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Abstract—The risks associated with rare events threaten-
ing the security of power system operation are of paramount
importance to power system planners and operators. To ana-
lyze the risks caused by high-impact, low-frequency rare events,
an immensely large number of samples are typically required
for the Monte-Carlo (MC) method on the high-fidelity power
system model to achieve a sufficient accuracy, thereby render-
ing this approach computationally prohibitive. To handle this
problem efficiently, it is desirable to construct a surrogate model
for the power system response. However, the straightforward
MC sampling of the low-fidelity surrogate can lead to biased
results in the low-probability tail regions that are vital to risk
assessment. Moreover, a single surrogate is unable to handle
the topology uncertainties caused by random branch outages.
To overcome these issues, we propose a hybrid multi-surrogate
(HMS) method based on the polynomial chaos expansion (PCE)
with low-probability tail events reevaluated by the high-fidelity
model through a probabilistic analysis. This method improves
the computational efficiency of the MC method for rare-event
risk assessment by leveraging multi-fidelity models while retain-
ing the desired accuracy. Simulations conducted in three test
systems verify the excellent performances of the HMS method.

Index Terms—Risk assessment, rare events, branch outage,
Monte-Carlo sampling, probabilistic power flow, polynomial
chaos expansion.

I. INTRODUCTION

POWER system operators regularly perform security anal-
ysis to ensure that the network does not operate out-

side tolerable limits that contribute to, e.g., line overloads,
voltage limit excursions, and voltage instability. However,
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power system is inherently stochastic. Sources of stochastic-
ity include continuous load variations over time, intermittency
of renewable energy resources, and random outages of trans-
mission lines and transformers, to cite a few [1]. These
uncertainties can bring formidable challenges to power system
planning and operation. Ignoring them will produce inappro-
priate planning strategies or control actions, which, in turn,
may result in unprecedented system failures.

Facing these challenges, several probabilistic methods to
account for the uncertainties in power system operation and
planning have been advocated in the literature over the past
decades [2]–[7]. Among them, methods based on probabilistic
power flow (PPF) are developed to propagate the uncertain-
ties of system inputs through a nonlinear ac power-flow solver
to obtain the probability density functions (pdfs) of the out-
put variables, e.g., power flows and voltage magnitudes. The
obtained pdf can provide a full statistical description of the
quantity of interest (QoI). Even though many methods focus
on deriving information from the first two moments of the
QoI [8], [9], the probabilities associated to risk events at the
tail regions of the pdfs are of more interest among system plan-
ners and operators [2], [10]–[12]. This motivates us to conduct
the risk assessment for these rare events in PPF analysis.

To solve this problem, the MC simulations are typically
adopted for its high accuracy and implementation flexibil-
ity [13]. However, the impediment arises from the prohibitively
large computational burden. It turns out that in practice, tens
of thousands of MC simulations are required to achieve a
crude estimation of the pdfs, not to mention to quantify the
risks for low-frequency, high-impact rare events. For exam-
ple, for a failure probability of 10−4, it is not uncommon
to use 105 (or even 106) as the number of samples for a
desired accuracy [11], [14], [15], processing of which is too
time-consuming for realistic power system applications. Even
with the use of variance-reduction techniques (e.g., impor-
tance sampling), which were proposed to reduce the sample
size based on the biased prior pdfs, the computing time can-
not still be reduced significantly [11], [13]. Therefore, a few
alternative methods (e.g., the Cornish-Fisher, Edgeworth, and
Gram-Charlier methods) to further improve the computational
efficiency have been proposed. However, Cornish-Fisher and
Edgeworth expansions can exhibit poor tail behavior while the
Gram-Charlier series may yield negative cumulative probabil-
ity values [2], [10], which makes it impractical. To address this
issue, Williams and Crawford [12] propose the combined use
of the maximum entropy and the Gram-Charlier expansion to
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construct pdfs based on cumulant arithmetic treatment of the
linearized power flow. While this would seemingly be a cost-
effective method, the linearization assumption for power-flow
models might not hold for systems that are highly stressed
under rare events.

To overcome the shortcomings of the aforementioned meth-
ods, a polynomial-chaos-expansion (PCE)-based response-
surface model, also known as a surrogate (or reduced-order)
model, has been advocated by [2], [16]–[18]. This PCE-based
surrogate model can capture the behavior of the complicated,
high-fidelity simulation model of a power system very closely
while being computationally inexpensive to evaluate [19],
allowing the efficient propagation of a large amount of sam-
ples. However, the straightforward sampling of a surrogate
model can lead to biased results in the low-probability tail
regions that are vital in risk assessments [14], [15], [20].
Furthermore, the construction of the PCE-based surrogate
model relies on the assumption of the smoothness of the orig-
inal system function [21]. However, this assumption cannot
be guaranteed when the topology changes caused by random
branch outages are considered. Indeed, none of the aforecited
PCE-based methods is able to account for the uncertainties
of branch outages [2], [16]–[18]. However, these uncertainties
may have much greater influence on system states than those
of nodal power injections. Therefore, these structural uncer-
tainties should not be neglected in assessing risks under rare
events [22]. Thus far, only a handful of attempts have been
made to account for random branch outages in PPF analysis
owing to the complex nature of this problem [22], [23]. The
crude pdf obtained from only several thousands of samples
cannot adequately provide a statistical description of long tails
in the pdfs, which are mainly induced by the low-frequency,
high-impact samples associated with rare events [22].

To address the abovementioned issues, this paper proposes a
novel PCE-based HMS method for the risk assessment of rare
events in PPF analysis, resulting in the following contributions:

• This paper demonstrates the first attempt to use a PCE-
based method to conduct risk assessment in PPF analysis.
Not only are the uncertainties from the active power
and reactive power of loads considered, but also the
structural uncertainties associated with random branch
outages, including a number of extreme events, i.e., N−2,
N − 3, and higher-order contingencies, are accounted for.

• To handle the inaccuracy of the PCE method in sampling
the low-probability tail regions, a more accurate hybrid-
PCE method is developed [14], [15], [20].

• To overcome the incapability of the traditional PCE-based
method in handling topology changes, this paper, for
the first time, proposes a “multi-surrogate” model. This
multi-surrogate model is further combined with a second-
stage, hybridized procedure to deal with extreme-event
cases. Amenability of the resultant hybrid multi-surrogate
(HMS) method to parallel processing is also discussed.

• Simulation results reveal the excellent accuracy and the
computing efficiency of the proposed method.

This paper is organized as follows: after formulating the
problem of risk assessment in Section II, we briefly review the
MC and response-surface methods in Section III. The hybrid

surrogate method and the proposed HMS method are presented
in Section IV. Section V presents the results for test cases.
Conclusions and future work are highlighted in Section VI.

II. PROBLEM FORMULATION

This section formulates the problem of risk assessment of
rare events in PPF analysis considering the random branch
outages. Let us first formulate the power system forward
model as

z = f (m). (1)

Here, z stands for the QoI, e.g., voltage magnitude, voltage
stability margin, and line flow; m = [m1, m2, . . . , mN] is a
vector of uncertain model parameters described by some dis-
tribution functions with finite variance. In our work, the active
power and reactive power of the loads are considered to follow
the Gaussian distribution and the branch states are modeled in
the form of 0-1 binomial distributions [2], [22]; the f (·) is the
nonlinear function that represents the power system model,
which maps the model parameters, m, to the QoI, z. In this
paper, f (·) denotes the ac power-flow model. Furthermore, f (·)
can represent other power system models, e.g., voltage stabil-
ity model [3], centralized power system dynamic model [6],
or decentralized synchronous generator model [7].

Due to the uncertainties in the model input parameters,
the QoI will follow some unknown pdf q(z). With that, the
probability for target events can be represented by

Pf = Pr
(
Z ∈ �f

) =
∫

�f

q(z)dz =
∫

χ�f (z)q(z)dz, (2)

where χ is the characteristic function satisfying

χ�f (z) =
{

1 if z ∈ �f ,

0 if z �∈ �f ,
(3)

and �f is the target domain defined as

�f
�= {Z : g(Z) < 0}. (4)

Here, g(z) is a limit state function, also called performance
function that defines the target domain for risk assessment.
More specifically, the domain where g(z) < 0 stands for the
domain with risk, and the domain where g(z) ≥ 0 stands for
the safe domain [14], [15]. Here, based on (2), the probability
of failure can be represented as

Pf =
∫

χ{g(z)<0}(z)q(z)dz. (5)

Now, we have completed the formulation of the risk assess-
ment in PPF analysis. For the rare events considered in
this paper, the failure probability is typically very small,
with a value of Pf < 10−3 or Pf < 10−4. This entails
high requirements to achieve a good accuracy in the long
tail of q(z).

Remark 1: As Aven et al. have summarized in [24], the
“risk” terminology has multiple qualitative definitions, e.g., the
possibility of an unfortunate occurrence, or the potential for
realization of unwanted, negative consequences of an event, or
the consequences of the activity and associated uncertainties.
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In this article, we choose, as our measure of risk, the
failure probability exceeding the operational limit in PPF anal-
ysis by following the practice suggested by da Silva and
de Castro [11]. Furthermore, the concept of “risk” can be
easily extended to other quantitative metric, e.g., the average
amount of QoI that exceeds the target. Then, (3) is reformed
as

χA�f
(z) =

{
�A if z ∈ �f ,

0 if z �∈ �f .
(6)

Here, �A is the value of the QoI falling below or above the
allowed limit.

III. ALGORITHM PRELIMINARIES

This section will first introduce the relationship between the
MC and response surface methods. Then, a cost-effective way
to construct a response surface of the power system model via
the PCE is illustrated.

A. Relationship Between the MC Simulation and the
Response Surface Method

The most straightforward way to conduct a risk assessment
is the MC simulation, where a set of Nm samples are drawn
from the multivariate probability distribution of m, yielding
{m(j)}Nm

j=1. Then, for each m(j), j = 1, . . . , Nm, the QoI is real-

ized through zj = f (m(j)), yielding a set of {z(j)}Nm
j=1, which

includes the system realizations both including and excluding
branch outages. The failure probability is calculated as

PMC
f =

Nm∑

j=1

1

Nm
χ{g(z)<0}

(
zj). (7)

Despite its easy implementation, the computational burden for
realizing the complicated solver f (·) at Nm parameter values is
too heavy for practical applications. This motivates us to use
an accurate surrogate model f̃ (m) that holds a relationship
with the original complicated power system model f (m) as
f̃ (m) ≈ f (m). By this way, the uncertainties of the system
model can be propagated through the surrogate model f̃ (m) at
little or no extra computational cost. The limit state function
for the response surface model described as g̃(z) also holds for
g̃(Z) ≈ g(Z). This enables us to estimate the risk probability
of the rare events by response surface method via

PRS
f =

Nm∑

j=1

1

Nm
χ{̃g(z)<0}

(
zj). (8)

By this way, the risk assessment problem can be conducted in
the surrogate model efficiently. Next, we will present the way
to construct the surrogate model via PCE.

B. Review of PCE-Based Response Surface

Introduced by Wiener and further developed by Xiu and
Karniadakis [19] and Xiu [21], the generalized polynomial
chaos expansion has been shown to be a cost-effective tool in
modeling response surfaces [2], [16]–[18]. In this method, the
stochastic outputs are represented as a weighted sum of a given

set of orthogonal polynomial chaos basis functions constructed
from the probability distribution of the input random variables.
Let ξ = [ξ1, ξ2, . . . , ξN] be a vector of random variables fol-
lowing a standard probability distribution (e.g., the Gaussian
or the beta distribution), to which, as shown in [21], a unique
orthogonal polynomial is associated. Let �i(ξ1, ξ2, . . . , ξN)

denote this procedure’s corresponding polynomial chaos basis
and ai denote the ith polynomial chaos coefficient. Formally,
we have

z =
NP∑

i=0

ai�i(ξ), (9)

where NP = (N + P)!/(N!P!) − 1; N is the total number
of the random variables involved in the gPC; and P is the
maximum order of the polynomial chaos basis functions, for
which a relatively low number (typically 2) is found to provide
output results with enough accuracy [2], [16], [18]. From the
polynomial chaos coefficients, the mean, μ, and the variance,
σ 2, of the output z can be determined as

μ = a0, (10)

σ 2 =
NP∑

i=1

a2
i E

[
φ2

i

]
, (11)

where E[ · ] is the expectation operator.
1) The Orthogonal Polynomial Chaos Basis: A set of one-

dimensional polynomial chaos basis functions {φi(ξ), i =
0, 1, 2, 3, . . .} with respect to some real positive measure
should satisfy the following relations:

∫

R

φr(ξ)φs(ξ)dλ

{= 0 if r �= s,
> 0 if r = s.

(12)

Here, λ is a probability measure defined as the cumulative
distribution function (cdf) of ξ . For every cdf, the associated
orthogonal polynomials are unique.

Similarly, any set of multi-dimensional polynomial chaos
basis functions, {φi(ξ), i = 1, 2, 3, . . .}, is orthogonal to each
other with respect to their joint probability measure.

2) Three-Term Recurrence Relation: The orthogonal poly-
nomials satisfy a three-term recurrence relation given by [25]

φk+1(ξ) = (ξ − αk)φk(ξ) − βkφk−1(ξ),

φ−1 = 0, φ0 = 1; k = 0, 1, 2, . . . , K, (13)

where φk(ξ) is a set of orthogonal polynomials defined as

φk(ξ) = ξ k + lower-degree terms, k = 0, 1, . . . , K, (14)

and αk and βk are the coefficients of the orthogonal polyno-
mials of the kth order, which are uniquely determined by a
probability measure.

3) The Stieltjes Procedure: Several methods exist in the lit-
erature to calculate the coefficients αk and βk of an orthogonal
polynomial chaos basis for an arbitrary probability measure.
In this paper, the Stieltjes procedure is chosen as an accurate
and a cost-effective method [18], [26]. It is given by

αk =
∫

R
ξφ2

k (ξ)dλ(ξ)
∫

R
φ2

k (ξ)dλ(ξ)
, k = 0, 1, 2, . . . , K, (15)
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βk =
∫

R
φ2

k (ξ)dλ(ξ)
∫

R
φ2

k−1(ξ)dλ(ξ)
, k = 1, 2, . . . , K. (16)

Here, β0 is arbitrary and can be conveniently chosen as β0 =∫
R

dλ(ξ) and K is the highest order of the polynomials. If
the measure consists of n discrete points, the integrals in (15)
and (16) become summations.

4) Construction of the Polynomial Chaos Basis: A set of
multidimensional polynomial chaos basis functions can be
constructed as the tensor product of the one-dimensional poly-
nomial chaos basis associated with each input random variable.
Formally, we have

φ(ξ) = φ(ξ1) ⊗ φ(ξ2) ⊗ · · · ⊗ φ(ξN), (17)

where �(ξi) denotes the one-dimensional polynomial chaos
basis for the ith random variable.

5) Collocation Points: They can be regarded as a finite
sample of ξ = [ξ1, ξ2, . . . , ξN] that are chosen to approximate
the polynomial chaos coefficients. The elements of the collo-
cation points are generated by using the union of the zeros
and the roots of one higher-order, one-dimensional polyno-
mial for every random variable [2], [21]. For example, for
a 2nd-order Hermite polynomial, its one higher-order polyno-
mial is φ3(ξ) = ξ3−3ξ . The elements of the collocation points
are {√3,−√

3, 0}. With these 3 collocation point elements, if
there are N random variables, the number of possible combi-
nations is 3N . Since there are NP + 1 unknown coefficients,
at least NP + 1 independent combinations should be chosen
randomly from the 3N possible ones [2].

C. Building a PCE-Based Surrogate for Power System
Response

Here, the uncertain parameters m in the power system model
are viewed as random variables following certain types of dis-
tributions. By mapping the parameters m into ξ , we can build
a PCE as the response surface of power-flow solutions. The
detailed PCE procedure is as follows:

(1) Map the ith random parameter, mi, to a given random
variable, ξi, as follows:

mi = F−1
i (T(ξi)), (18)

where F−1
i is the inverse cdf of mi and T is the cdf of ξi;

(2) Construct the polynomial chaos basis; then, express the
output z in the gPC expansion form of (9);

(3) Construct M combinations of collocation points and put
them into the polynomial chaos basis (M × (NP + 1))

matrix Hpc. Formally, we have

Hpc =

⎡

⎢
⎢⎢
⎣

�0(ξ1) �1(ξ1) · · · �NP(ξ1)

�0(ξ2) �1(ξ2) · · · �NP(ξ2)
...

...
. . .

...

�0(ξM) �1(ξM) · · · �NP(ξM)

⎤

⎥
⎥⎥
⎦

; (19)

(4) Compute the power-flow output for the selected col-
location points to get the (M × 1) output matrix z
given by

z = [
z(ξ1) z(ξ2) . . . z(ξM)

]ᵀ; (20)

(5) Estimate the unknown coefficients a based on the col-
location points that are selected and the model output
from

z = Hpca, (21)

where a is the (NP × 1) coefficient vector expressed as

a = [
a0 a1 . . . aNP

]ᵀ; (22)

(6) Let r denote the residual vector defined as r = z−Hpca.
An estimated â can be obtained by minimizing the 2-
norm of the residual vector, i.e., J(â) = arg minâ rᵀr,
which yields

â =
(

Hᵀ
pcHpc

)−1
Hᵀ

pcz. (23)

With the coefficients estimated and the bases selected, we can
build the PCE for the target output. The power system response
surface can now be represented in a polynomial form as the
surrogate model.

Remark 2: When renewable energy generation is consid-
ered, correlations among input variables cannot be ignored. To
handle these correlations, several methods have been proposed
in the literature, e.g., a whitening transformation [2], [3], [18],
the Nataf transformation [17], and the Karhunen-Loève expan-
sion [21]. In this work, we solely focus on the topics of
risk assessment and topology uncertainties. The handling of
correlations is beyond the scope of this paper.

IV. THE PROPOSED HMS METHOD

This section will introduce the proposed HMS method
with two hybrid procedures involved. The hybrid PCE-based
method is first introduced to improve the sampling accuracy
along the tails of the QoI. Then, a hybrid multi-PCE model is
further developed to handle the topology uncertainties.

A. Hybrid PCE-Based Method

Motivated by the fact that the direct surrogate-based
MC simulation may introduce a significant error in the
small-probability tail regions of the pdfs, Li and Xiu [14]
first developed the hybrid PCE method, which is shown
to be a cost-effective tool in handling small failure
probabilities [15], [20]. The main idea is to combine the sam-
pling of the surrogate and original system models. For most
of samples, which are located “away” from the limit state
for the QoI, the samples of the surrogate models are used.
For the samples located “close” to the limit state of the
QoIs, the samples are reevaluated through the original system
model. By doing so, only a small portion of the samples are
obtained from the original system model; thus, the overall
cost is much cheaper than the one obtained by sampling using
the power system model. Furthermore, this reevaluation stage,
also known as a two-stage MC method [20], prevents loss of
accuracy coming from the direct usage of the surrogate-based
method. Therefore, based on (7) and (8), the risk probability
of rare events via the hybrid approach can be obtained from

PH
f =

Nm∑

j=1

1

Nm
χ�̃ f

(
zj), (24)
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where the approximate target domain is defined as

�̃f
�= {̃g(Z) < −γ } ∪ {{|̃g(Z)| ≤ γ } ∩ {g(Z) < 0}}. (25)

Here, γ denotes a threshold, typically set to a small positive
number. It is worth noting that γ determines the efficiency of
this algorithm. A larger value of γ will lead to more reeval-
uations of the original model, yet with a higher accuracy. If
γ = 0, the two-stage MC method is equivalent to a one-stage,
direct surrogate method. Choosing a proper value of γ can
enable the results of this two-stage MC method to converge to
those of the MC simulation based on the original model [14].
Therefore, the hybrid approach enjoys both the accuracy of the
MC method and the efficiency of the surrogate-based method.

B. Hybrid Multi-Surrogate (HMS) Method

Although we have obtained the accurate surrogate model
with the aforementioned hybrid PCE-based surrogate model,
we have not yet been able to fully handle the topological
uncertainties in the PPF analysis.

First, it is well known that the PCE-based surrogate model
can be inadequate for problems involving model disconti-
nuities [26], [27]. This is because the construction of the
surrogate model is based on the smoothness assumption
of the system response. However, when the topology of a
power system changes due to random branch outages, system
responses tend to have abrupt changes that violate this assump-
tion. This is especially true for the rare events involving
high-order contingencies. Facing this challenge and motivated
by the multi-element generalized polynomial chaos (MEgPC)
method that has been widely used in the uncertainty quantifi-
cation problem comprising model discontinuities or long-term
dynamic simulations [6], [26], [27], we propose a multi-
surrogate method. Similar to the main idea underlying the
MEgPC method that decomposes the random space of sin-
gle element to construct multiple new elements, we treat
every system topology as a single element and, therefore, this
results in multiple elements associated with different system
topologies. Within every single element, we can construct its
corresponding surrogate model that only considers the nodal
power-injection uncertainties.

However, due to the complexity of the power system model,
simply adopting the idea of “multi-element” will not be suf-
ficient. The number of possible topologies caused by random
branch outages is directly proportional to the number of system
branches. What is worse, even for a very-small-scale power
system, modeling all possible combinations of these topologies
can be computationally infeasible. Assuming that the branch
states are modeled to follow the pdfs of 0-1 binomial dis-
tributions and the number of transmission lines is denoted by
Nbranch, the total number of the combinations becomes 2Nbranch .
For example, for a power system with Nbranch = 30, the total
number of the possible topologies reaches 230 ≈ 1.07 × 109.
However, construction of that many surrogate models for these
different topologies goes far beyond the existing computational
capabilities, thus rendering this method highly impractical.

To overcome this problem, we further adopt the idea of
using a hybrid approach to handle the numerous topologies

TABLE I
AN IEEE SURVEY OF TOTAL NUMBER OF NORTH AMERICA OVERHEAD

TRANSMISSION OUTAGES AT 230 KV AND ABOVE (1965-1985)

with a much higher computational efficiency. Following the
power system planning tradition, we classify different system
topologies into N −1, N −2, N −3, etc. cases. For the original
system model without any branch outages and for the N − 1
topologies, we maintain the idea of “multi-element” and con-
struct Nbranch+1 surrogate models for them separately. For the
topologies corresponding to N−2 and higher-order contingen-
cies, we retain the traditional MC method without constructing
any surrogate model.

This is because we need to consider the balance between the
construction of the surrogate model and the usage of the direct
MC method. As is shown in (20), constructing the PCE-based
surrogate model depends on the realizations at a small number
of collocation points. That is nearly all the computational cost
associated with using the surrogate model. Once the surrogate
model is constructed, the realizations of a large number of
samples through this surrogate model can be computationally
negligible. However, if the number of samples that need to
be propagated through the surrogate model is very small, e.g.,
2, 1, or even 0, then the construction of the surrogate model
itself already becomes computationally more expensive than
directly using the original system model. In these cases, using
direct MC simulation is more cost-effective.

Even though system failures may cascade in numerous
ways, it is well known that the probability of occurrence of
every topology can vary dramatically. Apart from the origi-
nal system model without branch outages, the N − 1 cases
occur more frequently than the higher-order contingencies,
e.g., N − 2, N − 3, as shown in Table I taken from [28].

Furthermore, for all the N − 1 cases, we only need to
construct Nbranch surrogate models. For the risk assessment
targeted at the rare events associated with very low probabil-
ity, e.g., 10−4, it is common to choose a sample size of at least
106 samples for achieving the desired accuracy [11], [14], [15].
If, for instance, the probability of each N − 1 topology equals
approximately 0.01%, this implicates a 100-sample realiza-
tion for such topologies. Constructing a PCE-based surrogate
model still becomes computationally far more efficient than
the direct MC sampling with original system model. However,
when the same logic is applied to N − 2 or higher-order con-
tingencies, the number of surrogates increases combinatorially
(e.g.,

(Nbranch
2

)
and

(Nbranch
3

)
for N − 2 and N − 3 cases, respec-

tively), contributing to diminishing returns in computational
efficiency, or, even worse, making this model less efficient
than the direct MC sampling.

The above discussions prompt us to merge the aforemen-
tioned hybrid PCE method into the framework of the HMS
method. The associated framework is depicted in Fig. 1. Note
that the computational efficiency of the HMS method can be
further improved if all the blocks highlighted in yellow are
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Algorithm 1 Risk Assessment via the HMS Algorithm
1: Model the uncertainties with their associated pdfs, includ-

ing the uncertainties from load variations and branch
states; choose the QoI for risk assessment;

2: Only considering the uncertainties of nodal power injec-
tions, construct the PCE-based surrogate model of the
system without branch outage;

3: for k = 1, . . . , Nbranch do
4: Set Branch k in an “off” state and all the other

branches in “on” states; then, construct a PCE-based surro-
gate model by only considering the nodal power-injection
uncertainties;

5: end for
6: Generate Nm samples as {m(j)}Nm

j=1, including uncertainties
for nodal power injections and branch states;

7: for j = 1, . . . , Nm do
8: Classify m(j) into different types of contingencies, i.e.,

N − 0, N − 1, N − 2, etc.
9: if m(j) belongs to N − 0 or N − 1 cases then

10: Find the corresponding surrogate model for m(j)

and compute zj via its surrogate model f̃ (m(j));
11: if zj located in target domain �̃f then
12: Mark sample m(j) for reevaluation;
13: end if
14: else
15: Compute zj via original system model f (m(j));
16: end if
17: end for
18: Reevaluate all the samples marked in Step 12 via f (m(j));
19: Perform risk assessment via (24)

processed with parallel computing. The detailed procedure for
implementing the HMS algorithm is illustrated in Algorithm 1.
Note that if the outages create islands in the system, we first
identify each island and solve for the ac power flow separately
to find the corresponding QoI.

Remark 3: It is worth pointing out the current HMS
approach is still based on the sampled data. However, this
method can be extended to historical utility outage data as the
HMS method improves the computational efficiency through
reduced-order modeling which has no limitation on the sources
of the samples. In case the utility outage data is available,
data generation introduced in Step 6 of Algorithm 1 is not
necessary. True data are evaluated through this hybrid model
directly.

V. SIMULATION RESULTS

Using the framework we have established in the preceding
section, we perform extensive studies on the IEEE 24-bus
Reliability Test System (RTS) and the 118-bus system whose
network and reliability data are extracted from [29]. The algo-
rithms are tested with MATPOWER package using MATLAB
R2018a version on a laptop with 2.60-GHz Intel Core i7-
6600U processors and a 16 GB of main memory. We further
extend the proposed method to a very-large-scale power
system, the European 1,354-bus system. The data can be

obtained form [30], [31]. For this very large power system
test case, the simulation results are obtained on a desktop with
3.50-GHz Intel Xeon CPU E5-1650 v2 processors and a 32 GB
of main memory.

A. Results for IEEE 24-Bus RTS System

For this test system, we build a setup to capture the low-
probability events resulting from topology changes and the
variations of the active and reactive power of the loads. Here,
it is assumed that the loads follow a Gaussian distribution
with mean values equal to the original bus loads and standard
deviations equal to 15% of their means. The probabilities of
transmission-line outages are obtained via

P
 = αλpt

8, 760
, (26)

where λp is the permanent outage rate [outages/yr]; t is the
permanent outage duration [h]; and α is the scaling factor [22].
The data for λp, t, and α are provided in [29]. The proposed
HMS method is verified in the risk assessment simulations
under different scaling factors.

The simulation results of the HMS method are compared
with the MC method with 1, 000, 000 samples of power-
flow cases. Under different scaling factors, the samples are
associated with different numbers of contingencies. Here, we
increase α from 1 to 3 to 5, with the generated samples pro-
vided in Table II. It is easy to verify that the number of
higher-order contingencies increases with an increase in the
scaling factor. To make a fair comparison, the samples are
propagated through both the MC and HMS methods. It should
be noted that 2 CPUs are used to parallelize the executions of
the MC and of the HMS methods as displayed in the yellow
blocks shown in Fig. 1. Let us select the voltage magnitude at
Bus 3 as the QoI. Now, we seek to assess the risk of the QoI
falling below its minimum operating limit, i.e., 0.95 pu. The
simulation results obtained with the MC method are provided
in Fig. 2. As α increases, the tails of the pdfs become thicker,
leading to a higher risk probability, PMC

f . However, this risk
probability is still too low to make an accurate assessment with
the traditional response-surface-based method. This motivates
us to conduct extensive simulations to validate our proposed
HMS method using varying PCE orders and tuning parameters,
γ , and under varying scaling factors, α, thereby producing the
results displayed in Table III.

The following conclusions can be drawn from these results:
• Compared to the MC method execution that requires

approximately 1.5 h to complete all the tests, the HMS
method execution requires only about 1 min.

• Compared to the MC results, the HMS method can
provide equally accurate simulation results even for very-
low-probability events, e.g., 10−4 or 10−5.

• A larger γ will lead to a larger state space required
for reevaluation and therefore to an increasing number
of model reevaluations and a larger computing cost, but
further improving the simulation accuracy.

• With a higher PCE order P, the simulation results tend to
be more accurate under the same γ values. For a relatively
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Fig. 1. Flowchart of risk assessment via the HMS method.

TABLE II
SAMPLE SIZES OF RANDOM BRANCH OUTAGES USED IN

THE IEEE RTS 24-BUS SYSTEM

low P value, a larger γ value is required to achieve the
same level of accuracy.

• As α increases, the computational efficiency gradually
decreases. This is due to two major reasons. First, this
is because when α increases, more samples related to
higher-order contingencies are generated. These sam-
ples are all propagated through the time-consuming ac
power-flow model f (·) instead of the computationally
inexpensive surrogate model f̃ (·), thereby increasing the
computing time at the first-stage MC period. Second, the
tails of pdfs become thicker as shown in Fig. 2. This

Fig. 2. Pdf of voltage magnitude at Bus 3 with different scaling factors α.

TABLE III
VALIDATION OF THE HMS METHOD WITH DIFFERENT VALUES OF P AND

γ FOR SAMPLE GROUPS A–C ON THE IEEE RTS 24-BUS SYSTEM

potentially leads to more reevaluations for the same tar-
get domain in the second stage of the MC period. In
sum, when the number of the higher-order contingencies
increases, the computational efficiency of the proposed
method decreases proportionately. This is the tradeoff
between the PCE-based surrogate model and the original
power system model.

Remark 4: It is worth noting that the HMS method can be
extended to include failures of other system components, such
as substations, the failure of which will also cause topology
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TABLE IV
VALIDATION OF THE HMS METHOD CONSIDERING BRANCH AND

SUBSTATION OUTAGES ON THE IEEE RTS 24-BUS SYSTEM

changes and threaten the security of the power grid. The fol-
lowing part will provide a demo case considering substation
outages.

Here, due to the unavailability of outage data for substations,
we assume all the PQ buses to be substations and set the failure
rate of each substation to be 0.1% while adopting a scaling
factor α = 1. In this case, we generate samples with the size
of 106, among which, 962, 231 are N − 0, 37, 099 are N − 1,
659 are N − 2, and 11 are N − 3 event samples. Compared to
Table II, it is shown that the number of samples associated with
higher-order contingencies increases because more component
failures are considered in the case study. Here, it is assumed
that the loads follow a Gaussian distribution with mean values
equal to the original bus loads and standard deviations equal
to 15% of their means. The QoI remains the same as in the
previous case. The simulation results are depicted in Table IV.

As is shown in Table IV, the HMS method can provide
accurate estimation results at a much cheaper computing cost,
compared to 1.5 h required by the traditional MC method.
This also demonstrates the capability of the HMS method to
be extended to include other component outages.

B. Results for IEEE 118-Bus System

To evaluate the performance of HMS method in a rela-
tively larger power system, the IEEE 118-bus system with
186 branches is selected. Regarding the MC method, we use
a sample size of 106 to generate a collection of N − k events
that fit a negative binomial distribution. Of these, 829, 909 are
N − 0, 154, 720 are N − 1, 14, 452 are N − 2, 870 are N − 3,
and 47 are N − 4, and 2 are N − 5 event samples, while the
samples required to construct multiple surrogates in the HMS
method are significantly less. All loads follow a Gaussian dis-
tribution with mean values equal to the original bus loads and
standard deviations equal to 5% of their means [2]. Since line-
outage rates have not been provided for the IEEE 118-bus
system in [29], we set the failure rate of each transmission
line to 0.1% by multiplying the average failure rate reported
in [22] for the IEEE RTS 24-bus system by a scaling factor
of α = 2.5 so as to increase the complexity of the assessment
derived from the increased likelihood of outage occurrence.
In this case, the QoI is chosen to be the apparent power of
Line 117 connecting Buses 74 and 75 [11]. We validate the
accuracy and computational efficiency of the HMS method in
dealing with different limit settings for the QoI, and the results
in Table V are obtained.

These results lead to the following conclusions:
• For the IEEE 118-bus test system, the HMS method can

always complete the simulations within 5 min, much

TABLE V
VALIDATION OF THE HMS METHOD WITH DIFFERENT VALUES OF P, γ ,

AND QOI LIMIT SETTINGS ON THE IEEE 118-BUS SYSTEM

faster than the MC method that spends approximately
3.5 h to complete the simulations.

• The simulation results obtained using the HMS method
are very accurate compared to the benchmark results
obtained via the MC method. Even if the PCE order is
very low, the desired accuracy can be maintained.

• The accuracy of the simulation results is not highly sen-
sitive to γ as shown in Section V-A. The assessment of
a low probability, PH

f (%), of the risk of multiple contin-
gencies remains very accurate even if γ is set to a very
small value.

To illustrate the last point above, let us check the pdf plots for
the tails in different QoI limit settings as shown in Fig. 3. It
can be seen that the HMS method can provide almost the same
pdfs as those of the MC method. Furthermore, as observed in
Fig. 3, the pdf of the QoI, which ranges from 10−4 to 10−2,
is much lower than that shown in Fig. 2, which is around 1.
This means that for the same domain range determined by γ ,
a pdf with lower magnitudes is obtained when using a much
lower number of samples for the same sample size. In this
case, even with a small γ , the risk probability is unlikely to
be heavily influenced by such a small amount of samples in
this region. On the other hand, it is because that the system
response in the target domain for apparent power is so smooth
that it can be accurately approximated even with second-order
polynomial chaos basis functions. Therefore, a small γ with a
low-order polynomial chaos basis function can readily ensure
a good performance of the HMS method.
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Fig. 3. Pdfs and their target region of the apparent power in Line 117 for
(a) Group 1 with P = 2, γ = 0.1; (b) Group 2 with P = 2, γ = 0.1; (c) Group
3 with P = 2, γ = 0.1; and (d) Group 4 with P = 2, γ = 0.1.

TABLE VI
VALIDATION OF THE HMS METHOD USING EXTREME-VALUE

ANALYSIS METRICS

We further test our proposed method using some extreme-
value analysis metrics instead of simply adopting a failure
probability. We quantify the average amount of apparent power
that exceeds different limit settings for the transmission lines.
In this case, the characteristic function is chosen as (6) rather
than (3). We set γ = 0.1 and P = 2 for the HMS method.
The comparative results of the HMS and MC methods are
shown in Table VI. It can be seen that the proposed method
can provide very accurate estimation results even using some
extreme-value analysis metrics. Furthermore, adopting these
metrics makes no difference in the computational efficiency
of the HMS method compared to the metrics for calculating
the failure probability.

C. Results on the European 1,354-Bus System

Here, we demonstrate the proposed HMS method in a much
larger power system. This case study is conducted on the
European high-voltage transmission system, which contains
1,354 buses, 260 generators, and 1,991 branches, and oper-
ates at both 380 and 220 kV [30], [31]. For MC, we use a
sample size of 106 to generate a collection of N − k events
that fit a negative binomial distribution. Of these, 451, 023 are
N − 0, 358, 887 are N − 1, 142, 994 are N − 2, 38, 066 are
N − 3, 7, 617 are N − 4, 1, 253 are N − 5, 143 are N − 6, 15
are N − 7, and 2 are N − 8 event samples, while the samples

TABLE VII
VALIDATION OF THE HMS METHOD WITH DIFFERENT VALUES OF P, γ ,

AND QOI LIMIT SETTINGS ON THE EUROPEAN 1,354-BUS SYSTEM

TABLE VIII
CPU TIMES OF THE HMS AND DIRECT MC METHODS FOR THE

EUROPEAN 1,354-BUS SYSTEM

required to construct as large as 1,992 surrogates in the HMS
method are still significantly less. All loads follow a Gaussian
distribution with mean values equal to the original bus loads
and standard deviations equal to 5% of their means [2]. Since
line-outage rates are unavailable for the European 1,354-bus
system, we set the failure rate of each transmission line to
0.04%, which is the average failure rate reported in [22] for
the IEEE RTS 24-bus system. In this case, the QoI is chosen to
be the apparent power of Line 1005 between Buses 5420 and
5658. We validate the accuracy and computational efficiency
of the HMS method in dealing with different limit settings for
the QoI, and the results in Tables VII and VIII are obtained. It
should be emphasized that in order to carry out the simulation
on such a large-scale power system, we use a desktop envi-
ronment running 6 CPUs in parallel to execute the simulation
runs conducted with the MC and HMS methods (as displayed
in the yellow blocks shown in Fig. 1) with detailed settings
described above. Nonetheless, we expect that running simula-
tions on a different machine would not dramatically alter the
speedup gain for this system.

These results lead to the following conclusions:
• For the European 1,354-bus system, the simulation results

obtained using the HMS method are very accurate com-
pared to the benchmark data obtained via the MC method.
Even with a PCE order of 2, the desired accuracy can be
maintained. In other words, the accuracy of the proposed
method is not influenced by the system size.

• The accuracy of the simulation results is not highly sensi-
tive to γ as shown in Section V-A. The failure probability
PH

f (%) remains very accurate even if γ is set to a very
small value.

• From the point of computing performance, simulations
carried out with the HMS method run to completion
in around 1.4 h, which is much faster than that of the
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Fig. 4. Pie charts for sample types (left) and model types (right) for the
European 1,354-bus system.

MC method that spends approximately 5 h to run the
simulations.

• The speedup achieved by the HMS method reduces
remarkably when compared to the ones obtained for the
IEEE RTS 24- and 118-bus systems.

Here, let us further illustrate this last point. Since the number
of samples used in the reevaluation stage is quite small, their
influence on the total computing time is considered subtle.
Nevertheless, the main reason for the reduced speedup factor
is because the European 1,354-bus system has almost 2,000
branches, all of which are subjected to failure. This notably
increases the portion of samples associated with N − 2 and
higher-order contingencies as shown in Fig. 4. These samples
account for almost 20% of the total sample size, which must
be evaluated through the time-intensive ac power-flow model
instead of the computationally inexpensive surrogate model.
The surrogate models can only be used to accelerate the sam-
ples associated with N − 0 and N − 1 cases, which account
for around 80% of the sample size. This is a limitation of the
proposed HMS method. On the other hand, similar to many
existing methods (see [11], [13]) whose computational effi-
ciency decreases when applied to larger, more complicated
systems, the computational performance of the HMS method
in a very-large-scale power system also decreases. Further
improvement in the HMS method’s performance in very large
power system deserves further exploration.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel PCE-based HMS method
in conducting a risk assessment for rare events in the PPF
analysis. The proposed method overcomes the inefficacy of
the surrogate-based method in handling structural uncertainties
and the inaccuracy of the surrogate method in the tails of
the QoI. Simulation results show that the HMS method can
accurately capture the low-probability risks associated with
rare events with a much better computational efficiency as
compared to the traditional MC method.

However, the proposed method still has some limitations.
When the scale of the system and hence the number of higher-
order contingencies increases, the speedup gained by the
proposed method reduces to a great extent. Further algorithmic

enhancement is still needed to ameliorate the performance of
the proposed method on larger-scale test cases.

Furthermore, the proposed method has the potential to be
extended to solve other related research problems, such as
composite system reliability analysis and resilience assess-
ment [32], [33], which merit their own lines of research. Future
work will tackle these problems by accommodating historical
utility outage data (see [34]), additional sources of uncer-
tainty, and long-term consequences (e.g., over 5-10 years) of
high-impact, low-probability extreme events.
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