
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 35, NO. 1, JANUARY 2020 825

A Computational Attractive Interval Power Flow Approach With Correlated
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Abstract—This paper presents a new computational attractive
interval power flow (PF) approach with correlated uncertain power
injections while maintaining high estimation accuracy. The key idea
is to integrate the ellipsoid convex model with the evidence theory.
This allows us to effectively account for uncertain power injection
correlations and eliminate irrelevant focal elements, yielding signif-
icantly improved computational efficiency. Extensive comparisons
with other approaches demonstrate its effectiveness under various
conditions.

Index Terms—Power flow, uncertainty, correlations, non-
probabilistic convex model, evidence theory.

I. INTRODUCTION

DUE to the uncertainties of distributed energy resources and
prosumers, the traditional deterministic power flow may

yield incorrect contingency analysis results. The uncertainties of
these sources are typically complex and the accurate knowledge
of its associated probability distributions are challenging, thus,
the probabilistic power flow may not be appropriate to quantify
the induced uncertainties. Hence, the interval power flow has
been proposed. This is achieved by optimization algorithm [1],
[2]–based and analytical-based methods, via affine arithmetic
and moment estimate method, [3], [4]. For example, the evidence
theory is used with the extended affine arithmetic to calculate
the interval power flow [5]. The structural dependences among
power injections are taken into consideration as well. In this
paper, we propose to integrate the ellipsoid convex model with
the evidence theory for interval power flow considering power
injection correlations. It achieves much higher computational
efficiency and yields better results in dealing with correlated
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power injections than other alternatives. It should be noted
that the traditional deterministic PF has been widely used for
contingency analysis but the uncertainties of power injections
are not considered. The developed method is able to provide
lower and upper bounds of the analysis results. Thus, the risk
of the contingency can be effectively quantified and appropri-
ate control strategies can be planned, yielding greater system
reliability and security.

II. PROPOSED METHOD

A. Introduction of Evidence Theory

Evidence theory is a general framework to deal with in-
terval uncertainty, with connections to probability, possibility
and imprecise probability theories [6]. It is represented by a
Dempster-Shafer structure (DS) with a set of closed intervals
(named focal elements) and basic probability assignment (BPA)
shown as follows:

m : 2Ω → [0, 1] , m (Ø) = 0 ,
∑

A⊆Ω

m (A) = 1 (1)

where Ω is the universe; 2Ω is the power set of all subsets of Ω;
every set with a non-zero mass in 2Ω is called a focal element.
Evidence theory bounds the probability of any set (denoted by
A) by intervals. Belief Bel(A) is the lower bound and plausibility
Pl(A) represents the upper bound, yielding

Bel (A) ≤ P (A) ≤ Pl (A) (2)

Pl (A) =
∑

B∩A �=Ø

m (B) Bel (A) =
∑

B⊆A

m (B) (3)

B. Joint DS of Correlated Power Injections

To consider the correlations among power injections, the joint
DS is constructed based on the multidimensional ellipsoidal con-
vex model [7]. The interval for each uncertain power injection
Xi, can be expressed as:

XI
i =

[
XL

i XU
i

]
=

{
Xi

∣∣(X−X0
)T

C−1
(
X−X0

) ≤ 1
}

i = 1, 2, . . . n (4)

where X = [X1, X2, . . . Xn]
T ; X0 = [X0

1 , X
0
2 , . . . X

0
n]

T is the
midpoint vector and C is the covariance matrix. The midpoint
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and covariance of Xi and Xj can be calculated via

X0
i =

XL
i +XU

i

2
Cij = ρij

√
DiDj i, j = 1, 2, . . . n (5)

where Di and ρij denote the variance of Xi and the correlation
coefficient of variables Xi and Xj , respectively. Specifically,

Di =

(
XU

i −XL
i

2

)2

(6)

To obtain the joint DS of correlated power injections via
ellipsoidal convex model, one must have the DS of each injection
(called marginal DS). This can be achieved via the following
Cartesian product D:

D = A1 ×A2 × · · ·An

=

{
di1,i2,...,in =

[
Xi1

1 , Xi2
2 , . . . Xin

n

]
,

Xi1
1 ∈ A1, X

i2
2 ∈ A2, . . . , X

in
n ∈ An

}
(7)

where Ai and D represent the corresponding power set of evi-
dence variable Xi and variable vector X = [X1, X2, . . . Xn]

T ;
Xi1

1 , Xi2
2 , . . . Xin

n and di1,i2,...,indenote the focal elements of
A1, A2, . . . An and D, respectively. Without correlations, the
initial joint BPA di1,i2,...,in is

BPA (di1,i2,...,in) =

n∏

i=1

BPA
(
Xi1

1

)
(8)

Thus, the initial joint DS of vector X = [X1, X2, . . . , Xn]
T

can be constructed by (7) and (8). Based on this, the procedure
of calculating the joint DS of correlated power injection X, is
developed as follows:

1) Construct the ellipsoidal equation according to (4)–(6):

G (X) =
(
X−X0

)T
C−1

(
X−X0

) ≤ 1 (9)

2) Through (6), the n-dimensional cube region that is formed
by the intervals of injections can be transferred to the
n-dimensional ellipsoid region Ω with correlations con-
sidered. We then substitute the vertex Vi1,i2,...,in of the
cube Ai1,i2,...,in formed by the focal element di1,i2,...,in
into ellipsoidal equation (9). If the result is less than 1, it
means that the vertex is inside the ellipsoid and vice visa,
yielding

{
G (Vi1,i2,...,in) ≤ 1 inside of the ellipsoid

G (Vi1,i2,...,in) > 1 outside of the ellipsoid
(10)

3) Let BP = 0, if all the vertexes of the cube Ai1,i2,...,in

are outside the ellipsoid Ai1,i2,...,in ∩ Ω = Ø; then let
BP = BP + BPA(di1,i2,...,in) and reassign the BPA of
the focal element di1,i2,...,in , and let BPA(di1,i2,...,in)
= 0.

4) Obtain the joint BPA of other focal elements, which should
satisfy Ai1,i2,...,in ∩ Ω �= Ø and

BPA (di1,i2,...,in) =
BPA (di1,i2,...,in)

1−BP
(11)

where BP is the sum of BPA of all the focal elements
di1,i2,...,in outside of the ellipsoid.

Fig. 1. The flowchart of the proposed approach.

TABLE I
CORRELATION COEFFICIENT MATRIX

C. DS and P-Box of Power Flow Results

The extensional Affine Arithmetic in quadratic forms can be
utilized to obtain the DS of power flow outputs [5]. According
to (1)–(3), if one has the DS of power flow output state variable
γ, its P-box (description about the uncertainty) can be given as:

Bel (γ < x) ≤ P (γ ≤ x) ≤ Pl (γ < x) (12)

The flowchart of the proposed approach is shown in Fig. 1.
Remark: There have been in the last years a few works in

robust optimization, particularly OPF and SCOPF [8], which
compute optimal control actions to immunize operation con-
straints. Interval PF is usually used for contingency analysis
while optimal OPF and SCOPF are for economic analysis con-
sidering the security constraints. Although their objectives and
time-scales are different, the proposed method can be integrated
with OPF to develop robust OPF method taking into account
uncertain and correlated power injections. We will report these
results in our future work.

III. CASE STUDY

A. Results on IEEE 30-Bus System

The performance of the proposed method (PM) is evaluated
on the IEEE 30-bus test system with uncertain power injections.
The method proposed in [5], called traditional method (TM), is
used for comparison. Monte Carlo (MC) simulation results with
1000 samples are treated as the benchmark.

It is assumed three generators at buses 13, 23 and 27 are with
uncertain power injections [38 66.5], [47.5 74], and [46 70]
MW, respectively. Their correlation coefficient (CC) matrix is
displayed in Table I. Without loss of generality, the uncertainties
are assumed to be Gaussian distributed, where the mean values
are the midpoints of those intervals and their variances are
determined by the 3σ principle. The intervals of those variables
are discretized into n uniform subintervals. The CDF obtained
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Fig. 2. Effective focal elements of joint DS.

TABLE II
COMPUTING TIME WITH DIFFERENT DISCRETIZATION NUMBER

TABLE III
COMPUTING TIME EITH DIFFERENT CCs (n = 6)

from Monte Carlo simulation is regarded as the true CDF of
the interested power flow outputs. Furthermore, the impacts of
different CCs on the uncertain power flow analysis are investi-
gated, including 0.9, 0.8, 0.6 and 0. Only the voltage magnitude
(Vol. Mag) of bus 12 is shown due to the space limitation. The
results are presented in Fig. 2 to Fig. 4, Table II and Table III.
It can be found from Fig. 2 that the accuracy of joint DS for the
power injections is improved with the increase of discretization
number n. This is because, with the increase of BP, more focal
elements that do not intersect with the ellipsoid are eliminated.
From Fig. 3, the P-box of the Vol. Mag at bus 12 is closer to the
MC CDF with larger discretization number n. This verifies that
the P-box of proposed approach converges to the true CDF.

From Tables II and III, we find that both PM and TM have
much higher computational efficiency than the MC method.
When the discretization number n and the CCs increase, PM
yields much better computational efficiency than TM as it is able
to eliminate the useless focal elements outside the ellipsoid.

Fig. 3. P-box of bus 12 Vol. Mag with the proposed method.

Fig. 4. P-box of Vol. Mag at bus 12 with different CCs.

Taking a closer look at Fig. 4, one can observe that the MC
CDF curve tends to be more and more flat with the increase of
CC, indicating that the voltage distribution becomes more and
more dispersive. The P-box of TM yields poor performance in
tracking the trend of the MC CDF as the correlations of uncertain
power injections are not effectively accounted while PM follows
that closely. Note that PM is able to take the correlations into
account through the multidimensional ellipsoid convex model.
It is interesting to find that P-box of PM seems to be broader
than TM due to less number of focal elements. However, the
results of TM are not satisfactory as it fails to capture the tails
of the distribution.

B. Results on the IEEE 300-Bus System

The performance of each method is also tested on IEEE 300-
bus system with varying CCs of the uncertain power injections.
It is assumed that generators at buses 8, 10 and 20 and loads
at buses 38, 44 and 59 are with uncertainties. Power injection
intervals are assumed to be deviating from the original mean bus
injection by ±25%. The simulated CCs are 0.9, 0.8, 0.6 and 0.
P-boxes of Vol. Mag at bus 40 and voltage angle (Vol.Ang) at
bus 88 are depicted in Fig. 5. We find that the P-box converges to
a curve in the middle (which is close to the true CDF), denoted
by the average CDF curve via

F−1
A (x) =

(
F−1
U (x) + F−1

L (x)
)

2
(13)

where F−1
A (x), F−1

U (x) and F−1
L (x) denote the inverse of the

average CDF, upper and lower bounds of the P-box, respectively.
We also find that the average CDF of PM exhibits more and
more dispersive distribution as the value of CC increases. This
is consistent with the changing trend of the MC CDF curve.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 30,2020 at 22:39:54 UTC from IEEE Xplore.  Restrictions apply. 



828 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 35, NO. 1, JANUARY 2020

Fig. 5. P-box of power flow outputs with different CCs (n = 4) Upper: Bus
40 Vol. Mag and lower: Bus 88 Vol. Ang.

TABLE IV
COMPUTING TIME WITH DIFFERENT CCs (n = 3)

However, the average CDF of TM is not sensitive to the vari-
ation of CC, because it is unable to effectively deal with the
correlations among the power injections.

C. Computational Assessment With Large-Scale System

To further illustrate the advantage of PM in computational
efficiency, a large-scale 3120-bus system is tested whose data
can be found in Matpower. The uncertain power injections are

supposed to be with generator buses 58, 59, 68, 69, 71, 91,
93, 96, 119, 120 and load buses 563, 579, 580, 582, 583, 585,
586, 587, 593, 594. The tested CCs are 0.6, 0.7, 0.8 and 0.9,
respectively. The deviations of the uncertain injection from their
original values are 25%. Here, the parallel computing tool with
10 workstations is applied. The computing time is shown in
Table IV that validates that the developed PM achieves much
higher computational efficiency than the TM, especially for
strongly correlated power injections.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, the multidimensional ellipsoidal convex model
is integrated with the evidence theory to deal with uncertain
power injections in the interval power flow. The ellipsoidal con-
vex model allows us to effectively account for uncertain power
injection correlations and eliminate irrelevant focal elements.
Simulation results under various uncertain power injection levels
and correlations demonstrate that the proposed method achieves
higher computational efficiency and more accurate results for PF.
Future work will be on the integration of the proposed approach
into decision making tool and the extension of the proposed work
to consider tap changer limits.
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