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Abstract

The actual failure times of individual components are usually unavailable in many applications. Instead, only

aggregate failure-time data are collected by actual users due to technical and/or economic reasons. When dealing

with such data for reliability estimation, practitioners often face challenges of selecting the underlying failure-time

distributions and the corresponding statistical inference methods. So far, only the Exponential, Normal, Gamma and

Inverse Gaussian distributions have been used in analyzing aggregate failure-time data because these distributions have

closed-form expressions for such data. However, the limited choices of probability distributions cannot satisfy exten-

sive needs in a variety of engineering applications. Phase-type (PH) distributions are robust and flexible in modeling

failure-time data as they can mimic a large collection of probability distributions of nonnegative random variables

arbitrarily closely by adjusting the model structures. In this paper, PH distributions are utilized, for the first time, in

reliability estimation based on aggregate failure-time data. A maximum likelihood estimation (MLE) method and a

Bayesian alternative are developed. For the MLE method, an expectation-maximization (EM) algorithm is developed

for parameter estimation, and the corresponding Fisher information is used to construct the confidence intervals for

the quantities of interest. For the Bayesian method, a procedure for performing point and interval estimation is also

introduced. Numerical examples show that the proposed PH-based reliability estimation methods are quite flexible

and alleviate the burden of selecting a probability distribution when the underlying failure-time distribution is general

or even unknown.

Keywords: Aggregate failure-time data; Phase-type distributions; Maximum likelihood estimation; Bayesian

method.
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1. Introduction

1.1 Background

The accuracy and authenticity of failure-time data play an important role in the reliability analysis of a

product. One source of failure-time data is from laboratory life tests. However, a common issue in using

laboratory test data is that some of unknown influential factors (e.g., ambient temperature, humidity, corro-

sive gas, ultraviolet light) exposed by the product in the field may be ignored in the tests. As a result, the

outcome of laboratory tests may not be consistent with the behavior of the product’s lifetime in the field.

Another source of failure-time data is provided by the actual users of the product. Obviously, it is quite

valuable to utilize the rich sources of field data for product reliability estimation as such data reflect the

behavior of the product under the real usage conditions. For this reason, organizations, such as the U.S.

Department of Defense, have collected a large volume of failure data (OREDA, 2009; Mahar et al., 2011;

Denson et al., 2014).

One hurdle of using field data is that the exact failure times of individual components are usually un-

available. In many applications, the collected data contains the number of failed components in a single

position of a system along with the system’s cumulative operating time until the last failure. This type of

data is called aggregate failure-time data. Figure 1 shows an example of aggregate data. For a specific

component in each system, the user replaces it whenever it fails without recording the actual failure time.

Eventually, a data point representing the time from the first installation to the last component failure (e.g.,

m2 failures [replacements] in System #2) is reported. Compared to laboratory testing data with actual failure

times, the aggregate data is more concise (Chen and Ye, 2017a). To estimate the product reliability from

such aggregate data, only a few probability distributions (i.e., Exponential, Normal, Gamma and Inverse

Gaussian (IG)) have been used because their closed-form expressions for aggregate data are available. For

other widely used probability distributions, such as Weibull and Lognormal, the closed-form expressions are

not attainable. Apparently, the limited choices of probability distributions cannot satisfy extensive needs in

many engineering applications where only aggregate data are reported. To assist practitioners in using abun-

dant aggregate data, it is necessary to develop a flexible approach and the corresponding statistical inference

methods beyond the use of limited probability distributions for reliability estimation.

Phase-type (PH) distributions are robust and flexible in modeling failure-time data as they can mimic a

large collection of probability distributions of nonnegative random variables arbitrarily closely by adjusting

the model structures. In this paper, PH distributions are utilized to model aggregate data for the first time.

A new expectation-maximization (EM) algorithm is developed to obtain the maximum likelihood estimates
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Figure 1: An example of aggregate data: the number of failures (e.g., m1, ..., m4) and the time interval from the first
installation till the death of the last component.

(MLE) of model parameters. A Bayesian alternative is also introduced to incorporate prior knowledge in

parameter estimation. For both methods, the interval estimates for the quantities of interest are derived.

1.2 Related Work

The Exponential distribution has been widely used in reliability for modeling failure-time data. Because of

its tractability, aggregate data are often collected and analyzed using this distribution. Coit and Dey (1999)

developed an approach to analyze Type II censored data when individual failure times were not available.

They also presented a hypothesis test to examine the Exponential distribution assumption and tested their

specific data set from a Weibull distribution. Regarding the use of Gamma distribution, Coit and Jin (2000)

developed an MLE procedure for handling aggregate failure-time data. A quasi-Newton method was used

to find the MLE of model parameters. Chen and Ye (2017a) proposed random effects models based on the

Gamma and IG distributions to handle aggregate data. Later, Chen and Ye (2017b) provided a collection

of approaches to handle aggregate data using the Gamma and IG distributions. It is worth pointing out that

interval estimation of quantity of interest using individual failure-time data has been extensively studied

(see Bhaumik et al., 2009), but much less effort has been taken on the analysis of aggregate data. Chen

and Ye (2017b) proposed powerful interval estimation algorithms for the Gamma and IG distributions using

aggregate data. An extension to the analysis of aggregate lifetime data is the modeling of time-censored

aggregate data. This type of data is also abundant, and Chen et al. (2020) proposed models for the analysis

of this type of data under a Bayesian framework for Gamma and IG distributions.

When dealing with aggregate data using probability distributions other than the Exponential, Normal,

Gamma and IG distributions, an intuitive idea is to perform distribution approximation. To approximate

probability distributions for data analysis, extensive studies have been focused mainly on the use of Lognor-

mal distribution (Beaulieu and Rajwani, 2004; Beaulieu and Xie, 2004; Lam and Le-Ngoc, 2007; Mehta et
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al., 2007; Cobb et al.; 2012, Asmussen et al., 2016), mixture of Weibull distributions (Bučar et al., 2004; Jin

and Gonigunta, 2010; Elmahdy and Aboutahoun, 2013) and the Laplace method (Rizopoulos et al.; 2009,

Rue et al., 2009; Asmussen et al., 2016). Moreover, PH distributions are proved to be able to approximate

a large collection of probability distributions of non-negative random variables arbitrarily closely. Because

of this, a large amount of work has been done on approximating general distributions with PH distributions.

The most straightforward method is to match the first k moments of a PH distribution with those of a target

distribution. For example, Marie (1980) proposed a moment-matching method using the Coxian distribution

for distributions with square coefficient of variation (C2) greater than 1 and the generalized Erlang distri-

bution for those with C2 less than 1. Telek and Heindl (2003) matched two-phase acyclic PH distributions

with no mass probability at 0 for distributions with C2 ≥ 1
2 . To make approximation more accurate and gen-

eral, Osogami and Harchol-Balter (2003) and Osogami and Harchol-Balter (2006) proposed an algorithm

for mapping a general distribution to a PH distribution by matching the first three moments. Horvath and

Telek (2007) proposed an approximation approach for matching the first 2N −1 moments for an acyclic PH

distribution with N phases. Other than moments matching, some studies have been focused on matching

the shape of a desired distribution via PH approximation (Starobinski and Sidi (2000), Riska et al. (2004)).

PH distributions have been applied in queueing, healthcare, risk analysis, and reliability. In the area

of reliability, Delia and Rafael (2008) modeled a deteriorating system involving both internal and external

failures and applied PH distributions to two different repair types. Kharoufeh et al. (2010) introduced a hy-

brid, degradation-based component reliability model considering environmental effects by PH distribution.

Segovia and Labeau (2013) investigated the reliability of a multi-state system subject to internal wear-out

and external shocks using a PH distribution. Liao and Guo (2013) modeled accelerate life testing (ALT) data

using the Erlang-Coxian distribution. Liao and Karimi (2017) proposed a flexible method for analyzing ALT

data using a PH distribution. More recently, Cui and Wu (2019) used PH distributions to model multistate

systems with competing failure modes. Li et al. (2019) studied deteriorating structures using PH distribu-

tions. Xu et al. (2020) evaluated the reliability of smart meters subject to degradation and shocks based on

PH distributions. In the literature, however, PH distributions have never been utilized in modeling aggregate

failure-time data. To alleviate the burden of selecting probability distributions and provide a flexible means

for data analysis, this paper studies the use of PH distributions in modeling aggregate failure-time data for

the first time.

A technical challenge of using PH distributions is model parameter estimation. Asmussen et al. (1996)

developed an EM algorithm to obtain the MLE of model parameters. They also used the EM algorithm

to minimize information divergence in density approximation. Since the EM algorithm is computationally
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intensive, Okamura et al. (2011) proposed a refined EM algorithm to reduce the computational time using

uniformization and an improved forward-backward algorithm. As an alternative, under the framework of

Bayesian statistics, Bladt et al. (2003) used a Markov chain Monte Carlo (MCMC) method combined with

Gibbs sampling for general PH distributions. Watanabe et al. (2012) also presented an MCMC approach to

fit PH distributions while using uniformization and backward likelihood computation to reduce the compu-

tational time. Ausín et al. (2008) and McGrory et al. (2009) explored two special cases of PH distributions

(i.e., Erlang and Coxian) through a Reversible Jump Markov chain Monte Carlo (RJMCMC) method. Ya-

maguchi et al. (2010), and Okamura et al. (2014) presented variational Bayesian methods to improve the

computational efficiency of PH estimation in comparison to MCMC. It is worth pointing out that all of

these estimation methods were not developed for aggregate data. In this paper, efforts will be focused on

developing a collection of new MLE and Bayesian methods for the analysis of aggregate failure-time data.

1.3 Overview

The remainder of this paper is organized as follows. Section 2 introduces PH distributions. Section 3 pro-

vides the statistical procedures of the proposed MLE method, including the EM algorithm and the use of

Fisher information for interval estimation. The Bayesian alternative is presented in Section 4 for both param-

eter and credible interval estimation. In Section 5, numerical examples are provided to illustrate the practical

use of the proposed PH-based aggregate data analysis methods. A simulation study shows the strength of

PH distribution in dealing with aggregate data from an arbitrarily selected probability distribution, and the

coverage probability of the proposed Normal approximate interval estimation method is compared with the

one obtained via nonparametric bootstrapping. In addition, a real dataset is also analyzed to demonstrate the

practical use of the proposed methods in industrial statistics. Finally, conclusions are drawn in Section 6.

2. PH Distributions

A PH distribution describes the time to absorption of a Continuous-time Markov Chain (CTMC) defined on

a finite-state space. Consider a finite-state CTMC X(t)∞t≥0 with N transient states and an absorbing state

N + 1, then the CTMC with the specific structure can be described by an infinitesimal generator matrix:

Q =

 0 0′

S0 S

 . (1)
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where 0′ = [0, ..., 0], S is the subgenerator matrix of the transition rates between the transient states, and

S0 = −S1 represents the absorption rates with 1 = [1, ..., 1]T (Buchholz et al., 2014). In particular, the

transition rate matrix of an acyclic CTMC can be expressed as:

S =



−λ1 p12λ1 p13λ1 · · · p1Nλ1

0 −λ2 p23λ2
. . .

...
...

. . . . . . . . .
...

...
. . . −λN−1 p(N−1)NλN−1

0 · · · · · · 0 −λN


, (2)

where 0 ≤ pij ≤ 1, i < j, i = 1, 2, ..., N − 1, j = 1, 2, ..., N , and
∑N

j=1 pij ≤ 1.

The probability density function (PDF) and cumulative distribution function (CDF) of PH distribution

are:

f(t) = πeStS0, F (t) = 1− πeSt1, (3)

respectively, where π = [π1, ..., πk, ..., πN ] is the initial probability vector with
∑N

k=1 πk = 1 that describes

the probability of the process being started in each phase.

The most popular PH distributions are the Exponential, Erlang, Hyper-exponential, Hypo-exponential,

Hyper-Erlang, and Coxian distributions. Specially, Coxian distribution has been widely used for resolving

the non-identifiability problem of PH distributions. Figure 2 shows the CTMC of an N -phase Coxian

distribution. The transition rate matrix of an N -phase Coxian distribution is sparse, which has zero pij’s,

except pi(i+1)’s for i = 1, 2, · · · , N − 1.

 

(1 − 𝑝12)𝜆1 (1 − 𝑝23)𝜆2 

𝑝12𝜆1 𝑝23𝜆2 

. . . 1 2 𝑁 Absorbing state 

𝜆𝑁 

Figure 2: CTMC of an N -Phase Coxian distribution.

In this work, for the purpose of parameter estimation, the following reparameterization is used for the
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transition rate matrix of an N -phase Coxian distribution:

S =



−(λ1 + µ1) λ1 0 · · · 0

0 −(λ2 + µ2) λ2
. . .

...
...

. . . . . . . . . 0
...

. . . −(λN−1 + µN−1) λN−1

0 · · · · · · 0 −µN


. (4)

Then, the absorption rate matrix can be expressed as S0 = [µ1, µ2, ..., µN ]T . In practice, Coxian distribution

emerges as a very flexible distribution while carrying considerably less parameters than general PH distribu-

tions. Indeed, the number of parameters in a general PH distribution is O(N2) while for Coxian, it becomes

O(N) which justifies the use of Coxian in practice. Moreover, it can be shown that any acyclic PH distri-

bution can be converted to a Coxian distribution. Because of its flexibility and structural simplicity, Coxian

distribution is used in this paper although the proposed methods can be applied to other PH distributions.

3. Maximum Likelihood Estimation

3.1 EM Algorithm for Individual Failure-time Data

An EM algorithm for estimating the parameters of a PH distribution was first proposed by Asmussen et

al. (1996). Given each individual failure time, one needs to deal with having a number of unobserved

sojourning times in those transient states of CTMC. The likelihood function can be rewritten as:

L((π, S)|τ ) = f(z|(π, S)) =
N∏
i=1

π(i)Bi

N∏
i=1

eZiS(i,i)
N∏
i=1

N+1∏
j=1

S(i, j)Nij , (5)

where τ = (t1, t2, · · · , tM ) contains M observed individual failure times, z represents the complete obser-

vation, and Bi, Nij and Zi are the missing values of the data representing the number of times the Markov

process started in phase i, the number of jumps from phase i to phase j, and the total time spent in phase i,

respectively, for i = 1, 2, ..., N in an N -phase PH distribution.

Note that this likelihood function is evaluated using the estimated values of the unobserved data obtained

in the Expectation step (E-step). To do this, a few statistics are defined in advance:

f(π,S),t = πeSt, b(π,S),t = eStS0, F(π,S),t =

∫ t

0
(f(π,S),t−u)

T (b(π,S),u)
Tdu. (6)
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Then, the conditional expectation of unobserved variables are calculated using the current estimates of model

parameters as:

E(π,S),τ [Bi] =
1

M

M∑
k=1

π(i)b(π,S),tk(i)

πb(π,S),tk
, (7)

E(π,S),τ [Zi] =
1

M

M∑
k=1

F(π,S),tk(i, i)

πb(π,S),tk
, (8)

E(π,S),τ [Nij ] =
1

M

M∑
k=1

S(i, j)F(π,S),tk(i, j)

πb(π,S),tk
, (9)

E(π,S),τ [Nin+1] =
1

M

M∑
k=1

S0(i)f(π,S),tk(i)

πb(π,S),tk
, (10)

where i, j = 1, 2, · · · , N . In the M-step, the parameters of the distribution are re-estimated using the current

estimate of the complete data (Buchholz et al., 2014):

π̂(i) = E(π,S),τ [Bi], Ŝ(i, j) =
E(π,S),τ [Nij ]

E(π,S),τ [Zi]
,

Ŝ0(i) =
E(π,S),τ [Nin+1]

E(π,S),τ [Zi]
, Ŝ(i, i) = −(Ŝ0(i) +

n∑
i ̸=j

Ŝ(i, j)). (11)

Note that this EM algorithm monotonically improves the likelihood value to achieve the MLE of model

parameters. However, it was developed only for individual failure-time data.

3.2 Proposed EM Algorithm for Aggregate Failure-time Data

The previous EM algorithm uses each data point in the E-step to contribute to estimating the unobserved or

missing values. As it can be seen, from each data point one value for each Zi, Bi and Nij can be found for

each phase of the distribution, and the mean values of these give the expected values of the variables in the

E-step.

The challenge of using aggregate data, however, is that each data point corresponds to PH distributions

with different numbers of failures. This causes the underlying distributions for different data points to have

different numbers of phases. Unlike individual failure-time data, in this case we have independent but not

identically distributed variables. Considering mk as the number of failed components for data point k, the

data point follows a PH distribution with Nmk phases. As a result, the transition rate matrix for mk failures

is an (Nmk) × (Nmk) matrix. So, it is necessary to determine how and for which phases those variables

should be estimated (Karimi et al., 2019).
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Primarily, the most important aspects are finding the resulting transition rate matrix for the sum of a

number of similar N -phase PH variables and deriving the properties of the resulting distribution to develop

an EM algorithm for the case of aggregate data. For some distributions, such as Gamma, this is straight-

forward. In the case of sum of m similar Gamma variables, the resulting variable will follow a Gamma

distribution with shape parameter equal to m times the shape parameter of the single variable. However, this

turns out to be a more challenging issue for PH distribution and requires further analysis of the parameters

that are in a matrix format.

Clearly, if variable C is the sum of two PH variables A and B, the transition rate matrix of C can be

shown as:

S(C) =

S(A) S0π(B)

0 S(B)

 , (12)

and the initial probability vector becomes π(C) = [π(A),π(A)(N + 1)π(B)]. The term π(A)(N + 1) is the

probability of process A starting in an absorption state that is considered 0 here, so π(C) = [π(A),01×N ].

When modeling aggregate failure-time data, the sum of mk similar PH variables has a transition rate matrix

consisting of submatrices equal to the single PH variable transition rate matrix and failure vector. The design

of these matrices is in the following form:

S(new) =



S S0π 0 · · · 0

0 S S0π
. . .

...
...

. . . . . . . . . 0
...

. . . S S0π

0 · · · · · · 0 S


Nmk×Nmk

. (13)

In the previous EM algorithm, each element estimated in the E-step is comprised of the mean of M ma-

trices driven from the data set. In case of aggregate data, the sizes of matrices contributing to calculating

the missing values are different. As such, a different approach should be developed for model parameter

estimation.

More specially, matrices f(π,S),tk , b(π,S),tk and F(π,S),tk have different dimensions for different data

points. Indeed, f(π,S),tk is a 1 × Nmk, b(π,S),tk is an Nmk × 1 and F(π,S),tk is an Nmk × Nmk matrix.

Consider f and b as mk concatenated 1 × N matrices, each of which referring to one component failure

and representing an N -phase Markov process. Each matrix F includes mk diagonal N × N submatrices,
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each being equivalent to matrix F for a single component’s failure time. Note that in this method matrix

S0(k) shows the rate that in a corresponding phase a component is moved to the absorption of the mk’th

component. To catch the single component absorption rates, the rates of transition to the phases relative

to the other components should be added to S0(k). The values of S0(k) that are relative to any component

except the mk’th, are zero. For the proposed EM algorithm, a new absorption rate matrix should be defined,

which consists of the individual absorption rates. Each S0π in Equation (13) contributes to absorption rates

as follows:

S0π =


S0(1)π(1) S0(1)π(2) · · · S0(1)π(N)

S0(2)π(1) S0(2)π(2) · · · S0(2)π(N)
...

...
. . . · · ·

S0(N)π(1) S0(N)π(2) · · · S0(N)π(N)

 . (14)

Consequently, the absorption rate at phase i of each individual component becomes di =
∑N

j=1 S
0(i)π(j).

Thus, the new absorption vector d(k) could be constructed and used in the E-step as:

d(k) = [d
(k)
1 , · · · ,d(k)

N , · · · ,d(k)
1 , · · · ,d(k)

N ]1×Nmk
(15)

Note that d(k) is not the actual absorption rate matrix of data point k, but it is the set of hidden absorption

matrices related to each individual component failed in that data point.

The likelihood function for this case can be described as Equation (5) after modifying the definitions

for some variables. In particular, τ = (t1, t2, · · · , tM ,m1,m2, · · · ,mM ), and S represents the single

component transition rate matrix. Each single component lifetime is related to one Markov process, and for

a data point k, mk Markov processes occur successively. In addition, the unobserved variables, Bi, Zi, and

Nij for the case of aggregate data are defined as:

Bi: the number of times the Markov process started in phase lN + i, l = 0, · · · ,max(mk)− 1.

Zi: the time that was spent in phase ln+ i; l = 0, · · · ,max(mk)− 1.

Nij : the number of jumps from phase lN + i to phase lN + j; l = 0, · · · ,max(mk)− 1.

Using the above definitions, we can make sure that inside the Markov process of each data point, before

reaching the absorption state of the current component, transitions to those phases related to the subsequent

components are not allowed. Then, the equations for the E-step are:

E(π,S),τ [Bi] =
1

M

p∑
k=1

mk∑
l=0

π(k)(i+ ln)b(π(k),S(k)),tk(i+ ln)

π(k)b(π(k),S(k)),tk
, (16)
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E(π,S),τ [Zi] =
1

M

p∑
k=1

mk∑
l=0

F
(k)

(π(k),S(k)),tk
(i+ ln, i+ ln)

π(k)b(π(k),S(k)),tk
, (17)

E(π,S),τ [Nij ] =
1

M

p∑
k=1

mk∑
l=0

S(k)(i+ ln, j + ln)F
(k)

(π(k),S(k)),tk
(i+ ln, j + ln)

π(k)b(π(k),S(k)),tk
, (18)

E(π,S),τ [Nin+1] =
1

M

p∑
k=1

mk∑
l=0

d(k)(i+ ln)f
(k)

(π(k),S(k)),tk
(i+ ln)

π(k)b(π(k),S(k)),tk
, (19)

where p is the number of available data points, M =
∑p

k=1mk is the total number of failures, π and S are

the estimated initial probability vector and transition rate matrix of a single component’s failure time, π(k)

and S(k) are those of mk components and i, j = 1, 2, · · · , N . Using these E-step equations, the M-step can

be performed using the formulas stated in Section 3.1. In summary, the proposed EM algorithm for handling

aggregate data is as follows:

(i) Define initial values for the parameters of an N -phase PH distribution.

(ii) Define the proper transition rate and absorption matrices for each data point based on the corre-

sponding number of failures.

(iii) Define the statistics of EM algorithm as in Equation (6) separately for each data point.

(iv) Use Equations (16) - (19) to estimate the unobserved data based on the current parameter estimates.

(v) Use Equation (11) to update the parameter estimates.

(vi) If a stopping criterion (e.g., a certain number of iterations or the difference between the likelihood

values of the last two iterations) is met, stop. Otherwise, go to step (iv).

3.3 Model Selection and Setting of Initial Values

To avoid the non-identifiability problem of parameters, we have used Coxian distribution. It can be shown

that any general PH distribution can be represented by a Coxian distribution. Using Coxian distribution with

ordered diagonal values eliminates the redundancy in parameters. As in the EM algorithm, the initial values

should be used for the parameters, we suggest an approach to obtain initial parameter values. Based on

our experiments, the algorithm is not highly sensitive to the initial parameter values. As long as the initial

values are not chosen such that an extremely low likelihood is attained, the algorithm can find its way to the

optimum solution. Although this seems like an easy job, in practice, it can be difficult to obtain a reasonable

first guess. As Erlang distribution is a special case of Coxian distribution, the parameter estimate of Erlang

distribution can be used as the start point. Recall that in the EM algorithm for PH distributions, if a value is

initially set to zero, it will be zero in the ML estimate. To avoid all zero values in the absorption rate matrix,
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a small value relative to the optimum λ of Erlang distribution can be assigned to the absorption rates.

Since the convolution of Erlang distribution is tractable, it can be easily used for aggregate data. If

the lifetime of each component follows Erlang(N,λ), an aggregate data point with m failures follows

Erlang(mN,λ). Then, parameter λ can be found by maximizing the likelihood function:

L((π, S)|τ) =
p∏

k=1

λmkN tmkN−1
k e−λtk

(mkN − 1)!
(20)

where

S =



−λ λ 0 · · · 0

0 −λ λ
. . .

...
...

. . . . . . . . .
...

...
. . . −λ λ

0 · · · · · · 0 −λ


. (21)

When fitting a PH distribution to aggregate data, models with different numbers of phases can be con-

sidered. Although it can be shown that increasing the number of phases could potentially improve the likeli-

hood, a model selection method is required to determine the most suitable number of phases in some sense.

It is worth pointing out that using Akaike Information Criterion (AIC) may not be effective in selecting a

PH distribution, even for Coxian distribution, as the number of phases often grows rapidly in comparison to

the likelihood value. In this work, the Maximum a Posteriori (MAP) estimation method with a Laplacian

prior is used for the purpose of model selection. Specially, the Laplacian prior is denoted as:

p(Θ|(µ, b)) =
n∏

i=1

1

2bi
e
− |Θi−µi|

bi , (22)

where Θ contains the parameters of the distribution under test, n equals the number of parameters, and

(µ, b) is the vector of Laplacian distribution parameters. With the likelihood function f(τ |Θ) as Equation

(5) with τ = (t1, t2, · · · , tM ,m1,m2, · · · ,mM ), the MAP estimator is argmaxΘ f(τ |Θ)p(Θ|(µ, b)), and

the candidate distribution with an appropriate number of parameters that results in the highest MAP value

will be selected.
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3.4 ML-based Confidence Interval

In this section, a method for finding the confidence intervals of quantities of interest using Fisher information

is presented. It is worth pointing out that Fisher information for PH distribution has been studied in the

literature, but it has never been extended and used in dealing with aggregate failure-time data.

Let Θ = (π, vector(S))′ be the vector containing all the parameters to be estimated, τ be the available

aggregate data, and ℓ(Θ|τ ) = lnL(Θ|τ ) be the log-likelihood function. The empirical Fisher information

matrix can be expressed as:

I(Θ) = −
[

∂2

∂Θ∂Θ′ ℓ(Θ|τ )
]
. (23)

Due to the special structure of PH distribution and the fact that the parameters are masked inside the tran-

sition rate matrix, the formation of Fisher information matrix is not straightforward. Bladt et al. (2011)

proposed an EM algorithm and a Newton-Raphson method to attain the Fisher information matrix for the

parameters of PH distribution. In this paper, we will use the Newton-Raphson method for Fisher information

matrix estimation and extend their method to deal with aggregate data. To this end, some of the expressions

used in their method need to be updated.

First, the Newton-Raphson method is explained here. The derivative of the log-likelihood function with

respect to the vector of parameters is:

∂ℓ(Θ|τ )
∂Θ

=
M∑
k=1

1

f(tk|Θ)

∂f(tk|Θ)

∂Θ
, (24)

where f(·) is the PDF. Note that taking the derivative of PDF f with respect to Θ is an issue, for which the

following formulas are created. The parameters of an N -phase PH distributions are N − 1 elements of π,

non-diagonal elements of S, noted as dhn, and all the elements of S0, noted as dh, for h, n = 1, 2, · · · , N .

To get started, using uniformization for matrix exponential, we define c = max{−dhh : 1 < h < N} and

K = (1/c)S+ I, where I is the identity matrix. Then, we have:

eSt =

∞∑
r=0

e−ct ct
r

r!
Kr. (25)

Let Ψ(t) = e(St). By decomposing π into
∑p−1

j=1 πje
⊤
j + (1−

∑p−1
j=1 πj)e

⊤
N , we have:

∂f(t|Θ)

∂πh
= e⊤hΨ(t)S0 − e⊤NΨ(t)S0, (26)
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∂f(t|Θ)

∂dhn
= π

∂Ψ(t)

∂dhn
S0, h ̸= n, (27)

∂f(t|Θ)

∂th
= πΨ(t)eh + π

∂Ψ(t)

∂dh
S0, (28)

where ej is a column vector with 1 in the jth place and 0 elsewhere. Then, the problem is reduced to

calculating the partial derivatives of Ψ(t):

∂Ψ(t)

∂Θq
= e−ct

∞∑
s=0

(ct)s+1

(s+ 1)!
Dq(s) +

∂c

∂Θq
teSt(K− I), q = 1, 2, · · · , N2 +N − 1, (29)

where Dq(s) = ∂Ks+1/∂Θq. To calculate this, partial derivatives of powers of the transition rate matrix

with respect to the parameters are required. Especially, we have:

∂Sr

∂Θq
=

r−1∑
k=0

Sk
∂S
∂Θq

Sr−1−k, (30)

where [∂S/∂dij ]ij = 1, [∂S/∂dij ]ii = −1, [∂S/∂di]ii = −1, and the rest of the elements are all 0. Based

on these basic definitions, the following results can be obtained:

∂2Sr

∂Θp∂Θq
=

r−1∑
k=0

Sk
∂S
∂Θq

∂Sr−1−k

∂Θp
+ Sr−1−k ∂Sk

∂Θp

∂S
∂Θq

, (31)

∂2eSt

∂Θp∂Θq
= e−ct

∞∑
k=0

(ct)k+1

(k + 1)!

∂2Kk+1

∂Θp∂Θq
+

∂c

∂Θq
t
(
eTt ∂K

∂Θp
+

∂eTt

∂Θp
(K− I)

)
, (32)

where p, q = 1, 2, · · · , N2+N −1. It is worth pointing out that these formulas are used to produce a Fisher

information matrix based on individual failure-time data (Bladt et al., 2011). In this paper, these formulas

are extended to adapt to aggregate failure-time data.

The second derivative of log-likelihood function is:

∂2ℓ(Θ|τ )
∂Θ∂Θ′ =

m∑
k=1

1

f(tk|Θ)2

[
f(tk|Θ)

∂2f(tk|Θ)

∂Θ∂Θ′ − ∂f(tk|Θ)

∂Θ

∂f(tk|Θ)

∂Θ′

]
. (33)

For each aggregate failure-time data tk, the corresponding PDF is defined based on the number of failed

components in that data point, as shown previously. In other words, we have a different PDF (thus a different

transition rate matrix and different number of phases), as given in Equation (13), for each data point as:

fk(t|(π, S)) = πke
SkS0

k. (34)
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Moreover, ∂S/∂Θq should be updated. For data point k with mk failures, [∂S/∂dhn]uv = 1 and

[∂S/∂dhn]uu = −1, where h, n = 1, 2, · · · , N , h ̸= n, u = h+rN , v = n+rN , r = 0, 1, · · · , N−1. The

rest of the parameters of this Nmk ×Nmk matrix will be 0s. The following example shows the derivative

of transition rate matrix with respect to a parameter when N = 3 and two cumulative failures:

∂Sk
∂d23

=



0 0 0 0 0 0

0 −1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −1 1

0 0 0 0 0 0


. (35)

Note that in this case, the only independent parameters are again the parameters of the PH distribution for

a single component, and the total number of parameters is N2 +N − 1. So, for each data point, no matter

how many failures it contains, Θ always contains N2 +N − 1 model parameters.

After producing the Fisher information matrix, the normal approximation method can be used to attain

the confidence intervals of interest. The Wald statistic is defined as:

W = (Θ̂−Θ)′[Σ̂Θ̂]−1(Θ̂−Θ), (36)

where Θ̂ is the MLE of Θ, and Σ̂Θ̂ is the estimated variance-covariance matrix obtained by taking the

inverse of Fisher information matrix. Since Θ̂ asymptotically follows a multivariate Normal distribution

with parameters Θ and Σ, W follows a Chi-square distribution with degrees of freedom equal to the length

of Θ (i.e., the number of parameters noted as v). Then, a 100(1 − α)% approximate confidence region for

Θ can be obtained from:

(Θ̂−Θ)′[Σ̂Θ̂]−1(Θ̂−Θ) ≤ χ2
(1−α;v). (37)

In certain circumstances, the statistics of Wald and likelihood ratio are equivalent, so that the distri-

bution is exact. For other cases, it can be shown that Wald interval is the quadratic approximation to a

likelihood-based confidence region (Meeker and Escobar (1995)). Regarding PH distributions, this is an

asymptotic approximate method, and exact pivotal quantities for the parameters are not discussed in the

literature. In this paper, we provide the ML confidence interval for each individual parameter by Nor-
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mal approximation. For example, for transition rate parameter λ1, we have [λ1˜, λ̃1] =
[
λ̂1/V, λ̂1 × V

]
,

where V = exp
(
z1−α/2ŝeλ̂1

/λ̂1

)
, z1−α/2 is the 1− α/2 quantile of the standard Normal distribution, and

ŝeλ̂1
=

√
V̂ ar(λ̂1).

For practical purposes, the confidence interval for the CDF of failure-time distribution is of interest.

Based on the estimated variance-covariance matrix, the confidence interval for the CDF can be obtained as

follows. First, the variance of the CDF estimate is calculated via the delta method as:

V̂ ar(F (t)) =

[
∂F

∂µ1
, · · · , ∂F

∂λ2

]
Σ̂Θ̂

[
∂F

∂µ1
, · · · , ∂F

∂λ2

]′
. (38)

Then, the approximate confidence interval for the CDF can be expressed as:

[F˜ , F̃ ] =

[
F̂ (t)

F̂ (t) + (1− F̂ (t))×W
,

F̂ (t)

F̂ (t) + (1− F̂ (t))/W

]
, (39)

where

W = exp

(
z1−α/2ŝeF̂

F̂ (te)(1− F̂ (te))

)
and ŝeF̂ =

√
V̂ ar(F̂ (t)). (40)

4. Bayesian Alternative

A Bayesian alternative is also provided in this work for reliability estimation using aggregate data. The

studies by Ausín et al. (2008) and McGrory et al. (2009) concentrated on Bayesian methods for Coxian

distributions. In this section, we will use the method developed by McGrory et al. (2009) and extend their

model to estimate the parameters of Coxian based on aggregate data. Moreover, using the same posterior

distribution for Coxian and with the assistance of Metropolis-Hastings algorithm, credible intervals are

estimated for the model parameters.

McGrory et al. (2009) introduced a Bayesian formulation for a Coxian distribution with covariates

and unknown number of phases. They considered a Gamma prior distribution for each parameter. Here,

we will utilize the same model while ignoring covariates. For the transition rate matrix of an N -phase

Coxian distribution given in Equation (4), we assume that the prior distributions of model parameters are

λj ∼ Gamma(αj , βj), j = 1, 2, · · · , N − 1, and µj ∼ Gamma(γj , σj), j = 1, 2, · · · , N (McGrory et al.

16



(2009)). Then, the posterior distribution can be obtained as:

p(ΘN , N |y) ∝ p(y|ΘN , N)p(ΘN |N)p(N)

=
M∏
i=1

πe(Siyi)S0
i

N−1∏
j=1

1

Γ(αi)

1

β
αj

j

λ
αj−1
j exp(−λj

βj
)

×
N∏
j=1

1

Γ(γj)

1

σ
γj
j

µ
γj−1
j exp(−µj

σj
)× p(N).

(41)

For the case of aggregate data, λj and µj are the parameters of Coxian distribution for a single component

failure, but Si and S0
i are those related to data point i based on Equation (13), which have different dimen-

sions for different data points. Note that a subscript N is added to the parameter vector Θ to emphasize the

number of phases of the current model, which may be adjusted.

RJMCMC (Green (1995)) is a method that enables jumps between models with different dimensions.

The algorithm proposed by McGrory et al. (2009) considers three main possibilities with equal probabil-

ities: a fixed dimension update of the parameters, splitting the phase into two or combining two existing

phases into one, and birth of a new phase or death of an existing phase. In particular, fixed dimension pa-

rameter update is done through a Metropolis-Hastings algorithm. For dimension changing reversible jump

moves, some basic definitions are needed. Let the current number of phases be N and the proposed number

of phases be N∗. In each jump step, the dimension can only increase or decrease by one unit while sat-

isfying the requirement on the maximum and minimum numbers of phases. u, v, u∗ and v∗ are auxiliary

variables defined to keep the dimensionality of the current and proposed parameter spaces, (ΘN , u, v) and

(ΘN∗ , u∗, v∗), respectively. We define:

R =
p(y|ΘN∗ , N∗)p(ΘN∗)p(N∗)

p(y|ΘN , N)p(ΘN )p(N)
×

QN∗,Np(u∗, v∗|N∗, N,ΘN∗)

QN,N∗p(u, v|N,N∗,ΘN )
×
∣∣∣∣∂(ΘN∗ , u∗, v∗)

∂(ΘN , u, v)

∣∣∣∣, (42)

where QN,N∗ is the probability of moving from N to N∗, and the third term is the Jacobian for transforma-

tion, which will be addressed later. Then, the probability of accepting a proposed move is min(R, 1). To

perform a reasonable mapping, it is ensured that the mean time and probability of absorption in current and

proposed phase(s) remain similar, such that:

µ

µ+ λ
=

µa

µa + λa
+
( λa

µa + λa
× µb

µb + λb

)
, (43)

µ

µ+ λ
=

1

µa + λa
+

1

µb + λb
. (44)

For split and birth moves, where one new phase is introduced, µ and λ denote the rates before transformation,
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and µa, µb, λa and λb denote the rates after the transformation. For combine and death moves, the process

will be performed reversely.

Accordingly, for each move we need to find the new parameters, based on Equations (43) and (44),

as well as the Jacobian of the transformation, which will be succinctly described here. Note that split and

combine moves cannot be applied for the final phase, while birth and death moves are only performed on

the final phase.

Via combine move: (µa, λa, µb, λb) → (u, v, µ, λ), where u = µa and v = λa, we have:

µ =
µaµb + µaλb + λaµb

µa + λa + µb + λb
, (45)

λ =
λaλb

µa + λa + µb + λb
, (46)

|J | =
(µa + λa)

2

(µa + λa + µb + λb)3
. (47)

Via split move: (u, v, µ, λ) → (µa, λa, µb, λb), again u = µa and v = λa, and u and v should be simulated

from u ∼ NT (2µ, σ
2) and v ∼ NT (2λ, σ

2) truncated at 0. The Jacobian for a split move is the reciprocal

of the one for a combine move:

µb =
µ2
aλ+ µaλaλ− λaµµa − λ2

aµ

λa(−µa − λa + µ+ λ)
, (48)

λb = − (µa + λa)
2λ

λa(−µa − λa + µ+ λ)
. (49)

Via death move: (µa, λa, µb) → (u, v, µ), we have:

µ =
(µa + λa)µb

(µb + µa + λa)
, (50)

|J | =
(µa + λa)

2

(µb + µa + λa)2
. (51)

Via birth move: (u, v, µ) → (µa, λa, µb) with u and v being simulated from u ∼ NT (µ, σ
2) and v ∼

NT (µ, σ
2) truncated at 0, the Jacobian is the reciprocal of the expression used for death move and

µb =
(u+ v)µ

u+ v − µ
. (52)

For more detailed explanations of the RJMCMC method, readers are referred to McGrory et al. (2009).

This method can be used for updating the parameters of Coxian distribution for a single component as a

part of sum of a number of variables with the use of posterior distribution stated in Equation (41). As the

RJMCMC method jumps between models with different numbers of phases, model selection is automatically
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performed within the estimation procedure.

For credible interval estimation, we propose to apply the same Gamma prior distributions for the param-

eters. The posterior distribution takes the number of phases as constant. Based on the posterior distribution

in Equation (41) and using Metropolis-Hastings approach to generate parameter estimates, credible inter-

vals for parameters using quantiles of the generated parameter values can be obtained. Needless to say, this

model, if used only for credible interval estimation and not for RJMCMC, can be easily extended to handle

general PH distributions.

5. Numerical Examples

5.1 A Simulation Study

5.1.1 Capability of Fitting Different Failure-time Distributions

To demonstrate the capability and flexibility of our proposed methods in reliability estimation, aggregate

data from different probability distributions are generated, and Coxian distributions are used to fit the data

and compared against the true distributions from which the data are generated. In particular, the ML estima-

tion method is illustrated in this study.

The simulated data are generated from Gamma, IG and Weibull distributions. For each distribution,

two cases are considered. The first case considers 6 aggregate data points with vector of number of

failures M = [2 9 8 8 6 5], and the second case involves 12 aggregate data points with M =

[2 2 9 9 8 8 8 8 6 6 5 5]. When fitting the Coxian distributions, only the aggregate data

are used. However, if individual failure-times are available, to estimate the model parameters using the

ML method, Equations (7(-(11) should be applied. To visualize the estimation capability of the proposed

method, the CDF’s of the true distribution and the estimated Coxian distribution are shown together in each

figure. Moreover, we have saved individual failure times so that the Kaplan-Meier estimate is also calculated

and presented in the same figure for comparison.

The distributions are chosen in different ranges for fair comparison. Figure 3 shows the results for the

aggregate data generated from Gamma(2.5, 4). The result in the left figure is obtained based on 6 data

points involving a total of 38 component failures, and the right figure is based on 12 data points for a total of

76 component failures. One can see that the Coxian distribution can mimic the true distribution quite closely,

and as the number of data points increases, the deviation from the true distribution becomes negligible.

This result illustrates the flexibility of Phase-type distribution in approximating other distributions. For

the IG distribution as illustrated in Figure 4, the data generated from IG(10, 8) is used. Our results show
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that the Coxian distribution can also mimic the IG distribution closely. For the two-parameter-Weibull

distribution, Weibull(1, 1.5), although the estimated 3-phase Coxian distribution is a little off from the true

distribution, the number of phases can be increased to increase the accuracy. As an illustration, a 6-phase

Coxian distribution is used to fit the same Weibull data. Figure 6 shows clear improvement by increasing

the number of phases. It is worth pointing out that for all the tested distributions, the same number of

hidden failures and the same number of simulated data points are used in each case. The flexibility of PH

distribution and its capability to handle aggregate data are obvious. The proposed method has potential to be

applied for the analysis of aggregate or individual failure-time data when the underlying distribution cannot

be conjectured. Moreover, increasing either the number of data points or the number of phases will improve

the estimation accuracy of the proposed method. This is particularly favorable for aggregate data, since

many probability distributions are intractable for aggregate data.

 Figure 3: Estimated 3-phase Coxian distribution vs. the real underlying distribution, Gamma(2.5, 4), and Kaplan-
Meier estimate. The left figure is the result based on 6 data points, and the right figure is based on 12 aggregate data
points.

20



 Figure 4: Estimated 3-phase Coxian distribution vs. the real underlying distribution, IG(10, 8), and Kaplan-Meier
estimate. The left figure is the result based on 6 data points and the right figure is based on 12 aggregate data points.

 Figure 5: Estimated 3-phase Coxian distribution vs. the real underlying distribution, Weibull(1, 1.5), and Kaplan-
Meier estimate. The left figure is the result based on 6 data points and the right figure is based on 12 aggregate data
points.
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 Figure 6: Estimated 6-phase Coxian distribution vs. the real underlying distribution, Weibull(1, 1.5), and Kaplan-
Meier estimate. The left figure is the result based on 6 data points and the right figure is based on 12 aggregate data
points.

5.1.2 Study on the Coverage Probability of Normal Approximate Conference Interval

Nonparametric bootstrapping, while being widely used in many situations for interval estimation, should be

applied carefully. In particular, the coverage probabilities can be significantly lower than the intended con-

fidence level for small to moderate samples. The reason mainly lies behind the resampling of the bootstrap

procedure (Schenker, 1985). In case of aggregate data, failure-times are aggregated into one data point, so

practically, we are sampling groups of failures, where the groups do not change. As a result, the resampling

problem deteriorates for aggregate data, making the coverage probability of the confidence interval even

lower. In this section, the coverage probability of confidence interval obtained using the proposed Nor-

mal approximation method is studied against the nonparametric bootstrap method. Note that the coverage

probability of credible interval obtained using the Bayesian alternative depends on the selection of prior

distribution, thus is not studied in this paper.

For illustration, a 3-phase Coxian distribution is used to estimate the CDF of a true failure-time distribu-

tion, Weibull(15, 0.95). The study is conducted for cases with 6 and 12 aggregate data points, respectively.

For each case, the coverage probabilities of the two methods are estimated based on 5000 simulation runs.

Table 1 shows the results, which clearly show that the bootstrap CIs for both cases give a much lower cov-

erage probabilities than expected. On the other hand, the proposed Normal approximation method provides

much better coverage for those failure-time percentiles.
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Table 1: Coverage probabilities of 90% CIs using normal approximation and non-parametric bootstrap
Percentile Normal approx. Normal approx. Bootstrap Bootstrap

6 data points 12 data points 6 data points 12 data points

10 0.8246 0.8751 0.1584 0.6634
50 0.9980 0.9990 0.7426 0.6733
90 0.9965 0.9985 0.6040 0.6832

5.2 A Real-world Application

5.2.1 The Data

The Reliability Information Analysis Center (RIAC) is a U.S. DoD center who serves for collecting relia-

bility data of fielded systems. Due to the possibilities and technical obstacles in practice, a large amount of

the data are not individual component failure-time data (Coit and Jin (2000)). The reliability data shown in

Table 2 is gathered by RIAC from aircraft indicator lights and has been previously studied by Coit and Jin

(2000), and Chen and Ye (2017). In this data, 6 systems were observed, and the number of failures and the

cumulative operating time up to the last failure for each system was recorded.

Table 2: Aircraft indicator lights failure data
System number Cumulative operating time (hours) Number of component failures

1 51000 2
2 194900 9
3 45300 8
4 112400 8
5 104000 6
6 44800 5

For each system k, the cumulative operating time tk represents the time from the installation of the first

component to the failure of the mk-th component at a certain component position in system k. For this set

of data, the reliability of an individual aircraft indicator light is desired.

5.2.2 Reliability Estimation and Model Selection

In this section, the proposed methods are applied on the data set and compared with the three distributions

previously studied: Gamma, IG and Normal (Chen and Ye, 2017). The algorithms were run on a computer

with Core(TM) i5-6300HQ CPU, 8.00 GB RAM and on Matlab 2017b.

First, the proposed ML estimation method with the new EM algorithm is implemented. Figure 7 il-

lustrates the estimated 3-phase Coxian distribution in comparison to the estimated Gamma, IG and Normal

distributions studied by Chen and Ye (2017). While the Normal distribution does not provide a very good
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estimate because of high coefficient of variation. The CDF estimate from the Coxian distribution is close to

those of Gamma and IG. The computational time of this method is 57.19 seconds with resulting likelihood

value of -30.9821.
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Figure 7: CDFs of Gamma, IG, Normal and 3-phase Coxian distributions estimated from the aggregate aircraft indi-
cator light data

 
Figure 8: MAP model selection method performed for the data provided in Table 2 over the range of 1-phase through
10-phase Coxian with Laplacian prior distributions with parameters (0, 1). The maximum MAP estimation suggests a
3-phase Coxian.
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For the aircraft indicator light data, using Laplace(0, 1) as the prior distribution, Figure 8 shows the

MAP estimation result for Coxian distributions with 1 to 10 phases. It is clear that a 3-phase Coxian dis-

tribution is suggested. Therefore, the CDF estimate based on the 3-phase Coxian distribution presented in

Figure 7 is an adequate estimate.

Regarding the Bayesian alternative, the time elapsed for 100 iterations of RJMCMC algorithm with a

20-iteration Metropolis-Hastings, varies between 45 to 50 seconds depending on the size of matrices that

are randomly chosen in the algorithm for calculations. Since RJMCMC algorithm moves forward based on

random movements to improve the estimation and the number of times each movement is performed during

one implementation is different, it could result in different numbers of phases and transition rate matrices

of different sizes. The following two matrices are the estimated transition rate matrices from two different

implementations of the algorithm:

S1 =



−.0674 0.0000 0 0 0 0

0 −0.0233 0.0000 0 0 0

0 0 −0.0072 0.0069 0 0

0 0 0 −0.0001 0.0000 0

0 0 0 0 −0.0516 0.0041

0 0 0 0 0 −0.3830


(6-phase Coxian),

S2 =


−0.0664 0.0000 0

0 −0.1525 0.1099

0 0 −0.4036

 (3-phase Coxian).

Clearly, the two matrices are associated with two different Coxian distributions with different numbers

of phases. Unlike the MAP method used in MLE, the disadvantage of this automatic model selection method

is that it may not result in a unique model. However, as shown in Figure 9, the resulting CDF’s obtained

from the two implementations are quite close.
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Figure 9: CDF estimates of aircraft indicator light from two implementations of the proposed Bayesian method

5.2.3 Interval Estimation

In this section, the ML confidence intervals (Normal approximation) and Bayesian credible intervals of

model parameters and CDF of the 3-phase Coxian distribution are calculated. In particular, the ML confi-

dence interval is found by deriving the Fisher information matrix first followed by calculating the estimated

variance covariance matrix as:

ΣΘ̂ =



0.0046 0.0069 −0.0052 −0.0018 −0.0026

0.0069 0.0113 −0.0064 −0.0035 −0.0043

−0.0052 −0.0046 0.0157 −0.0084 −0.0053

−0.0018 0.0035 −0.0084 0.0237 0.0072

−0.0026 −0.0043 −0.0053 0.0072 0.0206


.

Afterwards, the Normal-approximation confidence intervals of model parameters are calculated as addressed

in Section 3. Regarding the Bayesian credible intervals of the parameters, the results are obtained based on

1000 Metropolis-Hastings samples. The resulting 90% confidence intervals and credible intervals of model

parameters are shown in Table 3. The results of the two methods are relatively close except the upper-bound

for λ1.

Figure 10 shows the 90% confidence interval of CDF estimated using Equation (39). A nonparamet-

ric 90% bootstrap confidence interval is also calculated and provided in Figure 11. One can see that the
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Table 3: C.I.’s based on the MLE and Bayesian methods
Parameter ML Estimate 90% MLE C.I. 90% Bayesian C.I.

µ1 0.0702 (0.0274,0.1130) (0.0514, 0.0902)
µ2 0.0431 (0, 0.0300) (0.0014, 0.0529)
µ3 0.0823 (0, 0.3768) (0, 0.3861)
λ1 0.0121 (0, 0.5992) (0, 0.0336)
λ2 0.0392 (0, 0.4316) (0, 0.3525)

nonparametric bootstrap confidence interval appears to be much narrower than the one from the Normal-

approximation alternative. Finally, Figure 12 presents the credible interval of CDF from the Bayesian alter-

native, which depends on the selection of prior distribution and the sample size.
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Figure 10: 90% Normal approximate confidence interval of CDF based on the 3-phase Coxian

6. Conclusions and Future Work

Reliability estimation using aggregate data has been studied with only a few probability distributions. This

work presents more flexible methods based on PH distributions to deal with such data for the first time.

An EM algorithm is developed in this work by exploring the submatrices to utilize aggregate data. An

alternative Bayesian method is also introduced to incorporate prior knowledge for parameter estimation.

For the MLE method, model selection is performed through an MAP method. For the Bayesian method,

model selection is concealed within the estimation procedure. Interval estimations are also obtained for the
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Figure 11: 90% bootstrap confidence interval of CDF based on the 3-phase Coxian

 
Figure 12: 90% Bayesian credible interval of CDF based on the 3-phase Coxian

two methods. The flexibility of PH distribution for analyzing aggregate data with an arbitrary underlying

distribution is explored in a simulation study and the capability of PH distribution is clearly illustrated. In

addition, the proposed methods are successfully applied to the real dataset from RIAC. Considering that

only a few probability distributions have been utilized for analyzing aggregate data, this work provides
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more flexible methods for analyzing aggregate failure-time data. Technically, the new EM algorithm, Fisher

information and RJMCMC for PH distribution are used to analyze aggregate data for the first time.

For future work, interval estimation for PH distribution based on generalized pivotal quantity can be

studied. Moreover, developing a nonparametric estimator based on aggregate data is a favorable while

challenging research topic. Another interesting and common type of field data is time-censored aggregate

data. The most common reason for collecting such data is to perform scheduled inspections. For time-

censored aggregate data, each data point represents the number of failures in a certain period of time (e.g.,

during an inspection period). Unlike the aggregate data studied in this paper, each time-censored aggregate

time is not recorded at one of failures. The analysis of time-censored aggregate data has recently been

discussed by Chen et al. (2020). Bayesian methods were provided for the Gamma, Inverse Gaussian, Weibull

and Lognormal distributions. It is worth pointing out that the analysis of time-censored aggregate data

through PH distribution has not been discussed in the literature. The authors of this paper have considered

this research gap, and both ML and Bayesian estimation methods will be provided in their future work.
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