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Abstract—In this letter, a novel Gaussian process emulator is
proposed, for the first time, to conduct the probabilistic power-
flow calculation. Based on Bayesian inference, a Gaussian process
emulator is trained and served as a nonparametric, reduced-
order model of the nonlinear power-flow model. This emulator
allows us to evaluate the time-consuming power-flow solver at
the sampled values with a negligible computational cost. The
simulations reveal the excellent performance of this method.

Index Terms—Probabilistic power flow, Gaussian process em-
ulator, Latin hypercube sampling, copula.

I. INTRODUCTION

POWER systems exhibit stochastic dynamics, in particular
due to the continuous variations of the loads and the

intermittency of the renewable generation, among other causes.
This results in modeling uncertainties that bring formidable
challenges to power system planning and operation process. To
solve this problem, the probabilistic power-flow (PPF) problem
attracts more academic attention recently since it can quantify
the uncertainties induced in the bus voltages and the line power
flows by the uncertainties of the loads, the power generation,
and the network parameters [1]. Traditionally, Monte-Carlo
(MC) simulations have been utilized to address this problem.
However, it turns out that tens of thousands of MC simulations
are required to achieve sufficiently accurate results, which is
too time-consuming for practical power system applications.
Some analytical methods have been proposed to reduce the
computation burden, but at the expense of the estimation
accuracy. This is due to some assumptions in the mathematical
derivation, such as the linearization for the nonlinear power-
flow model [1], [2].

To overcome the abovementioned shortcomings, this letter
proposes, for the first time, to utilize a method based on a
Gaussian process emulator (GPE) to solve the PPF problem.
Known as a Bayesian-learning-based method for a nonlinear
regression problem in the statistics community [3], the GPE
can serve as a nonparametric, reduced-order model represen-
tation for the nonlinear power-flow model.

Unlike the linearity assumption used in some derivative-
based methods, the GPE method can preserve the nonlinearity
information better. This is very important in practice when
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the system is under heavy load. Furthermore, unlike some
parametric models that suffer from the limitations arising
from the type of probability distributions assumed in the
model inputs [4], our nonparametric GPE-based method has
no limitation on the type of input distributions. Furthermore,
the GPE method greatly relieves the “curse of dimensionality”
in the traditional response-surface method [4]. Besides, it does
not have some drawbacks of other methods in handling non-
linearity such as the bad tail behavior of Cornish-Fisher and
Edgeworth expansions, and the negative cumulative probability
values of Gram-Charlier series [4]. All these further extend the
applicability of the proposed method. Simulation results reveal
the impressive performance of the proposed method.

II. GAUSSIAN PROCESS EMULATOR

A. Problem Description
Let us first formulate the PPF problem in the GPE frame-

work. Here, the ac power-flow model is denoted by f(·). Its
corresponding vector-valued random input of p dimensions is
denoted as x, which accounts for the uncertainties from the
variations of the loads and the renewable energy generation.
Due to the randomness of x, we may observe n samples as a fi-
nite collection of the model input as {x1,x2, . . . ,xn}. Accord-
ingly, its model output f(x), such as voltage magnitude and
line power flow, also becomes random, and has its correspond-
ing n realizations, denoted by {f(x1), f(x2), . . . , f(xn)}. If
we assume that the model output is a realization of a Gaussian
process, then the finite collection, {f(x1), f(x2), . . . , f(xn)},
of the random variables, f(x), will follow a joint multivariate
normal probability distribution as

f (x1)

...
f (xn)

 ∼ N



m (x1)

...
m (xn)

 ,


k (x1,x1) · · · k (x1,xn)

...
. . .

...
k (xn,x1) · · · k (xn,xn)


.
(1)

Here, let us denote m(·) as the mean function and k(·, ·) as a
kernel function that represents the covariance function. Then,
(1) can be simplified as

f (X) |X ∼ N (m (X) ,k (X,X)) , (2)

where X is an n × p matrix, denoted by [x1,x2, . . . ,xn]
ᵀ;

f(X) stands for [f(x1), f(x2), . . . , f(xn)]
ᵀ; and m(X) rep-

resents [m(x1),m(x2), . . . ,m(xn)]
ᵀ.

Now, if an independent, identically (and normally) dis-
tributed (i.i.d.) noise ε ∼ N (0, σ2In) (where In and σ2 are an
n-dimensional identity matrix and the variance, respectively)
is considered in the system output, f(X), using normality
property, we have the observations Y represented as

Y|X ∼ N
(
m (X) ,k (X,X) + σ2In

)
. (3)

Note that ε is also called a “nugget”. If σ2 = 0, then f(x) is
observed without noise. However, in practical implementation,
the nugget is always added for the sake of numerical stability
[5]. Here, we set its initial value to 0.001.
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B. Bayesian Inference

Here, we present the way to use the abovementioned finite
collection of n samples, (Y,X), to infer the unknown system
output, y(x), on the sample space of x ∈ Rp in a Bayesian
inference framework.

It is well-known that a Bayesian posterior distribution
of the unknown system output can be inferred from a
Bayesian prior distribution of y(x) and the likelihoods
obtained from the observations. Let us first assume a
Bayesian prior distribution of y(x)|x, expressed as y(x)|x ∼
N
(
m (x) ,k (x,x) + σ2Inx

)
. Combined with the observa-

tions provided by the finite collection of the samples {Y,X},
we can formulate the joint distribution of Y and y(x)|x as[

Y
y(x)|x

]
∼ N

([
m (X)
m (x)

]
,

[
K11 K12

K21 K22

])
, (4)

where K11 = k (X,X) + σ2In; K12 = k (X,x); K21 =
k (x,X); and K22 = k (x,x) + σ2Inx

. Note that since we
employ a Gaussian process to emulate y(x), y(x) should have
a finite mean and a finite variance. Now, using the rules of the
conditional Gaussian distribution (a.k.a. Gaussian conditioning
[6]), we can infer the Bayesian posterior distribution of the
system output y(x) conditioned upon the observations (Y,X).
It follows a Gaussian distribution given by y(x)|x,Y,X ∼
N (µ (x) ,Σ (x)). Here, we have

µ (x) =m(x) + K21K
−1
11 (Y −m(X)), (5)

Σ (x) = K22 −K21K
−1
11 K12. (6)

To this point, the general form of the GPE has been derived.
On the one hand, we can directly use (5) as a surrogate model
(a.k.a. the response surface or reduced-order model) to very
closely capture the behavior of the nonlinear power-flow model
while being computationally inexpensive to evaluate. On the
other hand, we may use (6) to quantify the uncertainty of the
surrogate itself. Note that (6) is widely used in the literature
pertaining to data-driven model validation to eliminate outliers
[7]; however, in this letter, we do not use (6) since we do not
solve a data-driven PPF problem with observation outliers.
Thus, we only need to use (5) as a surrogate model.

C. Mean and Covariance Functions

Let us describe the mean function m(·) and the covariance
function represented via the kernel k(·, ·) here.

The mean function models the prior belief about the exis-
tence of a systematic trend expressed as

m(x,β) = H(x)β. (7)

Here, H(x) can be any set of basis functions. For ex-
ample, let xi = [xi1, . . . , xip] be the ith sample, where
i = 1, 2, . . . , n, wherein xik represents its kth element, where
k = 1, 2, . . . , p. For instance, H(xi) = 1 is a constant
basis; H(xi) = [1, xi1, . . . , xip] is a linear basis; H(xi) =
[1, xi1, . . . , xip, x

2
i1, . . . , x

2
ip] is a pure quadratic basis, and β

is a vector of hyperparameters.
Since the covariance function is represented by a kernel

function, choosing the latter is a must. Popular choices are
listed in Table I. As for the parameters of a kernel function,
they are defined as follows: τ and `k are the hyperparameters
defined in the positive real line; σ2 and `k correspond to the
order of the magnitude and the speed of variation in the kth

input dimension, respectively.1 Let θ = [τ, `1, . . . , `p] contain
the hyperparameters of the covariance function, i.e.,

k (xi,xj |θ) = Cov(xi,xj |θ). (8)

Until now, the model structure of the GPE has been fully
defined. For simplicity, we write η = (σ2,β,θ) to represent
all the hyperparameters in the GPE model.

TABLE I
COMMONLY USED COVARIANCE KERNELS FOR GAUSSIAN PROCESS

kSE (xi,xj) τ2 exp

(
−

p∑
k=1

r2k
2`2

k

)
kE (xi,xj) τ2 exp

(
−

p∑
k=1

|rk|
`k

)
kRQ (xi,xj) τ2

(
1 +

p∑
k=1

r2k
2α`2

k

)−α
k3/2 (xi,xj) τ2

(
1 +

p∑
k=1

√
3rk
`k

)
exp

(
−

p∑
k=1

√
3rk
`k

)
(rk =

∣∣xik − xjk∣∣)
III. PROBABILISTIC POWER FLOW USING GPE

Here, we illustrate the steps for the proposed method.
1) Generation of the Training Sample: In order to acquire

the GPE-based surrogate described in (5), we need to obtain
the observation sets contained in (Y,X). To obtain the system
realization Y, we must generate n samples, X, that will be
evaluated through the power-flow model, f(·). To avoid long
training time of the GPE, n should be small. To meet this
requirement, Latin hypercube sampling is typically chosen.
It generates almost random samples based on equal-interval
segmentation and, therefore, has a faster convergence rate than
the MC sampling, which generates purely random samples [9].
This is especially true in our case since n needs to be
small [10] and, therefore, the MC sampling based on the
central limit theorem is not suggested here.

2) Correlation between the Samples: In power systems,
since the uncertainties of the input x may come from renew-
able generation, the correlation within different inputs cannot
be ignored. To handle these correlations, the use of copula is
suggested. According to Sklar’s theorem, any multivariate cu-
mulative distribution function FX of a p-dimensional random
vector can be expressed in terms of its marginal distributions
and a copula to represent their dependence. Formally, we have

FX(x) = C(FX1
(x1), FX2

(x2), . . . , FXp
(xp)). (9)

Here, FXi
(xi) is the ith input marginal and C(·) is a cop-

ula that describes the dependence structure between the p-
dimensional input variables. In this letter, the Gaussian copula
is used to transform the i.i.d. samples into correlated ones as
suggested in [11]. Using these correlated input samples, we
can obtain the realizations of the power-flow response Y at
the value of X, accordingly.

3) GPE Construction: With (Y,X), we can estimate the
hyperparameters η in the GPE. Although different methods
exist for estimating the hyperparameters η [12], we choose
to adopt the Gaussian maximum likelihood estimator (MLE)
since it is optimal under the Gaussian assumption and is
straightforward to compute. First, to indicate the hyperparam-
eters, let us rewrite (3) as

Y|X,η ∼ N
(
m (X) ,k (X,X) + σ2In

)
. (10)

1For more information about the kernel functions, please refer to [8, ch. 4].
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Then, using the MLE, we obtain

η̂ =
(
β̂, θ̂, σ̂2

)
= argmax

β,θ,σ2

logP
(
Y|X,β,θ, σ2) . (11)

Using (7), (8), (10) and simplifying H(x) into H, the marginal
log-likelihood can be expressed as

logP
(
Y|X,β, θ, σ2

)
= −

1

2
(Y −Hβ)

ᵀ
[
k(X,X|θ) + σ

2
In
]−1

(Y −Hβ)

−
n

2
log 2π −

1

2
log
∣∣∣k(X,X|θ) + σ

2
In

∣∣∣ ,
(12)

which implies that the MLE of β conditioned upon θ and σ2

results in a weighted least-squares estimate expressed as

β̂
(
θ, σ2

)
=
[
Hᵀ [k(X,X|θ) + σ2In

]−1
H
]−1

Hᵀ [k(X,X|θ) + σ2In
]−1

Y.
(13)

Plugging (13) into (12), we obtain the β-profile likelihood
logP

(
Y|X, β̂

(
θ, σ2

)
,θ, σ2

)
. Then, (11) is rewritten as(

θ̂, σ̂2
)
= argmax

θ,σ2
logP

(
Y|X, β̂

(
θ, σ2

)
,θ, σ2

)
, (14)

where β̂ = β̂
(
θ̂, σ̂2

)
. The next goal is to find η̂ from

(12)–(14). Since β̂ can be straightforwardly obtained from(
θ̂, σ̂2

)
, one only needs to find the latter by maximizing the

β-profile likelihood over
(
θ, σ2

)
. Here, we utilize a gradient-

based optimizer. Once η̂ is obtained, the GPE model is fully
constructed. More details can be found in [12].
Remark. To guarantee the convergence of this algorithm, “n”
should be no less than the number of unknown hyperparame-
ters. In practice, to obtain an accurate estimation result, it is
suggested to choose an “n” with a redundancy of 2 ∼ 3 with
respect to the number of unknown hyperparameters.

4) Sample Evaluation: Now, we can execute an MC sam-
pling procedure to generate a large number of samples and
transform them into correlated ones through a Gaussian cop-
ula. These samples can be evaluated through the GPE-based
surrogate expressed in (5) at almost no computational cost.
Finally, the probability distribution function of the system
response can be obtained.

IV. SIMULATION RESULTS
A case study is first conducted on the IEEE 57-bus system

[13] with MATPOWER package using MATLAB® R2018a
version. The uncertain inputs include the variations in the
loads as well as in the wind and the solar generation. Here,
it is assumed that the loads follow a Gaussian distribution
with mean values equal to the original bus loads and standard
deviations equal to 5% of their means. A wind generation
following a Weibull distribution with the shape parameter of
2.06 and the scale parameter of 7.41 is connected to Bus 17.
A 50-MW solar photovoltaic (PV) generation following a Beta
distribution with shape parameters of 2.06 and 2.5 is appended
to Bus 16 [4]. Considering their geographical proximity to the
two renewable generation resources, the correlation matrix of
these three inputs is provided in Table II.

TABLE II
CORRELATION MATRIX OF THE INPUTS

Load Wind Solar
Load 1 0.49 0.301
Wind 0.49 1 0.551
Solar 0.301 0.551 1

1) Validation of the GPE Method: Let us choose the voltage
magnitude at Bus 13 as the target quantity of interest. The
simulation results obtained with the MC and the GPE methods
are provided in Fig. 2. The simulation results obtained with
the MC method with 20, 000 samples are used as a benchmark
to validate the GPE-based method. To demonstrate that the
result of the MC method can serve as a credible benchmark,
we plot the convergence rate of the MC method in Fig. 1. It
shows that the mean and variance of the MC method converge
asymptotically given 20, 000 realizations. This proves the
credibility of the results obtained with the MC method.
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Fig. 1. Convergence test of the MC method with (a) mean and (b) variance
of voltage magnitude at Bus 13.
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Fig. 2. Probability density plots for voltage magnitude at Bus 13 using GPE
(a) with a linear basis and k3/2; (b) with a pure quadratic basis and k3/2;
(c) with linear basis and kSE; and (d) with a pure quadratic basis and kSE.

It can be seen in Fig. 2 that with only 15 training samples,
the GPE with a pure quadratic basis functions can pro-
vide highly accurate simulation results under different kernel
functions, such as kSE and k3/2. As shown in Table III, it
only takes 0.406 s to train the GPE. Then, 20,000 samples
can be evaluated with the GPE-based surrogate in just 3.42
s. Therefore, the proposed GPE-based method significantly
reduces the computing time over the traditional MC method
without losing accuracy.

2) Quantitative Accuracy Test: To quantitatively verify
the accuracy of the proposed method, we choose to use
the well-known Kullback-Leibler divergence (KLD) as the
index [14], which measures the difference between the GPE-
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TABLE III
CPU TIMES OF THE GPE AND MC METHODS FOR THE IEEE 57-BUS

SYSTEM

Method MC GPE (Train) GPE (Samples) GPE (Total)
CPU Time 627.85 s 0.406 s 3.42 s 3.83 s

approximated pdf, πGPE, and the MC-approximated pdf, πMC,
via D(πGPE||πMC) =

∫
πGPE log

πGPE
πMC

. It is obvious that
D(πGPE||πMC) equals 0 when πGPE = πMC. Then, we use
the KLD to quantitatively test the accuracy of the proposed
method with different trend functions, m(·), different kernels,
k(·, ·), and different training sample sizes, n, as shown in
Table IV. It can be seen that the GPE with pure quadratic
basis functions provides highly accurate results under all the
types of kernels being considered since D(πGPE||πMC) tends
to 0. This holds true even if n is further reduced to 10.

TABLE IV
VALIDATION OF THE PROPOSED METHODS USING KLD

Group A: Linear (n = 15) Group B: Quadratic (n = 15)

Group kSE kE kRQ k3/2

A 0.3487 0.3478 0.3647 0.3624

B 3.0253 · 10−4 4.1391 · 10−4 5.0211 · 10−4 5.3781 · 10−4

Group C: Linear (n = 10) Group D: Quadratic (n = 10)

C 0.3467 0.3641 0.3348 0.3547

D 0.0016 0.0020 0.0012 0.0014

3) Global Test: Since it is hard to visualize the pdfs for
each bus voltage magnitude and phase angle, we plot the mean
and the standard deviation (indicated by error bars) for voltage
magnitude and phase angle at all buses obtained via the GPE
and MC methods in Fig. 4. It can be seen that the GPE method
yields accurate estimation results for voltage magnitude and
phase angle at all buses. The same strategy to validate the
global accuracy of the proposed method through the mean
and standard deviation has also been adopted in [4].
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Fig. 3. Mean and standard deviation (error bars) for bus voltage (a) magnitude
and (b) phase angle in the IEEE 57-bus system.

4) Comparison Study: Here, we compare the performance
of the proposed GPE method with the recently advocated
generalized-polynomial-chaos (gPC) method in the PEGASE
1,354-bus system with more than 20 renewable generation
resources. All the experiment settings are exactly the same
with the previous work (cf. [15]). Figure 4 shows that both
the GPE method and the gPC method are very accurate. How-
ever, unlike the gPC method that suffers from the “curse of

dimensionality” for a high-dimensional case, the GPE method
with 100 training samples and quadratic basis significantly
outperforms the gPC method (in terms of computing time)
as revealed in Table V. This makes the GPE method more
applicable for large-scale power system applications.
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Fig. 4. Comparison study for the proposed method in the 1,354-bus system.
TABLE V

CPU TIMES OF THE GPE, GPC, AND MC METHODS FOR THE PEGASE
1,354-BUS SYSTEM

Method MC gPC GPE
CPU Time 35 min 32 s 11 s

KLD — 0.0227 0.0137

V. CONCLUSIONS
In this letter, we propose a novel GPE-based method for the

PPF analysis. The GPE enables us to evaluate the power-flow
solver at the sampled values with a negligible computational
cost while maintaining high accuracy in the PPF application.
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