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TREE APPROXIMATION FOR hp-ADAPTIVITY\ast 

PETER BINEV\dagger 

Abstract. The hp-adaptive approximation is formulated as an approximation problem on a
full binary tree T , where for each of the leaves \Delta an order p(\Delta ) \geq 1 is assigned in such a way that
the sum of all orders p(\Delta ) does not exceed N , which is called the complexity of the approximation.
The leaves \Delta correspond to the cells of the partition, while p(\Delta ) is the dimension of the polynomial
space used for the local approximation on \Delta . Devising an incremental algorithm for near-best
adaptive approximation for the problem of finding the best possible tree T and assignments p(\Delta )
leads to building a construction that attaches a ghost tree with p(\Delta ) leaves to each leaf \Delta of T with
p(\Delta ) > 1. The resulting full binary tree \scrT has at most N leaves and can be used as a proxy of
T for assembling hp-adaptive procedures. Under the standard assumptions about the local errors,
we prove that the error of our approximation of complexity N is bounded by 2N - 1

N - n+1
\sigma n, where \sigma n,

n \leq N , is the error of the best possible approximation of complexity n.
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1. Introduction. There are two basic approaches to adaptivity when approx-
imating a function on a domain \Omega . The first considers the current partition of \Omega 
and chooses some of its elements \Delta for refinement. The polynomial space used for
local approximation does not change, and the improvement of the approximation is
based on decreasing the size h of the elements \Delta . Thus, this is usually called an
h-refinement. The second approach considers the same partition of \Omega , but the di-
mensionality p(\Delta ) of the local approximation space is increased on some elements \Delta ,
and thus, it is called a p-refinement. The combination of both approaches results in
approximation strategies often referred to as hp-adaptive. The goal of this paper is to
investigate the hp-adaptivity in very general settings and to introduce a framework
for which one can find a near-optimal algorithm with a reasonable complexity. The
results of this paper have already been used and cited (see, e.g., [5, 6, 7, 8]).

In general, the adaptive refinement can be linked to building a tree structure. The
initial partition consists of just one element, the domain \Omega itself, that we relate to the
root \scrR of the tree. Going forward, subdividing an element of the current partition
corresponds to taking a terminal node, called a leaf of the current tree, and attaching
to it new leaves that are related to the newly created smaller elements. While the
subdivided element \Delta is no longer an element of the partition, the corresponding node
remains as an internal node of the tree, but it is no longer a leaf. To simplify the
presentation, from now on we will consider the case of binary subdivision, namely,
that \Delta is subdivided into two smaller elements \Delta \prime and \Delta \prime \prime , such that \Delta = \Delta \prime \cup \Delta \prime \prime 

and \Delta \prime \cap \Delta \prime \prime is an empty set or a set of measure zero. We call \Delta \prime and \Delta \prime \prime children of

\ast Received by the editors March 12, 2018; accepted for publication (in revised form) September
27, 2018; published electronically November 29, 2018. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by
these rights.

http://www.siam.org/journals/sinum/56-6/M117507.html
Funding: This work was supported by NSF grants DMS 1222390 and DMS 1720297.

\dagger Department of Mathematics, University of South Carolina, Columbia, SC 29208 (binev@math.
sc.edu, http://people.math.sc.edu/binev/).

3346

D
ow

nl
oa

de
d 

04
/2

5/
19

 to
 1

29
.2

52
.1

39
.2

37
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sinum/56-6/M117507.html
mailto:binev@math.sc.edu
mailto:binev@math.sc.edu
http://people.math.sc.edu/binev/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TREE APPROXIMATION FOR hp-ADAPTIVITY 3347

\Delta , which will be referred to as their parent. The resulting graph will be a full binary
tree with a root \scrR , and the elements of the current partition will be identified with
the current leaves of the tree. With a slight abuse of the notation, we will refer to \Delta 
as both an element of the partition and a node of the binary tree.

For a given tree T we denote the set of its leaves by \scrL (T ). The internal nodes of
T also form a binary tree T\setminus \scrL (T ), but it might not be a full tree, i.e., there might
be a parent node with just one child. We define the complexity N of a full tree to
be \#\scrL (T ), the number of its leaves. This conveniently corresponds to the number of
elements in the partition of \Omega constituted by T .

The local errors at an element \Delta of the partition are denoted by ep(\Delta ), where
p = p(\Delta ) is the dimension of the polynomial space used in the approximation at \Delta .
It is important to emphasize that we want to work with additive quantities describing
the local errors. For a given partition defined by T and the assignments

\scrP (T ) :=
\Bigl( 
p(\Delta )

\Bigr) 
\Delta \in \scrL (T )

we define the total error \scrE (T,\scrP (T )) by

(1.1) \scrE (T,\scrP (T )) :=
\sum 

\Delta \in \scrL (T )

ep(\Delta )(\Delta ) .

In particular, this means that when working with the L2-norm, we define the error
to be the square of the L2-norm of the difference between the function and the ap-
proximating polynomial. This presentation uses very general settings about the error
ep(\Delta ), p \geq 1, requiring only the following two properties:

(i) subadditivity of the error for the lowest order approximation:

(1.2) e1(\Delta ) \geq e1(\Delta 
\prime ) + e1(\Delta 

\prime \prime ) ,

where \Delta \prime and \Delta \prime \prime are the children of \Delta ;
(ii) reduction of the error when the dimension p = k of the polynomial space

increases:

(1.3) ek(\Delta ) \geq ek+1(\Delta ) .

In some cases (e.g., spline approximation defined via quasi-interpolants) it is conve-
nient and often necessary to consider a less demanding variant of (1.2) known as weak
subadditivity:

(1.4) e1(\Delta ) \geq c
\sum 

\Delta \prime \in (\scrT \Delta \cap T )

e1(\Delta 
\prime ) ,

where c > 0 is a fixed constant independent of the choice of \Delta or the full binary tree
T . In this formula and everywhere else in the paper \scrT \Delta stands for the infinite full
binary tree rooted at \Delta . It is easy to see that (1.4) holds with c = 1 in case (1.2) is
true. While the proofs presented below can be modified to use (1.4) instead of (1.2),
this will result in additional complications and less favorable constants. To keep the
presentation simple, we choose to use the property (1.2) and refer the reader to [4]
for considerations in full generality in the case of h-adaptivity.

The definition of the best approximation depends on the notion of complexity.
Here we set the complexity of the hp-adaptive approximation by the pair (T,\scrP (T ))

D
ow

nl
oa

de
d 

04
/2

5/
19

 to
 1

29
.2

52
.1

39
.2

37
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3348 PETER BINEV

to be the sum of orders p(\Delta ) at all the elements of the partition

\#\scrP (T ) :=
\sum 

\Delta \in \scrL (T )

p(\Delta ) .

Given N > 0, the error of the best hp-adaptive approximation of complexity N is
then defined by

(1.5) \sigma N := inf
T

inf
\#\scrP (T )\leq N

\scrE (T,\scrP (T )) .

The aim of this paper is to define an incremental algorithm, similar to the one in
[4], that for given error assignments satisfying (1.2) and (1.3) produces for each N
a pair (TN ,\scrP (TN )) of a tree TN and the corresponding dimensions \scrP (TN ) of local
polynomial spaces with \#\scrP (TN ) = N such that it provides a near-best hp-adaptive
approximation, namely

\scrE (TN ,\scrP (TN )) \leq C1\sigma c2N

with some fixed constants C1 \geq 1 and c2 \in (0, 1].
First, we have to define a framework that allows us to increase the complexity

of the pair (TN ,\scrP (TN )) by preserving the local distribution of the degrees of free-
dom and, at the same time, allowing the flexibility to make substantial changes in
(TN+1,\scrP (TN+1)). The idea is to create a tree \scrT with \#\scrL (\scrT ) = N leaves, for which
TN is a subtree. To receive \scrT from TN , at each leaf \Delta \in \scrL (TN ) we add a ``ghost"" tree
\Upsilon \Delta rooted at \Delta that has exactly p(\Delta ) leaves (\Upsilon \Delta is just \Delta in the case p(\Delta ) = 1).
After attaching all such trees to the leaves of TN we compose the tree \scrT . Of course,
the tree \scrT is not uniquely defined since there are different ways of choosing the ghost
trees \Upsilon \Delta , in general. However, a specific choice of \Upsilon \Delta can carry information on what
the approximation would look like if we decide to use polynomial spaces of lower
dimensions at some locations while keeping the same complexity.

Given \scrT , for each of the nodes \Delta \in \scrT we define its order by

(1.6) \scrP (\Delta ) := \scrP (\Delta , \scrT ) := \#
\Bigl( 
\scrL (\scrT ) \cap \scrT \Delta 

\Bigr) 
.

By the definition of \scrT it follows that \scrP (\Delta ) = p(\Delta ) for \Delta \in \scrL (TN ), but we also can
associate \scrT with any other full subtree T \subset \scrT and obtain the pair (T,\scrP (T )) from
(1.6). Now, the hp-approximation can be identified with the pair (\scrT , T ) instead of
the pair (T,\scrP (T )), and we set \scrE (\scrT , T ) = \scrE (T,\scrP (T )) as defined in (1.1). It is easy to
see that the error of the best approximation from (1.5) can be expressed as

(1.7) \sigma N = inf
\scrT :\#\scrL (\scrT )\leq N

inf
T\subset \scrT 

\scrE (\scrT , T ) .

This leads to a different approach to finding a near-best approximant, namely, to find a
tree \scrT N with \#\scrL (\scrT N ) = N first, and then to examine all possible subtrees T of \scrT N and
choose the one for which the error \scrE (\scrT N , T ) is minimal. This also gives the possibility
to define the trees \scrT N incrementally and thereby minimize the computational cost.

Remark 1.1. Note that the inf in the definitions (1.5) and (1.7) is acting on a
finite set of possibilities and therefore can be replaced by min.

The strategy of building the tree \scrT is to identify at each step the leaf with the
highest potential to decrease the total error. A straightforward greedy approach,
namely, to choose the leaf with the highest local error, is not going to work since a

D
ow

nl
oa

de
d 

04
/2

5/
19

 to
 1

29
.2

52
.1

39
.2

37
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TREE APPROXIMATION FOR hp-ADAPTIVITY 3349

very localized singularity would attract several consecutive refinements without an
(essential) improvement of the total error. In the case of h-adaptive refinements, one
can modify the local errors to account for the depth of the tree in such a way that
the choice for refinement of the leaf with the largest modified local error would result
in a near-best approximation (see [4, 3]). We present the variant of this strategy
from [1] and prove some results about it in section 2. It is important to note that
the h-adaptive algorithm is driven by a quantity (the modified error) defined at the
nodes but completely independent of the current tree. While this will pave the road to
designing a strategy for the hp-adaptivity, it seems that a much more involved setup
is needed (see [2]). We describe our approach in section 3 and prove the following
result.

Theorem 1.2. Let the local errors ep satisfy the conditions (1.2) and (1.3). Then
there exists a constructive incremental algorithm for finding a tree \scrT N starting from
\scrT 1 = \{ \scrR \} and for each j \geq 1 receiving \scrT j+1 from \scrT j by adding two child nodes to a
leaf of \scrT j. In addition, for each tree \scrT N there exists a subtree TN such that the hp-
adaptive approximation of complexity N provided by the pair (\scrT N , TN ) is near-best,
namely,

(1.8) \scrE (\scrT N , TN ) \leq 2N  - 1

N  - n+ 1
\sigma n

for any integer n \leq N . The complexity of the algorithm for obtaining (\scrT N , TN ) is
bounded by \scrO 

\bigl( \sum 
\Delta \in \scrT N

\scrP (\Delta , \scrT N )
\bigr) 
, where \scrP (\Delta , \scrT N ) is defined by (1.6).

Remark 1.3. The sum
\sum 

\Delta \in \scrT N
\scrP (\Delta , \scrT N ) estimating the complexity of the algo-

rithm varies from \scrO (N logN) for well-balanced trees \scrT N to \scrO (N2) for highly unbal-
anced ones. The complexity of a single calculation of ep, for each consecutive p, is
considered to be a constant independent of p. This could happen, e.g., in the case
when ep is the square of the L2-error and the local polynomial spaces are defined via
given orthogonal bases.

2. Near-best results for an h-refinement strategy. The setup in the case
of h-adaptive approximation is much simpler. In particular, the local approximations
use the same polynomial space, so we denote the local errors by e(\Delta ). Since this
is the basic approximation, although the orders could be higher, we relate e(\Delta ) to
e1(\Delta ) in the hp-setup and therefore assume that it satisfies the subadditivity property
corresponding to (1.2):

(2.1) e(\Delta ) \geq e(\Delta \prime ) + e(\Delta \prime \prime ),

where \Delta \prime and \Delta \prime \prime are the children of \Delta . The global h-error for the tree \scrT is then
defined by

\scrE h(\scrT ) :=
\sum 

\Delta \in \scrL (\scrT )

e(\Delta ),

and the best N -term h-adaptive approximation error is

(2.2) \sigma h
N := min

\scrT : \#\scrL (\scrT )\leq N
\scrE h(\scrT ) .

To build the algorithm for near-best h-adaptive tree approximation, we define the
modified errors \~e(\Delta ) as follows:

(2.3) \~e(\scrR ) := e(\scrR ) for the root \scrR and \~e(\Delta ) :=
e(\Delta )\~e(\Delta  \star )

e(\Delta ) + \~e(\Delta  \star )
,
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3350 PETER BINEV

where \Delta  \star is the parent of \Delta . In case both e(\Delta ) and \~e(\Delta  \star ) are zeros, we define
\~e(\Delta ) = 0 as well. It is sometimes beneficial to use the following equivalent formula
for \~e(\Delta ):

(2.4)
1

\~e(\Delta )
=

1

e(\Delta )
+

1

\~e(\Delta  \star )
.

The modified error depends only on the set of ancestors and can be used to devise
a greedy algorithm for finding a tree \scrT N that provides a near-best approximation:

\bullet define \scrT 1 := \{ \scrR \} and receive the tree \scrT N+1 from \scrT N by subdividing a leaf
\Delta \in \scrL (\scrT N ) with the largest \~e(\Delta ) among all leaves from \scrL (\scrT N ).

The following theorem improves the constants from a similar result in [4] based on a
different approximation algorithm. Its proof illustrates some of the ideas used in the
hp-adaptive case and establishes some properties of the modified error functionals.

Theorem 2.1. Let the local errors e(\Delta ) satisfy the condition (2.1) and let the tree
\scrT N be received by applying a greedy refinement strategy with respect to the quantities
\~e(\Delta ) defined by (2.3). Then the tree \scrT N provides a near-best h-adaptive approximation
error

(2.5) \scrE h(\scrT N ) \leq N

N  - n+ 1
\sigma h
n

for any integer n \leq N . The complexity of the algorithm for obtaining \scrT N is \scrO (N),
omitting the sorting of \~e(\Delta ) that requires \scrO (N logN) operations.

Remark 2.2. The sorting can be avoided by binning the values of \~e(\Delta ) into binary
bins and choosing for subdivision any of the \Delta that provides a value for the nonempty
bin accumulating the largest values available. This will only increase the constant in
(2.5) by 2. In this case the total complexity of the algorithm is \scrO (N).

To prepare for the proof we should make some remarks and prove two lemmas.
First, let us mention that the following quantities are nonincreasing with respect to N :

(2.6) tN := max
\Delta \in \scrL (\scrT N )

\~e(\Delta ) .

Indeed, from (2.4) it follows that the value \~e(\Delta ) for a node \Delta is smaller than the value
\~e(\Delta  \star ) for its parent \Delta  \star and thus max\Delta \in \scrL (\scrT N ) \~e(\Delta ) \geq max\Delta \in \scrL (\scrT N+1) \~e(\Delta ) since in the
set \scrL (\scrT N+1) two child nodes replace their parent which is in \scrL (\scrT N ). Next, we consider
a general binary tree T (not necessarily full) and a threshold t such that for all of its
leaves \Delta \in \scrL (T ) we have \~e(\Delta ) \leq t and for all of its internal nodes \Delta \in (T\setminus \scrL (T )), we
have \~e(\Delta ) \geq t. The following two results hold.

Lemma 2.3. Let t > 0, and let T be a general binary tree rooted at \scrR such that
\~e(\Delta ) \leq t for all leaves \Delta \in \scrL (T ). Then\sum 

\Delta \in \scrL (T )

e(\Delta ) \leq (\#T )t .

Proof. Given a leaf \Delta we set \Delta = \Delta (0) and denote by \Delta (j+1) the parent of \Delta (j),
j = 0, 1, . . . , \ell  - 1, where \ell is such that \Delta (\ell ) = \scrR . Then by (2.4) and \~e(\scrR ) = e(\scrR ) we
obtain

(2.7)

1

\~e(\Delta (0))
=

1

e(\Delta (0))
+

1

\~e(\Delta (1))
=

1

e(\Delta (0))
+

1

e(\Delta (1))
+

1

\~e(\Delta (2))

= \cdot \cdot \cdot =
\ell \sum 

j=0

1

e(\Delta (j))
.
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Multiplying both parts of the equation by e(\Delta (0))\~e(\Delta (0)) we obtain

e(\Delta (0)) = \~e(\Delta (0))
\ell \sum 

j=0

e(\Delta (0))

e(\Delta (j))
= \~e(\Delta (0))

\left(  1 +
\ell \sum 

j=1

e(\Delta (0))

e(\Delta (j))

\right)  .

Now denoting by \scrA (\Delta ) = \{ \Delta (1),\Delta (2), . . . ,\Delta (\ell )\} the set of ancestors of \Delta = \Delta (0) in
the tree and using that \~e(\Delta ) \leq t, we have

e(\Delta ) \leq t

\left(  1 +
\sum 

\Delta \prime \in \scrA (\Delta )

e(\Delta )

e(\Delta \prime )

\right)  
and therefore

(2.8)

\sum 
\Delta \in \scrL (T )

e(\Delta ) \leq t
\sum 

\Delta \in \scrL (T )

\left(  1 +
\sum 

\Delta \prime \in \scrA (\Delta )

e(\Delta )

e(\Delta \prime )

\right)  

= t

\left(     \#\scrL (T ) +
\sum 

\Delta \prime \in (T\setminus \scrL (T ))

\sum 
\Delta \in (\scrT \Delta \prime \cap \scrL (T ))

e(\Delta )

e(\Delta \prime )

\right)     ,

where in the derivation of the last expression we change the order of summation and
take into account that the set of all leaves of T to which \Delta \prime is an ancestor is exactly
\scrT \Delta \prime \cap \scrL (T ). Now we use that (1.2) yields (1.4) with c = 1 to conclude that each of the
fractions in the sum over \Delta \prime does not exceed 1. Thus, the sum is at most \#(T\setminus \scrL (T )),
which proves the lemma since \scrL (T ) \subset T .

Lemma 2.4. Let t > 0, let \nabla be a node in a tree \scrT , and let T be a general binary
subtree of \scrT rooted at \nabla such that \~e(\Delta ) \geq t for all nodes \Delta \in T . Then

(2.9) e(\nabla ) \geq (\#T )t .

Proof. For any node \Delta of T we have

e(\Delta ) \geq \~e(\Delta ) \geq t .

This gives the estimate in the case \#T = 1 and \Delta = \nabla . If, in addition, \Delta has a
parent node \Delta  \star \in T , then from (2.4) we get

e(\Delta ) \geq t

\biggl( 
e(\Delta )

e(\Delta )
+

e(\Delta )

\~e(\Delta  \star )

\biggr) 
= t

\biggl( 
1 +

e(\Delta )

\~e(\Delta  \star )

\biggr) 
.

We are going to prove by induction on k = k\prime that if \#(\scrT \Delta \prime \cap T ) = k\prime for a node
\Delta \prime \in T , then

(2.10) e(\Delta \prime ) \geq tk\prime 

and in case \Delta \prime has a parent \Delta \in T ,

(2.11) e(\Delta \prime ) \geq t

\biggl( 
k\prime +

e(\Delta \prime )

\~e(\Delta )

\biggr) 
.
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The above inequalities have already been established for k = 1. Assume that (2.10)
and (2.11) have been established for all k\prime < k, and let \Delta \in T be such that the tree \scrT \Delta 
rooted at \Delta has k > 1 nodes in T . Since k > 1, \Delta has one or two children, \Delta \prime \in T and
\Delta \prime \prime \in T , such that the trees \scrT \Delta \prime and \scrT \Delta \prime \prime have k\prime and k\prime \prime nodes in T , correspondingly.
Then, k = k\prime + k\prime \prime + 1. In case \Delta \in T has just one child \Delta \prime \in T , we set k\prime \prime = 0 and
e(\Delta \prime \prime ) = 0 in the considerations below. By the induction hypothesis, (2.11) holds for
both \Delta \prime and \Delta \prime \prime . Adding the corresponding inequalities together gives

e(\Delta \prime ) + e(\Delta \prime \prime ) \geq t

\biggl( 
k\prime + k\prime \prime +

e(\Delta \prime ) + e(\Delta \prime \prime )

\~e(\Delta )

\biggr) 
.

Multiplying both sides by e(\Delta )
e(\Delta \prime )+e(\Delta \prime \prime ) \geq 1, we obtain

e(\Delta ) \geq t

\biggl( 
k\prime + k\prime \prime +

e(\Delta )

\~e(\Delta )

\biggr) 
\geq t(k\prime + k\prime \prime + 1) = tk

to establish (2.10) for \Delta and k. If \Delta has a parent \Delta  \star , then we use (2.4) to get

e(\Delta ) \geq t

\biggl( 
k\prime + k\prime \prime +

e(\Delta )

e(\Delta )
+

e(\Delta )

\~e(\Delta  \star )

\biggr) 
= t

\biggl( 
k +

e(\Delta )

\~e(\Delta  \star )

\biggr) 
to establish (2.11) for \Delta and k. The induction argument completes the proof.

Proof of Theorem 2.1. Let \scrT  \star 
n be a tree of best approximation for n, and thus

\scrE h(\scrT  \star 
n ) = \sigma h

n. We want to compare the trees \scrT N and \scrT  \star 
n . If (\scrT  \star 

n \setminus \scrL (\scrT  \star 
n )) \subset (\scrT N\setminus \scrL (\scrT N )),

then \scrT  \star 
n \subset \scrT N and therefore \scrE h(\scrT N ) \leq \scrE h(\scrT  \star 

n ). So, we can assume that there
is at least one internal node of \scrT  \star 

n that is not an internal node of \scrT N . We use
Lemma 2.4 to estimate \scrE h(\scrT  \star 

n ) = \sigma h
n from below in terms of tN from (2.6). To

this end we consider the set F := (\scrT N\setminus \scrL (\scrT N ))\setminus (\scrT  \star 
n \setminus \scrL (\scrT  \star 

n )). The total number of
nodes of F is \#F \geq (N  - 1)  - (n  - 2) = N  - n + 1 since at least one node from
\scrT  \star 
n \setminus \scrL (\scrT  \star 

n ) is not in \scrT N\setminus \scrL (\scrT N ). The set F can be considered as the union of the trees
T\nabla = \scrT \nabla \cap (\scrT N\setminus \scrL (\scrT N )) for \nabla \in \scrL (\scrT  \star 

n ). The tree T\nabla is empty if \nabla is not an internal
node of \scrT N ; otherwise it consists of \nabla itself and all the internal nodes of \scrT N that are
its descendants. The application of (2.9) gives

(2.12)

\sigma h
n = \scrE h(\scrT  \star 

n ) =
\sum 

\nabla \in \scrL (\scrT  \star 
n )

e(\nabla )

\geq 
\sum 

\nabla \in \scrL (\scrT  \star 
n )

(\#T\nabla )tN = (\#F )tN \geq (N  - n+ 1)tN .

To estimate \scrE h(\scrT N ) from above we divide the set of its leaves into two parts: the
leaves that are nodes in (\scrT  \star 

n \setminus \scrL (\scrT  \star 
n )), and the rest of them, whose combined errors

can be estimated by \scrE h(\scrT  \star 
n ) = \sigma h

n, namely

(2.13) \scrE h(\scrT N ) =
\sum 

\Delta \in \scrL (\scrT N )

e(\Delta ) \leq \sigma h
n +

\sum 
\Delta \in [\scrL (\scrT N )\cap (\scrT  \star 

n \setminus \scrL (\scrT  \star 
n ))]

e(\Delta ) .

We apply Lemma 2.3 for the minimal tree T with leaves \scrL (\scrT N ) \cap (\scrT  \star 
n \setminus \scrL (\scrT  \star 

n )) to
obtain

(2.14)
\sum 

\Delta \in [\scrL (\scrT N )\cap (\scrT  \star 
n \setminus \scrL (\scrT  \star 

n ))]

e(\Delta ) \leq \#(\scrT  \star 
n \setminus \scrL (\scrT  \star 

n )) tN \leq n - 1

N  - n+ 1
\sigma h
n ,

where we have used the fact that T \subset (\scrT  \star 
n \setminus \scrL (\scrT  \star 

n )) and (2.12). Finally, the combina-
tion of (2.13) and (2.14) completes the proof of (2.5).
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3. Adaptive strategy for hp-refinements. Before formulating our variant of
hp-refinement strategy, we describe a recursive algorithm to find the subtree TN for
a given \scrT N . We define the local hp-errors E(\Delta ) = E(\Delta , \scrT N ) starting with

E(\Delta ) := e1(\Delta ) for \Delta \in \scrL (\scrT N ) .

If E(\Delta \prime ) and E(\Delta \prime \prime ) are already defined for the children \Delta \prime and \Delta \prime \prime of \Delta , we set

(3.1) E(\Delta ) := min
\bigl\{ 
E(\Delta \prime ) + E(\Delta \prime \prime ), e\scrP (\Delta )(\Delta )

\bigr\} 
,

where the order \scrP (\Delta ) = \scrP (\Delta , \scrT N ) is given by (1.6). To receive the tree TN we start
with \scrT N and trim it at \Delta every time E(\Delta ) = e\scrP (\Delta )(\Delta ) in (3.1). In this way TN

becomes the minimal tree for which E(\Delta ) = e\scrP (\Delta )(\Delta ) at all its leaves.
An important observation about the quantities E(\Delta ) = E(\Delta , \scrT N ) is that they

depend on \scrT N only through the changes in the subtree rooted at \Delta . Therefore,
E(\Delta , \scrT N ) will change with the increasing of N only if the quantity \scrP (\Delta , \scrT N ) changes.
It is then convenient to consider the notation Ej(\Delta ) independently of \scrT N by setting
Ej(\Delta ) := E(\Delta , \scrT \ast ), where \scrT \ast is any of the trees in the sequence \scrT 1, \scrT 2, \scrT 3, . . . such
that \scrP (\Delta , \scrT \ast ) = j.

Remark 3.1. The independence of the quantities Ej(\Delta ) from the tree \scrT N is un-
derstood in the sense that the sequence \scrT 1, \scrT 2, \scrT 3, . . . is predetermined by the local
errors ep(\Delta ) and a given hp-refinement strategy. If a different refinement strategy
is applied, then it may result in different values of the Ej(\Delta ). This is one of the
issues that make the analysis of the hp-adaptive algorithm more complicated than
the analysis from section 2.

As in the h-refinement case, we define via (2.3) the quantities \~e(\Delta ) based on
the local errors e(\Delta ) = e1(\Delta ). These quantities are independent of \scrT N and give
information about the local error at the node \Delta only when \Delta is a leaf of \scrT N . To
extend our ability to monitor the local error behavior in the process of finding a good
hp-adaptive approximation, we define modified local hp-errors \~Ej(\Delta ) as follows:

(3.2) \~E1(\Delta ) := \~e(\Delta ) and \~Ej(\Delta ) :=
Ej(\Delta ) \~Ej - 1(\Delta )

Ej(\Delta ) + \~Ej - 1(\Delta )
for j > 1 .

In case both Ej(\Delta ) and \~Ej - 1(\Delta ) are zeros, we define \~Ej(\Delta ) := 0 as well. For a fixed

tree \scrT N we set j = \scrP (\Delta , \scrT N ) and consider \~E(\Delta ) := \~E(\Delta , \scrT N ) := \~E\scrP (\Delta ,\scrT N )(\Delta ).

The definition (3.2) of \~Ej(\Delta ) and (2.7) used with the set of ancestors \scrA (\Delta ) give

(3.3)

1
\~Ej(\Delta )

=
1

Ej(\Delta )
+

1
\~Ej - 1(\Delta )

=

j\sum 
k=2

1

Ek(\Delta )
+

1
\~E1(\Delta )

=

j\sum 
k=1

1

Ek(\Delta )
+

\sum 
\Delta \prime \in \scrA (\Delta )

1

e(\Delta \prime )
.

Next, we introduce two functions q : \scrT N \rightarrow [0,\infty ) and s : \scrT N \rightarrow \scrL (\scrT N ) that are
critical for defining the hp-adaptive algorithm. The quantity q(\nabla ) is related to the
maximal modified hp-error of the subtree rooted at \nabla , while s(\nabla ) points to the leaf
with the largest contribution for this error. For the leaves \Delta \in \scrL (\scrT N ) we define

(3.4) q(\Delta ) := \~e(\Delta ) = \~E1(\Delta ) and s(\Delta ) := \Delta .
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Recursively, for a node \Delta \in \scrT N\setminus \scrL (\scrT N ) with children \Delta \prime and \Delta \prime \prime , for which q and s
have been determined, we define

(3.5)
q(\Delta ) := min

\Bigl\{ 
max\{ q(\Delta \prime ), q(\Delta \prime \prime )\} , \~E\scrP (\Delta )(\Delta )

\Bigr\} 
and

s(\Delta ) := s(argmax\{ q(\Delta \prime ), q(\Delta \prime \prime )\} ) .

The principal algorithm for incrementally growing the tree \scrT N is the following:
\bullet set N = 1 and \scrT 1 := \{ \scrR \} ;
\bullet while N < Nmax : given the tree \scrT N subdivide the leaf s(\scrR ) to form \scrT N+1

and set N := N + 1 .
Before analyzing the near-best performance of the sequence (\scrT N , TN ), we first give
a detailed description of the algorithm to list all the necessary computations and
comparisons in growing the tree in order to estimate its complexity.

hp-algorithm:
(i) set \scrT 1 := \{ \scrR \} , \~e(\scrR ) := e(\scrR ), E1(\scrR ) := e(\scrR ), \~E1(\scrR ) := \~e(\scrR ), q(\scrR ) := \~e(\scrR ),

s(\scrR ) := \scrR , \scrP (\scrR ) := 1;
(ii) for N = 1 to Nmax  - 1
(iii) expand the current tree \scrT N to \scrT N+1 by subdividing \Delta N := s(\scrR ) and

adding two child nodes \Delta \prime 
N and \Delta \prime \prime 

N to it;

(iv) for \nabla = \Delta \prime 
N and \nabla = \Delta \prime \prime 

N calculate the quantities: \~e(\nabla ) := e(\nabla )\~e(\Delta )
e(\nabla )+\~e(\Delta ) ,

E1(\nabla ) := e(\nabla ), \~E1(\nabla ) := \~e(\nabla ), q(\nabla ) := \~e(\nabla ), s(\nabla ) := \nabla , \scrP (\nabla ) := 1;
(v) set \Delta := \Delta N ;
(vi) while \Delta \not = \emptyset 
(vii) set \scrP (\Delta ) := \scrP (\Delta ) + 1 and calculate e\scrP (\Delta )(\Delta );
(viii) set \Delta \prime and \Delta \prime \prime to be the children of \Delta ;
(ix) set E\scrP (\Delta )(\Delta ) := min\{ E\scrP (\Delta \prime )(\Delta 

\prime ) + E\scrP (\Delta \prime \prime )(\Delta 
\prime \prime ), e\scrP (\Delta )(\Delta )\} ;

(x) set \~E\scrP (\Delta )(\Delta ) :=
E\scrP (\Delta )(\Delta ) \~E\scrP (\Delta ) - 1(\Delta )

E\scrP (\Delta )(\Delta )+ \~E\scrP (\Delta ) - 1(\Delta )
;

(xi) set \scrD := argmax\{ q(\Delta \prime ), q(\Delta \prime \prime )\} and update
q(\Delta ) := min

\bigl\{ 
q(\scrD ), \~E\scrP (\Delta )(\Delta )

\bigr\} 
, s(\Delta ) := s(\scrD );

(xii) replace \Delta with its parent (or \emptyset if \Delta = \scrR );
(xiii) end while
(xiv) end for

Lemma 3.2. To obtain (\scrT N , TN ) the hp-algorithm performs
\sum 

\Delta \in \scrT N
\scrP (\Delta , \scrT N )

steps.

Proof. The algorithm has two loops: an outer loop including all instructions in
(ii)–(xiv), and an inner loop (vi)–(xiii). The outer loop runs for each consecutive
increment of N from 1 to Nmax  - 1, and the inner loop performs the calculations at
the nodes of the tree starting from the newly subdivided node \Delta and then proceeding
with all elements of its ancestry line \scrA (\Delta ) of \Delta . The quantities \scrP (\Delta ) are initialized
as 1 at (i) or (iv) and then increased in the inner loop by 1 assigning \scrP (\Delta , \scrT N+1) =
\scrP (\Delta , \scrT N ) + 1 for all nodes \Delta for which the quantities E, \~E, q, and s are updated.
Therefore \scrP (\Delta , \scrT N ) keeps the count of the calculations performed at \Delta .

Theorem 3.3. The pair (\scrT N , TN ) produced by the hp-algorithm provides near-
best approximation and satisfies (1.8) for any positive integer n \leq N .

Proof. Let the pair (T  \star 
n ,\scrP  \star ) be the one providing the optimal error of complexity

n in (1.5) and such that \sigma n = \scrE (T  \star 
n ,\scrP  \star ). We define the threshold parameter qN :=

q(\scrR ) for the tree \scrT N . From the fact that the quantities involved in the definition of
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q(\Delta ) decrease in the process of growing the trees \scrT k, it follows that the quantities qk
are decreasing with k.

To estimate \sigma n from below we consider the leaves \nabla \in \scrL (T  \star 
n) and their orders

\scrP  \star (\nabla ). In case \scrP (\nabla , \scrT N ) \leq \scrP  \star (\nabla ) we ignore the contribution of e\scrP  \star (\nabla )(\nabla ) to the
\scrE (T  \star 

n ,\scrP  \star ). If \scrP (\nabla , \scrT N ) > \scrP  \star (\nabla ), we consider the quantity qk \geq qN at the stage
\scrT k of growing the tree \scrT N at the last update of \scrP (\nabla ). From the definitions of q
and s it follows that at this stage q(\nabla ) \geq qk and therefore \~Ej(\nabla ) \geq q(\nabla ) \geq qN for
j = \scrP (\nabla , \scrT N ) - 1. From the intermediate relation in (3.3) we have

1
\~Ej(\nabla )

=

j\sum 
i=\scrP  \star (\nabla )+1

1

Ei(\nabla )
+

1
\~E\scrP  \star (\nabla )(\nabla )

.

Multiplying by \~Ej(\nabla )E\scrP  \star (\nabla )(\nabla ) and taking into account that the quantities Ei(\nabla )

are nonincreasing with i and that \~Ei(\nabla ) \leq Ei(\nabla ), we obtain

E\scrP  \star (\nabla )(\nabla ) = \~Ej(\nabla )

\left(  j\sum 
i=\scrP  \star (\nabla )+1

E\scrP  \star (\nabla )(\nabla )

Ei(\nabla )
+

E\scrP  \star (\nabla )(\nabla )

\~E\scrP  \star (\nabla )(\nabla )

\right)  
\geq qN (j  - \scrP  \star (\nabla ) + 1)

and therefore

(3.6) e\scrP  \star (\nabla )(\nabla ) \geq E\scrP  \star (\nabla )(\nabla ) \geq qN (\scrP (\nabla , \scrT N ) - \scrP  \star (\nabla ))+ ,

where we have used the standard notation (x)+ := max\{ x, 0\} . Before applying this
inequality for the estimate of \sigma n, we exclude the case that \scrP (\nabla , \scrT N ) \geq \scrP  \star (\nabla ) for
all \nabla \in \scrL (T  \star 

n) since then E\scrP (\nabla ,\scrT N )(\nabla ) \leq E\scrP  \star (\nabla )(\nabla ) \leq e\scrP  \star (\nabla )(\nabla ) and therefore
\scrE (\scrT N , TN ) \leq \scrE (T  \star 

n ,\scrP  \star ) = \sigma n which gives (1.8). This ensures the sign > in (3.7)
below. For notational purposes only, we set \scrP  \star (\nabla ) := 1 for all \nabla \in (T  \star 

n\setminus \scrL (T  \star 
n)) to

derive

(3.7)

\sum 
\nabla \in \scrL (T \star 

n)

(\scrP (\nabla , \scrT N ) - \scrP  \star (\nabla ))+ =
\sum 

\nabla \in \scrL (T \star 
n\cap \scrT N )

(\scrP (\nabla , \scrT N ) - \scrP  \star (\nabla ))+

>
\sum 

\nabla \in \scrL (T \star 
n\cap \scrT N )

(\scrP (\nabla , \scrT N ) - \scrP  \star (\nabla )) = N  - 
\sum 

\nabla \in \scrL (T \star 
n\cap \scrT N )

\scrP  \star (\nabla ) \geq N  - n ,

where we have used that (\scrP (\nabla , \scrT N )  - \scrP  \star (\nabla ))+ = 0 in case \nabla is in the symmetric
difference of the sets \scrL (T  \star 

n) and \scrL (T  \star 
n \cap \scrT N ), as well as\sum 

\nabla \in \scrL (T \star 
n\cap \scrT N )

\scrP  \star (\nabla ) \leq 
\sum 

\nabla \in \scrL (T \star 
n)

\scrP  \star (\nabla ) = n .

Now the combination of (3.6) and (3.7) gives

(3.8) \sigma n =
\sum 

\nabla \in \scrL (T \star 
n)

e\scrP  \star (\nabla )(\nabla ) \geq qN
\sum 

\nabla \in \scrL (T \star 
n)

(\scrP (\nabla , \scrT N ) - \scrP  \star (\nabla ))+ \geq qN (N - n+1) .

To obtain an estimate of \scrE (\scrT N , TN ) from above, we consider the function q(\Delta )
for the tree \scrT N and denote by L the set of nodes \Delta for which q(\Delta ) = \~E\scrP (\Delta ) in (3.5)
and (3.4). Let \scrQ be the maximal subtree of \scrT N for which L \cap \scrQ = \scrL (\scrQ ). The tree
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\scrQ has to be a full tree since q(\Delta ) = \~E1(\Delta ) for all leaves \Delta \in \scrL (\scrT N ) \subset L. Then
q(\Delta ) = \~E\scrP (\Delta ) for all leaves \Delta \in \scrL (\scrQ ). From the procedure of defining q it follows
that for all these leaves q(\Delta ) \leq q(\scrR ) = qN . To estimate E\scrP (\Delta ) for \Delta \in \scrL (\scrQ ) we

multiply both sides of (3.3) by \~E\scrP (\Delta )E\scrP (\Delta ) to obtain for j = \scrP (\Delta , \scrT N )

(3.9) Ej(\Delta ) = \~Ej(\Delta )

\left(  j\sum 
k=1

Ej(\Delta )

Ek(\Delta )
+

\sum 
\Delta \prime \in \scrA (\Delta )

Ej(\Delta )

e(\Delta \prime )

\right)  \leq qN

\left(  j +
\sum 

\Delta \prime \in \scrA (\Delta )

e(\Delta )

e(\Delta \prime )

\right)  
using that Ek(\Delta ) are monotone decreasing and E1(\Delta ) = e(\Delta ). Utilizing that TN is
the optimal subtree in terms of total hp-error, the inequality (3.9) gives

\scrE (\scrT N , TN ) \leq \scrE (\scrT N ,\scrQ ) =
\sum 

\Delta \in \scrL (Q)

E\scrP (\Delta ,\scrT N )(\Delta )

\leq qN

\left(  \sum 
\Delta \in \scrL (Q)

\scrP (\Delta , \scrT N ) +
\sum 

\Delta \in \scrL (Q)

\sum 
\Delta \prime \in \scrA (\Delta )

e(\Delta )

e(\Delta \prime )

\right)  .

Applying the same estimate as in (2.8) in the proof of Lemma 2.3 to the double sum
gives

(3.10) \scrE (\scrT N , TN ) \leq qN (N  - \#\scrL (\scrQ ) + \#\scrQ ) \leq qN (2N  - 1) ,

using that \#\scrQ  - \#\scrL (\scrQ ) \leq N  - 1 since the internal nodes of Q are internal nodes of
\scrT N . This concludes the proof of (1.8).

Proof of Theorem 1.2. The proof follows directly from Theorem 3.3 and Lemma
3.2.

Remark 3.4. The estimate (3.10) is a bit rough since it was derived treating in the
same way all possible subtrees \scrQ including the worst-case scenario \scrQ = \scrT N . However,
in this particular case one could derive a much better estimate using the fact that
the p-option was never taken in the calculation of the quantities q and applying an
argument similar to the one for (2.13). Further exploration of such ideas and thorough
analysis of the relative placement of the trees \scrQ and T  \star 

n will result in a slightly better
constant in (1.8) but would significantly complicate the proof. Since the advances are
marginal, we have chosen clarity.
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