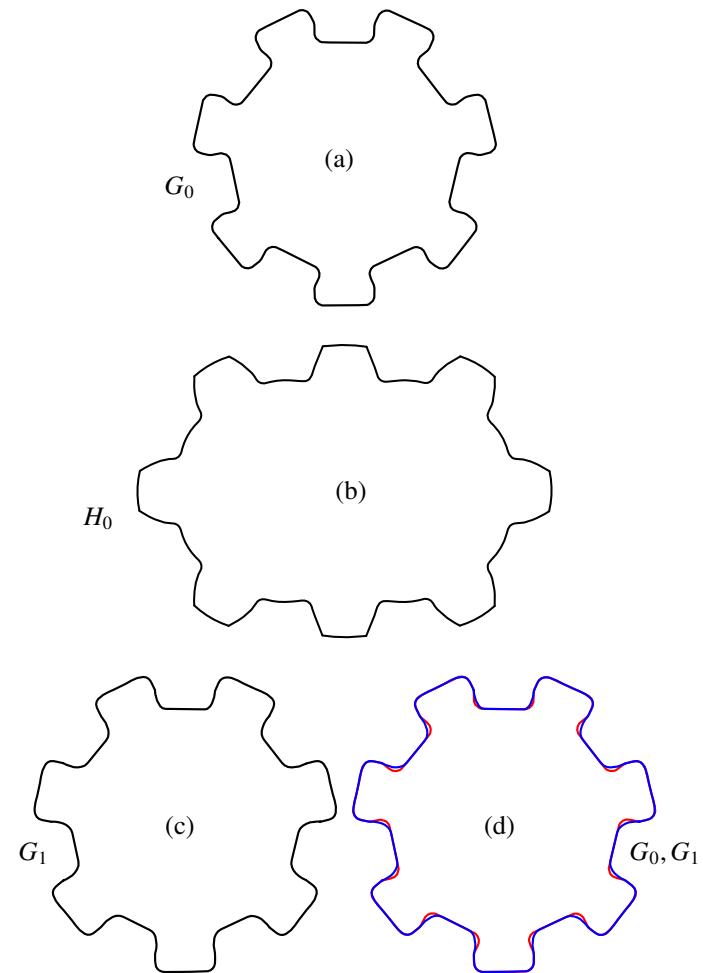


Fig. 8: (a) The input gear G_0 which has seven block-like teeth. It is being swept along motion M which consists of rotation by an angle of $2\pi * \frac{8}{7}$ and translation along an oblong shaped curve, with uniform speed. (b) The gear H_0 obtained as the conjugate of G_0 shown in (a). Thus, H_0 has eight teeth. (c) Gear G_1 obtained as the conjugate of H_0 along M^{-1} . (d) Gears G_0, G_1 are shown in overlapping position, in red and blue.

8. Acknowledgment

This research was supported in part by Indian Institute of Technology Mandi, National Science Foundation grant DMS-1708239 and the ISRAEL SCIENCE FOUNDATION (grant No. 597/18).

References

- [1] Litvin, FL, Fuentes, A. Gear Geometry and Applied Theory. Cambridge University Press; 2004.
- [2] Yang, SC. Determination of spherical cam profiles by envelope theory. *Journal of Materials Processing Technology* 2001;116(2):128 – 136. URL: <http://www.sciencedirect.com/science/article/pii/S0924013601010111>. doi:[https://doi.org/10.1016/S0924-0136\(01\)01011-1](https://doi.org/10.1016/S0924-0136(01)01011-1).
- [3] Taylor, RH, Joskowicz, L, Williamson, B, Gueziec, A, Kalvin, A, Kazanzides, P, et al. Computer-integrated revision total hip replacement surgery: concept and preliminary results. *Medical Image Analysis* 1999;3(3):301 – 319. URL: <http://www.sciencedirect.com/science/article/pii/S1361841599000111>.

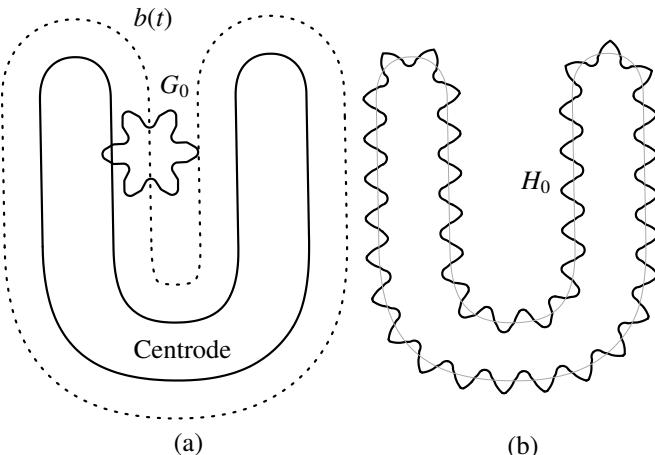


Fig. 9: Design of a non-linear rack-pinion system. (a) The gear G_0 , also shown in Figure 7(a), is rolled along the centrole of H shown as a solid black curve. The translational part of motion is shown as a dotted curve. (b) The resulting non-linear rack, H_0 shown in black, along with the centrole, shown in grey.

1 com/science/article/pii/S1361841599800267. doi:[https://doi.org/10.1016/S1361-8415\(99\)80026-7](https://doi.org/10.1016/S1361-8415(99)80026-7).

2 [4] Blackmore, D, Leu, M, Wang, L. The sweep-envelope differential equation algorithm and its application to nc machining verification. Computer-Aided Design 1997;29(9):629 – 637. URL: <http://www.sciencedirect.com/science/article/pii/S0010448596001017>. doi:[https://doi.org/10.1016/S0010-4485\(96\)00101-7](https://doi.org/10.1016/S0010-4485(96)00101-7).

3 [5] Erdim, H, Ilies, HT. Classifying points for sweeping solids. Computer-Aided Design 2008;40(9):987 – 998. URL: <http://www.sciencedirect.com/science/article/pii/S0010448508001310>. doi:<https://doi.org/10.1016/j.cad.2008.07.005>.

4 [6] Elber, G. Irit modeling environment. "<http://www.cs.technion.ac.il/~irit/>"; 2019.

5 [7] Wunderlich, W. Ebene kinematik (Plane kinematics) B. I. Hochschultaschenbuercher # 447/447a, (in German). Bibliographisches Institut, Mannheim; 1970.

6 [8] Reuleaux, F. The constructor. Philadelphia, H.H. Suplee; 1893.

7 [9] Bar, GFF. Explicit calculation methods for conjugate profiles. Journal for Geometry and Graphics 2003;7(2).

8 [10] Dooner, DB, Seireg, AA. The Kinematic Geometry of Gearing: A Concurrent Engineering Approach. Wiley-Interscience; 1995.

9 [11] Litvin, FL. Determination of the enveloping lines of contact of mutually enveloped surfaces. Izv Vyssh Uchebn Zaved Mat 1975;19:40 – 43.

10 [12] Argyris, J, Litvin, FL, Lian, Q, Lagutin, SA. Determination of envelope to family of planar parametric curves and envelope singularities. Computer Methods in Applied Mechanics and Engineering 1999;175(1):175 – 187. URL: <http://www.sciencedirect.com/science/article/pii/S0045782598003673>. doi:[https://doi.org/10.1016/S0045-7825\(98\)00367-3](https://doi.org/10.1016/S0045-7825(98)00367-3).

11 [13] Puccio, FD, Gabiccini, M, Guiggiani, M. Alternative formulation of the theory of gearing. Mechanism and Machine Theory 2005;40(5):613 – 637. URL: <http://www.sciencedirect.com/science/article/pii/S0094114X04001715>. doi:<https://doi.org/10.1016/j.mechmachtheory.2004.10.003>.

12 [14] Litvin, FL, Gonzalez-Perez, I, Fuentes, A, Hayasaka, K. Design and investigation of gear drives with non-circular gears applied for speed variation and generation of functions. Computer Methods in Applied Mechanics and Engineering 2008;197(45):3783 – 3802. URL: <http://www.sciencedirect.com/science/article/pii/S0045782508001138>. doi:<https://doi.org/10.1016/j.cma.2008.03.001>.

13 [15] Zarebski, I, Salacinski, T. Designing of non-circular gears. The Archive of Mechanical Engineering 2008;55(3):275 – 292. doi:<https://doi.org/10.24425/ame.2008.131628>.

14 [16] Bendefy, AG, Horák, P. Gear pair generation with the method of transposed lines of action. In: Dorian, M, Mario, S, Neven, P, Nenad, B, Stanko, S, editors. Proceedings of the DESIGN 2016 14th International Design Conference. Dordrecht; 2016, p. 129–136.

15 [17] Bonandrini, G, Mimmi, G, Rottenbacher, C. Solutions of the Equation of Meshing for Planar Gear Profiles. Dordrecht: Springer Netherlands. ISBN 978-1-4020-8915-2; 2009, p. 77 – 85. URL: https://doi.org/10.1007/978-1-4020-8915-2_10.

16 [18] Bonandrini, G, Mimmi, G, Rottenbacher, C. Toward computerized determination of envelope to family of parametric planar curves. Computer Methods in Applied Mechanics and Engineering 2009;198(27):2218 – 2224. URL: <http://www.sciencedirect.com/science/article/pii/S0045782509000747>. doi:<https://doi.org/10.1016/j.cma.2009.02.005>.

17 [19] Johann, A, Scheurle, J. On the generation of conjugate flanks for arbitrary gear geometries. GAMM-Mitteilungen 2009;32(1):61 – 79. URL: <https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.200910005>. doi:<https://doi.org/10.1002/gamm.200910005>.

18 [20] Litvin, F, Egelja, A, Donno, MD. Computerized determination of singularities and envelopes to families of contact lines on gear tooth surfaces. Computer Methods in Applied Mechanics and Engineering 1998;158(1):23 – 34. URL: <http://www.sciencedirect.com/science/article/pii/S0045782597002193>. doi:[https://doi.org/10.1016/S0045-7825\(97\)00219-3](https://doi.org/10.1016/S0045-7825(97)00219-3).

19 [21] Lyashkov, AA, Panchuk, KL, Khasanova, IA. Automated geometric and computer-aided non-circular gear formation modeling. Journal of Physics: Conference Series 2018;1050:012049. doi:<https://doi.org/10.1088/1742-6596/1050/1/012049>.

20 [22] Wang, W, Wang, K. Geometric modeling for swept volume of moving solids. IEEE Computer Graphics and Applications 1986;6(12):8 – 17. doi:<https://doi.org/10.1109/MCG.1986.276586>.

21 [23] Abdel-Malek, K, Yeh, HJ. Geometric representation of the swept volume using jacobian rank-deficiency conditions. Computer-Aided Design 1997;29(6):457 – 468. URL: <http://www.sciencedirect.com/science/article/pii/S0010448596000978>. doi:[https://doi.org/10.1016/S0010-4485\(96\)00097-8](https://doi.org/10.1016/S0010-4485(96)00097-8).

22 [24] Ilies, HT, Shapiro, V. The dual of sweep. Computer-Aided Design 1999;31(3):185 – 201. URL: <http://www.sciencedirect.com/science/article/pii/S0010448599000159>. doi:[https://doi.org/10.1016/S0010-4485\(99\)00015-9](https://doi.org/10.1016/S0010-4485(99)00015-9).

23 [25] Leu, MC, Wang, L, Blackmore, D. A verification program for 5-axis nc machining with general apt tools. CIRP Annals 1997;46(1):419 – 424. URL: <http://www.sciencedirect.com/science/article/pii/S0007850607608567>. doi:[https://doi.org/10.1016/S0007-8506\(07\)60856-7](https://doi.org/10.1016/S0007-8506(07)60856-7).

24 [26] Abdel-Malek, K, Yeh, HJ. Geometric representation of the swept volume using jacobian rank-deficiency conditions. Computer-Aided Design 1997;29(6):457 – 468. URL: <http://www.sciencedirect.com/science/article/pii/S0010448596000978>. doi:[https://doi.org/10.1016/S0010-4485\(96\)00097-8](https://doi.org/10.1016/S0010-4485(96)00097-8).

25 [27] Erdim, H, Ilies, HT. Detecting and quantifying envelope singularities in the plane. Computer-Aided Design 2007;39(10):829 – 840. URL: <http://www.sciencedirect.com/science/article/pii/S0010448507000802>. doi:<https://doi.org/10.1016/j.cad.2007.03.007>.

26 [28] Rossignac, J, Kim, J, Song, S, Suh, K, Joung, C. Boundary of the volume swept by a free-form solid in screw motion. Computer-Aided Design 2007;39(9):745 – 755. URL: <http://www.sciencedirect.com/science/article/pii/S001044850700067X>. doi:<https://doi.org/10.1016/j.cad.2007.02.016>.

27 [29] Zhang, X, Kim, YJ, Manocha, D. Reliable sweeps. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling. SPM '09; New York, NY, USA: ACM. ISBN 978-1-60558-711-0; 2009, p. 373–378. URL: <http://doi.acm.org/10.1145/1629255.1629306>. doi:<https://doi.org/10.1145/1629255.1629306>.

28 [30] Peterzell, M, Pottmann, H, Steiner, T, Zhao, H. Swept volumes. Computer-Aided Design and Applications 2005;2(5):599 – 608. doi:<https://doi.org/10.1080/16864360.2005.10738324>.

29 [31] Wallner, J, Yang, Q. Swept volumes of many poses. In: Proceedings of the Third Eurographics Symposium on Geometry Processing. SGP '05; Goslar, DEU: Eurographics Association. ISBN 390567324X; 2005, p. 161–es.

30 [32] Adsul, B, Machchhar, J, Sohoni, M. Local and global analysis

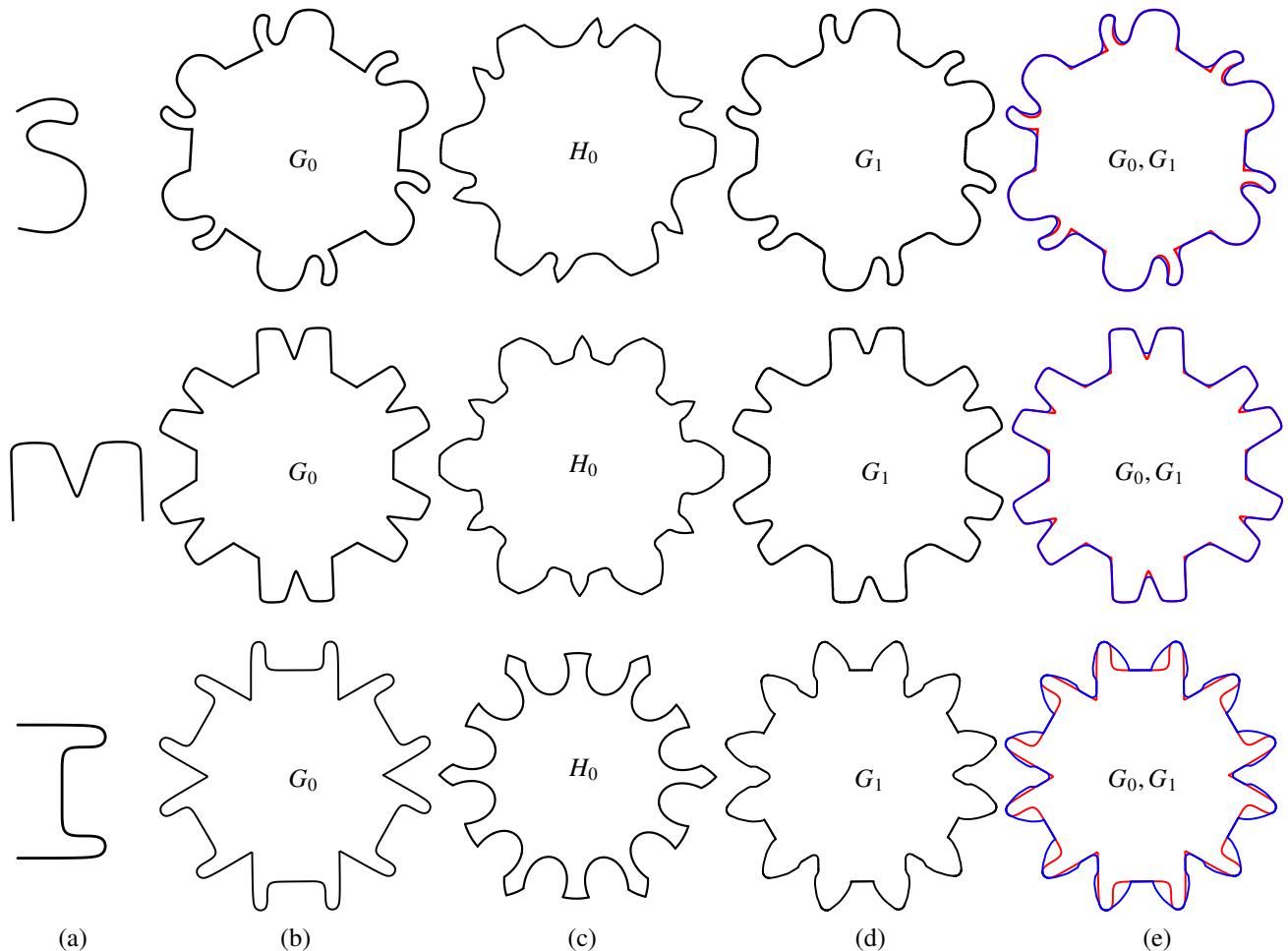


Fig. 10: Design of gears with freeform tooth shapes. (a) Tooth profiles modeled as freeform B-spline curves. (b) Initial designs for gears G_0 obtained by arranging six copies of the tooth shown in (a) around a circle. (c) The gears H_0 obtained as the conjugate of G_0 shown in (b) along motion M which involves rotation by angle 2π about center of G_0 and translation along a circle of radius twice that of G_0 . (d) The gears G_1 obtained as the conjugate of H_0 shown in (c) along M^{-1} . (e) Gears G_0, G_1 , shown in red and blue, in overlapping positions.

1 of parametric solid sweeps. Computer Aided Geometric Design
 2 2014;31(6):294 – 316. URL: <http://www.sciencedirect.com/science/article/pii/S0167839614000582>. doi:<https://doi.org/10.1016/j.cagd.2014.05.009>.

3 [33] Litvin, FL. Theory of Gearing. NASA Reference Publication 1212 AVS-
 4 COM Technical Report 88-C-035; 1989.

5 [34] Barton, M, Elber, G, Hanniel, I. Topologically guaranteed uni-
 6 variate solutions of underconstrained polynomial systems via no-loop
 7 and single-component tests. Computer-Aided Design 2011;43(8):1035
 8 – 1044. doi:<https://doi.org/10.1016/j.cad.2011.03.009>.

9 [35] Dokken, T, Dehnen, M, Lyche, T, Mørken, K. Good approxi-
 10 mation of circles by curvature-continuous Bézier curves. Computer
 11 Aided Geometric Design 1990;7(1):33 – 41. URL: <http://www.sciencedirect.com/science/article/pii/016783969090019N>.
 12 doi:[https://doi.org/10.1016/0167-8396\(90\)90019-N](https://doi.org/10.1016/0167-8396(90)90019-N).

13 [36] Cohen, E, Riesenfeld, RF, Elber, G. Geometric Modeling with Splines,
 14 An Introduction. AK Peters; 2001.

15 [37] Blackmore, D, Samulyak, R, Leu, MC. Trimming swept
 16 volumes. Computer-Aided Design 1999;31(3):215 – 223.
 17 URL: <http://www.sciencedirect.com/science/article/pii/S0010448599000172>. doi:[https://doi.org/10.1016/S0010-4485\(99\)00017-2](https://doi.org/10.1016/S0010-4485(99)00017-2).

18 [38] Hanniel, I, Muthuganapathy, R, Elber, G, Kim, MS. Precise voronoi
 19 cell extraction of free-form rational planar closed curves. In: Proceed-
 20 ings of the 2005 ACM Symposium on Solid and Physical Modeling.
 21 SPM '05; New York, NY, USA: Association for Computing Machinery.
 22 ISBN 1595930159; 2005, p. 51–59. URL: <https://doi.org/10.1145/1060244.1060251>.

23 10.1145/1060244.1060251. doi:[10.1145/1060244.1060251](https://doi.org/10.1145/1060244.1060251).
 24 [39] Hanniel, I, Elber, G. Computing the voronoi cells of planes,
 25 spheres and cylinders in r3. Computer Aided Geometric Design
 26 2009;26(6):695 – 710. URL: <http://www.sciencedirect.com/science/article/pii/S0167839608000964>. doi:<https://doi.org/10.1016/j.cagd.2008.09.010>; solid and Physical Modeling 2008.

27 [40] Meyerovitch, M. Robust, generic and efficient construction of envelopes
 28 of surfaces in three-dimensional spaces. In: Azar, Y, Erlebach, T, editors.
 29 Algorithms – ESA 2006. Berlin, Heidelberg: Springer Berlin Heidelberg;
 30 2006, p. 792–803. doi:https://doi.org/10.1007/11841036_70.

Appendix A. Some facts about rigid motions

Proof of Lemma 7: Assume without loss of generality that $A(t_0) = I$ and $b(t_0) = 0$. Thus, at $t = t_0$, we have,

$$p_M(t_0) = A(t_0)p + b(t_0) = p = q.$$

The matrix $A(t)$ being orthonormal, we have,

$$\begin{aligned} A(t)A^{-1}(t) &= I \\ \Rightarrow A'(t)A^{-1}(t) + A(t)A^{-1'}(t) &= 0 \\ \Rightarrow A'(t_0) &= -A^{-1'}(t_0). \end{aligned} \tag{A.1}$$

The velocity at $p_{M^{-1}}(t)$ is computed as,

$$\begin{aligned} q_{M^{-1}}(t) &= A^{-1}(t)(p - b(t)) \\ \Rightarrow q'_{M^{-1}}(t) &= A^{-1}'(t)(p - b(t)) - A^{-1}(t)b'(t). \end{aligned} \quad (\text{A.2})$$

At $t = t_0$, from Equation (A.1) and (A.2) we get,

$$\begin{aligned} q'_{M^{-1}}(t_0) &= -A'(t_0)p - b'(t_0) \\ &= -p'_M(t_0). \end{aligned}$$

□