
0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.2987900, IEEE
Transactions on Power Systems

IEEE TRANSACTIONS ON POWER SYSTEMS 1

A Data-Driven Nonparametric Approach for
Probabilistic Load-Margin Assessment considering

Wind Power Penetration
Yijun Xu, Member, IEEE, Lamine Mili, Life Fellow, IEEE, Mert Korkali, Senior Member, IEEE, Kiran Karra,

Zongsheng Zheng, Xiao Chen

Abstract—A modern power system is characterized by an
increasing penetration of wind power, which results in large
uncertainties in its states. These uncertainties must be quantified
properly; otherwise, the system security may be threatened.
Facing this challenge, we propose a cost-effective, data-driven
approach to assessing a power system’s load margin proba-
bilistically. Using actual wind data, a kernel density estimator
is applied to infer the nonparametric wind speed distributions,
which are further merged into the framework of a vine copula.
The latter enables us to simulate complex multivariate and highly
dependent model inputs with a variety of bivariate copulae that
precisely represent the tail dependence in the correlated samples.
Furthermore, to reduce the prohibitive computational time of
traditional Monte-Carlo simulations that process a large amount
of samples, we propose to use a nonparametric, Gaussian-process-
emulator-based reduced-order model to replace the original
complicated continuation power-flow model through a Bayesian-
learning framework. To accelerate the convergence rate of this
Bayesian algorithm, a truncated polynomial chaos surrogate,
which serves as a highly efficient, parametric Bayesian prior,
is developed. This emulator allows us to execute the time-
consuming continuation power-flow solver at the sampled values
with a negligible computational cost. Results of simulations that
are performed on several test systems reveal the impressive
performance of the proposed method in the probabilistic load-
margin assessment.

Index Terms—Probabilistic load margin, data-driven nonpara-
metric model, reduced-order modeling, dependence, vine copula,
uncertainty.

I. INTRODUCTION

RECENTLY, uncertainty assessments in power systems
have attracted the attention of a number of researchers

due to an increasing penetration of renewable generation
units. Ignoring these uncertainties will lead to inappropriate
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planning strategies or control actions, which, in turn, may
result in severe system failures. To address this problem,
research activities, which include the probabilistic power flow
[1], [2], the statistical power system dynamic simulation [3],
the stochastic economic dispatch [4], [5], and the probabilistic
load-margin formulation [6], [7], have been carried out exten-
sively. Among them, the latter is critical to ensuring the voltage
stability of modern power systems with increasing penetration
of renewables and, therefore, is chosen as the scope of this
paper.

In principle, uncertainty quantification can be conducted
under the Monte-Carlo (MC) framework [1], [2], [4], [8],
which requires two fundamental steps, i.e., the uncertainty
modeling and the uncertainty propagation. The former consists
of the marginal distribution modeling for every random input,
and the dependent modeling among all the inputs. Tradition-
ally, researchers infer the marginal distributions through some
heuristic, parametric distribution functions, such as the Weibull
distribution for the wind speed, the beta distribution for the
solar irradiance, to cite a few [6], [9]. However, the real-
world data may not follow these parametric probability distri-
butions as discussed in [10]. Furthermore, due to geodistance
closeness, the dependence among the renewables cannot be
ignored. Although several methods (e.g., a whitening trans-
formation [6], [11] and the Gaussian copula [12]) have been
proposed in the literature, none of them is able to simulate
asymmetric, complex multivariate dependent structures. The
Gaussian copula, while versatile, is unable to model tail depen-
dence or nonlinear dependence structures [13]. To overcome
these modeling limitations, the vine-copula technique has been
explored in several power-system applications, including gen-
erating system states for machine learning [13], probabilistic
forecast of wind farm generation [10], clustering of residential
loads [14], and peak-load estimation [15]. However, these
studies do not systematically merge the vine copula into
an uncertainty-quantification framework and its corresponding
applications, which is one of the contributions of this paper.

Apart from these difficulties in the uncertainty modeling
stage, the computational challenge in the uncertainty prop-
agation stage is also well-known [8]. As an example, the
continuation power-flow (CPF) algorithm is a typical contin-
uation method based on multiple prediction and correction
steps [16]. Although the straightforward MC method based
on the evaluations of tens of thousands of samples in the
CPF model has been adopted in the published literature
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(see, e.g., [17], [18]), the computational burden is known to
be extremely heavy. This is true even for relatively small
systems [6]. Therefore, many strategies have been proposed
to overcome such a difficulty. Zhao et al. [19] propose to
use a Latin-hypercube-sampling-based approach to reduce the
samples size in the sampling procedure while sacrificing some
computing accuracy. Rodrigues et al. [17] adopt a dc power-
flow-based model to simplify the system model. To overcome
the complexity brought by the nonlinearity of the model,
Zhang et al. [20] propose an analytical method to reduce
the computational burden by directly assuming that all the
uncertain inputs follow a Gaussian distribution. Haesen et
al. [6] and Xu et al. [7] use some heuristic, parametric
distributions to approximate the load margin, but their methods
suffer from the curse of dimensionality in the high-dimensional
case.

To overcome the aforementioned shortcomings, this paper
proposes, for the first time, to utilize a data-driven, nonpara-
metric approach based on a novel Gaussian process emulator
(GPE) associated with the vine copula to solve the probabilis-
tic CPF problem. The contributions of the paper include the
following:

• Starting from the real-world wind data and avoiding the
inaccuracy brought by the parametric marginal functions,
we propose to adopt a kernel density estimator to obtain
more accurate nonparametric input probability density
functions (pdfs), which is further merged into the vine
copula framework.

• To simulate the high-dimensional dependent samples that
represent the uncertainties from the renewables, we adopt
a novel vine-copula technique [13], for the first time, in
the uncertainty quantification application. This technique
outperforms the traditional Gaussian copula for its ca-
pability in modeling the high-dimensional, asymmetric,
dependent multivariate with a variety of bivariate copulas
such as the Frank and the Gumbel copula [7], [21].

• To improve the computing efficiency of the uncertainty-
propagation procedure, from Bayesian inference point of
view, we propose to use a GPE as a nonparametric,
reduced-order model representation for the nonlinear CPF
model [22]. This emulator allows us to evaluate the time-
consuming CPF solver at the sampled values with a
negligible computational cost.

• To further accelerate the convergence rate of the de-
veloped Bayesian algorithm, we propose, for the first
time, to merge the truncated polynomial chaos expansion
(PCE) into the GPE framework by taking the PCE as a
highly efficient Bayesian prior in the Bayesian-inference
procedure.

The performance of our proposed method has been assessed
and analyzed through simulations that are carried out on
multiple IEEE standard test systems. These simulations reveal
that our method can accurately estimate the probability density
function (pdf) of the load margin with two-order-of-magnitude
improvement in computing speed compared to the traditional
MC method.

This paper is organized as follows: in Section II, prob-

lem formulation is presented. In Section III, vine copula is
illustrated. Section IV presents the GPE-based reduced-order
modeling. Section V summarizes the proposed nonparametric
method. Case studies are presented in Section VI, followed by
the conclusions and future work in Section VII.

II. PROBLEM FORMULATION

This section formulates the probabilistic load-margin assess-
ment problem. Let us first formulate the power system forward
model as

y = f(x). (1)

Here, y stands for the quantity of interest (QoI), which, in our
case, is the load margin of a bus; x = [x1, x2, . . . , xp] is a
vector of uncertain model parameters described by some prob-
ability distribution functions with finite variances. In our work,
we consider the wind power generation as the random inputs
following some non-heuristic probability distributions; the
f(·) is the nonlinear function that represents the continuation
power-flow model, which maps the model parameters, x, to the
QoI, y. To solve this CPF model, we first start from a power-
flow solution at initial load values, then we perform multiple
prediction and correction steps for the increased load levels as
shown in Fig. 1. Using a small step size, the prediction step
estimates the voltage magnitude through the tangent vector
from the previous solution point. Next, the correction step
further fine-tunes the predicted voltage magnitude at a fixed
tangent vector. Note that the constraints on the bus voltage as
well as on the transmission lines and generator capacity can
also be considered. The detailed implementation step has been
described by Ajjarapu [16].
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Fig. 1. Continuation power flow with multiple prediction and correction
steps.

To obtain the probabilistic description of the load margin y
under these uncertain model parameters, a typical MC method
draws a large number of Nsample samples, {x(i)}Nsample

i=1 , that not
only reflect the pdfs of the input parameters but also the corre-
lation between them. Then, for each x(i), i = 1, . . . , Nsample,

y(i) = f(x(i)) (2)

is solved to obtain Nsample load-margin solutions, {y(i)}Nsample
i=1 ,

from which the pdf of the load margin is determined. The CPF
method is typically employed in power systems despite the
fact that even a single evaluation of f(·) will involve multiple
prediction and correction steps to obtain the load margin,
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y, and, hence, is admittedly a complicated, time-consuming
solver—not to mention that Nsample is typically required to be
a large number in the MC sampling to ensure good computing
accuracy. Therefore, the goal of this paper is to greatly reduce
the computing time of this method while precisely modeling
the dependent data structures of the input samples.

III. UNCERTAINTY MODELING

In this section, we present the way to generate dependent
high-dimensional samples as model inputs via vine copula.

1) Copula: Recently, the copulas have been proven to be
successful in many industrial and financial applications for
modeling the dependency between random inputs [13], [23].
According to Sklar’s theorem, any joint multivariate cumula-
tive distribution function FX of a p-dimensional random vector
can be expressed in terms of its marginal distributions and a
copula to represent their dependence. Formally, we have

FX(x) = C(FX1
(x1), FX2

(x2), . . . , FXp
(xp)). (3)

Here, FXi
(xi) is the ith input marginal and C(·) is a cop-

ula that describes the dependence structure between the p-
dimensional input variables [24]. Accordingly, its joint multi-
variate density function, fX, can be obtained via

fX(x) = c(FX1
(x1), . . . , FXp

(xp))

p∏
i=1

fi(xi). (4)

Here, c is the p-variate copula density and fi(xi) is the
marginal density for ith variable. Since there exist different
copula families, the choice of the copula function will influ-
ence the accuracy of the dependence modeling. The Gaussian
copula is advantageous in certain applications thanks to its
ability to generate high-dimensional correlated samples [7],
but it also lacks the ability to generate asymmetric, tail-
dependent samples. On the other hand, the Archimedean
copulas are more useful in scenarios which require nonlinear
tail-dependence modeling. However, they are generally not
scalable due to being limited to the bivariate case [10], [25]. To
overcome these shortcomings, we resort to vine copula next.

2) Vine Copula: Being a powerful tool in simulating high-
dimensional correlated samples with various types of tail-
dependence structures involved, vine copula is known for its
capability of decomposing a multivariate density function into
a cascade of bivariate pair copulas [25], [26]. Starting from
the factorization on the joint density function, we get

fX(x) =fp(xp) · fp−1|p(xp−1|xp) · fp−2|p−1,p(xp−2|xp−1, xp)

· · · · f1|2,...,p(x1|x2, . . . , xp)

=

p∏
i=1

fi|i+1,...,p(xi|xi+1, . . . , xp). (5)

Based on the property that each term in (5) can be decomposed
into the appropriate pair-copula times a conditional marginal
density via

f(x|v) = cx,vj |v−j
{F (x|v−j), F (vj |v−j)}f(x|v−j), (6)

for a d-dimensional vector v. Here, vj is one arbitrarily chosen
component of v and v−j denotes the vector of v, excluding
this component [27]. By using (6) iteratively in (5), as Mai
has presented in [25], the joint multivariate pdf in (5) can be

further transformed into the product of only bivariate copulas
and one-dimensional pdf, e.g.,

f2|1(x2|x1) = c2|1(F2, F1) · f2(x2)

f3|1,2(x3|x1, x2) = c3,2|1(F3|1, F2|1) · c3,1(F3, F1) · f3(x3)

f4|1,2,3(x4|x1, x2, x3) = c4,2|1,3 · c4,1|3 · c4|3 · f4(x4), (7)

and so on for the higher-dimensional cases.
3) C-Vine and D-Vine: It is worth pointing out that the

order of pairwise conditioning on (5) is not unique [25],
[27]. Thus, we need a systematic way to decompose it and
to provide a unique solution. Two popular choices are the
canonical vine (C-vine) and the drawable vine (D-vine). Both
of them make use of a graphical tool to facilitate their
decomposition into a cascade of copula density functions
forming p − 1 trees. For the C-vine copula, a p-dimensional
joint pdf is decomposed as

fX(x1, . . . , xp) =

p∏
i=1

fi(xi)

p−1∏
j=1

p−j∏
i=1

cj,j+i|1,...,j−1. (8)

Similarly, fX is decomposed via the D-vine copula as

fX(x1, . . . , xp) =

p∏
i=1

fi(xi)

p−1∏
j=1

p−j∏
i=1

ci,j+i|i+1,...,i+j−1. (9)

Here, cj,j+i|1,...,j−1 is short for cj,j+i|1,...,j−1(F (xj |x1,...,xj−1),

F (xi+j |x1,...,xj−1)) and ci,j+i|i+1,...,i+j−1 is short for
ci,j+i|i+1,...,i+j−1(F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1,...,xi+j−1

)).
Let us take a 4-dimensional case as an example, it is clear
that fX(x1, x2, x3, x4) can be decomposed via the C-vine as

fX (x1, x2, x3, x4) = f1 (x1) · f2 (x2) · f3 (x3) · f4 (x4)

· c1,2 (F1 (x1) , F2 (x2)) · c1,3 (F1 (x1) , F3 (x3)) · c1,4 (F1 (x1) , F4 (x4))

· c2,3|1
(
F2|1 (x2|x1) , F3|1 (x3|x1)

)
· c2,4|1

(
F2|1 (x2|x1) , F4|1 (x4|x1)

)
· c3,4|1,2

(
F3|1,2 (x3|x1, x2) , F4|1,2 (x4|x1, x2)

)
, (10)

or via the D-vine as

fX (x1, x2, x3, x4) = f1 (x1) · f2 (x2) · f3 (x3) · f4 (x4)

· c1,2 (F1 (x1) , F2 (x2)) · c2,3 (F2 (x2) , F3 (x3)) · c3,4 (F3 (x3) , F4 (x4))

· c1,3|2
(
F1|2 (x1|x2) , F3|2 (x3|x2)

)
· c2,4|3

(
F2|3 (x2|x3) , F4|3 (x4|x3)

)
· c1,4|2,3

(
F1|2,3 (x1|x2, x3) , F4|2,3 (x4|x2, x3)

)
. (11)

4) Sampling Strategy: As (6) shows that the evaluation of
the density of the vine copula involves the evaluation of the
conditional distributions. For every j in (6), the corresponding
conditional cumulative distribution function (cdf) has been
shown by Joe [26] to be given by

F (x|v) =
∂Cx,vj |v−j

{F (x|v−j), F (vj |v−j)}
∂F (vj |v−j)

. (12)

Following Aas in [27], let us introduce an h function, denoted
as h(u1;u2,Θ), to represent the above conditional cdf in the
bivariate case when X1 = U1 and X2 = U2 are uniform
random variables. Then, we have

h(u1;u2,Θ) = F (u1|u2) =
∂Cu1,u2

(u1;u2,Θ)

∂u2
. (13)

Here, the u2 denotes the conditioning variable and Θ denotes
the set of parameters for the bivariate copula Cu1,u2

. Using
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this conditional cdf, the p-dimensional dependent, uniformly
distributed variables can be sampled iteratively via

U1 = W1,

U2 = F−12|1 (W2|U1),

U3 = F−13|2,1(W3|U1, U2),

· · · = · · · ,
Up = F−1p|p−1,...,1(Wp|U1, . . . , Up−1), (14)

where samples Wi
i.i.d.∼ U [0, 1], i = 1, . . . , p. Similarly

to the relationship between conditional distribution F and
h(u1;u2,Θ), the inverse conditional distribution F−1 is rep-
resented by an inverse h function, h−1(u1;u2,Θ) for the
bivariate case. More details on h−1(u1;u2,Θ) for the bivariate
copulas have been provided in [25, ch. 5].

Remark 1. It is worth noting that the random variables
{X1, X2, . . . , Xp} are not guaranteed to follow a uniform
probability distribution in practice. To circumvent this dif-
ficulty, the transformation between {X1, X2, . . . , Xp} and
{U1, U2, . . . , Up} can be fulfilled via an inverse cdf mapping
as

X1 = F−11 (U1), X2 = F−12 (U2), · · · , Xp = F−1p (Up). (15)

This inverse cdf mapping enables the vine copula to be
applicable to all the closed-form probability distributions [13],
[25], [27].

Using this vine-copula technique, we are able to generate
the correlated samples that reflect the precise dependent struc-
tures of the model inputs such as loads and renewables.

IV. REDUCED-ORDER MODELING

In this section, we present a nonparametric, reduced-order
modeling technique using GPE.

A. Problem Description

Let us first formulate the probabilistic load-margin as-
sessment problem in the GPE framework. Here, the CPF
model is denoted by the aforementioned f(·). Its corre-
sponding vector-valued random input of p dimensions is
denoted as x, which accounts for the uncertainties from the
variations of the wind generation. Due to the randomness
of x, we may observe n samples as a finite collection of
the model input as {x1,x2, . . . ,xn}. Accordingly, its eval-
uated model output f(x), i.e., load margin, also becomes
random, and has its corresponding n realizations denoted
by {f(x1), f(x2), . . . , f(xn)}. If we assume that the model
output is a realization of a Gaussian process, then the finite
collection, {f(x1), f(x2), . . . , f(xn)}, of the random vari-
ables, f(x), will follow a joint multivariate normal probability
distribution as f(x1)

...
f(xn)

 ∼N



m(x1)

...
m(xn)

,


k(x1,x1) · · · k(x1,xn)

...
. . .

...
k(xn,x1) · · · k(xn,xn)


.

(16)

Here, let us denote m(·) as the mean function and k(·, ·) as a
kernel function that represents the covariance function. Then,
(16) can be simplified as

f (X) |X ∼ N (m (X) ,k (X,X)) , (17)

where X is an n × p matrix, denoted by [x1,x2, . . . ,xn]ᵀ;
f(X) stands for [f(x1), f(x2), . . . , f(xn)]ᵀ; and m(X) rep-
resents [m(x1),m(x2), . . . ,m(xn)]ᵀ.

Now, if an independent and identically distributed (i.i.d.)
Gaussian noise ε ∼ N (0, σ2In) (where In and σ2 are an n-
dimensional identity matrix and the variance, respectively) is
considered in the system output, f(X), the observations, Y,
will be expressed as

Y|X ∼ N
(
m (X) ,k (X,X) + σ2In

)
. (18)

Note that ε is also called a “nugget”. If σ2 = 0, then f(x) is
observed without noise. However, in practical implementation,
the nugget is suggested to be added for numerical stability
[28].

B. Bayesian Inference

Here, we present the way to use the aforementioned finite
collection of n samples, (Y,X), to infer the unknown system
output, y(x), on the sample space of x ∈ Rp in a Bayesian-
inference framework.

It is well-known that a Bayesian posterior distribution of
the unknown system output can be inferred from a Bayesian
prior distribution of y(x) and the likelihoods obtained from the
observations. Let us first assume a Bayesian prior distribution
of y(x)|x, expressed as

y(x)|x ∼ N
(
m (x) ,k (x,x) + σ2Inx

)
. (19)

Combined with the observations provided by the finite col-
lection of the samples {Y,X}, we can formulate the joint
distribution of Y and y(x)|x as[

Y
y(x)|x

]
∼ N

([
m (X)
m (x)

]
,

[
K11 K12

K21 K22

])
, (20)

where K11 = k (X,X) + σ2In; K12 = k (X,x); K21 =
k (x,X); and K22 = k (x,x) + σ2Inx

.
Now, using the rules of the conditional Gaussian distribution

[29], we can infer the Bayesian posterior distribution of the
system output y(x) conditioned upon the observations (Y,X).
It follows a Gaussian distribution given by

y(x)|x,Y,X ∼ N (µ (x) ,Σ (x)) , (21)

where

µ (x) = m(x) + K21K
−1
11 (Y −m(X)), (22)

Σ (x) = K22 −K21K
−1
11 K12. (23)

To this point, the general form of the GPE has been derived.
Here, (22) serves as a reduced-order model (a.k.a. the response
surface or surrogate model) to very closely capture the behav-
ior of the nonlinear CPF model while being computationally
inexpensive to evaluate.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 15,2020 at 18:07:07 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.2987900, IEEE
Transactions on Power Systems

XU et al.: A DATA-DRIVEN NONPARAMETRIC APPROACH FOR PROBABILISTIC LOAD-MARGIN ASSESSMENT 5

C. Mean and Covariance Functions

Let us describe the mean function m(·) and the covariance
function represented via the kernel k(·, ·) that characterizes
the GPE. The mean function models the prior belief about the
existence of a systematic trend expressed as

m(x,β) = H(x)β. (24)

Here, H(x) can be any set of basis functions. For ex-
ample, let xi = [xi1, . . . , xip] be the ith sample, where
i = 1, 2, . . . , n, wherein xik represents its kth element, where
k = 1, 2, . . . , p. For instance, H(xi) = 1 is a constant basis;
H(xi) = [1, xi1, . . . , xip] is a linear basis and β is a vector
of hyperparameters.

Here, the covariance function is represented by a kernel
function expressed as

k (xi,xj |θ) = Cov(xi,xj |θ). (25)

The parameters of a kernel function are defined as follows:
τ and `k are the hyperparameters defined in the positive real
line; σ2 and `k correspond to the order of the magnitude and
the speed of variation in the kth input dimension, respectively.
Popular choices for the kernel functions are listed as

Square Exponential : kSE = τ2 exp

(
−

p∑
k=1

r2k
2`2k

)
, (26a)

Exponential : kE = τ2 exp

(
−

p∑
k=1

|rk|
`k

)
, (26b)

Rational Quadratic : kRQ = τ2
(
1 +

p∑
k=1

r2k
2α`2k

)−α
, (26c)

Martin 3/2 : k3/2 = τ2
(
1 +

p∑
k=1

√
3rk
`k

)
exp

(
−

p∑
k=1

√
3rk
`k

)
,

(26d)

where rk = |xik − xjk|. Until now, the model structure of
the GPE has been fully defined. For simplicity, let θ =
[τ, `1, . . . , `p] contain the hyperparameters of the covariance
function. Then, we write η = (σ2,β,θ) to represent all the
hyperparameters in the GPE model.

D. Parametric Surrogate versus Nonparametric Surrogate

Recently, the generalized polynomial chaos expansion
(PCE) has also been advocated in literature as a parametric
response surface [2], [11], [12]. By using it, the stochastic
output, y, is represented as a weighted sum of a given set of
orthogonal polynomial chaos basis functions constructed from
the probability distribution of the input random variables via

y =

Nm∑
i=0

aiΦi(x). (27)

Here, Φi(x1, x2, . . . , xp) denote the corresponding polynomial
chaos bases; ai denotes the ith polynomial chaos coefficient;
Nm + 1 is the number of the PCE bases under the maximum
truncated order, t, of the polynomial chaos basis functions,
where Nm = (p + t)!/(p!t!) − 1. For more details about the
PCE, the reader is referred to [11].

Here, it is worth pointing out that the parametric PCE model
can be perfectly merged into the nonparametric GPE model

under the Bayesian-inference framework. This can be fulfilled
simply by using PCE as the GPE prior’s systematic trend, i.e.,
the mean function. Then, for n samples, the H matrix in (24)
is directly equal to

H =


Φ0(x1) Φ1(x1) . . . ΦNP

(x1)
Φ0(x2) Φ1(x2) . . . ΦNP

(x2)
...

...
. . .

...
Φ0(xn) Φ1(xn) . . . ΦNP

(xn)

 . (28)

All the other settings in the GPE remain unchanged. This
operation makes sense because it is well-known that a good
Bayesian prior facilitates a success of a Bayesian inference.
With a good Bayesian prior, the Bayesian posterior can con-
verge fast and, therefore, be inferred more effectively. In this
view, the widely recognized PCE serves as an excellent candi-
date for the Bayesian prior. This enables the GPE to enjoy the
efficiency brought the PCE surrogate and the accuracy brought
by the nonparametric kernel functions at the same time.

Remark 2. It is well-known that the PCE suffers from the
“curse of dimensionality” under a high-dimensional case.
Then, a proper truncation strategy needs to be applied. Here,
it is suggested to ignore the coupling effect as proposed in
[30]. This truncation strategy can reduce the number of the
PCE terms from a combinatorial number to a linear number
with respect to the dimension. Then, the accuracy of the
surrogate model will be further improved by fine-tuning the
nonparametric kernel functions in the Bayesian posteriors as
(22) indicates.

V. THE PROPOSED METHOD

Let us illustrate the steps for conducting the probabilistic
load-margin assessment using the GPE.

A. Wind-Speed Inference

First, let us infer the marginal density functions of the
wind speed from the historical data. Unlike the parametric
probability distribution, such as the Weibull or the lognormal
probability distribution, etc., that have been used in the wind
speed modeling [9], [11], this article would like to select
a more general, nonparametric inference based on a kernel
density estimator [10], [31]. This estimator can infer the
closed-form univariate probability density function directly
from data via

f̂X(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
. (29)

Here, N is the number of the historical samples. h is the band-
width parameter, typically obtained via h = (4σ̂5/3N)

1/5 ≈
1.06σ̂N

− 1/5, where σ̂ is the estimated sample standard devi-
ation and K is a nonnegative kernel function, which is chosen
as the standard Gaussian kernel in this article. Note that the
random input x is specifically referred to the wind speed data
in this article. It is also worth pointing out that the real-
world wind data may contain some outliers that may require a
few preprocessing steps [32]. However, the detection and the
detailed analysis of the outliers are outside the scope of this
article.
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B. Vine-Copula Inference

Now, we need to estimate the vine-copula structure from
the data. This procedure involves the selection of a vine, the
selection of bivariate copula families for each edge and the
estimation of their corresponding parameters.

For the selection of a vine, we would like to select the D-
vine as Becker has advocated in [23] to model the wind. As
for the bivariate families, the selection will be made among
the following: the Gaussian copula, the Student’s t-copula, the
Clayton copula, the Gumbel copula, and the Frank copula as
well as the rotated version of the Archimedean copulas.

Here, the parameters, Θ, for each copula family can be
estimated through a sequential estimation advocated in the
literature [10], [23], [27]. Proposed by Aas et al. [27],
this sequential estimation is very straightforward for a high-
dimensional case. Once the copula families are selected, the
likelihood of each copula pair is maximized sequentially.
Starting from the first tree of a vine using historical data,
the estimation is conducted sequentially to the higher-order
trees that involve conditional distributions using the generated
samples obtained via (14). Note that the estimation for each
copula family is very easy to perform since the dimension is
only 2. More details have been presented in [27].

C. Training-Sample Generation

In order to acquire the GPE-based surrogate described
in (22), we need to obtain the observation sets contained
in (Y,X). To obtain the system realization, Y, we must
generate n samples, X. As a popular computer design tool,
Latin hypercube sampling (LHS) is chosen to generate i.i.d.
uniformly distributed samples [33]. Then, these i.i.d. uni-
formly distributed samples can be mapped to follow the
target marginal distributions via the inverse cdf mapping as
described in (15). Note that the closed-form expressions for
the target marginals given by (15) are obtained through the
abovementioned kernel density estimator. Then, we use the
aforementioned vine copula to further transform these i.i.d.
samples into the dependent ones to improve the training
performances. Note that the wind speed cannot be directly
evaluated in the CPF model, following literature [6], [34], [35],
the wind speed, x, is mapped into the wind power, Pw, through
a piecewise relation described as

Pw(x) =


0 x ≤ vin or x > vout ,
x−vin
vrated−vin

· Pr vin < x < vrated ,

Pr vrated < x < vout .

(30)

Here, vin, vout, and vrated are the cut-in, cut-out, and rated wind
speed, respectively; and Pr represents the rated wind power.
After mapping the samples of wind speed, X, into the samples
of the wind power, the latter are run through the full CPF
model to obtain a small number of observations, Y, that will
be used next.

D. GPE Construction

With (Y,X), we can estimate the hyperparameters η in
the GPE. Following Gelman et al. [36], we choose to adopt
the Gaussian maximum likelihood estimator since it is the

most efficient estimator under a Gaussian distribution, which is
followed by the calculated residuals, and it is easy to compute.
First, to indicate the hyperparameters, let us rewrite (18) as

Y|X,η ∼ N
(
m (X) ,k (X,X) + σ2In

)
. (31)

Then, using the Gaussian maximum likelihood estimator, we
obtain

η̂ =
(
β̂, θ̂, σ̂2

)
= arg max

β,θ,σ2

logP
(
Y|X,β,θ, σ2

)
. (32)

Using (24)–(31), the marginal log-likelihood can be expressed
as

logP
(
Y|X,β,θ, σ2

)
=− 1

2
(Y −Hβ)

ᵀ [
k(X,X|θ) + σ2In

]−1
(Y −Hβ)

− n

2
log 2π − 1

2
log
∣∣k(X,X|θ) + σ2In

∣∣ ,
(33)

which implies that the Gaussian maximum likelihood estima-
tor of β conditioned on θ and σ2 is a weighted least-squares
estimator given by

β̂
(
θ, σ2

)
=
[
Hᵀ [k(X,X|θ) + σ2In

]−1
H
]−1

Hᵀ [k(X,X|θ) + σ2In
]−1

Y.
(34)

Since β̂ is a function of
(
θ̂, σ̂2

)
, let us insert (34) into (33)

to reduce the number of the hyperparameters. Then, (32) is
further simplified as(

θ̂, σ̂2
)

= arg max
θ,σ2

logP
(
Y|X, β̂

(
θ, σ2

)
,θ, σ2

)
. (35)

Now, we only need to estimate the hyperparameters
(
θ̂, σ̂2

)
instead of

(
β̂, θ̂, σ̂2

)
. Then, we utilize a gradient-based opti-

mizer to solve this optimization as described in [37]. Once η̂
is obtained, the GPE model is fully constructed. More details
can be found in [36].

Remark 3. Note that since the hyperparameters
(
θ̂, σ̂2

)
are

estimated thorough a simple and straightforward gradient-
based optimization method under the Gaussian assumption,
the global optimal solution is not guaranteed here. Although a
full Bayesian posterior can be approximated via some heuristic
method (e.g., MCMC), the computational burden will increase
accordingly. Fortunately, Kennedy and O’Hagan [22] have
shown that the accuracy of the GPE method is not sensitive to
these hyperparameters and, therefore, name them “roughness
parameters”. Thus, the abovementioned two-stage maximum
likelihood estimation has been widely used in the literature
for the Gaussian-process regression [22], [36], [37].

E. Sample Evaluation
Now, we can execute an MC sampling procedure to generate

a large amount of samples and transform them into the depen-
dent ones through the inferred vine-copula structures. These
large amounts of samples can be evaluated through the GPE-
based surrogate expressed in (22) at almost no computational
cost. Finally, the pdf of the load margin can be obtained.

Here, we provide the summarized steps for the proposed
method in Algorithm 1 and its corresponding flowchart in
Fig. 2 for the readers’s convenience.
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Algorithm 1 Data-Driven Probabilistic Load-Margin Assess-
ment Algorithm

1: Prepare the power system CPF model and the historical
wind data;

2: Infer the nonparametric closed-form marginals using KDE
via (29) for the wind speed data at different wind sites;

3: Select a vine-copula structure (C-vine or D-vine) and
estimate the corresponding bivariate copulae;

4: Generate dependent samples, {x(i)}Nsample
i=1 , to represent

wind speeds for different wind sites through the inferred
vine copula;

5: Generate a small amount of dependent training samples,
X, for the GPE model;

6: Map the training samples to wind power samples via (30);
7: Evaluate the CPF model at the wind power samples to

obtain the realizations, Y;
8: Select the kernel and the trend in the GPE model;
9: Estimate the hyperparameters in the GPE model;

10: Evaluate the GPE model at generated dependent samples,
{x(i)}Nsample

i=1 , to obtain system responses, {y(i)}Nsample
i=1 ;

11: Plot the pdf for {y(i)}Nsample
i=1 to represent load-margin

uncertainty.

Read historical
wind data

Select vine-copula
structure

Infer the marginal
distributions via KDE

Generate dependent
samples via inferred

vine copula

Infer the bivariate copulae
with vine-copula structure

Read power system
model and parameters

Generate a small amount of
training samples using LHS and

transform them into dependent ones

Evaluate the CPF model at training
samples to obtain the system responses

Select the GPE prior trend
and the kernels

Estimate the hyperparameters
in the GPE model

Evaluate the system responses
using the GPE model at generated

dependent samples

Offline Uncertainty Modeling

Online Uncertainty Analysis

Fig. 2. Flowchart of the proposed method.

VI. SIMULATION RESULTS
Various case studies are conducted under different IEEE test

systems [38]. The real-world wind speed data are obtained via
the NREL’s Western Wind Data Set [39].

A. Case Study One

This case study is conducted on the IEEE 57-bus test
system. Four 50 MW wind farms are added at Buses 16, 17,
47, and 48, respectively, to introduce randomness in the CPF
model. The parameters set for wind generators are vin = 4
[m/s], vout = 25 [m/s], and vrated = 15 [m/s] [34]. The real-
world wind speed data for these four wind farms are collected
from Sites #1116,#9246,#9435, and #9386, from NREL’s
Data Set in the first season of 2004, respectively [39].

1) Nonparametric Marginal Inference: The kernel density
estimator is first used to estimate the marginal densities for
the wind speed data set of each site. Note that in the KDE,
popular choice of the kernel, K(·), includes Gaussian kernel,
box kernel, Epanechnikov kernel, and triangular kernel, etc.
[40]. Besides, it is also worth pointing out that the key point
for the success of the KDE relies on the choice of a proper
bandwidth, instead of the type of the kernel. Thus, we highly
encourage readers to set the default bandwidth using the rule-
of-thumb as described in Section V. Let us take the wind
speed data for Site #1116 as an example. The KDE-inferred
marginals with different kernels and bandwidth are plotted in
Fig. 3. It is shown that under the default bandwidth, all of the
kernels can provide good marginal approximations while the
marginal approximated by a smaller bandwidth shows multiple
locally spiking structures. It can also be seen that the marginal
density of Site #1116 does not strictly follow some heuristic
parametric distributions (e.g., Weibull and Gamma). Therefore,
it is necessary to use the nonparametric KDE to obtain its
marginal.
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Fig. 3. KDE-inferred marginals of wind speed for Site #1116 with different
kernels and different bandwidth.

2) Vine-Copula Inference: Now, we use the D-vine copula
to model the dependence structure of the data as Becker
suggested [23]. The averaged half-hourly wind speed data
for these four wind sites are used to infer the vine-copula
structure. Here, we have p(p− 1)/2 = 6 pair-copulas inferred
from the four wind sites as listed in Table I. It shows that for
Sites #9246,#9435, and #9386, using a symmetric copula
(e.g., the Gaussian and Student’s t-copulas) to describe their
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dependence would not be sufficiently accurate, but use of
the copulas from the Archimedean copula family (e.g., the
Frank and Clayton copulas) is deemed more appropriate.
This demonstrates the rationality and the necessity of using
the vine copula to model the dependence structure of the
wind generation instead of the traditional symmetric Gaussian
copula.

TABLE I
PAIR COPULAE FOR WIND FARMS

Index Pair Family Rotation Θ

1 C1,2 Student’s t 0 {0.727, 21.1}
2 C2,3 Student’s t 0 {0.980, 1.93}
3 C3,4 Frank 270◦ {−1.11}
4 C1,3|2 Student’s t 0 {−0.096, 13.31}
5 C2,4|3 Clayton 0 {0.116}
6 C1,4|2,3 Independent 0 –

3) Sample Comparison: Here, we use the inferred vine-
copula structure to generate 3, 000 samples and compare them
to the historical data. The marginal plots and scatter plots
are shown in Fig. 4. It shows that the vine copulas provide
convincing simulated samples, which match the asymmetric
tail-dependent historical samples very well.

To quantitatively measure the accuracy of the vine copula,
two indices suggested in the literature [10], [41] were included:
(i) the log-likelihood (LL) and (ii) the Akaike information
criterion (AIC). Their quantitative values obtained via different
copulae have been provided in Table II. From these two
indices, it can be clearly seen that both the D- and C-vine
copulae exhibit very high accuracy, whereas the traditional
Gaussian copula exhibits the lowest accuracy.
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Fig. 4. Marginal and scatter plots of the simulated data (blue) and historical
data (red) for the IEEE 57-bus test case.

TABLE II
QUANTITATIVE TEST FOR DIFFERENT COPULAE

Copula D-Vine C-Vine Gaussian
LL 4.215 · 103 4.214 · 103 3.892 · 103

AIC −8.4296 · 103 −8.429 · 103 −7.803 · 103

Remark 4. It is worth pointing out that although the vine-
copula algorithm takes more computing time to analyze the
data structure than the straightforward multivariate Gaussian
copula, it does not influence the computational efficiency of

this uncertainty quantification application. This is because the
uncertainty modeling can be conducted offline as demonstrated
in Fig. 2. This makes sense since the historical wind data
can be viewed as unchanged for a certain time period, for
which the vine-copula algorithm does not need to be trained
repeatedly. For an online probabilistic load-margin assessment
application, once the current system topology as well as the
control and operating states are updated, we can directly apply
the offline, well-trained vine copula on the online application.
Therefore, there is no need to consider the extra training time
required for the vine copula when compared to the Gaussian
copula.

4) Uncertainty Propagation Validation: Now, let us val-
idate the performance of the proposed GPE method in the
uncertainty propagation stage. The simulation results obtained
with the MC and GPE methods are provided in Fig. 5. The
simulation results obtained using the MC method with 10, 000
samples are used as a benchmark to validate the GPE-based
method (cf. [42]). In order to demonstrate that the result of the
MC method can serve as a credible benchmark, we plot the
convergence rate of the MC method in Fig. 6. It shows that the
mean and variance of the MC method converge asymptotically
given 10, 000 realizations. This demonstrates the credibility of
the results obtained with the MC method.

0.58 0.6 0.62 0.64 0.66 0.68

Load Margin

(a)

0

20

40

60

80

100

P
ro

b
a
b

il
it

y
 D

e
n

s
it

y MC Method

GPE Method (k
E
)

0.58 0.6 0.62 0.64 0.66 0.68
Load Margin

(b)

0

20

40

60

80

100

P
ro

b
a
b

il
it

y
 D

e
n

s
it

y MC Method

GPE Method (k
SE

)

0.58 0.6 0.62 0.64 0.66 0.68

Load Margin

(c)

0

20

40

60

80

100

P
ro

b
a
b

il
it

y
 D

e
n

s
it

y MC Method

GPE Method (k
3/2

)

0.58 0.6 0.62 0.64 0.66 0.68

Load Margin

(d)

0

20

40

60

80

100
P

ro
b

a
b

il
it

y
 D

e
n

s
it

y MC Method

GPE Method (k
RQ

)

Fig. 5. Probability density plots for load margin using GPE with (a) kE
kernel, (b) kSE kernel, (c) k3/2 kernel, and (d) kRQ kernel.

It can also be seen that with only 15 training samples,
the GPE method with a 2nd-order truncated PCE functions
can provide highly accurate simulation results under different
kernel functions. To further quantitatively verify the accuracy
of the proposed method, we choose to use the well-known
Kullback-Leibler divergence (KLD) as the index [43], which
measures the difference between the GPE-approximated pdf,
πGPE, and the MC-approximated pdf, πMC, via

D(πGPE||πMC) =

∫
πGPE log

πGPE

πMC
. (36)

It is obvious that D(πGPE||πMC) equals zero when πGPE =
πMC. Here, πMC is obtained from the pdf obtained from eval-
uating the aforementioned 10, 000 samples directly through the
full CPF model. Then, we use the KLD to quantitatively test
the accuracy of the proposed method with different kernels.
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Fig. 6. Convergence test of the MC method with (a) mean and (b) variance
of load margin.

The calculation results are shown in Table III. It can be seen
that the proposed method provides quite similar estimation
accuracy using all four types of kernels, with each calculated
D(πGPE||πMC) tending to zero. Therefore, the proposed GPE-
based method significantly reduces the computational burden
over the traditional MC method without any loss of accuracy.

TABLE III
VALIDATION OF THE PROPOSED METHOD USING KLD

Kernel kE kSE k3/2 kRQ

KLD 0.0019 0.0017 0.0030 0.0016

B. Case Study Two

This case study is conducted on the IEEE 118-bus test
system to validate the performance of the proposed method
on a larger system. In this experiment, 11 wind farms with
rated power of 45 MW, 60 MW, 50 MW, 50 MW, 90 MW,
75 MW, 30 MW, 30 MW, 30 MW, 30 MW, and 90 MW are
added at Buses 3, 7, 13, 16, 37, 38, 45, 50, 93, 94, and 114,
respectively, to introduce the randomness in the CPF model.

The parameters set for the wind generators are kept the
same as in Case Study One. The real-world wind speed
data for these 11 wind farms are collected from Sites
#12160,#12094,#11083,#10547,#9708,#9639,#9434,
#9204,#1550,#1491, and #1032 of the NREL’s wind data
of 2004, respectively [39]. The samples obtained by the
inferred D-vine are provided in Fig. 7, which demonstrates
the existence of quite complicated dependence structures
among these wind generation data, which further requires the
validation of the proposed method.

1) Validation of The Proposed Method: Here, we test the
performance of the proposed method using different kernels
and different training samples. The KLD is used to quantify
the accuracy of the proposed method. The simulation results
obtained with the MC method with 10, 000 samples are used
as a benchmark to validate the GPE-based method. It is worth
pointing out that it takes more than 6 h to evaluate these

Fig. 7. Marginal and scatter plots of the simulated data (blue) and historical
data (red) for the IEEE 118-bus test case.

10, 000 samples using the CPF model in the MC method,
which is very time-consuming. In contrast, the proposed GPE
method takes much less time to complete the computing as
shown in Table IV. With only 50 samples, the GPE method can
complete the training stage in 1.5 min and the evaluation stage
in around 5 s while maintaining a very high accuracy. Apart
from the KLD, it can be seen from Fig. 8 that the pdf obtained
by the proposed method matches the simulation results of the
MC method very well. We can also see from Table IV that
there is practically no difference in the computing efficiency
and accuracy of the proposed method under different kernels.
Furthermore, an increase in the training samples will not bring
obvious improvement in the performance of the proposed
method.
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Fig. 8. Probability density plots for load margin using the GPE with kSE
kernel and 50 training samples, and the MC method.

2) Comparison Studies: Here, we conduct comparison
studies with another existing method, the Latin hypercube
sampling (LHS), which is a stratified sampling technique that
can be used to reduce the number of runs necessary for
an MC simulation to achieve a reasonably accurate random
distribution [33]. This has been further verified and applied
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TABLE IV
VALIDATION OF THE GPE METHOD WITH DIFFERENT TRAINING

SAMPLES UNDER DIFFERENT KERNELS ON THE IEEE 118-BUS SYSTEM

Group 1 using GPE with kE Kernel
Samples Training

Time (s)
Realization
Time (s)

Total Time
(s)

KLD

50 88.07 4.78 92.85 2.92 · 10−4

75 134.23 4.81 139.04 3.31 · 10−4

100 166.23 5.14 171.37 2.63 · 10−4

Group 2 using GPE with kSE Kernel
Samples Training

Time (s)
Realization
Time (s)

Total Time
(s)

KLD

50 87.39 4.84 92.23 2.57 · 10−4

75 134.95 4.92 139.87 2.60 · 10−4

100 167.61 5.66 173.27 2.38 · 10−4

Group 3 using GPE with k3/2 Kernel

Samples Training
Time (s)

Realization
Time (s)

Total Time
(s)

KLD

50 88.07 4.78 92.85 2.63 · 10−4

75 130.90 4.86 135.76 2.71 · 10−4

100 160.75 5.09 165.84 2.93 · 10−4

Group 4 using GPE with kRQ Kernel
Samples Training

Time (s)
Realization
Time (s)

Total Time
(s)

KLD

50 90.20 5 95.20 3.59 · 10−4

75 131.86 5.03 136.89 2.62 · 10−4

100 166.27 5.22 171.41 3.38 · 10−4

in some power-system applications such as probabilistic load-
margin and probabilistic power-flow analyses [19], [44], [45].
Researchers advocate this method for its capability to provide a
good statistical approximation of power system states by using
a small number of “near-random” samples, e.g., 200 and 400.
Here, we choose different sample sizes, NLHS, for the LHS
method to make comparison studies with the proposed method
considering the computing accuracy and the computational
efficiency. The simulation results are shown in Table V. The
pdfs are plotted in Fig. 9. It can be seen that although the LHS
method with 500 samples can provide a fairly reasonable pdf
approximation, the GPE outperforms the LHS method in both
the computing accuracy and the computational efficiency.

TABLE V
COMPARISON STUDIES FOR THE ACCURACY AND EFFICIENCY

NLHS 100 200 300 400 500

KLD 0.1324 0.0980 0.0808 0.0671 0.0495

Time (s) 165.1 333.4 487.6 654.7 842.7

3) Further Discussion: Let us now discuss the possible
generalization of the proposed method to much larger power
systems. Apart from the regional-scale power systems that we
have used in this article, the scale of the real-world power
systems can increase to a much larger size. This means that
even a single calculation of the CPF model, which involves
multiple prediction and correction steps based on the power-
flow solver, can be very time-consuming. Therefore, even
if our proposed GPE-based method can greatly reduce the
computation time of the MC simulation, the training period
will still be time-consuming, reducing the overall performance
of the proposed method.
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Fig. 9. Comparison studies between the GPE method and the LHS method.

Fortunately, the proposed method can be perfectly merged
into the parallel-computing framework. Unlike some sequen-
tial method that might not be easily computed in parallel, the
training period of the proposed method can be parallelized.
This renders the proposed method amenable to the emerging
GPU-based computing method (cf. [42], [46]) or some hybrid
GPU/CPU-based computing method (cf. [47]). By this way,
the proposed method can not only encompass the advantages
of the GPE method, but also harness the power of modern-
computing technologies. Undoubtedly, the parallelization will
help the proposed method be generalized to much larger power
systems. We would like to combine the GPE method with a
GPU-based method for large-scale power-system applications
as part of our future work.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel data-driven GPE-based
method for the probabilistic load-margin analysis. The high-
dimensional, complicated dependence structure of the wind
generation data are modeled with the vine copula. Then,
the GPE serves as a nonparametric, reduced-order model for
the nonlinear CPF that enables an evaluation of the time-
consuming CPF solver at the sampled values at a negligible
computational cost. Simulation results reveal that the proposed
method exhibits an impressive performance as compared to the
traditional MC method.

In the future, we would like to further explore the following
aspects:
• The GPE method developed in this paper is not robust

to outliers. However, as shown in the literature (cf. [32]),
there may exist some outliers in the raw wind data. We
will explore the ideas of making our GPE method robust
to outliers (cf. [48]) or adding a raw-data preprocessing
step (as done in [32]) prior to applying the GPE method.

• As mentioned earlier, the proposed method is currently
applied in a regional-scale power grid. In the future, it
would be meaningful to combine the current GPE method
with the power of modern-computing technologies, such
as a GPU-based method, to extend our method’s applica-
bility to a much larger power grid.
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• Although the current CPF model is not a time-series
problem, it would be interesting to expand the GPE
method to a related uncertainty quantification problem
involving time series such as the stochastic economic
dispatch. Then, it would be interesting to combine the
GPE method with state-of-the-art neutral-network-based
methods that can recover full stochastic scenarios [49].
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