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We consider the dynamics of a heavy quantum tracer particle 
coupled to a non-relativistic boson field in R3. The pair 
interactions of the bosons are of mean-field type, with coupling 
strength proportional to 1

N
where N is the expected particle 

number. Assuming that the mass of the tracer particle is 
proportional to N , we derive generalized Hartree equations 
in the limit N → ∞. Moreover, we prove the global well-
posedness of the associated Cauchy problem for sufficiently 
weak interaction potentials.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction of the model

We consider a heavy quantum mechanical tracer particle coupled to a field of identical 
scalar bosons with two-particle interactions. The Hilbert space for the quantum tracer 
particle (with position variable X ∈ R

3) is given by L2(R3). The boson Fock space is 
given by

* Corresponding author.
E-mail addresses: tc@math.utexas.edu (T. Chen), soffer@math.rutgers.edu (A. Soffer).
https://doi.org/10.1016/j.jfa.2018.10.019
0022-1236/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jfa.2018.10.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
mailto:tc@math.utexas.edu
mailto:soffer@math.rutgers.edu
https://doi.org/10.1016/j.jfa.2018.10.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2018.10.019&domain=pdf


972 T. Chen, A. Soffer / Journal of Functional Analysis 276 (2019) 971–1006
F = C⊕
⊕
n≥1

Fn (1.1)

where

Fn := (L2(R3))⊗symn (1.2)

is the n-particle Hilbert space. We denote the Fock vacuum by Ω ∈ F , and introduce 
creation- and annihilation operators satisfying the canonical commutation relations

[ax, a+
y ] = δ(x− y) , [ax, ay] = 0 , [a∗x, a∗y] = 0 , (1.3)

where axΩ = 0 for all x ∈ R
3. The Hilbert space of the coupled system is given by

H = L2(R3) ⊗F . (1.4)

We will study the time evolution of this system for initial data Φ0 ∈ H with a large but 
finite expected particle number, 

〈
Φ0, 1 ⊗NbΦ0

〉
= N , where

Nb :=
∫

dx a+
x ax (1.5)

is the boson number operator. We assume that the bosons interact with one another via 
a mean field interaction potential λ

2N v, where λ > 0 is a coupling constant. Moreover, 
we assume that the mass of the heavy tracer particle is proportional to N . Accordingly, 
the Hamiltonian of the system is given by

HN := − 1
2N ΔX ⊗ 1 + 1 ⊗ T +

∫
dxw(X − x) ⊗ a+

x ax

+ 1 ⊗ λ

2N

∫
dxdy a+

x axv(x− y)a+
y ay (1.6)

where

T := 1
2

∫
dx a+

x (−Δxax) (1.7)

is the kinetic energy operator for the boson field, w is the potential energy accounting 
for the coupling between the tracer particle and the bosons, and λ

2N v is the potential 
accounting for pair interactions between bosons.

This system exhibits a close formal similarity to the translation-invariant model in 
non-relativistic Quantum Electrodynamics (QED) describing a quantum mechanical elec-
tron coupled to the quantized electromagnetic radiation field. The framework that we 
will use in our analysis is strongly inspired by [20,21] and [2,3,6,7,9,8].
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We define the conserved total momentum operator

Ptot = i∇X ⊗ 1 + 1 ⊗ Pb (1.8)

where

Pb :=
∫

dx a+
x (i∇xax) (1.9)

is the momentum operator for the boson field. The Hamiltonian is translation invariant, 
[HN , Ptot] = 0. Accordingly, we consider the decomposition of H as a fiber integral

H =
⊕∫

R3

dkHk (1.10)

with respect to Ptot where the fiber Hilbert spaces Hk are isomorphic to F , and invariant 
under the dynamics generated by the Hamiltonian HN .

For each fixed k ∈ R
3, we consider the value Nk of the conserved total momentum 

Ptot. The restriction of HN to Hk is given by the fiber Hamiltonian

HN (k) := 1
2N (Nk − Pb)2 + T +

∫
dxw(x)a+

x ax

+ λ

2N

∫
dxdy a+

x axv(x− y)a+
y ay

=: 1
2N (Nk − Pb)2 + T + W1(0) + W2 , (1.11)

where

W1(y) :=
∫

dxw(x− y)a+
x ax . (1.12)

We also introduce

W := W1(0) + W2 (1.13)

for notational convenience. We note that here, x (under a slight abuse of notation) stands 
for the relative coordinate x − X, with origin located at X = 0. For a more detailed 
introduction to the fiber decomposition with respect to the conserved total momentum, 
we refer to [2].

We will in the sequel identify H with L2(R3, F), and omit the tensor products from 
the notation in (1.6). The solution of the Schrödinger equation on H has the following 
form.
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Proposition 1.1. Given u ∈ L2(R3) and ΨF
k,0 ∈ F , let

Φu,0(X) :=
∫

dk û(k)eiX·(Nk−Pb)ΨF
k,0 ∈ H . (1.14)

Then,

Φu(t,X) :=
∫

dk û(k)eiX·(Nk−Pb)ΨF
k (t) (1.15)

solves

i∂tΦu = HNΦu (1.16)

on H with initial data Φu(0, X) = Φu,0(X) ∈ H, iff ΨF
k (t) ∈ F solves

i∂tΨF
k (t) = HN (k)ΨF

k (t) (1.17)

on F with initial data ΨF
k (0) = ΨF

k,0 ∈ F .

Proof. We have(
i∂t + 1

2N ΔX

)
Φu(t,X)

=
∫

dk û(k)eiX·(Nk−Pb)
(
− 1

2N (Nk − Pb)2
)

+ 1
2N (Nk − Pb)2 + T + W

)
ΨF

k (t) (1.18)

=
∫

dk û(k)
(
e−iX·Pb(T + W )eiX·Pb

)
eiX·(Nk−Pb)ΨF

k (t) .

Clearly,

e−iX·PbTeiX·Pb = T (1.19)

and

e−iX·Pbaxe
iX·Pb = ax+X , e−iX·Pba+

x e
iX·Pb = a+

x+X , (1.20)

as one sees from

e−iX·Pba+
x e

iX·Pb =
∫

dke−ikxe−iX·Pba+
k e

iX·Pb

=
∫

dke−ikxa+
k e

−iX·(Pb+k)eiX·Pb

=
∫

dke−ik(x+X)a+
k . (1.21)
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Therefore,

e−iX·PbW1e
iX·Pb =

∫
w(x)a+

x+Xax+Xdx

=
∫

w(x−X)a+
x axdx = W1(X) , (1.22)

and

e−iX·PbW2e
iX·Pb = λ

2N

∫
a+
x+Xax+Xv(x− y)a+

y+Xay+Xdxdy

= λ

2N

∫
a+
x axv(x−X − (y −X))a+

y aydxdy

= W2 . (1.23)

We thus conclude that(
i∂t + 1

2N ΔX

)
Φu(t,X) = (T + W1(X) + W2 ) Φu(t,X) , (1.24)

as claimed in (1.16). �
The main results proven in this paper can be summarized as follows.

1.1. The fiber ground state on FN for large N

The fiber Hamiltonian HN (k) commutes with the number operator Nb. In Section 2, 
we study its restriction to the N -particle Fock space FN , and prove that the fiber ground 
state energy,

EN (k) := infspec
(
HN (k)

∣∣∣
FN

)
= inf

ΨN∈FN ;‖Ψ‖FN
=1

〈
ΨN , HN (k) ΨN

〉
, (1.25)

satisfies the asymptotics

lim
N→∞

EN (k)
N

= k2

4 + inf
‖φ‖L2=1

E0[φ] (1.26)

where

E0[φ] := 1
2

∫
dx |∇φ(x)|2 +

∫
dxw(x) |φ(x)|2

+ λ

2

∫
dx dy |φ(x)|2v(x− y)|φ(y)|2 (1.27)

is the Hartree energy functional; see Proposition 2.1.
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The problem considered here corresponds to a mean field limit; see [36] and the 
references quoted therein. For the much more difficult case of a dilute gas and the Gross–
Pitaevskii limit, we refer to [38,40,39].

1.2. Coherent states and mean field limit as N → ∞

In Section 3, we derive the mean field limit of (1.17) in the following sense. We define 
the Weyl operator

W[
√
Nφ] := exp

(√
N

∫
dx

(
φ(x)a+

x − φ(x)ax
) )

, (1.28)

and consider the solution of the Schrödinger equation (1.16) with initial data given by a 
coherent state of the form

W[
√
Nφ0] Ω = exp

(
− N

2 ‖φ0‖2
2

)
exp

(√
N

∫
dxφ0(x)a+

x

)
Ω , (1.29)

for φ0 ∈ H1(R3).
For an arbitrary but fixed value k ∈ R

3 of the conserved momentum, we assume that 
for some T > 0, φt ∈ L∞

t H3
x([0, T ) × R

3) is the solution of

i∂tφt = −
(
k − (φt, i∇φt)

)
i∇φt −

1
2Δφt + wφt + λ(v ∗ |φt|2)φt , (1.30)

with initial data φ0 ∈ H3
x(R3). We introduce the scalar

S(t, t′) := N

t∫
t′

ds
(
− 1

2k
2 + 1

2(φs, i∇φs)2

+ λ

2

∫
|φs(x)|2v(x− y)|φs(y)|2dxdy

)
, (1.31)

and a self-adjoint Hamiltonian quadratic in creation- and annihilation operators, of the 
form

Hφt

mf (k) := Hφt

Har(k) + Hφt
cor (1.32)

where

Hφt

Har(k) := −
(
k − (φt, i∇φt)

)
· Pb + T + W1(0)

+ λ

∫
|φt(x)|2v(x− y)a+

y aydxdy (1.33)

is a generalized Hartree Hamiltonian which commutes with the particle number operator 
Nb, and where
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Hφt
cor := 1

2

(
a+(i∇φt) + a(i∇φt)

)2

+ λ

∫
v(x− y)φt(x)φt(y) a+

x ay dxdy

+ λ

2

∫
v(x− y)

(
φt(x)φt(y)a+

x a
+
y + φt(x)φt(y)ayax

)
dxdy , (1.34)

includes correlations which do not preserve the particle number. Then,

i∂V(t, s) = Hφt

mf (k)V(t, s) , V(s, s) = 1 , (1.35)

determines the unitary flow V(t, s) generated by Hφt

mf (k).
Our main result in section 3 states that the limit

lim
N→∞

∥∥∥e−itHN (k)W[
√
Nφ0] Ω − e−iS(t,0)W[

√
Nφt]V(t, 0) Ω

∥∥∥
F

= 0 (1.36)

holds, under the assumption v ∈ C2(R3); see Theorem 3.1. The more technical parts of 
the proof are presented in Section 6. Therefore, the solution of (1.16), with initial data 
(1.14) characterized by a coherent state ΨF

k,0 = W[
√
Nφ0] Ω, is given by

Φu(t,X) =
∫

dk û(k)eiX·(Nk−Pb)e−iS(t,0)W[
√
Nφt]V(t, 0) Ω + oN (1) (1.37)

asymptotically, as N → ∞.
The convergence in Fock space proven in our work is closely related to [32,30,31]. 

In our construction, the generator Hφt

mf(k) of V(t, s), defined in (1.32), includes both a 
diagonal and an off-diagonal part, while in [32,30,31] the term analogous to V(t, s) has a 
purely off-diagonal generator. In the case considered here, the choice (1.35) with (1.32)
allows us to efficiently control the operator 1

N (Nk − Pb)2 in HN which is not present in 
the above mentioned works. The heaviness of the mass of the tracer particle, with mass 
proportional to N , plays an important role because it ensures that the kinetic energies 
of tracer particle and boson field are comparable. The Hamiltonian Hφt

cor comprises the 
ON (1) terms of the quasifree reduction of HN , in the sense of [1]. After completing this 
work, we noticed that a partially similar construction was used in [37] where the authors 
study the convergence rate in a mean field limit without tracer particle.

There is a vast literature on the derivation of time-dependent Hartree or nonlinear 
Schrödinger equations from an interacting boson field with mean field or Gross–Pitaevskii 
scaling. The first rigorous results were obtained in the pioneering papers [33] and (a few 
years later) [45,46]; more recently, the works [16–19], and subsequently [35] and [43], 
motivated much of the current activity in the research area; we refer to [10,13,14,11,12,
25–29,32,30,31,34,36,37,42].

The mean field limit of a classical tracer particle coupled to a nonlinear Hartree 
equation was derived in [15].
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1.3. Analysis of the mean field equations

In sections 4 and 5, we analyze the mean field equation (1.30). In Section 4, we deter-
mine the ground state for a conserved total momentum k ∈ R

3, under the assumption 
that the Hartree energy functional for k = 0 admits a minimizer; see Proposition 4.1.

In Section 5, we study dispersive solutions to (1.30). In particular, we show that (1.30)
is unitarily equivalent to the nonlinear Hartree equation

i∂tψ = −1
2Δψ + wψψ + λ(v ∗ |ψ|2)ψ , ψ(t = 0) = ψ0 ≡ φ0 ∈ H1

x(R3) (1.38)

where

wψ(t, x) := w
(
x−Xψ(t)

)
(1.39)

and

Xψ(t) :=
t∫

0

ds
(
k − (ψ, i∇ψ)(s)

)
(1.40)

is the expected trajectory of the tracer particle, with respect to an average over its 
interactions with the boson field.

In Theorem 5.5, we prove the global well-posedness for (1.38) in the space

ψ ∈ L∞
t H1

x(R× R
3) ∩ L

10
3
t W

1, 103
x (R× R

3) , (1.41)

under the assumption that ‖w‖
W

2, 32
x

< ∞, and that ‖w‖
W

1, 32
x

, ‖λv‖
W

1, 32
x

are sufficiently 

small. As a corollary, we obtain global well-posedness for (1.30), in the sense stated in 
Theorem 5.1; in particular, φ(t, x) = ψ(t, x +Xψ(t)). We note that under less restrictive 
assumptions on w and λv, the problem can be controlled with methods developed in [4]. 
We also note that Xψ(t) can be written as Xψ(t) = kt − (ψ, xψ), and that it satisfies the 
Ehrenfest dynamics

∂2
tXψ(t) =

(
ψ , ∇(wψ + λv ∗ |ψ|2)ψ

)
=

∫
dx(∇w)(x−Xψ(t))|ψ(x)|2 . (1.42)

The term involving v is zero because v is even, see Remark 5.3, below.
In particular, we find ∂2

tXψ(t) = 0 in the special case where φ0 = Qk is the nonlinear 
ground state of (1.30), with ‖Qk‖L2

x
= 1. This is because we have Qk = e−i k

2 xQ0
where Q0 is the rotationally symmetric minimizer of the Hartree functional (2.4), with 
‖Q0‖L2

x
= 1; see Proposition 4.1. Due to rotational symmetry of Q0, we find that Xψ(t) =

k t, and that with ψ(t, x) = Qk(x − k t), the r.h.s. of (1.42) is zero, so that ∂2
tXψ(t) = 0.
2 2
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Clearly, (1.42) describes a classical tracer particle moving along the trajectory 
Xψ(t) ∈ R

3, coupled to a boson field described by the Hartree equation (1.38). A model 
of a similar type has been analyzed in [22], for which the emergence of Hamiltonian 
friction was established in certain cases in [23,24].

2. The fiber ground state on FN for large N

The fiber Hamiltonian HN (k) commutes with the number operator Nb, and its re-
striction to the N -particle Fock space FN is given by

HN (k) := HN (k)
∣∣∣
FN

. (2.1)

In this section, we will determine the asymptotics of its ground state energy in the limit 
of large N ; see [5,41,44] for references. We define

EN (k) := infspec
(
HN (k)

∣∣∣
FN

)
= inf

ΨN∈FN ;‖Ψ‖FN
=1

〈
ΨN , HN (k) ΨN

〉
. (2.2)

For large N , the following asymptotics hold.

Proposition 2.1. The ground state energy of the fiber Hamiltonian HN(k) satisfies

lim
N→∞

EN (k)
N

= k2

4 + inf
‖φ‖L2=1

E0[φ] (2.3)

where

E0[φ] := 1
2

∫
dx |∇φ(x)|2 +

∫
dxw(x) |φ(x)|2

+ λ

2

∫
dx dy |φ(x)|2v(x− y)|φ(y)|2 (2.4)

is the Hartree energy functional.

Proof. Let

(τ k
2
ΨN )(x1, . . . , xN ) := exp

(
− ik

2

N∑
j=1

xj

)
ΨN (x1, . . . , xN ) . (2.5)

Then, the kinetic energy part in (1.11) yields
〈
τ k

2
ΨN ,

( 1
2N (Nk − Pb)2 + T

)
τ k

2
ΨN

〉

=
∫ ( 1

2N

(
Nk − Nk

2 −
N∑

kj

)2
+ 1

2

N∑(
kj + k

2

)2)
|Ψ̂N (kN )|2dkN
j=1 j=1
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=
∫ (Nk2

4 + 1
2N

( N∑
j=1

kj

)2
+ 1

2

N∑
j=1

k2
j

)
|Ψ̂N (kN )|2dkN

= Nk2

4 +
〈

ΨN ,
( 1

2N P 2
b + T

)
ΨN

〉
, (2.6)

where kN := (k1, . . . , kN ) and dkN := dk1 · · · dkN , while the interaction part yields

〈
τ k

2
ΨN , W τ k

2
ΨN

〉
=

〈
ΨN , W ΨN

〉
. (2.7)

Thus, we obtain the lower bound

EN (k) = inf
ΨN∈FN ;‖ΨN‖FN

=1

〈
ΨN , HN (k) ΨN

〉

= inf
ΨN∈FN ;‖ΨN‖FN

=1

〈
τ k

2
ΨN , HN (k) τ k

2
ΨN

〉

= Nk2

4 + inf
ΨN∈FN ;‖ΨN‖FN

=1

〈
ΨN ,

( 1
2N P 2

b + HN (0)
)

ΨN

〉

≥ Nk2

4 + EN (0) . (2.8)

Next, we determine an upper bound.
Let

ΨN,φ := 1√
N !

(a+(φ))NΩ (2.9)

where φ ∈ H1(R3) and ‖φ‖L2 = 1. We choose

φ = e−i k
2 xQ0 (2.10)

where Q0 is the minimizer of the Hartree functional (2.4) with mass ‖Q0‖L2 = 1. Then, 
we find that

〈
ΨN,φ , HN (0) ΨN,φ

〉

= Nk2

4 +
〈

ΨN,Q0 ,
1

2N P 2
b ΨN,Q0

〉
+
〈

ΨN,Q0 , HN (0) ΨN,Q0

〉

= Nk2

4 +
〈

ΨN,Q0 ,
1

2N P 2
b ΨN,Q0

〉
+ NE0[Q0] . (2.11)

The minimizer of E0[φ] is rotation symmetric, therefore

∫
k |Q̂0(k)|2dk = 0 , (2.12)
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and we have 〈
ΨN,Q0 ,

1
2N P 2

b ΨN,Q0

〉

=
∫ 1

2N

( N∑
j=1

kj

)2
|Q̂0(k1)|2 · · · |Q̂0(kN )|2dkN

=
∫ 1

2N

( N∑
j=1

k2
j

)
|Q̂0(k1)|2 · · · |Q̂0(kN )|2dkN

= 1
2

∫
k2 |Q̂0(k)|2 dk < ∞ . (2.13)

Passing to the third line, we used that all terms whose integrands are proportional to 
kj · k�, with j �= �, vanish, due to (2.12). Notably, the term (2.13) is O( 1

N ) smaller than 
the other two terms on the last line of (2.11), and we conclude that

k2

4 + EN (0)
N

≤ EN (k)
N

≤ k2

4 + 1
2N

∫
k2 |Q̂0(k)|2 dk + E0[Q0] . (2.14)

But as was proven in [36],

lim
N→∞

EN (0)
N

= E0[Q0] . (2.15)

Hence, (2.14) implies that

lim
N→∞

EN (k)
N

= k2

4 + E0[Q0] , (2.16)

as claimed. �
3. Coherent states and mean field limit as N → ∞

In this section, we derive the dynamical mean field limit on Fock space. In order to 
render the exposition more readable, we are presenting the core of the proof here, but 
provide the more technical parts of the proof later, in Section 6. In this paper, we are 
neither attempting to optimize the bounds on the convergence rates, nor the requirements 
on the potentials w and v.

Let φ ∈ L2(R3). In this section, it will be convenient to use the notation φt(x) ≡
φ(t, x). We define the Weyl operator

W[
√
Nφ] := exp

(√
N

∫
dx

(
φ(x)a+

x − φ(x)ax
) )

(3.1)

We consider the solution of the Schrödinger equation (1.16) with initial data given by a 
coherent state of the form
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W[
√
Nφ0] Ω = exp

(
− N

2 ‖φ0‖2
2

)
exp

(√
N

∫
dxφ0(x)a+

x

)
Ω , (3.2)

for φ0 ∈ H1(R3).
Moreover, we define a time-dependent mean-field Hamiltonian which is self-adjoint 

and quadratic in creation- and annihilation operators, of the form

Hφt

mf (k) := Hφt

Har(k) + Hφt
cor (3.3)

where the “diagonal term”

Hφt

Har(k) := −
(
k − (φt, i∇φt)

)
· Pb + T + W1(0)

+ λ

∫
|φt(x)|2v(x− y)a+

y aydxdy (3.4)

is the Hartree Hamiltonian which commutes with the particle number operator Nb, and 
where the “off-diagonal term”

Hφt
cor := 1

2

(
a+(i∇φt) + a(i∇φt)

)2

+ λ

∫
v(x− y)φt(x)φt(y) a+

x ay dxdy (3.5)

+ λ

2

∫
v(x− y)

(
φt(x)φt(y)a+

x a
+
y + φt(x)φt(y)ayax

)
dxdy , (3.6)

includes correlations which do not preserve the particle number. We obtain the unitary 
flow V(t, s),

i∂tV(t, s) = Hφt

mf (k)V(t, s) , V(s, s) = 1 , (3.7)

generated by Hφt

mf (k).

Theorem 3.1. Let k ∈ R
3. We assume that v ∈ C2(R3), and that for some T > 0, 

φt ∈ L∞
t H3

x([0, T ) × R
3) is the solution of

i∂tφt = −
(
k − (φt, i∇φt)

)
i∇φt −

1
2Δφt + wφt + λ(v ∗ |φt|2)φt , (3.8)

with initial data φ0 ∈ H3
x(R3). Let

S(t, t′) := N

t∫
t′

ds
(
− 1

2k
2 + 1

2(φs, i∇φs)2

+ λ
∫

|φs(x)|2v(x− y)|φs(y)|2dxdy
)
. (3.9)
2
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Then, the limit

lim
N→∞

∥∥∥e−itHN (k)W[
√
Nφ0] Ω − e−iS(t,0)W[

√
Nφt]V(t, 0) Ω

∥∥∥
F

= 0 (3.10)

holds.

Proof. We have
∥∥∥e−itHN (k)W[

√
Nφ0] Ω − e−iS(t,0)W[

√
Nφt]V(t, 0) Ω

∥∥∥2

F
= 2( 1 −M(t) ) (3.11)

where

M(t) := Re
〈
e−itHN (k)W[

√
Nφ0] Ω , e−iS(t,0)W[

√
Nφt]V(t, 0) Ω

〉
= Re

〈
Ω , W∗[

√
Nφ0]eitHN (k)e−iS(t,0)W[

√
Nφt]V(t, 0) Ω

〉
. (3.12)

One can easily verify that given (3.8), we have

i∂tW[
√
Nφt] = [Hφt

Har(k) , W[
√
Nφt] ] . (3.13)

We consider the unitary flow

U(t, s) := W∗[
√
Nφs]ei(t−s)HN (k)−iS(t,s)W[

√
Nφt] (3.14)

and introduce the selfadjoint operator

Lφt

N (k) := W∗[
√
Nφt]

(
HN (k) − ∂tS(t, 0)

)
W[

√
Nφt]

−W∗[
√
Nφt][Hφt

Har(k),W[
√
Nφt]] −Hφt

mf (k)

= W∗[
√
Nφt]HN (k)W[

√
Nφt] − ∂tS(t, 0)

−W∗[
√
Nφt]Hφt

Har(k)W[
√
Nφt] −Hφt

cor(k) . (3.15)

Then, it is clear that

i∂t

(
UN (t, 0)V(t, 0) Ω

)
= −UN (t, 0)Lφt

N (k)V(t, 0) Ω . (3.16)

A straightforward but somewhat lengthy calculation shows that

Lφt

N (k) = 1
2
√
N

(
Pb ·

(
a+(i∇φt) + a(i∇φt)

)
+

(
a+(i∇φt) + a(i∇φt)

)
· Pb

)

+ 1
P 2
b
2N
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+ λ√
N

∫
v(x− y)a+

x

(
φt(y)ay + φt(y)a+

y

)
ax dxdy

+ λ

2N

∫
v(x− y) a+

x a
+
y ayax dxdy . (3.17)

This follows from Lemma 6.1.
Evidently,

M(t) = Re
〈

Ω , UN (t, 0)V(t, 0) Ω
〉

= M(0) + Re

t∫
0

ds ∂sM(s)

= 1 −Re
{
i

t∫
0

ds
〈

Ω , UN (w, 0)Lφs

N (k)V(s, 0) Ω
〉}

. (3.18)

It follows from the unitarity of UN (t, 0) that
∣∣∣ 〈Ω , UN (t, 0)Lφt

N (k)V(t, 0) Ω
〉 ∣∣∣ ≤ ∥∥∥Lφt

N (k)V(t, 0) Ω
∥∥∥
F
. (3.19)

We prove in Lemma 6.2 that

∥∥∥Lφt

N (k)V(t, 0) Ω
∥∥∥
F
≤ C0

eC1t

√
N

, (3.20)

for some constants C0, C1 depending on ‖v‖C2(R3) and ‖φt‖L∞
t H3

x([0,T )×R3). Hence, we 
find that

|M(t) − 1| ≤ C0

t∫
0

eC1s

√
N

ds <
C0

C1

eC1t

√
N

. (3.21)

We therefore conclude that for any t > 0, the lhs of (3.11) converges to zero in the limit 
N → ∞. �

For the convergence to the mean field dynamics in Theorem 3.1, we required that the 
solution to the mean field equations obtained in (3.8),

i∂tφt = −
(
k − (φt, i∇φt)

)
i∇φt −

1
2Δφt + wφt + λ(v ∗ |φt|2)φt , (3.22)

has regularity φ ∈ L∞
t H3

x([0, T ) × R
3), for T > 0 (possibly T = ∞).

In Section 4 and Section 5, we study solutions to (3.22) under less strict assumptions 
on the regularity, φ ∈ L∞

t H1
x, in the following two cases. In Section 4, we assume that 
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the interaction potentials w and v are such that the standard Hartree equation with 
external potential w possesses a ground state, and we construct the ground state solution 
to (3.22). In Section 5, we assume that w and v do not allow for bound states. In 
this situation, we are considering dispersive solutions of (3.22), and prove local and 
global well-posedness under the assumption that ‖w‖W 2,3/2 < ∞, and that ‖w‖W 1,3/2 , 
‖λv‖W 1,3/2 are sufficiently small.

Remark 3.2. Global dispersive solutions to (3.22) with regularity φ ∈ L∞
t H3

x(R ×R
3) can 

be constructed along the same lines as in our analysis in section 5, under the assumption 
that ‖w‖W 4,3/2 < ∞, and that ‖w‖W 3,3/2 , ‖λv‖W 3,3/2 are sufficiently small. Because the 
arguments are straightforward, we leave this part as an exercise.

Remark 3.3. For comparison, we note that the model usually encountered in the litera-
ture, describing the boson gas without tracer particle, is given by

H̃N := T +
∫

dxw(x)a+
x ax + λ

2N

∫
dxdy a+

x axv(x− y)a+
y ay . (3.23)

That is, no term 1
2N (Nk − Pb)2 appears here, [33,43,32].

Our constructions in this section apply to this case, too, but simplify. The mean field 
equation for φ is the standard Hartree equation,

i∂tφ = −Δφ + wφ + λ(v ∗ |φ|2)φ

with φ(0) = φ0 ∈ H1
x.

The first term on the right hand side of (3.4) and the first term on the right hand 
side of (3.5) are then absent. Moreover, the terms on the first two lines on the r.h.s. of 
(3.17) are absent, yielding

L̃φt

N := λ√
N

∫
v(x− y)a+

x

(
φt(y)ay + φt(y)a+

y

)
ax dxdy

+ λ

2N

∫
v(x− y) a+

x a
+
y ayax dxdy . (3.24)

As a consequence, a bound of the form (3.20),

∥∥∥ L̃φt

N V(t, 0) Ω
∥∥∥
F
≤ C0

eC1t

√
N

, (3.25)

follows from Lemma 6.3, but Lemma 6.2 does not need to be invoked. In particular, 
the constants C0, C1 depend only on ‖φ‖L∞

t H1
x(I×R3); that is, only H1

x-regularity of φ is 
required, not H3

x-regularity. This implies a convergence result analogous to (3.10), but 
only requiring that ‖φ‖L∞

t H1
x(I×R3) < ∞. Clearly, I = R, if the Hartree equation for φ is 

globally well-posed.
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4. Ground state for the generalized Hartree functional

We introduce the generalized Hartree energy functional corresponding to an arbitrary 
but fixed conserved momentum k ∈ R

3,

Ek[φ] := 1
N

〈
ΦN,φ , HN (k) ΦN,φ

〉

= 1
2

(
k −

∫
dxφ(x)i∇xφ(x)

)2
+ 1

2

∫
dx |∇φ(x)|2

+
∫

dxw(x) |φ(x)|2 + λ

2

∫
dx dy |φ(x)|2v(x− y)|φ(y)|2

= 1
2

(
k − (φ , i∇φ)

)2
+ E0[φ] . (4.1)

Here, E0[φ] is the standard Hartree energy functional with external potential w. We note 
that the scaling in the model is chosen in such a manner that Ek[φ] is independent of N .

Let Q(μ)
0 denote the minimizer of

S0[φ] = E0[φ] − μ‖φ‖2
L2 (4.2)

where μ is a Lagrange multiplier (the chemical potential) implementing the constraint 
that the L2-mass ‖φ‖2

L2 = M is constant. Accordingly, μ depends on M , and we denote 

by μ0 the value of μ for which M = ‖Q(μ0)
0 ‖2

L2 = 1. For brevity, we write Q0 := Q
(μ0)
0 , 

as we will only consider the case M = 1. By variation of (4.2) in φ, it follows that Q0
satisfies the stationary Hartree equation

μ0Q0 = −1
2ΔQ0 + wQ0 + λ(v ∗ |Q0|2)Q0 (4.3)

where the value of μ0 is obtained from taking the inner product of (4.3) with Q0.
Likewise, for a nonzero total conserved momentum k ∈ R

3, we consider the minimizer 
Qk of

Sk[φ] := Ek[φ] − μ‖φ‖2
L2 , (4.4)

under the constraint condition ‖Qk‖2
L2 = 1, and we denote the corresponding value of 

the chemical potential by μk. By variation in φ, it follows that the minimizer Qk satisfies

μkQk = −
(
k − (Qk , i∇Qk)

)
i∇Qk − 1

2ΔQk + wQk + λ(v ∗ |Qk|2)Qk (4.5)

with ‖Qk‖L2 = 1. The value of μk is obtained from taking the inner product of (4.5)
with Qk.
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Proposition 4.1. The vector

Qk := e−i k·x
2 Q0 (4.6)

minimizes S0[φ] = Ek[φ] − μ‖φ‖2
L2 with constraint ‖Qk‖L2 = 1, and satisfies (4.5) with 

chemical potential

μk = μ0 + k2

4 . (4.7)

We remark that k
2

4 is the kinetic energy of a dressed particle, consisting of the tracer 
particle together with a cloud of bosons, of total mass 2.

Proof. First of all, we verify from straightforward calculation that

Sk[e−i k·x
2 φ] = k2

4 + 1
2(φ, i∇φ)2 + E0[φ] − μ‖φ‖2

L2

≥ k2

4 + E0[φ] − μ‖φ‖2
L2 , (4.8)

noting that for the choice of frequency k2 in the exponent of (4.6), terms linear in i∇Q0
on the right hand side cancel. Therefore,

inf
‖φ‖L2=1

{
Sk[e−i k·x

2 φ]
}
≥ k2

4 + inf
‖φ‖L2=1

{
E0[φ] − μ‖φ‖2

L2

}

= k2

4 + E0[Q0] − μ0‖Q0‖2
L2 . (4.9)

On the other hand, because Q0 is spherically symmetric, (Q0, i∇Q0) = 0. Therefore,

Sk[e−i k·x
2 Q0] = k2

4 + 1
2(Q0, i∇Q0)2 + E0[Q0] − μ‖Q0‖2

L2

= k2

4 + inf
‖φ‖L2=1

{
E0[φ] − μ‖φ‖2

L2

}
(4.10)

saturates the lower bound.
Furthermore, substituting e−i k·x

2 Q0 for Qk in (4.5) yields

μkQ0 = k2

4 − 1
2ΔQ0 + wQ0 + λ(v ∗ |Q0|2)Q0 (4.11)

where we note that all terms proportional to ∇Q0 cancel. Comparing with (4.3), we 
conclude that μk = μ0 + k2

4 , as claimed. �
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4.1. Mean field limit for the ground state

Given φt = Qk for some k ∈ R
3, ∀t ∈ R, (3.8) is evidently solved by (4.5), and the 

expressions appearing in Theorem 3.1 simplify as follows. The Hamiltonian Hφt

mf (k) =
Hφt

Har(k) + Hφt
cor becomes time-independent, with

Hφt

Har(k) = T + W1(0) + λ

∫
|Q0(x)|2v(x− y)a+

y aydxdy , (4.12)

and

HQk
cor = 1

2

(
a+(i∇Qk) + a(i∇Qk)

)2

+ λ

∫
v(x− y)Qk(x)Qk(y) a+

x ay dxdy

+ λ

2

∫
v(x− y)

(
Qk(x)Qk(y)a+

x a
+
y + Qk(x)Qk(y)ayax

)
dxdy .

Consequently, (3.7) simplifies to

V(t, s) = exp
(
− i(t− s)HQk

mf (k)
)
, (4.13)

and (3.9) simplifies to

S(t, t′) = N(t− t′)
( λ

2

∫
|Q0(x)|2v(x− y)|Q0(y)|2dxdy

)
, (4.14)

inside the expression in (3.10). The nonlinear ground state Q0 of the Hartree functional, 
normalized by ‖Q0‖L2

x
= 1 is, for w, v ∈ C1(R3), an element of H3

x(R3), see Lemma 4.2. 
Accordingly, Qk ∈ H3

x(R3), as required in Theorem 3.1.

Lemma 4.2. Assume that w, v ∈ C1(R3). Let Q0 denote the minimizer of the Hartree 
functional E0[ · ], satisfying (4.3) with μ0 < 0, and ‖Q0‖L2

x
= 1. Then, Q0 ∈ H3

x(R3).

Proof. Given μ0 < 0 in (4.3), we have the identity

Q0 = −(|μ0| − Δ)−1
(
wQ0 + λ(v ∗ |Q0|2)Q0

)
(4.15)

where |μ0| − Δ ≥ |μ0| is strictly positive. Therefore,

‖Q0‖H3
x

=
∥∥∥(1 − Δ) 3

2 (|μ0| − Δ)−1
(
wQ0 + λ(v ∗ |Q0|2)Q0

)∥∥∥
L2

x

≤ |μ0|−1
∥∥∥wQ0 + λ(v ∗ |Q0|2)Q0

∥∥∥
H1

x

≤ |μ0|−1(‖w‖C1 + ‖λv‖C1)‖Q0‖H1
x

< ∞ , (4.16)

using that ‖λ(v ∗ |Q0|2)‖C1 ≤ λ‖v‖C1‖ ‖Q0‖2
L2 , and ‖Q0‖2

L2 = 1. �

x x
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5. Time-dependent mean field equations

The nonlinear dispersive PDE with conserved energy functional Ek[φ], for given 
k ∈ R

3, is given by

i∂tφ = −
(
k − jφ(t)

)
i∇φ− 1

2Δφ + wφ + λ(v ∗ |φ|2)φ , (5.1)

where

jφ(t) := (φ(t), i∇φ(t)) (5.2)

is the expected momentum (respectively, the current) determined by φ. The quantity 
k− jφ is the momentum of the tracer particle, given that the bosons are in the coherent 
state parametrized by φ, and the total conserved momentum is k. We will prove the 
following global well-posedness result for the corresponding Cauchy problem.

Theorem 5.1. Let φ0 ∈ H1
x. Then, there exists a unique global in time mild solution to 

(5.1),

i∂tφ = −
(
k − jφ(t)

)
i∇φ− 1

2Δφ + wφ + λ(v ∗ |φ|2)φ , (5.3)

with initial data φ(t = 0) = φ0, satisfying

‖φ‖L∞
t H1

x(R×R3) + ‖τXφ
φ‖

L
10
3

t W
1, 103
x (R×R3)

< ∞ (5.4)

where (τXφ
φ)(t, x) := φ(x + Xφ(t)), and Xφ(t) =

∫ t

0 ds(k − (φ, i∇φ)(s)). In particular, 
|∂tXφ(t)| < C‖φ0‖H1

x
, uniformly in t ∈ R.

Proof. For any φ ∈ L∞
t H1

x(R × R
3),

|jφ(t)| ≤ ‖φ‖L∞
t H1

x(R×R3) < C (5.5)

is bounded, and therefore,

Xφ(t) :=
t∫

0

ds(k − jφ(s)) (5.6)

is finite for every t ∈ R. Consequently, eiXφ(t)·i∇ : H1
x → H1

x is unitary for every t ∈ R, 
and we may define

ψ(t, x) := eiXφ(t)·i∇φ(t, x) . (5.7)
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The exponential generates translations in x-space by Xφ(t), yielding

ψ(t, x) = φ
(
t, x−Xφ(t)

)
(5.8)

as an equivalent expression. Clearly,

jφ(t) = jψ(t) , (5.9)

by unitarity of ei
∫ t
0 ds(k−jφ(s))·x on L2(R3). Therefore,

Xφ(t) = Xψ(t) , (5.10)

and

i∂tψ = eiXφ(t)·i∇
(
− 1

2Δ + w + λ(v ∗ |φ|2)
)
e−iXφ(t)·i∇ψ , (5.11)

where we note that the first term on the r.h.s. of (5.1) has been canceled by (i∂tXφ(t))φ
obtained from the time derivative. Noting that the operator −Δ is translation invariant, 
and (

eiXφ(t)·i∇(v ∗ |φ|2)e−iXφ(t)·i∇
)
(t, x)

=
∫

v
(
x−Xφ(t) − y

)
|φ(t, y)|2 dy

=
∫

v(x− y) |φ(t, y −Xφ(t))|2 dy

=
(
v ∗ |ψ|2

)
(t, x) , (5.12)

we find that ψ satisfies the nonlinear Hartree equation

i∂tψ = −1
2Δψ + wψψ + λ(v ∗ |ψ|2)ψ , ψ(t = 0) = ψ0 ≡ φ0 (5.13)

where

wψ(t, x) := w
(
x−Xψ(t)

)
(5.14)

is the potential w, translated by Xψ(t).
The claim of the theorem therefore follows from the global well-posedness of (5.13)

established in Theorem 5.5, below. �
Remark 5.2. The physical interpretation of (5.13) is as follows. The field ψ describes a 
self-interacting boson gas in mean field description which interacts with a point-like tracer 
particle traveling along a trajectory Xψ(t). The tracer particle creates an interaction 
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potential w which moves along Xψ(t), here denoted by wψ. The momentum of the tracer 
particle, ∂tXψ(t) = k − (ψ, i∇ψ), together with the expected momentum of the boson 
field, (ψ, i∇ψ), adds up to the conserved total momentum k. We note the close similarity 
to the equations studied in [22] for a classical particle coupled to a boson gas.

Remark 5.3. The Ehrenfest dynamics of Xψ(t) is given by

∂2
tXψ(t) =

(
ψ , ∇(wψ + λv ∗ |ψ|2)ψ

)
, (5.15)

as stated in (1.42). The term depending on v is zero because, first of all,

(
ψ , ∇(v ∗ |ψ|2)ψ

)

=
∫

dx |ψ|2∇(v ∗ |ψ|2)

=
∫

dx |ψ|2(v ∗ ∇|ψ|2) . (5.16)

On the other hand, using integration by parts,

∫
dx |ψ|2 ∇(v ∗ |ψ|2)

= −
∫

dx (∇|ψ|2) (v ∗ |ψ|2)

= −
∫

dx (v ∗ ∇|ψ|2) |ψ|2 (5.17)

where the last line holds because v is a radial function, and thus even. Comparing (5.16)
and (5.17), we find that 

∫
dx |ψ|2∇(v ∗ |ψ|2) = − 

∫
dx |ψ|2∇(v ∗ |ψ|2) = 0. Therefore,

∂2
tXψ(t) =

(
ψ , ∇wψψ

)

=
∫

dx (∇w)(x−Xψ(t)) |ψ(x)|2 , (5.18)

as claimed.

A key advantage of (5.13) over (5.1) is that the Cauchy problem can largely be con-
trolled with known dispersive tools for the analysis of the Hartree equation. A main 
difficulty is introduced by the dependence of the potential wψ on ψ. Another complica-
tion arises from the fact that the energy is not conserved.

We construct local and global in time dispersive solutions under the assumption that 
‖w‖W 2,3/2 < ∞, and that ‖w‖W 1,3/2 , ‖λv‖W 1,3/2 are sufficiently small. These conditions 
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ensure, in accordance with the Birman–Schwinger principle, that neither w nor λv cre-
ate bound states. We require that w has one more derivative than v, to control the 
dependence of wψ on ψ. First, we prove local well-posedness.

Theorem 5.4 (Local well-posedness). Let ψ0 ∈ H1(R3) with ‖ψ0‖L2
x

= 1. Assume that 
‖w‖

W
2, 32
x

< ∞, and that

‖w‖
W

1, 32
x

+ 3‖λv‖
W

1, 32
x

< 1 . (5.19)

Then, there exists a unique mild solution

ψ ∈ L∞
t H1

x([0, T ] × R
3) ∩ L

10
3
t W

1, 103
x ([0, T ] × R

3) (5.20)

to (5.11) with initial condition ψ(t = 0) = ψ0, provided that T > 0 is sufficiently small.

Proof. We consider the map

M : ψ �→ eitΔψ0 + i

t∫
0

ds ei(t−s)Δ
(
(wψψ)(s) + λ((v ∗ |ψ|2)ψ)(s)

)
, (5.21)

where we may assume that ‖ψ‖L2
x

= 1. Clearly, using the Strichartz and Hölder inequal-
ities as in

‖
t∫

0

ds ei(t−s)Δ(wψψ)(s)‖Lq
tL

r
x
≤ ‖wψψ‖Lq̃′

t Lr̃′
x

≤ ‖wψψ‖
L

10
3

t L
30
29
x

≤ ‖wψ‖
L∞

t L
3
2
x

‖ψ‖
L

10
3

t,x

, (5.22)

with (q, r) and (q̃, ̃r) denoting arbitrary Strichartz admissible pairs, we find that, under 
inclusion of a derivative,

‖M[ψ]‖Lq
tW

1,r
x

(5.23)

≤ ‖ψ0‖H1 + ‖wψ‖
L∞

t W 1, 32
‖ψ‖

L
10
3

t W
1, 103
x

+ ‖λv ∗ |ψ|2‖
L∞

t W 1, 32
‖ψ‖

L
10
3

t W
1, 103
x

.

We use Young’s inequality for convolutions in

‖λv ∗ |ψ|2‖
L∞

t W 1, 32
≤ ‖λv‖

W 1, 32
‖ψ‖2

L2 , (5.24)

and observe that

‖wψ‖
L∞W 1, 32

≤ sup ‖w( • −X)‖
W 1, 32

= ‖w‖
W 1, 32

. (5.25)

t X
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Therefore,

‖M[ψ]‖Lq
tW

1,r
x

≤ ‖ψ0‖H1 +
(
‖w‖

W 1, 32
+ ‖λv‖

W 1, 32

)
‖ψ‖

L
10
3

t W
1, 103
x

, (5.26)

for any Strichartz admissible pair (q, r). Consequently, writing I := [0, T ], and defining 
the Banach space

Y (I) := L∞
t H1

x(I × R
3) ∩ L

10
3
t W

1, 103
x (I × R

3) (5.27)

endowed with the norm

‖f‖Y (I) := ‖f‖L∞
t H1

x(I×R3) + ‖f‖
L

10
3

t W
1, 103
x (I×R3)

, (5.28)

we find

‖M[ψ]‖Y (I) ≤ 2‖ψ0‖H1
x

+
(
‖w‖

W
1, 32
x

+ ‖λv‖
W

1, 32
x

)
‖ψ‖Y (I) . (5.29)

Assuming that ‖w‖
W

1, 32
x

+ ‖λv‖
W

1, 32
x

< 1 − δ, for some δ ∈ (0, 1), and defining R :=
2δ−1‖ψ0‖H1 , we find that

‖M[ψ]‖Y (I) ≤ δR + (1 − δ)‖ψ‖Y (I) . (5.30)

Hence, the image of the ball BR(0) ⊂ Y under the map M is contained in itself.
Next, we prove the contractivity of M. Given ψ1, ψ2 ∈ BR(0) ⊂ Y , we have

‖M[ψ1] −M[ψ2]‖Y (I) ≤ ‖wψ1 − wψ2‖
L∞

t W
1, 32
x

‖ψ1‖Y (I)

+ ‖wψ2‖
L∞

t W
1, 32
x

‖ψ1 − ψ2‖Y (I)

+ ‖λv ∗ (|ψ1|2 − |ψ2|2)‖
L∞

t W
1, 32
x

‖ψ1‖Y (I)

+ ‖λv ∗ |ψ2|2‖
L∞

t W
1, 32
x

‖ψ1 − ψ2‖Y (I) . (5.31)

To control the first term on the r.h.s. of (5.31), we have

‖wψ1 − wψ2‖
L∞

t W
1, 32
x

≤ ‖w‖
W

2, 32
x

sup
t

|Xψ1(t) −Xψ2(t)| , (5.32)

where

|Xψ1(t) −Xψ2(t)| ≤
t∫

0

ds |(ψ1, i∇ψ1) − (ψ2, i∇ψ2)|

≤
t∫
ds |(i∇(ψ1 − ψ2), ψ1) + (ψ2, i∇(ψ1 − ψ2))|
0
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≤ t ‖ψ1 − ψ2‖L∞
t H1

x

(
‖ψ1‖L∞

t L2
x

+ ‖ψ2‖L∞
t L2

x

)
≤ 2T ‖ψ1 − ψ2‖Y (I) (5.33)

for t ∈ I = [0, T ].
To control the term on the third line on the r.h.s. of (5.31), we use

‖λv ∗ (|ψ1|2 − |ψ2|2)‖
L∞

t W
1, 32
x

≤ ‖λv‖
W

1, 32
x

‖|ψ1|2 − |ψ2|2‖L∞
t L1

x

≤ ‖λv‖
W

1, 32
x

‖|ψ1| + |ψ2|‖L∞
t L2

x
‖ψ1 − ψ2‖L∞

t L2
x

≤ 2‖λv‖
W

1, 32
x

‖ψ1 − ψ2‖Y (I) (5.34)

where ‖|ψ1| + |ψ2|‖L2
x
≤ ‖ψ1‖L2

x
+ ‖ψ2‖L2

x
= 2.

Summarizing, we have

‖M[ψ1] −M[ψ2]‖Y (I)

≤ 2T ‖w‖
W

2, 32
x

‖ψ1‖Y (I)‖ψ1 − ψ2‖Y (I)

+ ‖w‖
W

1, 32
x

‖ψ1 − ψ2‖Y (I)

+ 2‖λv‖
W

1, 32
x

‖ψ1 − ψ2‖Y (I)

+ ‖λv‖
W

1, 32
x

‖ψ1 − ψ2‖Y (I)

≤
(
2TR‖w‖

W
2, 32
x

+ ‖w‖
W

1, 32
x

+ 3‖λv‖
W

1, 32
x

)
‖ψ1 − ψ2‖Y (I) . (5.35)

Therefore, M is contractive on the ball BR(0) ⊂ Y if

2TR‖w‖
W

2, 32
x

+ ‖w‖
W

1, 32
x

+ 3‖λv‖
W

1, 32
x

< 1 . (5.36)

To this end, we require that

‖w‖
W

1, 32
x

+ 3‖λv‖
W

1, 32
x

< 1 , (5.37)

and that T > 0 is sufficiently small (depending on R). �
We remark that the only place in the proof that requires a finite time T > 0 is 

the control of wψ. The Strichartz estimates employed here remain valid with R instead 
of I. We may therefore patch together local in time solutions using a global Strichartz 
inequality.

Theorem 5.5 (Global well-posedness). Let ψ0 ∈ H1(R3) with ‖ψ0‖L2
x

= 1. Assume that 
‖w‖ 2, 3 < ∞, and that
W 2
x
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‖w‖
W

1, 32
x

+ 3‖λv‖
W

1, 32
x

< 1 . (5.38)

Then, there exists a unique global mild solution ψ ∈ Y (R) to (5.11) with initial condition 
ψ(t = 0) = ψ0. In particular, it satisfies

‖ψ‖Y (R) ≤ 2
(
1 − ‖w‖

W
1, 32
x

− ‖λv‖
W

1, 32
x

)−1
‖ψ0‖H1

x
. (5.39)

Moreover,

|∂tXψ(t)| ≤ |k| +
(
1 − ‖w‖

W
1, 32
x

− ‖λv‖
W

1, 32
x

)−1
‖ψ0‖H1

x
, t ∈ R ; (5.40)

that is, the momentum of the tracer particle is uniformly bounded in time.

Proof. The Strichartz estimate obtained in (5.26) holds globally in time. With (q, r) =
(10

3 , 103 ), it implies

‖ψ‖
L

10
3

t W
1, 103
x (R×R3)

≤ ‖ψ0‖H1 +
(
‖w‖

W 1, 32
+ ‖λv‖

W 1, 32

)
‖ψ‖

L
10
3

t W
1, 103
x (R×R3)

, (5.41)

respectively,

‖ψ‖
L

10
3

t W
1, 103
x (R×R3)

≤
(
1 − ‖w‖

W
1, 32
x

− ‖λv‖
W

1, 32
x

)−1
‖ψ0‖H1

x
. (5.42)

We use this a priori bound to control the L∞H1
x norm of ψ.

Let Ij := [(j − 1)T, jT ]. The estimate (5.26) with (q, r) = (∞, 2), combined with 
(5.42), implies that

‖ψ‖L∞
t H1

x(I1×R3) ≤ 2
(
1 − ‖w‖

W
1, 32
x

− ‖λv‖
W

1, 32
x

)−1
‖ψ0‖H1

x
, (5.43)

and hence,

‖ψ(t = 2T )‖H1
x(I1×R3) ≤

(
1 − ‖w‖

W
1, 32
x

− ‖λv‖
W

1, 32
x

)−1
‖ψ0‖H1

x
. (5.44)

Applying Theorem 5.4 for I2 with initial data ψ(t = 2T ) yields local well-posedness on 
Y (I2) with the same upper bound on ‖ψ(t = 3T )‖H1

x(I1×R3) as in (5.44).
Iterating this argument for Ij , j ∈ Z, we find that

‖ψ‖L∞
t H1

x(R×R3) ≤
(
1 − ‖w‖

W
1, 32
x

− ‖λv‖
W

1, 32
x

)−1
‖ψ0‖H1

x
, (5.45)

globally in time.
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Therefore, we obtain

‖ψ‖Y (R) = ‖ψ‖L∞
t H1

x(R×R3) + ‖ψ‖
L

10
3

t W
1, 103
x (R×R3)

≤ 2
(
1 − ‖w‖

W
1, 32
x

− ‖λv‖
W

1, 32
x

)−1
‖ψ0‖H1

x
, (5.46)

as claimed in (5.39).
Finally, we note that the bound (5.45) implies that

|∂tXψ(t)| = |k − (ψ, i∇ψ)(t)|
≤ |k| + ‖ψ‖L∞

t H1
x(R×R3)

≤ |k| +
(
1 − ‖w‖

W
1, 32
x

− ‖λv‖
W

1, 32
x

)−1
‖ψ0‖H1

x
, t ∈ R . (5.47)

Thus, the momentum of the tracer particle is uniformly bounded in time. �
6. Proof of convergence to the mean field dynamics

6.1. Determination of Lφt

N (k)

In the following Lemma, we determine the explicit form of the operator (3.15). We 
will use the notation φt(x) ≡ φ(t, x), similarly as in Section 3.

Lemma 6.1. The selfadjoint operator Lφt

N (k) in (3.15) is given by

Lφt

N (k) = 1
2
√
N

(
Pb ·

(
a+(i∇φt) + a(i∇φt)

)
+

(
a+(i∇φt) + a(i∇φt)

)
· Pb

)

+ 1
2N P 2

b

+ λ√
N

∫
v(x− y)a+

x

(
φt(y)ay + φt(y)a+

y

)
ax dxdy

+ λ

2N

∫
v(x− y) a+

x a
+
y ayax dxdy . (6.1)

Proof. We recall from (3.15) that

Lφt

N (k) = W∗[
√
Nφt]HN (k)W[

√
Nφt] − ∂tS(t, 0)

−W∗[
√
Nφt]Hφt

Har(k)W[
√
Nφt] −Hφt

cor(k) . (6.2)

The explicit expressions for the terms on the right hand side are given by

W∗[
√
Nφt]HN (k)W[

√
Nφt]

= N (
k2 − (φt, i∇φt)2

)
+ Nλ

∫
|φt(x)|2v(x− y)|φt(y)|2dxdy
2 2
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+ W∗[
√
Nφt]

(
−
(
k − (φt, i∇φt)

)
· Pb + T + W1(0)

)
W[

√
Nφt]

+ 1
2

(
a+(i∇φt) + a(i∇φt)

)2

+ 1
2
√
N

(
Pb ·

(
a+(i∇φt) + a(i∇φt)

)
+
(
a+(i∇φt) + a(i∇φt)

)
· Pb

)

+ 1
2N P 2

b

+ λ
√
N

∫
v(x− y)|φt(x)|2

(
a+
y φt(y) + φt(y)ay

)
dxdy

+ λ

∫
v(x− y)|φt(x)|2a+

y ay dxdy

+ λ

∫
v(x− y)φt(x)φt(y) a+

x ay dxdy

+ λ

2

∫
v(x− y)

(
φt(x)φt(y)a+

x a
+
y + φt(x)φt(y)ayax

)
dxdy

+ λ√
N

∫
v(x− y)a+

x

(
φt(y)ay + φt(y)a+

y

)
ax dxdy

+ λ

2N

∫
v(x− y)

(
a+
x a

+
y ayax

)
dxdy , (6.3)

and

W∗[
√
Nφt] Hφt

Har(k)W[
√
Nφt]

= W∗[
√
Nφt]

(
−

(
k − (φt, i∇φt)

)
· Pb + T + W1(0)

)
W[

√
Nφt]

+ Nλ

∫
|φt(x)|2v(x− y)|φt(y)|2dxdy

+ λ
√
N

∫
v(x− y)|φt(x)|2

(
a+
y φt(y) + φt(y)ay

)
dxdy

+ λ

∫
v(x− y)|φt(x)|2 a+

y ay dxdy , (6.4)

and

Hφt
cor = 1

2

(
a+(i∇φt) + a(i∇φt)

)2

+ λ

∫
v(x− y)φt(x)φt(y) a+

x ay dxdy (6.5)

+ λ
∫

v(x− y)
(
φt(x)φt(y)a+

x a
+
y + φt(x)φt(y)ayax

)
dxdy ,
2
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and

∂tS(t, 0) = N
(
− 1

2k
2 + 1

2(φt, i∇φt)2

+ λ

2

∫
|φt(x)|2v(x− y)|φt(y)|2dxdy

)
. (6.6)

We thus obtain

Lφt

N (k) = 1
2
√
N

(
Pb ·

(
a+(i∇φt) + a(i∇φt)

)
+

(
a+(i∇φt) + a(i∇φt)

)
· Pb

)

+ 1
2N P 2

b

+ λ√
N

∫
v(x− y)a+

x

(
φt(y)ay + φt(y)a+

y

)
ax dxdy

+ λ

2N

∫
v(x− y) a+

x a
+
y ayax dxdy , (6.7)

as claimed in (6.1).
We note that in order to obtain (6.3), we used the following. Introducing the abbre-

viated notations

W := W[
√
Nφt] , V := a+(i∇φt) + a(i∇φt) , D := (φ, i∇φ) , (6.8)

it is clear that

W∗PbW = Pb +
√
NV + ND . (6.9)

Therefore,

1
2N (Nk −W∗PbW)2

= 1
2N (N(k −D) −W∗(Pb −ND)W)2

= N

2 (k −D)2 − (k −D)W∗(Pb −ND)W + 1
2N (Pb +

√
NV )2 (6.10)

= N

2 (k2 −D2) − (k −D)W∗PbW + 1
2N P 2

b + 1
2
√
N

(PbV + V Pb) + 1
2V

2 .

The terms on the last line are contained in the first five lines on the rhs of (6.3). �
6.2. Estimates on M(t)

In this subsection, we prove the estimate (3.20).
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Lemma 6.2. The following estimate holds,

∥∥∥Lφt

N (k)V(t, 0) Ω
∥∥∥
F
≤ C0√

N
eC1t , (6.11)

for constants C0, C1 depending on ‖v‖C2 and ‖φt‖L∞
t H3

x([0,T )×R3).

Proof. Let

Qb :=
∫

dk 〈k〉 a+
k ak (6.12)

where 〈k〉2 := 1 + k2. Then, for any Ψ ∈ F , and α ≥ 1,

‖|Pb|α Ψ‖ , ‖Nα
b Ψ‖ ≤ ‖Qα

b Ψ‖ . (6.13)

Thus, we obtain the following bounds on the individual terms in (6.7),

∥∥∥ 1
2
√
N

(
Pb ·

(
a+(i∇φt) + a(i∇φt)

)
+
(
a+(i∇φt) + a(i∇φt)

)
· Pb

)
Vt Ω

∥∥∥
≤ 4‖∇φt‖L2√

N
‖Q3/2

b Vt Ω ‖ (6.14)
∥∥∥ 1

2N P 2
b Vt Ω

∥∥∥ ≤ 1
2N ‖Q2

b Vt Ω ‖ (6.15)∥∥∥ λ√
N

(∫
v(x− y)a+

x

(
φt(y)ay + φt(y)a+

y

)
ax dxdy

)
Vt Ω

∥∥∥
≤ λ‖v‖L∞‖φt‖L2√

N
‖N3/2

b Vt Ω ‖ (6.16)

∥∥∥ λ

2N

(∫
v(x− y) a+

x a
+
y ayax dxdy

)
Vt Ω

∥∥∥ ≤ λ‖v‖L∞

2N ‖N2
b Vt Ω ‖ (6.17)

Therefore, we obtain that

∥∥∥Lφt

N (k)V(t, 0) Ω
∥∥∥
F
≤

( 4‖∇φt‖L2√
N

+ 1
2N

)
‖Q2

bVtΩ‖ + 2λ‖v‖L∞√
N

‖N2
b VtΩ‖

≤ C0√
N

eC1t , (6.18)

using Lemma 6.3 and Lemma 6.4. �
Lemma 6.3. The following estimate holds,∥∥∥Nα

b V(t, 0) Ω
∥∥∥
F
≤ eC1t , α = 1, 2 , (6.19)

for a constant C1 depending only on ‖φ0‖H1 .
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Proof. We split Hφt
cor (see (6.5) for the definition) into

Hφt
cor = Hφt

cor,d + Hφt

cor,od (6.20)

where the diagonal part Hφt

cor,d commutes with the number operator,

[Hφt

cor,d, Nb] = 0 , (6.21)

and where

Hφt

cor,od = 1
2

(
a+(i∇φt)a+(i∇φt) + a(i∇φt)a(i∇φt)

)
(6.22)

+ λ

2

∫
v(x− y)

(
φt(x)φt(y)a+

x a
+
y + φt(x)φt(y)ayax

)
dxdy

=: Hφt,++
cor,od + Hφt,−−

cor,od (6.23)

is the off-diagonal part.
Defining

Nb(t) := V∗
t NbVt , (6.24)

where for brevity, Vt := V(t, 0), we have, for α = 1, 2,

i∂tN
α
b (t) = V∗

t [Nα
b ,Hφt

cor,od]Vt

= αV∗
t (Hφt,++

cor,od + (−1)αHφt,−−
cor,od )Vt , (6.25)

due to (6.21).
This implies that

‖Nα
b VtΩ‖ = ‖Nα

b (t)Ω‖

≤ ‖Nα
b (0)Ω‖ +

t∫
0

ds ‖ ∂sNb(s)Ω ‖

≤ α

t∫
0

ds
∥∥∥V∗

s (Hφs,++
cor,od + (−1)αHφs,−−

cor,od )VsΩ
∥∥∥ . (6.26)

Writing

Kt(x, x′) := 1
2(i∇φt)(x)(i∇φt)(x′) + λ

2 v(x− y)φt(x)φt(y) , (6.27)

we have

Hφt,++
cor,od =

∫
dxdx′ Kt(x, x′) a+

x a
+
x′ , Hφt,−−

cor,od =
∫

dxdx′ Kt(x, x′) axax′ , (6.28)
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and we will next prove that∥∥∥V∗
s Hφs,−−

cor,od VsΩ
∥∥∥ ≤ ‖Ks ‖L2

x,x′ ‖Nb(s) Ω ‖ (6.29)

and ∥∥∥V∗
s Hφs,++

cor,od VsΩ
∥∥∥ ≤ 2 ‖Ks ‖L2

x,x′‖ (1 + Nb(s)) Ω ‖

≤ 2 ‖Ks ‖L2
x,x′ ( 1 + ‖Nb(s) Ω ‖ ) . (6.30)

To prove (6.30), we note that, using Ks(x, x′) = Ks(x′, x),

∥∥∥V∗
s Hφs,++

cor,od VsΩ
∥∥∥2

=
〈

Ω,V∗
s Hφs,−−

cor,od Hφs,++
cor,od VsΩ

〉
=

∫
dxdx′dydy′ Ks(x, x′)Ks(y, y′)

〈
Ω , V∗

s

(
2δ(x− y)δ(x′ − y′)

+4δ(x′ − y′)a+
y ax + a+

x a
+
y ay′ax′

)
Vs Ω

〉
=: (I) + (II) + (III) . (6.31)

We have

(I) = 2 ‖Ks‖2
L2

x,x′
(6.32)

(II) = 4
∫

dx
∥∥∥∫ dx′Ks(x, x′)ax′ Vs Ω

∥∥∥2

≤ 4
(∫

dx ‖K(x, x′)‖2
L2

x′

)
‖ ax′ Vs Ω ‖2

L2
x′

= 4 ‖Ks‖2
L2

x,x′
‖N

1
2
b (s) Ω ‖2 (6.33)

(III) =
∣∣∣ ∫ dxdx′dydy′ Ks(x, x′)Ks(y, y′)

〈
ayax Vs Ω , ay′ax′ Vs Ω

〉∣∣∣
≤

(∫
dxdx′dydy′ |Ks(x, x′)|2 |Ks(y, y′)|2

) 1
2

(∫
dxdx′dydy′

∥∥∥ayax Vs Ω
∥∥∥2∥∥∥ay′ax′ Vs Ω

∥∥∥2) 1
2

=
( ∫

dxdx′ |Ks(x, x′)|2
)

(6.34)∫
dxdx′

〈
Vs Ω ,

(
a+
x axa

+
y ay − δ(x− y)a+

x ay

)
Vs Ω

〉
= ‖Ks‖2

L2

(
‖Nb(s) Ω ‖2 − ‖N

1
2
b (s) Ω ‖2

)
(6.35)
x,x′
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so that, using ‖N
1
2
b (s)Ω‖2 ≤ ‖Nb(s)Ω‖ from Cauchy–Schwarz,

∥∥∥V∗
s Hφs,++

cor,od VsΩ
∥∥∥2

≤ 2 ‖Ks‖2
L2

x,x′

(
‖Nb(s)Ω ‖ + 1

)2
. (6.36)

This implies (6.30). Similarly, one arrives at (6.29).
Therefore, (6.26) implies that

1 + ‖Nα
b VtΩ‖ = 1 + ‖Nα

b (t)Ω‖

≤ 1 + ‖Nα
b (0)Ω‖ +

t∫
0

ds ‖ ∂sNb(s)Ω ‖

≤ 1 + 2α
t∫

0

ds ‖Ks‖2
L2

x,x′

(
1 + ‖Nb(s) Ω ‖

)
, (6.37)

and by the Gronwall inequality,

1 + ‖Nα
b VtΩ‖ ≤ exp

(
4

t∫
0

ds ‖Ks‖2
L2

x,x′

)
, (6.38)

for α = 1, 2.
Finally,

‖Ks‖L∞
t L2

x,x′ ([0,T )×R3×R3)

≤ 1
2‖∇φs‖2

L2
x

+ λ

2

(∫
|φs(x)|2 |v(x− y)|2 |φs(y)|2dx dy

) 1
2

≤ (1 + λ‖v‖L∞
x

) ‖φt‖2
L∞

x H1
x([0,T )×R3) . (6.39)

This implies the claim of the lemma. �
Lemma 6.4. Let

Qb =
∫

dk 〈k〉 a+
k ak (6.40)

where 〈k〉2 = 1 + k2. Then, the following estimate holds,

∥∥∥Qα
b V(t, 0) Ω

∥∥∥
F

≤ eC1t , α = 1, 2 , (6.41)

for a constant C1 depending only on ‖v‖C2 and ‖φ‖L∞
t H3([0,T )×R3).
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Proof. We define

Qb(t) := V∗
t QbVt , (6.42)

where Vt := V(t, 0) as before. For α = 1, 2, we find

i∂tQ
α
b (t) = V∗

t [Qα
b ,Hφt

cor,d + Hφt

cor,od]Vt . (6.43)

Similarly to (6.27) and (6.28), we define

Jt(x, x′) := (i∇φt)(x)(i∇φt)(x′) + λv(x− y)φt(x)φt(y) , (6.44)

so that

Hφt

cor,d = 1
2‖∇φ‖2

L2
x

+
∫

dxdx′ Jt(x, x′) a+
x ax′ . (6.45)

Since

[Qb,Hφt

cor,d + Hφt

cor,od] =
∫

dxdx′a∗xax′(〈∇x〉 − 〈∇x′〉)Jt(x, x′) (6.46)

+
∫

dxdx′
{
a∗xa

∗
x′(〈∇x〉 + 〈∇x′〉)Kt(x, x′) − axax′(∇x + ∇x′)Kt(x, x′)

}

Then, the estimate

∂t‖Qb(t)Ω‖

≤ C
(
‖(〈∇x〉 − 〈∇x′〉)Jt‖L2

x,x′

+ ‖(〈∇x〉 + 〈∇x′〉)Kt‖L2
x,x′

)
(‖Nb(t)Ω‖ + 1) (6.47)

≤ C
(
‖(〈∇x〉 − 〈∇x′〉)Jt‖L2

x,x′ + ‖(〈∇x〉 + 〈∇x′〉)Kt‖L2
x,x′

)
(‖Qb(t)Ω‖ + 1)

follows from the same arguments as the proof of (6.29), (6.30).
For α = 2, we have

∂t‖Q2
bVtΩ‖ ≤ ‖[Q2

b ,Hφt

cor,d + Hφt

cor,od]VtΩ‖ . (6.48)

Taking the commutator with an operator acts as a derivation, thus

[Q2
b ,Hφt

cor,d + Hφt

cor,od]

= Qb [Qb , Hφt

cor,d + Hφt

cor,od] + [Qb , Hφt

cor,d + Hφt

cor,od]Qb

= 2[Qb , Hφt

cor,d + Hφt

cor,od]Qb + [Qb , [Qb , Hφt

cor,d + Hφt

cor,od]] (6.49)
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where, similarly to (6.46),

[Qb , [Qb,Hφt

cor,d + Hφt

cor,od]]

=
∫

dxdx′a∗xax′(〈∇x〉 − 〈∇x′〉)2Jt(x, x′) (6.50)

+
∫

dxdx′
{
a∗xa

∗
x′(〈∇x〉 + 〈∇x′〉)2Kt(x, x′)

+ axax′(〈∇x〉 + 〈∇x′〉)2Kt(x, x′)
}
.

In analogy to (6.47), we therefore find that

∂t‖Q2
bVtΩ‖ ≤ A1(t)(‖Q2

bVtΩ‖ + 1) + A2(t)(‖QbVtΩ‖ + 1) (6.51)

where

A1(t) := C
(
‖(〈∇x〉 − 〈∇x′〉)Jt‖L2

x,x′ + ‖(〈∇x〉 + 〈∇x′〉)Kt‖L2
x,x′

)
and

A2(t) := C
(
‖(〈∇x〉 − 〈∇x′〉)2Jt‖L2

x,x′ + ‖(〈∇x〉 + 〈∇x′〉)2Kt‖L2
x,x′

)
.

Since ‖QbVtΩ‖ ≤ ‖Q2
bVtΩ‖, we conclude that

∂t‖Q2
bVtΩ‖ ≤ (A1(t) + A2(t))(‖Q2

bVtΩ‖ + 1) (6.52)

and hence,

‖Q2
bVtΩ‖ ≤ exp

( t∫
0

ds(A1(s) + A2(s))
)

≤ exp
(
t ‖A1 + A2‖L∞

t ([0,T ))

)
, (6.53)

using that ‖Q2
bV0Ω‖ = 0, due to V0 = 1.

Finally, we have, for α = 1, 2,

‖(〈∇x〉 − 〈∇x′〉)αJt‖L∞
t L2

x,x′ ([0,T )×R3×R3)

+ ‖(〈∇x〉 + 〈∇x′〉)αKt‖L∞
t L2

x,x′ ([0,T )×R3×R3)

≤ (1 + λ‖v‖Cα(R3))‖φt‖2
L∞

t H1+α
x ([0,T )×R3) , (6.54)

as can be easily checked. �
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