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Abstract—The increasing penetration of renewable energy
along with the variations of the loads bring large uncertainties
in the power system states that are threatening the security of
power system planning and operation. Facing these challenges,
this paper proposes a cost-effective, nonparametric method to
quantify the impact of uncertain power injections on the load
margins. First, we propose to generate system uncertain inputs
via a novel vine copula due to its capability in simulating complex
multivariate highly dependent model inputs. Furthermore, to
reduce the prohibitive computational time required in the tradi-
tional Monte-Carlo method, we propose to use a nonparametric,
Gaussian-process-emulator-based reduced-order model to replace
the original complicated continuation power-flow model. This
emulator allows us to execute the time-consuming continuation
power-flow solver at the sampled values with a negligible com-
putational cost. The simulations conducted on the IEEE 57-bus
system, to which correlated renewable generation are attached,
reveal the excellent performance of the proposed method.

Index Terms—Probabilistic load margin, Gaussian process
emulator, vine copula, uncertainty, voltage stability.

I. INTRODUCTION

POWER systems exhibit stochastic dynamics, in particular
due to the continuous variations of the loads and the

intermittency of the renewable generation, among other causes.
To address this problem, research activities have focused on
uncertainty assessment in power system planning, operation,
and control. Examples include a probabilistic power flow [1],
[2], an uncertainty quantification for power system dynamic
simulation [3], a stochastic economic dispatch [4], [5], and a
probabilistic load-margin formulation [6], [7], among others.
The latter formulation is critical to ensuring the voltage
stability of modern power systems with increasing penetration
of renewables and, therefore, is chosen as the scope of this
paper.
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Traditionally, Monte-Carlo (MC) simulations have been
utilized to address this problem [8] . However, the computing
time of a single continuation power flow (CPF) case is much
longer than that of a simple power-flow case. Therefore, the
straightforward MC method based on the evaluations of tens
of thousands samples in the CPF model will be prohibitively
time-consuming. This is even true for relatively small systems.
Although some analytical methods have been proposed to
reduce the computational burden, there exists no very accurate
closed-form solution today due to the nonlinearity of the CPF
model [6].

To overcome the abovementioned shortcomings, this paper
proposes, for the first time, to utilize a method based on a
Gaussian process emulator (GPE) to solve the probabilistic
CPF problem. Known as a Bayesian-learning-based method
for a nonlinear regression problem in statistics [9], the GPE
can serve as a nonparametric, reduced-order model represen-
tation for the nonlinear CPF model. This emulator allow us to
evaluate the time-consuming CPF solver at the sampled values
with a negligible computational cost. Furthermore, to simulate
the high-dimensional dependent samples that represent the
uncertainties from the loads and renewables, we propose to
adopt a novel vine-copula technique [10], which is capable of
modeling the high-dimensional, dependent multivariate with a
variety of bivariate copulae such as Frank and Gumbel copulae
to better represent tail dependence in the correlated samples.
This vine copula performs better than the the Gaussian copula
[7], [11] since the latter has been proven to have 0 tail
dependence and, therefore, is less precise when describing the
complicated dependence structures existing in renewable gen-
eration [12], [13]. Simulation results carried out on the IEEE
57-bus test system system reveal that our proposed method
can accurately estimate the probability density function (pdf)
of the load margin with more than two-order-of-magnitude
improvement in computing speed compared to the traditional
MC method.

II. PROBLEM FORMULATION

This section formulates the probabilistic load-margin assess-
ment problem.

Let us first formulate the power system forward model as

y = f(x). (1)

Here, y stands for the quantity of interest (QoI), which, in
our case, is the load margin of a bus; x = [x1, x2, . . . , xp]
is a vector of uncertain model parameters described by some
distribution functions with finite variance. In our work, the
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active power and reactive power of the loads are considered to
follow a Gaussian distribution and the wind power generation
are assumed to follow the Weibull distribution; the f(·) is
the nonlinear function that represents the continuation power
system model, which maps the model parameters, x, to the
QoI, y. The detailed implementation step has been described
by Ajjarapu [14].

To obtain the probabilistic description of the load margin
y under these uncertain model parameters, a typical MC
method draws a large number of Nsample samples, {x(j)}Nsample

j=1 ,
that not only reflect the pdfs of the input parameters but
also the correlation between them. Then, for each x(j), j =
1, . . . , Nsample, y(j) = f(x(j)) is solved to get Nsample load-
margin solutions, {y(j)}Nsample

j=1 , from which the pdf of the load
margin is determined. The CPF method is typically employed
in power systems despite the fact that even a single evalu-
ation of f(·) will involve multiple prediction and correction
steps to obtain the load margin, y, and, hence, is admittedly
a complicated, time-consuming solver—not to mention that
Nsample is typically required to be a large number in the MC
sampling to ensure good computing accuracy. Therefore, the
goal of this paper is to greatly reduce the computational time
of this method and to precisely model the correlation between
the uncertain parameters as model inputs.

III. UNCERTAINTY MODELING

In this section, we present the way to generate dependent
high-dimensional samples as model inputs via vine copula.

1) Copula: Recently, copulae have been proven to be
successful in many industrial and financial applications for
modeling the dependency between random inputs [10], [13].
According to Sklar’s theorem, any joint multivariate cumula-
tive distribution function FX of a p-dimensional random vector
can be expressed in terms of its marginal distributions and a
copula to represent their dependence. Formally, we have

FX(x) = C(FX1(x1), FX2(x2), . . . , FXp(xp)). (2)

Here, FXi(xi) is the ith input marginal and C(·) is a cop-
ula that describes the dependence structure between the p-
dimensional input variables [15]. Accordingly, its joint multi-
variate density function, fX, can be obtained via

fX(x) = c(FX1(x1), . . . , FXp(xp))

p∏
i=1

fi(xi). (3)

Here, c is the p-variate copula density and fi(xi) is the
marginal density for ith variable. Since there exist different
copula families, the choice of the copula function will influ-
ence the accuracy of the dependence modeling. The Gaussian
copula is advantageous in certain applications thanks to its
ability to generate high-dimensional correlated samples [7].
Archimedean copulas are more useful in scenarios which
require nonlinear tail dependence modeling. However, they are
generally not scalable due to being limited to the bivariate case
[12], [16]. To overcome these shortcomings, we resort to vine
copula next.

2) Vine Copula: Being a powerful tool in simulating high-
dimensional correlated samples with various types of tail-
dependence structures involved, vine copula is known for its
capability of decomposing a multivariate density function into
a cascade of bivariate pair copulae [12], [17]. Starting from
the factorization on the joint density function, we get

fX(x) =fp(xp) · fp−1|p(xp−1|xp) · fp−2|p−1,p(xp−2|xp−1, xp)
· · · · f1|2,...,p(x1|x2, . . . , xp)

=

p∏
i=1

fi|i+1,...,p(xi|xi+1, . . . , xp).

(4)
Based on the property that all the conditioned pdfs in (4)
can be further transformed into the product of only bivariate
copulae and one-dimensional density, e.g., f2|1(x2|x1) =
c2|1(F2, F1) · f2(x2), f3|1,2(x3|x1, x2) = c3,2|1(F3|1, F2|1) ·
c3,1(F3, F1) · f3(x3), and so on for the higher-dimensional
cases [12], it is easy to infer that the joint density, fX, can be
decomposed into a form that involves only bivariate copulae
and marginal densities. Let us take p = 4 as an example.
Specifically, fX(x1, x2, x3, x4) can be decomposed as
fX(x1, x2, x3, x4) =f1(x1) · f2(x2) · f3(x3) · f4(x4) · c1,2(F1(x1), F2(x2))

· c2,3(F2(x2), F3(x3)) · c3,4(F3(x3), F4(x4))

· c1,3|2(F1|2(x1|x2), F3|2(x3|x2))
· c2,4|3(F2|3(x2|x3), F4|3(x4|x3))
· c1,4|2,3(F1|2,3(x1|x2, x3), F4|2,3(x4|x2, x3)).

(5)
The decomposition enables us to use multiple bivariate copulae
to precisely describe the high-dimensional data structure.

However, it is worth pointing out that the order of pairwise
conditioning on (4) and (5) is not unique. Thus, we need a
systematic way to decompose it and provide a unique solution.
Two popular choices are the canonical vine (C-vine) and the
drawable vine (D-vine). Both of them make use of a graphical
tool to facilitate their decomposition into a set of cascade
copula densities forming p− 1 trees. For the C-vine copula, a
p-dimensional joint density is decomposed as

fX(x1, . . . , xp) =

p∏
i=1

fi(xi)

p−1∏
j=1

p−j∏
i=1

cj,j+i|1,...,j−1. (6)

Similarly, fX is decomposed via the D-vine copula as

fX(x1, . . . , xp) =

p∏
i=1

fi(xi)

p−1∏
j=1

p−j∏
i=1

ci,j+i|i+1,...,i+j−1. (7)

Here, cj,j+i|1,...,j−1 is short for cj,j+i|1,...,j−1(F (xj |x1,...,xj−1),

F (xi+j |x1,...,xj−1)) and ci,j+i|i+1,...,i+j−1 is short for
ci,j+i|i+1,...,i+j−1(F (xi|xi+1, . . . , xi+j−1), F (xi+j |xi+1,...,xi+j−1)).
A simple graph demo for a 4-dimensional C-vine and D-vine
is displayed in Fig. 1. For more details about their descriptions
and implementations, the reader is referred to [12]. It is also
easy to see that (5) is obtained from the D-vine copula.
Using this vine-copula technique, we are able to generate
the correlated samples that reflect the precise dependent
structures of the model inputs such as loads and renewables.

IV. REDUCED-ORDER MODELING

In this section, we present a nonparametric, reduced-order
modeling technique using GPE.
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Fig. 1. Examples for a 4-dimensional C-vine and D-vine with pair copulae
(red).

A. Problem Description
Let us first formulate the probabilistic load-margin as-

sessment problem in the GPE framework. Here, the CPF
model is denoted by f(·). Its corresponding vector-valued
random input of p dimensions is denoted as x, which accounts
for the uncertainties from the variations of the loads and
the renewable energy generation. Due to the randomness
of x, we may observe n samples as a finite collection of
the model input as {x1,x2, . . . ,xn}. Accordingly, its eval-
uated model output f(x), i.e., load margin, also becomes
random, and has its corresponding n realizations denoted
by {f(x1), f(x2), . . . , f(xn)}. If we assume that the model
output is a realization of a Gaussian process, then the finite
collection, {f(x1), f(x2), . . . , f(xn)}, of the random vari-
ables, f(x), will follow a joint multivariate normal probability
distribution as f(x1)

...
f(xn)

 ∼N



m(x1)

...
m(xn)

,


k(x1,x1) · · · k(x1,xn)

...
. . .

...
k(xn,x1) · · · k(xn,xn)


.
(8)

Here, let us denote m(·) as the mean function and k(·, ·) as a
kernel function that represents the covariance function. Then,
(8) can be simplified as

f (X) |X ∼ N (m (X) ,k (X,X)) , (9)

where X is an n × p matrix, denoted by [x1,x2, . . . ,xn]
ᵀ;

f(X) stands for [f(x1), f(x2), . . . , f(xn)]
ᵀ; and m(X) rep-

resents [m(x1),m(x2), . . . ,m(xn)]
ᵀ.

Now, if an independent and identically distributed (i.i.d.)
Gaussian noise ε ∼ N (0, σ2In) (where In and σ2 are an n-
dimensional identity matrix and the variance, respectively) is
considered in the system output, f(X), the observations Y
will be expressed as

Y|X ∼ N
(
m (X) ,k (X,X) + σ2In

)
. (10)

Note that ε is also called a “nugget”. If σ2 = 0, then f(x) is
observed without noise. However, in practical implementation,
the nugget is always added for the sake of numerical stability.
B. Bayesian Inference

Here, we present the way to use the abovementioned finite
collection of n samples, (Y,X), to infer the unknown system

output, y(x), on the sample space of x ∈ Rp in a Bayesian-
inference framework.

It is well-known that a Bayesian posterior distribution of
the unknown system output can be inferred from a Bayesian
prior distribution of y(x) and the likelihoods obtained from the
observations. Let us first assume a Bayesian prior distribution
of y(x)|x, expressed as

y(x)|x ∼ N
(
m (x) ,k (x,x) + σ2Inx

)
. (11)

Combined with the observations provided by the finite col-
lection of the samples {Y,X}, we can formulate the joint
distribution of Y and y(x)|x as[

Y
y(x)|x

]
∼ N

([
m (X)
m (x)

]
,

[
K11 K12

K21 K22

])
, (12)

where K11 = k (X,X) + σ2In; K12 = k (X,x); K21 =
k (x,X); and K22 = k (x,x) + σ2Inx

.
Now, using the rules of the conditioned Gaussian distri-

bution [18], we can infer the Bayesian posterior distribution
of the system output y(x) conditioned upon the observations
(Y,X). It follows a Gaussian distribution given by

y(x)|x,Y,X ∼ N (µ (x) ,Σ (x)) , (13)

where

µ (x) =m(x) + K21K
−1
11 (Y −m(X)), (14)

Σ (x) = K22 −K21K
−1
11 K12. (15)

To this point, the general form of the GPE has been derived.
On one hand, we can directly use (14) as a surrogate model
(a.k.a. the response surface or reduced-order model) to very
closely capture the behavior of the nonlinear CPF model while
being computationally inexpensive to evaluate. On the other
hand, we may use (15) to quantify the uncertainty of the
surrogate itself. In this paper, we only need to use (14) as
a surrogate model.

C. Mean and Covariance Functions

Let us describe the mean function m(·) and the covariance
function represented via the kernel k(·, ·) that characterizes
the GPE. The mean function models the prior belief about the
existence of a systematic trend expressed as

m(x,β) = H(x)β. (16)

Here, H(x) can be any set of basis functions. For ex-
ample, let xi = [xi1, . . . , xip] be the ith sample, where
i = 1, 2, . . . , n, wherein xik represents its kth element, where
k = 1, 2, . . . , p. For instance, H(xi) = 1 is a constant
basis; H(xi) = [1, xi1, . . . , xip] is a linear basis; H(xi) =
[1, xi1, . . . , xip, x

2
i1, . . . , x

2
ip] is a pure quadratic basis, and β

is a vector of hyperparameters.
Since the covariance function is represented by a kernel

function, choosing the latter is a must. Popular choices include
the square exponential kernel (kSE), the exponential kernel
(kE), the rational quadratic kernel (kRQ), and the Martin 3/2
kernel (k3/2); they are listed in Table I. As for the parameters
of a kernel function, they are defined as follows: τ and `k
are the hyperparameters defined in the positive real line; σ2
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and `k correspond to the order of the magnitude and the
speed of variation in the kth input dimension, respectively.
Let θ = [τ, `1, . . . , `p] contain the hyperparameters of the
covariance function, i.e.,

k (xi,xj |θ) = Cov(xi,xj |θ). (17)

Until now, the model structure of the GPE has been fully
defined. For simplicity, we write η = (σ2,β,θ) to represent
all the hyperparameters in the GPE model.

TABLE I
COMMONLY USED COVARIANCE KERNELS FOR GAUSSIAN PROCESS

kSE (xi,xj) τ2 exp

(
−

p∑
k=1

r2k
2`2

k

)
kE (xi,xj) τ2 exp

(
−

p∑
k=1

|rk|
`k

)
kRQ (xi,xj) τ2

(
1 +

p∑
k=1

r2k
2α`2

k

)−α
k3/2 (xi,xj) τ2

(
1 +

p∑
k=1

√
3rk
`k

)
exp

(
−

p∑
k=1

√
3rk
`k

)
(rk =

∣∣xik − xjk∣∣)
V. PROBABILISTIC LOAD-MARGIN ASSESSMENT

Here, we illustrate the steps for conducting the probabilistic
load-margin assessment using the GPE.

1) Training Sample Generation: In order to acquire the
GPE-based surrogate described in (14), we need to obtain the
observation sets contained in (Y,X). To obtain the system
realization Y, we must generate n samples, X, that will
be evaluated through the CPF model, f(·). To avoid long
training time of the GPE, n should be small. To meet this
requirement, the Latin hypercube sampling is typically chosen.
It generates near-random samples and, therefore, has a faster
convergence rate than the MC sampling, which generates pure
random samples. This is especially true in our case since
n needs to be small [19] and, therefore, the MC sampling
based on the central limit theorem is not suggested here. Note
that the Latin hypercube sampling generates i.i.d. samples
while the correlation between renewable energy generations
are inevitable. Therefore, we need to use the aforementioned
vine copula to further transform these i.i.d. samples into the
correlated ones to improve the training performances.

2) GPE Construction: With (Y,X), we can estimate the
hyperparameters η in the GPE. Following Gelman et al.
[20], we choose to adopt the Gaussian maximum likelihood
estimator (MLE) since it is the most efficient estimator under
a Gaussian distribution, which is followed by the calculated
residuals, and it is easy to compute. First, to indicate the
hyperparameters, let us rewrite (10) as

Y|X,η ∼ N
(
m (X) ,k (X,X) + σ2In

)
. (18)

Then, using the Gaussian MLE, we obtain

η̂ =
(
β̂, θ̂, σ̂2

)
= argmax

β,θ,σ2

logP
(
Y|X,β,θ, σ2

)
. (19)

Using (16)–(18) and using H instead of H(x) for simplicity,
the marginal log-likelihood can be expressed as

logP
(
Y|X,β,θ, σ2

)
=− 1

2
(Y −Hβ)

ᵀ [
k(X,X|θ) + σ2In

]−1
(Y −Hβ)

− n

2
log 2π − 1

2
log
∣∣k(X,X|θ) + σ2In

∣∣ ,
(20)

which implies that the Gaussian MLE of β conditioned on θ
and σ2 is a weighted least-squares estimator given by(
θ, σ2

)
=
[
Hᵀ [k(X,X|θ) + σ2In

]−1
H
]−1

Hᵀ [k(X,X|θ) + σ2In
]−1

Y.
(21)

Since β̂ is a function of
(
θ̂, σ̂2

)
, let us insert (21) into (20)

to reduce the number of the hyperparameters. Then, (19) is
further simplified as(

θ̂, σ̂2
)
= argmax

θ,σ2

logP
(
Y|X, β̂

(
θ, σ2

)
,θ, σ2

)
. (22)

Now, we only need to estimate the hyperparameters
(
θ̂, σ̂2

)
instead of

(
β̂, θ̂, σ̂2

)
. Then, we utilize a gradient-based opti-

mizer to solve this optimization as described in [21]. Once η̂
is obtained, the GPE model is fully constructed. More details
can be found in [20].

3) Sample Evaluation: Now, we can execute an MC sam-
pling procedure to generate a large amount of samples and
transform them into the correlated ones through a vine copula.
These large amount of samples can be evaluated through
the GPE-based surrogate expressed in (14) at almost no
computational cost. Finally, the pdf of the system response
can be obtained.

VI. SIMULATION RESULTS

A case study is conducted using the IEEE 57-bus system
[22]. The algorithms are tested with MATPOWER package
using MATLAB® R2018a version on a desktop with 3.50-
GHz Intel® Xeon(R) CPU E5-1650 v2 processors and a 32
GB of main memory.

The uncertain inputs include the variations in the loads as
well as in the wind generation. Here, it is assumed that the
loads follow a Gaussian distribution with mean values equal to
the original bus loads and standard deviations equal to 5% of
their means. Four wind farms are connected to Buses 16, 17,
47, and 48 whose generation profiles follow the Weibull distri-
bution with the shape and scale parameter set as {2.06, 7.41},
{2.1, 7.2}, {2.06, 7.41}, and {2.3, 7.2}, respectively. To reflect
the correlation between these five uncertain inputs, we use the
D-vine copula to generate these samples since Becker claims
that the latter provides the highest accuracy when simulating
wind power generations [13]. Furthermore, for our problem
with five-dimensional inputs, we will have p(p − 1)/2 = 10
pair-copulae. Although their structure can be obtained from
the D-vine, we still need to estimate the copula family for
every pair copula (e.g., Frank, Gumbel), and the parameters
in every copula. The copula family and copula parameters can
be estimated from real data sets using a maximum likelihood
estimator as described in [12]. Here, for simplicity, we assume
we know the copula family and the copula parameter for each
pair-copula. As suggested by Becker [13], the predominant
copula family is the Frank copula for wind-data dependence
simulation. Therefore, we assume that we have 7 Frank copu-
lae, 2 Gaussian copulae, and 1 Gumbel copula. The simulated
samples for the four wind farms are displayed in Fig. 2. It
shows that both the upper-tail and lower-tail dependence can
be simulated using the D-vine copula.
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Fig. 2. 1-d histograms and scatter plots for wind farm samples (in MVA).

Let us choose the load margin at Bus 25 as the target
quantity of interest. The simulation results obtained with
the MC and the GPE methods are provided in Fig. 3. The
simulation results obtained with the MC method with 10, 000
samples are used as a benchmark to validate the GPE-based
method. It can be seen that with only 15 training samples,
the GPE method with a pure quadratic basis functions can
provide highly accurate simulation results under different
kernel functions, such as kSE and k3/2. The proposed GPE-
based method significantly reduces the computation time over
the traditional MC method without any loss of accuracy.
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Fig. 3. Probability density plots for load margin at Bus 25 using GPE (a)
with a pure quadratic basis and k3/2 kernel, and (b) with a pure quadratic
basis and kSE kernel.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel GPE-based method

for the PPF analysis. The GPE serves as a reduced-order
model for the nonlinear CPF that enables an evaluation of
the time-consuming CPF solver at the sampled values with
a negligible computational cost. The simulation results reveal
that the proposed method exhibits an impressive performance

as compared to the traditional MC method. As a future work,
we will use real data to estimate the copula family and copula
parameters of the vine copula and will attempt to improve
the performance of the proposed method when it is applied to
very-large-scale power systems.
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