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ABSTRACT

The majority of eye-tracking systems require user-specific calibra-
tion to achieve suitable accuracy. Traditional calibration is per-
formed by presenting targets at fixed locations that form a certain
coverage of the device screen. If simple regression methods are
used to learn a gaze map from the recorded data, the risk of overfit-
ting is minimal. This is not the case if a gaze map is formed using
neural networks, as is often employed in photosensor oculography
(PSOG), which raises the question of careful design of calibration
procedure. This paper evaluates different calibration data parsing
approaches and the collection time-performance trade-off effect of
grid density to build a calibration framework for PSOG with the
use of video-based simulation framework.
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1 INTRODUCTION

Eye-tracking (ET) technology is a cutting edge tool for touchless
human-computer interaction, and has tremendous potential for
biometrics and health-assessment applications. Underlying gaze
models usually contain a set of subject-dependent parameters that
should be derived from pre-collected data or from data gathered
during a calibration procedure, performed for every new use of the
system. Despite recent advances in using the former approach to
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build a calibration-free ET device, the later one is currently utilized
in order to achieve the highest level of performance of modern ET
systems [Kim et al. 2019].

Conventional calibration [Nystrom et al. 2013] requires the es-
tablishment of the spatial distribution of fixation targets, along
with a protocol for detecting the fixation interval for each target
location to ensure the validity of ground-truth (GT) data. In the case
of video-based oculography (VOG), the number of targets usually
varies from 9 to 25 [Kasprowski et al. 2014]. Fixations are typically
assumed to occur in a fixed time period offset within the interval
of presentation for each target. Prior research has largely utilized
empirical values for these offsets, rather than relying on statistics
derived from the collected data [Blignaut and Wium 2014], [Akkil
et al. 2014], which risks either discarding valid data or including
erroneous fixation samples.

For common VOG systems, gaze maps are built from extracted
image features using regression models with limited degrees of free-
dom, which is enough to achieve good performance within certain
conditions of restricted head movements, sensor shifts, and lighting
changes. Nevertheless, neural networks proved to be an essential
tool for enabling eye-tracking in more complex environments, ex-
hibiting state-of-the-art performance in robust non-restrained eye
gaze estimation in the wild [Kim et al. 2019]. Next example is a
challenging domain of portable virtual reality, that puts substantial
restrictions on overall power consumption and hardware complex-
ity of an underlying eye-tracking sensor. Those limitations are
unlikely to be met by widely adopted VOG and require a novel
approach, such as photosensor oculography (PSOG) [Katrychuk
et al. 2019], which is the focus of this paper.

The previous work [Griffith et al. 2019] studied the complexity
of the PSOG-based eye gaze estimation which reasons the neces-
sity of using neural networks as the inference mechanism. The
greater representation ability of these networks afforded by their
large number of parameters introduces a much higher chance of
overfitting to data samples which are either erroneously included
as fixation intervals, or are the result of poor subject compliance to
a presented target.

The aforementioned challenges pose the need for careful design
of components that comprise the whole calibration framework.
Therefore, this study focuses on the assessment of the learned gaze
map performance with respect to different calibration data parsing
approaches and grid densities for PSOG-based ET sensors. We keep
in mind the hardware limitation on power consumption of the
system and mainly focus on software basis of eye gaze estimation,
therefore the sensor hardware output is simulated using a VOG-
based pipeline.
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2 DATA COLLECTION

The data was collected using the custom VOG setup introduced in
[Abdulin and Komogortsev 2017] that allows access to the full video
stream of the whole recording, which is essential for our study. The
device has the operational range of (—16.7° 16.7°) vertically and
(—20.51° 20.51°) horizontally in degrees of the visual angle and was
set to 120Hz sampling frequency.

The recorded data set consists of 40 subjects that performed an
oblique saccades stimulus task. The task consists of 174 fixation
targets that are depicted in Fig. 1. The targets [C1..C29] that are
drawn as red crosses are shown on the screen for a fixed time of
1.75 sec. For the rest of the targets, the time was drawn from the uni-
form distribution with the range of [1..1.25] sec. To reduce fatigue
effects, groups labeled as [C1..C29], [V1..V16], which were used in
learning gaze maps, were presented first and second, respectively.
The targets are presented in the randomized (but the same for all
subjects) order within each of the three groups.

3 METHODOLOGY
3.1 Pre-processing

PSOG sensor outputs were simulated using cropped images of the
near eye region from the VOG system. As neural networks are em-
ployed for PSOG gaze mapping to improve shift robustness [Rigas
et al. 2018], a workflow simulating translation shifts was enacted on
each image. Head movements were compensated to ensure precise
control over the simulated sensor shift range. Without having an
explicit marker to track, we based the compensation algorithm on
the observation that the relationship between eye gaze and pupil
center is near linear for the fixed head position and slight transi-
tional head movement change only the intercept of the relation.
Therefore, the steps performed are the following:
(1) Use the linear regression of eye gaze (posy;posy) to pupil
center position (pcy; pcy) reported by the ET system for the
whole recording:

(pexspey) = (Ax * posy + by; Ay * posy + by)
(2) For every sample i perform the head movement correction
of (—Ay * posy; —Ay * posy) pixels.
The rest of the shifts and PSOG output simulation pipeline remains
the same as described in [Griffith et al. 2019].

3.2 Calibration data parsing

In previous PSOG studies [Katrychuk et al. 2019], [Griffith et al.
2019], partitioning data into train/validation/test sets was per-
formed randomly due to limitations of the common data set. This
scenario does not reflect the target use case of the device, where
gaze maps are trained using data collected only during calibration
procedure. Therefore, that split neither reflected the distribution
of gaze samples across the screen nor the fact that calibration tar-
get position should be used as the ground-truth labels in the train
set instead of eye gaze reported by VOG. In the current study the
proper care was taken during the stimulus design to overcome these
issues.

The following algorithms were used for identifying valid fixation
intervals on a per-target basis.
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(V) VOG eye gaze was classified using I-VT [Salvucci and Gold-
berg 2000] with adaptive threshold and modified merging
stage. The 85th percentile of radial velocity distribution com-
puted from the whole recording was used as a decision
boundary to pre-classify every sample as a fixation or a
saccade. As the purpose of the algorithm is the detection
of data intervals corresponding to fixations on a calibration
target and not the eye movement classification by itself, fixa-
tions were merged on a per-target basis using the clustering
DBSCAN algorithm [Ester et al. 1996] with ¢ = 0.85.
Uncalibrated PSOG signal was classified into fixation and
non-fixation samples using the sliding temporal window of
raw sensor output that is fed to convolution neural network
(CNN) [Hoppe and Bulling 2016]. The model consists of
three 1D convolution layers with 24 feature maps and kernel
size of 5, followed by five fully connected layers with 20
neurons in each. Dropout with 0.1 probability was applied to
every layer except the output one. The input sliding window
captures the 11 samples before and after the current one
(23 samples total). Output of (V) with ¢ = 0.4 for more fine-
grained fixation intervals was used as a ground-truth during
the training phase.

®

~

The first research question that we are going to address to build
the PSOG calibration framework is how to detect data regions
that correspond to fixation on a calibration target based on raw
PSOG output? The different ways for such detection are entitled as
calibration data parsing approaches and are presented next:

(1) “VOG_GT’ - for every calibration target estimates the corre-
sponding fixation interval start Fixp. 4 and end Fix,,q based
on the output of the algorithm (V). Used as a benchmark
unrealistic scenario when the gaze map is already available
prior to calibration.

(2) ‘Blind_Empirical’ - the data within time range of

[Tarpeg + 1000ms; Tarypq — 250ms]

is blindly considered as the fixation interval on the calibra-
tion target that starts at Tarp., and ends at Tare,q. The
constants are picked as a conservative range from the litera-
ture [Blignaut and Wium 2014].

(3) ‘Blind_Temporal’ - the same as (2) but with the time range
of

[Tarpeg + Latpeg; Tareng + Lateng]

, where Latpeq. Latepq are constants based on statistics of
the data from (1). For all calibration fixations of subject from
the train+validation sets, the Latp., is equal to the 95th
percentile of the distribution of Fixey — Tarpey, and the
Lat,, 4 is the 95th percentile of Tar, g — Fixepnq (i-€., 95% of
calibration fixations started before the Laty 4 ms after the
calibration target appeared and ended after the Lat,,; ms
after the target disappeared).

(4) ‘All_Fix_Uncalib_PSOG’ - all "fixation" samples based on the
output of the algorithm (P) go into the train set, which can
be seen as the way to alleviate the non-ideal performance of
the classification algorithm - the vast majority of fixations
should correspond to their calibration target and even if the
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Figure 1: All fixation targets presented to the subject during the task. Different set of targets correspond to the within-subject
data split into train (red crosses)/validation (green diamonds)/test (blue circles) for the gaze map learning purposes.

true fixation is split into many segments, all of them will be
included.

(5) ‘Longest_Fix_Uncalib_PSOG’ - the (4) is applied first and
then only the longest fixation on the calibration target is
kept in the train set.

(6) ‘Longest_Fix_Temporal’ - the output of (5) bounded by the
time range used in (3). So, only the part of the longest classi-
fied calibration fixation within the timestamp range when it
is the most likely to happen is kept in the train set.

The following between-subject split is used for the assessment
and parametric fine-tuning of approaches listed above:

e train: subjects with id from 1 to 20
o validation: subjects with id from 21 to 25
e test: subjects with id from 26 to 40

3.3 Calibration grid density

The amount of calibration points naturally reflects the trade-off
between the quality of the learned gaze map and time to collect
calibration data for every new use of the ET system. To assess
this trade-off, we pick the best approach from the Calibration data
parsing study and repeat the gaze map learning with gradual de-
crease of the amount of calibration targets used to comprise the
within-subject train set. The second research question of building
the PSOG calibration framework is how the performance of the
learned gaze map is influenced by calibration grid density? In order
to address it, the following grid configurations are tested (using
labels from the Fig. 1):

(1) 29 points: [C1..C29]

(2) 25 points: the (2) without C6, C7, C23, C24
(3) 21 points: the (3) without C9, C11, C19, C21

(4) 15 points: the (4) without C8, C10, C12, C18, C20, C22
(5) 5 points: C1, C5, C15, C25, C29

(6) 9 points: the (5) with C3, C13, C17, C27

(7) 13 points: the (6) with C6, C7, C23, C24

3.4 Eye gaze map learning

The low-power architecture from [Katrychuk et al. 2019],targeted
for deployment on embedded device, was used herein. The CNN
model has the following architecture: two convolution layers with
4 feature maps of size 3x3 in each and ‘same’ padding followed by
four fully-connected layers with 20 neurons in each.

The following within-subject split was utilized in the subject-
specific gaze map learning:

e train: gaze samples that correspond to up to 29 targets labeled
as [C1..C29] in Fig. 1

o validation: gaze samples that correspond to 4 targets picked
from [V1..V16] in Fig. 1

o test: the rest of subject’s gaze samples

To prevent overfitting to the train set which represents only
small fraction of the screen, the early stopping technique based
on the validation loss was utilized. The patience parameter was
set to 50, only relative decrease of the loss for more than 1% is
considered as an improvement. As the subsampling from the train
set will not provide the ability to assess the generalization of the
learned map across the screen, the validation set was constructed
from the different grid of points that are labeled as [V'1..V16] in the
Fig. 1. That procedure ensures the best possible subject compliance
to presented targets in the absence of subject-controlled validation
step during the data collection:
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(1) Put targets into 4 groups based on their quadrant location:
[V1..V4], [V5..V8], [V9..V12], [V13..V16].

(2) For every group, pick the target with the minimum misalign-
ment between validation target position and eye gaze during
the corresponding fixation on it.

4 RESULTS

The results of the calibration data parsing study are presented in
Tab. ??. The main observations from them are:

e The ‘VOG_GT’ approach showed the best performance as
expected, so it is picked as the ‘baseline’ and all other results
in Tab. ?? are normalized with respect to it.

e It was obtained from the data that Laty., = 735ms and
Lat,,q = —155ms for ‘Blind_Temporal’ approach. Even though
the ‘Blind_Empirical’, which is based on previous studies,
performs just marginally worse than ‘Blind_Temporal’, we
suggest that future VOG studies also estimate offset values
using statistics from the collected data to improve reliability.

e The ‘All_Fix_Uncalib_PSOG’ approach exhibited the worst
performance of all techniques. We hypothesize that this is
related to the sensitivity of the learned gaze map to outliers.
This performance degradation suggests that some fixations
occur prior to settling on the calibration target, resulting in
the inclusion of erroneous ground-truth data.

e The remaining approaches produced similar spatial errors.
The ‘Longest_Fix_Temporal’ that combines the blind temporal-
based removal of the data together with results of the classi-
fication of the uncalibrated PSOG signal is marginally the
best with a mean spatial error of 2.15°.

The results of the calibration grid density study are summarized
in Tab. ?? with ‘29 points’ configuration being the best performing,
as expected. As shown, spatial error increases substantially when
the number of targets is reduced from 21 to 15 (spatial error degra-
dation of 15% and 42%, respectively). Given this observation, we
suggest that 21 targets constitutes the optimal trade-off between
calibration time and performance of the learned gaze map.

5 DISCUSSION

The major assumption behind the described calibration procedure
is the expectation that user will follow the target to the best of
their skill, which is not always the case and has the significant
influence of inevitable micro eye movements. Overall, inability to
obtain the well-defined ground-truth for conventional eye-tracking
methods led to the research in promising retinal image-based eye-
tracking [Bowers et al. 2019] which has not matured yet to be
widely adopted. In conventional systems, the ground-truth labels
are derived from the target position, which may result in outliers in
the train set. The way to detect those outliers during the calibration
procedure itself can be used to automatically obtain points for the
extra recalibration step or to lower the confidence in corresponding
samples during the learning phase. The effect of subject compliance
on the performance of the learned map is an open research question
that should be addressed in the future work.

It was shown in [Katrychuk et al. 2019] that transfer-learning
from the pre-collected data can be used to reduce the training time
but it did not help in improving the spatial error. We speculate that
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Table 1: Study results as spatial errors in degrees of visual
angle. All relative changes are computed with respect to the
best performing option.

(a) Calibration data parsing approaches study

Approach Spatial error A in error
VOG_GT 1.99° -
Blind_Empirical 2.19° +9.9%
Blind_Temporal 2.16° +8.3%
All_Fix_Uncalib_PSOG 2.43° +21.9%
Longest_Fix_Uncalib_PSOG 2.19° +10.1%
Longest_Fix_Temporal 2.15° +7.9%

(b) Calibration grid density study

Ne of targets Time Aintime Spatial error A in error

29 51s - 2.15° -

25 44s —14% 2.22° +3%
21 37s —28% 2.46° +15%
15 26s —48% 3.04° +42%
13 23s —55% 3.04° +42%
9 16s —69% 3.79° +77%
5 9s —83% 5.68° +165%

the reason for that is the unrealistically simplified data split utilized
in that study that provides much higher coverage of the screen by
the train set which does not reflect the real calibration procedure.
Therefore, re-evaluation of transfer-learning should be done in the
context of our study with a proper calibration framework, with
the expectation of lowering the required calibration data collection
time for the same performance level.

6 CONCLUSION

In the paper we studied two important components of the cali-
bration framework that need to be considered when the eye gaze
map is built using highly parametric machine learning approaches.
Those components were evaluated in the case of PSOG-enabled ET
system and the resulting calibration framework uses:

o The longest fixation classified from uncalibrated PSOG signal
bounded by the time range where it is most likely to be on
the calibration target

e 21(train) + 4 (validation) = 25 points calibration grid

The fixation time bounds are statistically supported by the collected
data. The achieved mean spatial error of that configuration is 2.46°.

The up-to-date codebase and the data set to replicate the results is
available on GitHub. !
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