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1. Introduction of the model

We consider a heavy quantum mechanical tracer particle coupled to a field of identical

scalar bosons with two-particle interactions. The Hilbert space for the quantum tracer
particle (with position variable X € R3) is given by L?(R?). The boson Fock space is

given by
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F=CeoPrF. (1.1)
n>1
where
Fo = (L2 (R?) P (1.2)

is the n-particle Hilbert space. We denote the Fock vacuum by € € F, and introduce
creation- and annihilation operators satisfying the canonical commutation relations

a0, ay] =d(z —y) o a))=0 , [a},a5] =0, (1.3)

where a,€ = 0 for all z € R3. The Hilbert space of the coupled system is given by
H=L*R*®F. (1.4)

We will study the time evolution of this system for initial data ®3 € H with a large but
finite expected particle number, <<I>0, 1® Nb<I>0> = N, where

Ny ::/daca;,"az (1.5)

is the boson number operator. We assume that the bosons interact with one another via
a mean field interaction potential %v, where A > 0 is a coupling constant. Moreover,
we assume that the mass of the heavy tracer particle is proportional to N. Accordingly,
the Hamiltonian of the system is given by

1
Hy = —WAX®1+1®T+/dzw(X—z)®a;rax
+1®i dxdy atazv(z —y)a (1.6)
5N rdy ay azv(z —y)ay ay, .
where
1 +
T::Q dral (—Agzay) (1.7)

is the kinetic energy operator for the boson field, w is the potential energy accounting
for the coupling between the tracer particle and the bosons, and ﬁv is the potential
accounting for pair interactions between bosons.

This system exhibits a close formal similarity to the translation-invariant model in
non-relativistic Quantum Electrodynamics (QED) describing a quantum mechanical elec-
tron coupled to the quantized electromagnetic radiation field. The framework that we
will use in our analysis is strongly inspired by [20,21] and [2,3,6,7,9,8].
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We define the conserved total momentum operator
Piot =iVx®1+1® P, (1.8)
where
P, = /d:c at (iVzaz) (1.9

is the momentum operator for the boson field. The Hamiltonian is translation invariant,
[Hn, Piot] = 0. Accordingly, we consider the decomposition of §) as a fiber integral

&
) Z/dk;f)k (1.10)
R3

with respect to P;,; where the fiber Hilbert spaces $); are isomorphic to F, and invariant
under the dynamics generated by the Hamiltonian H .

For each fixed k € R3, we consider the value Nk of the conserved total momentum
Py, The restriction of Hy to $j is given by the fiber Hamiltonian

1
Hy (k) := W(Nk — P4+ T+ /dx w(z)a) ay,
+ i drdy at ( —7) +
5N rdy ay azv(T — Y)ay, ay
1
=: W(Nk—Pb)2+T+W1(0)+W2, (1.11)

where

Wi(y) :== /dm w(z —y)a)ay . (1.12)
We also introduce

for notational convenience. We note that here, z (under a slight abuse of notation) stands
for the relative coordinate x — X, with origin located at X = 0. For a more detailed
introduction to the fiber decomposition with respect to the conserved total momentum,
we refer to [2].

We will in the sequel identify $ with L?(R3, F), and omit the tensor products from
the notation in (1.6). The solution of the Schrédinger equation on $) has the following
form.
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Proposition 1.1. Given u € L*(R3) and \Ilio € F, let

®,0(X) ;:/dka(k)eix'<N’f—Pb>\11§0 €9. (1.14)

Then,
By (t, X) = / die (k)X NP g (3 (1.15)

solves
i01®, = HN D, (1.16)

on $ with initial data ®,(0,X) = ®,0(X) € 9, iff V7 (t) € F solves
0T (1) = H () (1) (1.17)
on F with initial data V7 (0) = \I/k]':o € F.
Proof. We have
(i&g + %AX)d)u(t,X)
= /dk (k)X NP %(Nk - p)?)
+ %(Nk—be +T+W)x1/,§(t) (1.18)
= / dk a(k)(e*iX'Pb(T+ W)eiX'Pb)eiX(Nk*Pb)\p{ (t) .
Clearly,
e X PopeiX-Py — (1.19)
and
e X Pog X P m gy e X PogFeiX P Z gt (1.20)
as one sees from
emIX Pogt X Py /dke—ikxe—iX~Pb af eiX P

_ / dkefikwa;g&-efiX~(Pb+k)eiX-Pb

= /dke—i’“(ﬁx)a;. (1.21)
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Therefore,

e TPy, e X P — w(x)a:+Xam+de

w(r — X)afade = Wi(X),

/
/

and

_iX. i X A
e i X P5W262X Py _ ﬁ /aj+X(Lw+X’U(£C — y)a;+Xay+dedy

A
=35 /ajag;(x - X — (y — X))a, aydxdy

=Ws,.
We thus conclude that
(i@t n %Ax>¢>u(t,X) — (T + Wi (X) +Wa) ®u(t, X),
as claimed in (1.16). O

The main results proven in this paper can be summarized as follows.

1.1. The fiber ground state on Fy for large N

975

(1.22)

(1.23)

(1.24)

The fiber Hamiltonian Hy (k) commutes with the number operator Np. In Section 2,

we study its restriction to the N-particle Fock space Fy, and prove that the fiber ground

state energy,

En(k) = infspec(HN(k)‘}_N )

inf Un, Hy(k) Uy ),
‘I’NE}'N;H‘I’H}'N=1< N N(> N>

satisfies the asymptotics

2
lim En(k) _ K + H¢>|i\nf &old)
r2=1

where

1

Eolg] = )

/dmv¢mn?+/ﬁxw@n¢mn2

+g/ﬁm@@@wax—mwww

is the Hartree energy functional; see Proposition 2.1.

(1.25)

(1.26)

(1.27)
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The problem considered here corresponds to a mean field limit; see [36] and the
references quoted therein. For the much more difficult case of a dilute gas and the Gross—
Pitaevskii limit, we refer to [38,40,39].

1.2. Coherent states and mean field limit as N — oo

In Section 3, we derive the mean field limit of (1.17) in the following sense. We define
the Weyl operator

WIVNQ] := exp (\/N/dx (d(z)af — p(x)az) ) ) (1.28)

and consider the solution of the Schrédinger equation (1.16) with initial data given by a
coherent state of the form

WIVN¢o] Q = exp ( — gH(bng) exp (\/N /da: do(x)a) )Q, (1.29)

for ¢pg € H(R3).
For an arbitrary but fixed value k& € R? of the conserved momentum, we assume that
for some T' > 0, ¢, € L H2([0,T) x R?) is the solution of

i0ypy = —(k — (¢1,iV ) ) iVP, — EA@ + wde + A(v * ¢ )by (1.30)
2

with initial data ¢o € H2(R3). We introduce the scalar

t

1
S(t,t') = N/ds( — 3k + %(«zss,zwsf

t

A
+5 [P - lo.Pdzay) . (3)
and a self-adjoint Hamiltonian quadratic in creation- and annihilation operators, of the
form
Hoy (k) = Mo, (k) + HE, (1.32)
where

H?Itar(k) = _(k - (¢tazv¢t)> . Pb + T + Wl(O)
+ )\/ P ()] ?v(z — y)a, a,dedy (1.33)

is a generalized Hartree Hamiltonian which commutes with the particle number operator
Ny, and where
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2
My, = 3 (a*(1V6,) + aliVo,))

2 [ vle = por(a)als) afay dody

A
+5 [ v - (6@atwaia + BEatan)dedy, (130
includes correlations which do not preserve the particle number. Then,
iOV(t,s) = Mot (R)V(t,s) , V(s,s) =1, (1.35)

determines the unitary flow V(¢, s) generated by 'Hj;tf(k)
Our main result in section 3 states that the limit

lim He‘“”N(k)W[\/ﬁqﬁo] Q — e SEOWVN V(2,0 QHF =0 (1.36)
— 00
holds, under the assumption v € C%(R?); see Theorem 3.1. The more technical parts of

the proof are presented in Section 6. Therefore, the solution of (1.16), with initial data
(1.14) characterized by a coherent state \I/,io = W[V N¢o| £, is given by

B, (t, X) = / dk T(k)etX NE=Po) e =iSEOWV NG, V(t,0) Q +on(1)  (1.37)

asymptotically, as N — oo.

The convergence in Fock space proven in our work is closely related to [32,30,31].
In our construction, the generator ’Hiff(k) of V(t,s), defined in (1.32), includes both a
diagonal and an off-diagonal part, while in [32,30,31] the term analogous to V(¢, s) has a
purely off-diagonal generator. In the case considered here, the choice (1.35) with (1.32)
allows us to efficiently control the operator %(N k — P,)? in H which is not present in
the above mentioned works. The heaviness of the mass of the tracer particle, with mass
proportional to N, plays an important role because it ensures that the kinetic energies
of tracer particle and boson field are comparable. The Hamiltonian H&:, comprises the
On (1) terms of the quasifree reduction of Hy, in the sense of [1]. After completing this
work, we noticed that a partially similar construction was used in [37] where the authors
study the convergence rate in a mean field limit without tracer particle.

There is a vast literature on the derivation of time-dependent Hartree or nonlinear
Schrédinger equations from an interacting boson field with mean field or Gross—Pitaevskii
scaling. The first rigorous results were obtained in the pioneering papers [33] and (a few
years later) [45,46]; more recently, the works [16-19], and subsequently [35] and [43],
motivated much of the current activity in the research area; we refer to [10,13,14,11,12,
25-29,32,30,31,34,36,37,42].

The mean field limit of a classical tracer particle coupled to a nonlinear Hartree
equation was derived in [15].
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1.8. Analysis of the mean field equations

In sections 4 and 5, we analyze the mean field equation (1.30). In Section 4, we deter-
mine the ground state for a conserved total momentum k € R3, under the assumption
that the Hartree energy functional for k¥ = 0 admits a minimizer; see Proposition 4.1.

In Section 5, we study dispersive solutions to (1.30). In particular, we show that (1.30)
is unitarily equivalent to the nonlinear Hartree equation

0 = — 5 A+ wy + A [P, (= 0) =40 = o € HAR®)  (138)

where

wy(t,x) = w(x - Xw(t)) (1.39)

and

t

Xy(t) == /ds (k— (z/;,iw)(s)) (1.40)

0

is the expected trajectory of the tracer particle, with respect to an average over its
interactions with the boson field.
In Theorem 5.5, we prove the global well-posedness for (1.38) in the space

¥ e LPHNR x R¥) N L Wi (R x RY), (1.41)

under the assumption that |Jw|| 23 <00 and that ||w||W1 3, ||/\v|| 1,3 are sufficiently

small. As a corollary, we obtam global well-posedness for (1.30), in the sense stated in
Theorem 5.1; in particular, ¢(t, ) = (¢, z + Xy (t)). We note that under less restrictive
assumptions on w and Av, the problem can be controlled with methods developed in [4].
We also note that X (t) can be written as Xy (t) = kt — (¢, 2¢), and that it satisfies the
Ehrenfest dynamics

ORX(t) = (¥, V(wy + M x [v)0)
- / da(Tw)(x — Xy (£)) () (1.42)

The term involving v is zero because v is even, see Remark 5.3, below.

In particular, we find 87X, (t) = 0 in the special case where ¢g = Q) is the nonlinear
ground state of (1.30), with [|Qx[/zz = 1. This is because we have Q) = e~i37Q,
where Qg is the rotationally symmetric minimizer of the Hartree functional (2.4), with
[Qollz2 = 1; see Proposition 4.1. Due to rotational symmetry of Qo, we find that X (t) =
k¢, and that with ¢(t,z) = Qi (z — £t), the r.hus. of (1.42) is zero, so that 97Xy (t) = 0.
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Clearly, (1.42) describes a classical tracer particle moving along the trajectory
X, (t) € R3, coupled to a boson field described by the Hartree equation (1.38). A model
of a similar type has been analyzed in [22], for which the emergence of Hamiltonian
friction was established in certain cases in [23,24].

2. The fiber ground state on F for large N

The fiber Hamiltonian Hy (k) commutes with the number operator Ny, and its re-
striction to the N-particle Fock space Fy is given by

Hy(k) = ”HN(k)‘ (2.1)

Fn
In this section, we will determine the asymptotics of its ground state energy in the limit

of large N; see [5,41,44] for references. We define

En(k) := infspec( HN(k)‘FN )

<\11N , Hy (k) Uy > (2.2)

inf
VN EFN;|[P]Fy =1
For large N, the following asymptotics hold.

Proposition 2.1. The ground state energy of the fiber Hamiltonian Hy (k) satisfies

. Enx(k)  K? .
lim = —+ inf
N—ooco N 4 ol L2=1

&o[d] (2.3)

where

ld)i= 5 [ da Vo) + [ dow(a) ot

+5 [ dedylo@Po - )l (24)
is the Hartree energy functional.
Proof. Let
(7 W) (@1, .. o) = exp ( - %ij) Uy (z1,...,28). (2.5)
j=1

Then, the kinetic energy part in (1.11) yields

<T§\1/N7 (%(Nk—Pb)g +T) Tg\IJN>

G B S ES s

j=1 Jj=1
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T ) SRty

Jj=1

S o () ). oo

where ky = (k1,...,kn) and dky := dk; - - - dky, while the interaction part yields

<T%\IJN7WT%\1/N>:<\I/N,W\I/N>. (2.7)

Thus, we obtain the lower bound

E = inf Uy, H v
N(k) ‘I/NG}—N?IHI}I}N”_TNzl < N N(k) N >

<T%\I/N, HN(k)qu/N>

inf
UNEFN; I TN]Fy=1

Nk? 1
- inf Uy, (5 P2+ Hy(0)) @
4 \I/NG‘FN§1HI%IINHFN:1< N <2N b T N( )) N>
Nk?
> 4 +EN(O). (2.8)

Next, we determine an upper bound.
Let

Un,g = ﬁ(ﬂﬁ(fﬁ))NQ (2.9)

where ¢ € H'(R?) and ||¢||zz = 1. We choose

¢ =e157Qq (2.10)

where Qg is the minimizer of the Hartree functional (2.4) with mass ||Qql/rz = 1. Then,
we find that

< Un,g, Hn(0) Un g >

NK? L o
= 1 +<‘1/N,Q07 pr ‘I/N,Q0>+<\IJN,Q07 Hy(0) \I/N,Qo>
Nk? 1
= 1 + <\IJN,Q0 ) ﬁplg UN,Qo > + N&[Qo] - (2.11)

The minimizer of £ [¢] is rotation symmetric, therefore

/k 1B (k)|2dk = 0, (2.12)
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and we have

1
<\I/N,Qo ) _Pb2 \I/N,Qo >

/QN(Zk) 1Qo(k1)|? -+ |Qo(kn) 2dk

-/ %(Zk?) Qo) -+ Qo (k) Pl

= %/kﬁ 1Qo(k)|* dk < oo. (2.13)

Passing to the third line, we used that all terms whose integrands are proportional to
k; - kg, with j # ¢, vanish, due to (2.12). Notably, the term (2.13) is O(5;) smaller than
the other two terms on the last line of (2.11), and we conclude that

K En(0) _ By(k) _ K

ot o 2 < Do L Rl sl@).  (214)

But as was proven in [36],

. Ex(0
tm YO _ g, (2.15)
Hence, (2.14) implies that
. En(k) k2
Jim == = -+ &[Ql (2.16)

as claimed. O
3. Coherent states and mean field limit as N — oo

In this section, we derive the dynamical mean field limit on Fock space. In order to
render the exposition more readable, we are presenting the core of the proof here, but
provide the more technical parts of the proof later, in Section 6. In this paper, we are
neither attempting to optimize the bounds on the convergence rates, nor the requirements
on the potentials w and v.

Let ¢ € L?(R3). In this section, it will be convenient to use the notation ¢;(x) =
o(t,x). We define the Weyl operator

WIVN@| := exp (\/N/da: (¢(x)af — ¢(z)as ) ) (3.1)

We consider the solution of the Schrodinger equation (1.16) with initial data given by a
coherent state of the form



982 T. Chen, A. Soffer / Journal of Functional Analysis 276 (2019) 971-1006

WIVNGo] 2 = exp gu%ug) exp (VI /dx dolx)at )2, (3.2)

for ¢p € H*(R3).
Moreover, we define a time-dependent mean-field Hamiltonian which is self-adjoint
and quadratic in creation- and annihilation operators, of the form

Hin s (k) = Hif,, (k) + s, (3.3)

ar

where the “diagonal term”
H?Itar(k) = _(k - (¢taiv¢t)> <Py + T+ W1(0)
+ )\/ |p¢ () [Pv(2 — y)a;ayda:dy (3.4)

is the Hartree Hamiltonian which commutes with the particle number operator N, and
where the “off-diagonal term”

HO: = % (a+(iv¢>t) + a(iV¢t)>2

2 [ vle ~ por(a)aly) afay dody (3.5)

+ % /v(x —y) (¢t($)¢t(y)a;_a; + ¢t($)¢t(y)ay%)d$d% (3.6)

includes correlations which do not preserve the particle number. We obtain the unitary
flow V(t, s),

i0V(t, ) = HL' (k)V(t,s) , V(s,s) =1, (3.7)
generated by Hf;f(k)

Theorem 3.1. Let k € R3. We assume that v € C%(R?), and that for some T > 0,
¢r € LPH2([0,T) x R3) is the solution of

060 = — (k= (60iV6)) Vo — 500 +wd + Awxlo)or,  (38)

with initial data ¢o € H2(R3). Let

t

1 1
S(t,t/> = N/d5< — 51432 + §(¢s>iv¢s)2

t

+3 [lo@Pot —ploPasdy ). (39
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Then, the limit
Jim He—““f‘N<k>W[\/N¢o] Q — e ISEOWV N V(¢ 0) QHF —0  (3.10)
holds.
Proof. We have
He*““ﬂN(@vv[\/mo] Q — e SEOW/NgV(E, 0) QHi —2(1- M) (3.11)
where
M(t) = Re< e~ HN WV N o] Q, e SEOWV N, V(E,0) Q>
= Re( @, W'[VNaole ™D SCOWN/Ng V(,0) Q). (3.12)
One can easily verify that given (3.8), we have
IOWIVNG] = [Hif,, (k) , WIVNe]] . (3.13)
We consider the unitary fow
Ut s) = WHVNgJe I Hx =iy [N g | (3.14)
and introduce the selfadjoint operator
L3 (k) = W [VNG1] (Hav (k) = 9:S(2,0) ) WIVN
- W [VNei[Hi,, (k), WNMH — Mo (k)

= W VN JHn (k)YWIVN¢,] — 8,S(t,0)
- W*[\/N@]H?fw(k)w[\/ﬁ@] — Mo (k). (3.15)

Then, it is clear that
i0, (uN(t, 0)V(t,0) Q) = —Un(t,0)L2 (k) V(t,0) Q. (3.16)

A straightforward but somewhat lengthy calculation shows that
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— [ vl = v)a (@:l)a, + 0ilw)e; ) dody

+ W v(z —y) ay a aya, dedy . (3.17)

This follows from Lemma 6.1.
Evidently,

M(t) = Re< Q, Uy (t,0)V(¢,0) Q>

= M(0) + Re/ ds O M(s)

t

—1- Re{ z/ ds < O, Uy (w,0)L% (k) V(s,0) Q> } . (3.18)

0

It follows from the unitarity of Uy (t,0) that
] <Q Un (£, 0)L% (k) V(t,0) Q> ‘ < H £2 (k) V(t,0) Q H; (3.19)

We prove in Lemma 6.2 that

Cit

H L2 (k) V(t,0) Q H; < S (3.20)

ik

for some constants Cy, C1 depending on |[v||c2gs) and ||t Lse 3 (j0,7)xr3). Hence, we
find that

Cls C eClt
ds < —0

|M(t) — 1] < Co \/— Wik

(3.21)

We therefore conclude that for any ¢ > 0, the lhs of (3.11) converges to zero in the limit
N —o0. O

For the convergence to the mean field dynamics in Theorem 3.1, we required that the
solution to the mean field equations obtained in (3.8),

i@t@ = —(k— ((bt,ZV(bt) zV@ — lAQﬁt + ’LU(bt + )\(’U * |¢t|2>¢t7 (322)
2

has regularity ¢ € L H3([0,T) x R?), for T > 0 (possibly T' = 00).
In Section 4 and Section 5, we study solutions to (3.22) under less strict assumptions
on the regularity, ¢ € L{°H, ;, in the following two cases. In Section 4, we assume that
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the interaction potentials w and v are such that the standard Hartree equation with
external potential w possesses a ground state, and we construct the ground state solution
o (3.22). In Section 5, we assume that w and v do not allow for bound states. In
this situation, we are considering dispersive solutions of (3.22), and prove local and
global well-posedness under the assumption that ||w]|y2.3/2 < 0o, and that ||wl|y1,3/2,
|Av||yyr1.3/2 are sufficiently small.

Remark 3.2. Global dispersive solutions to (3.22) with regularity ¢ € L{° H3(R x R?) can
be constructed along the same lines as in our analysis in section 5, under the assumption
that [|wl|yas/2 < 00, and that ||w|ys.s/2, ||Av]|ws.s/e are sufficiently small. Because the
arguments are straightforward, we leave this part as an exercise.

Remark 3.3. For comparison, we note that the model usually encountered in the litera-
ture, describing the boson gas without tracer particle, is given by

~ A
Hy =T+ /dm w(z)at a, + N drdy a) azv(x — y)a;'ay. (3.23)

That is, no term ﬁ(Nk — P,)? appears here, [33,43,32].
Our constructions in this section apply to this case, too, but simplify. The mean field
equation for ¢ is the standard Hartree equation,

0 = —Ad + wd + A\(v * |¢|2)d

with ¢(0) = ¢o € HL.

The first term on the right hand side of (3.4) and the first term on the right hand
side of (3.5) are then absent. Moreover, the terms on the first two lines on the r.h.s. of
(3.17) are absent, yielding

L% ;:\/_/ z—y)at (¢ (y)ay + ¢i(y)a )azdwdy

+ W v(z —y) afafaya, dedy. (3.24)

As a consequence, a bound of the form (3.20),

~o 6clt
t < .
HLN V(tO)QHF_Co ~

follows from Lemma 6.3, but Lemma 6.2 does not need to be invoked. In particular,

(3.25)

the constants Co, C1 depend only on ||¢|| L gr1(rxrs); that is, only H-regularity of ¢ is
required, not H3-regularity. This implies a convergence result analogous to (3.10), but
only requiring that |[¢[| L g1 (rxrs) < oo. Clearly, I = R, if the Hartree equation for ¢ is
globally well-posed.
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4. Ground state for the generalized Hartree functional

We introduce the generalized Hartree energy functional corresponding to an arbitrary
but fixed conserved momentum k € R3,

1

5dd==3v<¢N¢vHN“0@M¢>

= 5 (k= [@d@iv.0@) + 5 [ do Vo)

/dm ) 16()|2 + /dxdyw (@)[2v(z - )6y

1

_ 5(k— (6, iV¢)) + &ol4]. (4.1)

Here, &[¢] is the standard Hartree energy functional with external potential w. We note
that the scaling in the model is chosen in such a manner that £;[¢] is independent of N.
Let Qé“ ) denote the minimizer of

Sole] = Eol¢] — ullgll- (4.2)

where p is a Lagrange multiplier (the chemical potential) implementing the constraint
that the L?-mass ||¢||?. = M is constant. Accordingly,  depends on M, and we denote
by o the value of p for which M = ||Qg”°)||%2 = 1. For brevity, we write Qg := Q(()’“’),
as we will only consider the case M = 1. By variation of (4.2) in ¢, it follows that Qq
satisfies the stationary Hartree equation

HoQo = ~ 3 Q0 + wQo + Mo+ Q0)Q (43)

where the value of 1 is obtained from taking the inner product of (4.3) with Q.
Likewise, for a nonzero total conserved momentum k € R?, we consider the minimizer

Q. of

Sild] = Exlg] — ullllZ (4.4)

under the constraint condition ||Qk||2. = 1, and we denote the corresponding value of
the chemical potential by uy. By variation in ¢, it follows that the minimizer Q) satisfies

Qe =~ (k= Qi iVQN) ) iVQu — JAQe +wQ + Mw+QuPIQx  (45)

with ||Qk|/zz = 1. The value of py is obtained from taking the inner product of (4.5)
with Q.
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Proposition 4.1. The vector

Qri=e""2Q (4.6)

minimizes So|¢] = Exl¢] — pl|@||32 with constraint |Qx||L2 = 1, and satisfies (4.5) with
chemical potential

k2

We remark that %2 is the kinetic energy of a dressed particle, consisting of the tracer
particle together with a cloud of bosons, of total mass 2.

Proof. First of all, we verify from straightforward calculation that

ke k2
Sle™ 6] = 5+ (6,199 + &old] — ull3
k}2
> 5+ &olo] - ol (4.5

noting that for the choice of frequency % in the exponent of (4.6), terms linear in iVQq
on the right hand side cancel. Therefore,

k2

. 72% o . _ 2
u¢\1|r;f:1{5’“[6 JES " ol &olé] = ol
k2
=+ €olQo] — ol Qo] - (4.9)

On the other hand, because @y is spherically symmetric, (Qq,iVQo) = 0. Therefore,

ko k?
Sele™*% Qo] = 77 + 5(@0,1VQ0)? + E[Qo] — 1l Qol:

2
T LR L I 4.10
gy IR CIC R 2 (110)
saturates the lower bound.

Furthermore, substituting e~*"s" Qg for Qj, in (4.5) yields

K 1
Qo = i §AQ0 +wQo + Av * |Qol*) Qo (4.11)
where we note that all terms proportional to V@ cancel. Comparing with (4.3), we
conclude that puy = po + %2, as claimed. O
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4.1. Mean field limit for the ground state

Given ¢, = Qi for some k € R3, Vt € R, (3.8) is evidently solved by (4.5), and the
expressions appearing in Theorem 3.1 simplify as follows. The Hamiltonian ’Hf;l‘f(k) =

H Har(k:) + H&:,. becomes time-independent, with

HHM( ) =T+ W;1(0) + )\/ Qo (2)|*v(x — y)a;ayd:cdy, (4.12)
and

HO: = %(cﬁ(z‘mk) n a(iVQk))2

2 [ vl = QU@ 0} ay dody
+5 [ o6 - )(Q@Quata) + QuEIQuoye, ) dady.
Consequently, (3.7) simplifies to
V(t,s) = exp ( —i(t— S)Hg’}(k)) ) (4.13)

and (3.9) simplifies to
/ ! A 2 2
s(t.0) = M= )(5 [ Qo) Pote — Qo) Pdady ). (114)

inside the expression in (3.10). The nonlinear ground state (g of the Hartree functional,
normalized by [|Qol|z2 = 1 is, for w, v € C'(R?), an element of H3(R?), see Lemma 4.2.
Accordingly, Q) € H2(R3), as required in Theorem 3.1.

Lemma 4.2. Assume that w, v € CY(R3). Let Qo denote the minimizer of the Hartree
functional & -], satisfying (4.3) with po <0, and [|QollL2 = 1. Then, Qo € H3(R?).

Proof. Given 1o < 0 in (4.3), we have the identity
Qo = ~(ltto] = 2) 7 (wQo + A(v * Qo) Q) (4.15)

where |uo| — A > |po| is strictly positive. Therefore,

|Qollzz = H (1= A)% (ol — A)~ l(on + A(v * |Q0|2)Qo)‘

L3

< ol || wQo + A+ 1Qo)Q |
< lpol ™ (lwller + [Melle)|Qollay < oo (4.16)

using that [[A(v + [Qof*)llcr < Allvller [ QollZ:, and [|Qoll7, =1. O
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5. Time-dependent mean field equations

The nonlinear dispersive PDE with conserved energy functional &[¢], for given
k € R3, is given by

006 =~ (k— (1)) iV6 — 3 A6+ wé+ A(w [6P)0, (51)
where
Jult) 1= (6(0), iV (1)) (52)

is the expected momentum (respectively, the current) determined by ¢. The quantity
k — jg is the momentum of the tracer particle, given that the bosons are in the coherent
state parametrized by ¢, and the total conserved momentum is k. We will prove the
following global well-posedness result for the corresponding Cauchy problem.

Theorem 5.1. Let ¢g € H.. Then, there exists a unique global in time mild solution to
(5.1),

006 = — (k= (1)) iV6 — J A6+ wé+ A(w [6P)0), (53)
with initial data ¢(t = 0) = ¢g, satisfying

Pl Lse rr1 (R xR3) + ||7'X¢¢||Lt170 W;‘%(RXW) <00 (5.4)

where (1x,9)(t,x) := ¢(x + Xy(t)), and Xy(t) = fot ds(k — (¢,iV@)(s)). In particular,
10: Xy ()| < Clldollmz, uniformly in t € R.

Proof. For any ¢ € L H(R x R?),

lig ()] < 1@l ee 11 (mxr3) < C (5.5)
is bounded, and therefore,
t
Xolt)i= [ dsth = jo(s) (5.6)
0

is finite for every t € R. Consequently, e*X¢()*V . {1 — [ is unitary for every t € R,
and we may define

P(t,x) = eiXd’(t)'iv(b(t, x). (5.7)
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The exponential generates translations in z-space by X4(t), yielding

blt,w) =6 (tw — Xy (1)) (5.8)
as an equivalent expression. Clearly,
Jo(t) = ju(t), (5.9)
by unitarity of e’ Jo 4s(k=js ()= on [2(R3). Therefore,
X (t) = Xy(t), (5.10)
and
. , 1 . .
i0p = e Xo(®)iV ( — A+ WA |¢>\2))eﬂx¢<t>ﬂw : (5.11)

where we note that the first term on the r.h.s. of (5.1) has been canceled by (19, X4(t))¢
obtained from the time derivative. Noting that the operator —A is translation invariant,
and

(eiX¢(t)-iV(v N |¢|2)6—iX¢(t)-iV)(t7x)
— [o(z- X0 - ) lote. )y
= [ vla =)oty - Xo(e)P dy
= (vx[p*)(t,2), (5.12)

we find that 1) satisfies the nonlinear Hartree equation

0 = S A T NP L =0 =yo=d0  (513)

where

wy(t,z) = w(x - Xw(t)> (5.14)

is the potential w, translated by Xy (t).
The claim of the theorem therefore follows from the global well-posedness of (5.13)
established in Theorem 5.5, below. O

Remark 5.2. The physical interpretation of (5.13) is as follows. The field ¢ describes a
self-interacting boson gas in mean field description which interacts with a point-like tracer
particle traveling along a trajectory X, (t). The tracer particle creates an interaction
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potential w which moves along Xy (t), here denoted by w,,. The momentum of the tracer
particle, 0, Xy (t) = k — (¢,1V1), together with the expected momentum of the boson
field, (v, iV), adds up to the conserved total momentum k. We note the close similarity
to the equations studied in [22] for a classical particle coupled to a boson gas.

Remark 5.3. The Ehrenfest dynamics of X (¢) is given by
X (t) = (¥, Viwy + 3o [pP)w) (5.15)
as stated in (1.42). The term depending on v is zero because, first of all,
(v. Vs lwl)
— [daluPx o)
— [do s Vi), (5.16)

On the other hand, using integration by parts,

/dx ]2 V(v []2)
_ —/dx (VIP) (v [$]?)
_ / da (v % V[2) [ (5.17)

where the last line holds because v is a radial function, and thus even. Comparing (5.16)
and (5.17), we find that [ dz [V (v [¢|*) = — [ dz [¢|*V (v * [¢|?) = 0. Therefore,

X y(t) = <¢7 wa)
- / d (V) (z — X (1)) [(2)[2 (5.18)
as claimed.

A key advantage of (5.13) over (5.1) is that the Cauchy problem can largely be con-
trolled with known dispersive tools for the analysis of the Hartree equation. A main
difficulty is introduced by the dependence of the potential wy, on 1. Another complica-
tion arises from the fact that the energy is not conserved.

We construct local and global in time dispersive solutions under the assumption that
|w]|yyr2.8/2 < 00, and that ||w||y1,8/2, ||Av|lj31.8/2 are sufficiently small. These conditions
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ensure, in accordance with the Birman—Schwinger principle, that neither w nor Av cre-
ate bound states. We require that w has one more derivative than v, to control the
dependence of w,, on . First, we prove local well-posedness.

Theorem 5.4 (Local well-posedness). Let vo € H'(R?) with ||tz = 1. Assume that
||w||W2,% < 0o, and that

@

Hw||W1% +3H)\UHW},% <1. (5.19)
Then, there exists a unique mild solution
oo 7l 3 Forls 3
Y e LEH([0,T] x R°)N L2 Wy 2 ([0, T] x R?) (5.20)

to (5.11) with initial condition v (t = 0) = 1y, provided that T > 0 is sufficiently small.

Proof. We consider the map

Mis o g4 [ dse 8 (o) + M@ PG (52)
0

where we may assume that [|¢[[z2 = 1. Clearly, using the Strichartz and Holder inequal-
ities as in
t

I [ s w)ag; < ooty
0

< gl s
t

30
LE®

<lwgll, gl

10,
coT 2 3
L Lg L%

(5.22)

with (g,7) and (g, 7) denoting arbitrary Strichartz admissible pairs, we find that, under
inclusion of a derivative,

||MW]||L;’W;'T (5.23)
g+ [ [l

10

R TS
t

’3

=
'

< ollen + gl o g 11 2
t

5

8

We use Young’s inequality for convolutions in

)

D e TP T Y 7 | (5.24)
and observe that

100y s < P (o = X0 (5.25)

(M)

= Jwll,, .

[N
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Therefore,

MW sgwz < ol + (ol + D0l Il (526

for any Strichartz admissible pair (g, r). Consequently, writing I := [0,T], and defining
the Banach space

1 3 P 3
Y(I) = LHNI x R N L7 Wa'® (I x R%) (5.27)
endowed with the norm
Ifllyy = 1 fllLse (o xmsy + ||fHL:T0W;,%(IxR3) ) (5.28)

we find

=

Ml < 2ol + (el g + 130l g ) llvay - (5.29)

x

8

Assuming that ||w] .3 + ||| .3 < 1—24, for some § € (0,1), and defining R :=
W, 2 W, 2
2571”¢)0”H1, we find that

[M[]lly ) < 0R+ (1 =0)[[¢lly ) - (5.30)

Hence, the image of the ball Bg(0) C Y under the map M is contained in itself.
Next, we prove the contractivity of M. Given ¢1,19 € Br(0) C Y, we have

M) = Mo]lly (1) < llwyy —wysll - vg lrlly o

LW, 2

+ ||ww2||Lth;g lv1 — Yally(n)

0 (unf? = [l Wl

+ [|Av = |w2|2||L?OW;,g 191 = d2llyay - (5.31)

To control the first term on the r.h.s. of (5.31), we have

wal = Wy, HL?W;% < ||w||W3% Sltlp |X1ZJ1 (t) — Xy, (t)| ) (5.32)

where

[ Xy () = Xy, ()] < [ ds |(h1, iV 1) = (2, iV )]

<

ds |(iV (1 — Y2), 1) + (¥2,iV (Y1 — 12))]

o O~
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< tlor = ellogerms (I loenz + ol iz )
< 2T |9 — Y2y (5.33)

for t € T = [0, ).
To control the term on the third line on the r.h.s. of (5.31), we use

v (Jgr [ = |¢2|2)||L g S Al g 1]? = [l pge 1
< xoll g llldn] + [Wallleerz s — Y2l

< 2H)\”||W1,g 1 — 2lly(r) (5.34)

oo
t

where |[[v1] + [v2lllL2 < [[¥nllez + [[¢2llL2 = 2.
Summarizing, we have

[M[1] = Ma]lly 1)
<2r ”w”Wj’% 1y (nyllr = P2lly
+ ||w||Wi,g 11 = 2lly
2wl gl —
+ ||)\U||W;,% 11 — Yally (1)
< (TRl oy + ol o + 3000 ) el - (539
Therefore, M is contractive on the ball Br(0) C Y if
2Rl oy + [l g + 31000 g <1 (5.36)

To this end, we require that

[l 1y +3lA0ll ag <1 (5.37)

x E

and that T > 0 is sufficiently small (depending on R). O

We remark that the only place in the proof that requires a finite time 7' > 0 is
the control of wy,. The Strichartz estimates employed here remain valid with R instead
of I. We may therefore patch together local in time solutions using a global Strichartz
inequality.

Theorem 5.5 (Global well-posedness). Let g € H'(R®) with |[¢o|r2 = 1. Assume that
||U/||Wz,g < 00, and that
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Joll g + 8130 ug <1 (5.39)

Then, there exists a unique global mild solution 1 € Y (R) to (5.11) with initial condition
Y(t =0) = o. In particular, it satisfies

-1
lelly @ < 2(1 = lfwll g = 120l ) ool (5.39)
Moreover,

-1
0 X1 < K+ (1= flwll vy — I8l 1g) ol € R; (5.40)
that is, the momentum of the tracer particle is uniformly bounded in time.

Proof. The Strichartz estimate obtained in (5.26) holds globally in time. With (¢,r) =

(L2, 19y it implies
90,39 0 gy < ol + (ol g+ D00l g )0 o (5:4)
respectively,
-1
960,29 118 oy < (2= Tl g = Iv0ll g ) ol (5.42)

We use this a priori bound to control the L H} norm of .
Let I; := [(j — 1)T,5T]. The estimate (5.26) with (g,r) = (00,2), combined with
(5.42), implies that

-1
[z marucss) < 2(1 =l g =10l g) ol (5.43)
and hence,

-1
ot = 27 arzcrciey < (1= ol g = Ml og)  Iollar . (5.44)
Applying Theorem 5.4 for Iy with initial data ¥ (t = 2T) yields local well-posedness on

Y (I2) with the same upper bound on ¢ (t = 3T)|| 1(1, xrs) as in (5.44).
Iterating this argument for I;, j € Z, we find that

-1
Il macmcisy < (1= Nl g = 1Al og) ol (5.45)

globally in time.
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Therefore, we obtain

Y1y @) = Y]l 2 RxR2) + ||¢||L130 Wi mxms)

—1
<21l oy = I3l 2g) ol (5.46)

as claimed in (5.39).
Finally, we note that the bound (5.45) implies that

0. Xy (t)| = [k — (¥,1VY)(1)]
< [k + 19| Lge 1 rxr2)

< Vel (1= loll g = 120l pg) Iolly S e€ R (547)
Thus, the momentum of the tracer particle is uniformly bounded in time. O
6. Proof of convergence to the mean field dynamics
6.1. Determination of Ei,‘ (k)

In the following Lemma, we determine the explicit form of the operator (3.15). We
will use the notation ¢;(x) = ¢(t,x), similarly as in Section 3.

Lemma 6.1. The selfadjoint operator E}ff (k) in (3.15) is given by

L3 (k) = (V1) +a(iVer)) + (a*(iV0) +a(iVy)) - Py

e

1
+ P}

2N
A
+ Wi /v(w —y)a} ((bt(y)ay + QSt(y)a;)ax dzdy
A

+ IN v(z —y) ay a) aya, dedy. (6.1)

Proof. We recall from (3.15) that

L3 (k) = W VN Hy (k)WIVN ] — 9,5(t,0)
— W VNG ()WIVN @] Mo (k). (6.2)

The explicit expressions for the terms on the right hand side are given by
W* VNG| H (k) WIVN ]
N ) NA
= 5 (8 = 0ni960) + 55 [ fon(a)Po(e ~ plen(y) Pdady
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WVNG (= (k= (60,iV61)) - Py + T+ Wi(0)) WIVNG]
+ % (a+(iV¢t) + a(iwt))Z
+ T (Pb (at (V) + a(iVer)) + (at (iVer) + a(iVey)) - Pb)
+ %Pb
FWE [ ofa = plon(o) (af 6u(0) + Flwlay ) dody
+ )\/v(:r —y)|¢e(x)Pa) ay dady
+ A/v(a: —9)u(x) b (y) af ay dzdy
¥ g / o ) (@(w)@( Jataf + 9@ b (w)aya, ) dedy
/ be(y)ay + ¢i(y)a )amdxdy

/ ayax>dxdy, (6.3)

and

W VNG| Hif, (F) WIVNG]
=W VNG (= (k= (60,iV60)) - Py + T+ Wa(0)) WIVNG

+ N [ ou()Po(o — o) Pdzdy

AW [ oo = g)lon(a) (o) (o) + Bulo)ay ) dody

—i—)\/ x —y)|oe(x |2a ay dxdy , (6.4)
and

HE: = 1(a+(¢v¢> )+ a(iVe ))2
cor 2 t t
A / (& — y) e (2)Br(9) ot ay didy (6.5)

A 4
+5 [ o= (a@awatal + G@abaa)ddy.
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and
1, 1, .
25(t,0) = N( - 5k + 560V )
A
+5 [18@Pote — g)lorty)Pdsdy ). (6:)
We thus obtain

L3 (k) = a* (V) +a(iVen)) + (a*(iV6) + aliVy)) - Py)

(o
+—Pb

— [ oo = v)a (@:l)a, + 0ilw)e; ) dody

A N gt T
+2N v(r —y) ay a, aya, drdy, (6.7)

as claimed in (6.1).

We note that in order to obtain (6.3), we used the following. Introducing the abbre-
viated notations

W:=W[VN¢] , V:=at(iVe,) +a(iVe,) , D:=(¢,iV¢), (6.8)
it is clear that
W*PW =P, + VNV + ND. (6.9)

Therefore,

1
o (NE = W*P,W)?

1
T 2N

= g(k —D)* = (k= D)W"(P, = ND)W + %(Pb +VNV)? (6.10)

——(N(k— D) = W*(P, — ND)W)?

N 1 1
— 5(1@2 — D?) — (k— DYW*P,W + ﬁPbQ + (PV +VP) + §V2_

1
2VN
The terms on the last line are contained in the first five lines on the rhs of (6.3). O

6.2. Estimates on M(t)

In this subsection, we prove the estimate (3.20).
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Lemma 6.2. The following estimate holds,
H £2: (k) V(t,0)Q H < Lo o (6.11)
FT VN
for constants Co, C1 depending on ||v||cz and ||¢t| Ly 3 (jo, 1) xr3)-
Proof. Let
Q / dk (k) ai” a (6.12)
where (k)2 := 1 + k%. Then, for any ¥ € F, and o > 1,
B[ Wl [[Ng ¥ < [|Qp ¥l (6.13)

Thus, we obtain the following bounds on the individual terms in (6.7),

| ﬁ (P (a*(i961) +a(iVr)) + (a*(iV61) +a(iVer)) - Py) V2|
< W% gy 614
H an b Vi H < LNlle v, Q| (6.15)
H \/%(/v(w —y)aj (cét( Yay + ¢4(y)a )aw dxdy) V0 H
< Al lodie o) (6
H %(/v(x—y) afafaya, dudy) V2| < A”“”L IN2VQ|  (6.17)

Therefore, we obtain that

4 V 2| |v oo
(A5l e~ oy

VN VN
< \/—Neclt, (6.18)

LY (k) V(E,0)Q]| < + 5N Qv +
F

using Lemma 6.3 and Lemma 6.4. O
Lemma 6.3. The following estimate holds,
H NEV(,0)Q HF <elit | a=1,2, (6.19)

for a constant Cy depending only on ||¢o| g1 .
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Proof. We split H%:, (see (6.5) for the definition) into

Y — P d+H¢t

cor cor, cor,od

where the diagonal part HO

cor,q commutes with the number operator,

[H¢t

cor,d’

Ny = 0,
and where
o0 = 5 (67 (V00T (196) + aliVo)a(iVer))

A -
t5 /U(CE - y) (¢t ()p(y)at a;f + o (:E)qﬁt(y)ayam)dxdy
= H¢t,+:lr + H¢t7**

cor,od

is the off-diagonal part.
Defining

Nb(t) = V:Nth s
where for brevity, V; := V(¢,0), we have, for a = 1, 2,

iONL () = VEINS, HE: TV,

cor,od
* ,++ T
= th (Hfér,od + (_l)aHfér,od )Vt ’

due to (6.21).
This implies that

INEVQ = [Ng ()2
t
<IN + / ds || D, No(5)2 |
0

s
or,od cor,od

<a /t ds H VEHE T L (C1)OH )0 H
0

Writing
Kila,a') = SGV00)@)V60)() + Jola — )6 @)y
we have

cor,od cor,od

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

e /dmdx’ Ki(z,2")alal, |, HOU o = /dmdm’Ft(x,ml) agaqr, (6.28)
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and we will next prove that

|Vinsoive| <1 N e (6.20)

cor,od

and

|viuistive|| <21k 10+ Ne) 9|

<2 Kol (1 + [ No() Q) (6.30)

=/

To prove (6.30), we note that, using Kq(x,2') = Ks(2/, x),

2
H V;k H¢s’++ VSQ H

cor,od

— * Ps,—— Ps,t++
- <Q’ Vs Hcor,od Hcor,od VSQ>

= /dxdx’dydy’ Kq(z,2") Kq(y, y’)<Q, Vi (25(x —y)d(z’ — )

+45(x’ — y/)a;rax + aia;ray/ax) Vs Q>

= (I) + (L) + (II1). (6.31)
We have
(1) = 2||K|72 (6.32)
(I1) :4/dacH/dx'Ks(x,x’)az/ VSQHQ
<4 [ oo )R, ) law v,
— KB NG () 2 (6.33)

(IIT) = ‘ /dmdm'dydy’ Ky(z,2') Ks(y,y) <ayam Vs 2, ayrag Vs Q>’
1
< ( [ deda'dyay | Koo, |Ko0))

( / dzdx’ dydy’

~ ( / drde! K, (2, 2/)[? ) (6.34)

2 2\ 1
ayawVSQH H@y'%' VSQH )

/d:rdx’ < Vs 2, (a;"aza;ay —0(z — y)a:ay) Vs Q >

= I1Kl2: (INu(s) Q% = | N, () 22) (6.35)
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so that, using HNb% (5)Q]2 < || Np(5)92|| from Cauchy—Schwarz,

cor,od

|vemstivie| < i (I6eel +1)°

This implies (6.30). Similarly, one arrives at (6.29).
Therefore, (6.26) implies that

L4 [NEVQl = 1+ [NE ()
t
<14 NP9 + / ds | D, No()2 |
0

t
§1+2a/ds||Ks||%g (14 Imeel).
0

and by the Gronwall inequality,

t

L NVl < e (1 [ dsIKE: ).
0

for a =1,2.

Finally,

”Ks”Lt‘X’L; ([0,T) xR? xR?)

=/

A 3
21V6ls + 5 ([ 0@ oo ~ 1) 6.(0) Pdo dy)

IN

< (L4 Mollzee) 16617 mr1 o7y xro) -
This implies the claim of the lemma. O

Lemma 6.4. Let
Qy = /dk (k>a2‘ak
where (k)2 = 1+ k2. Then, the following estimate holds,
|@veoe| <e a=12,

for a constant Cy depending only on ||v||c2 and ||@||rs m3 (0, 1)xR3)-

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)
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Proof. We define
Qu(t) =V QpVt,
where V, := V(t,0) as before. For o = 1,2, we find
iD0Q5 (t) = VI 1QF Higra + HigroalVs

Similarly to (6.27) and (6.28), we define

Je(z,a") := (V) (@) (iV ) (@) + Moz — y)de(2) e (1),

so that
Hcor d = ”v{bHL2 + /d(ﬂdm/ Jt(fﬂ, IL'I) ajax/ .
Since

Qo M+ M = [ doda' s (92) = (Vo)) )

+ [ ot {0 (V) + (T Kl #') =tz (Vs + V) il

Then, the estimate
211 Qs(H)2]
C (1692) = (Tl ,

1Y)+ (TeD Kl ) (NS + 1)

< C (1472 = (FarDellzz, + 1(V2) + (T Killzz ) (1Qu()2 +1)

follows from the same arguments as the proof of (6.29), (6.30).
For a = 2, we have

2RIV < I[QF. HE:, , +H:

cor,od

.
Taking the commutator with an operator acts as a derivation, thus

[QIQN Hfér d + Hcor od]
= Qb [Qb ’ cor d + Hcor od] [Qb ’ ’HCOT d + Hfotr od] Qb
- Q[Qb ’ Hf;r d + Hcor od]Qb + [Qb ’ [Qb ’ H?(t)r d + Hcor od”

1003

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)
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where, similarly to (6.46),
(@, [Qu Mty + M o]
= / drda'ata, ((Ve) — (V) Je(z,2') (6.50)
+ / drde! {3, (V) + (V) Ko (o, )
+ asaw (V) + (V) Kol ) .
In analogy to (6.47), we therefore find that
QA < A1V +1) + A1) (|QeVi| + 1) (6.51)
where
A3(8) = C (1Y) = (T illzz_, + 1(Va) + (VD) Kol 2 )
and
As(t) 1= C (1Y) = (Ta)) 2 illzz |, + 1(Fa) + (Var)*Killgz ) -
Since [|QyV:Q| < [|Q2V4Q]], we conclude that
HNQVQ < (A1) + A (D)) (I1QRVQ + 1) (6.52)

and hence,

IQ3vis < exp ([ dsArs) + Ax(s)))

< exp (t)A1 + Azl oy ) - (6.53)

using that [|Q3Vo|| = 0, due to Vo = 1.
Finally, we have, for « = 1,2,

FI(Va) + (V) KillLerz | (0,1) xR xr3)

x, T

< (1 + >‘Hv||CQ(R3))H¢t||2L;>OH;+D<([0’T)XR3) ) (6'54)

as can be easily checked. O
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