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Greedy Algorithms for Optimal Measurements Selection in State Estimation
Using Reduced Models∗

Peter Binev† , Albert Cohen‡ , Olga Mula§ , and James Nichols‡

Abstract. We consider the problem of optimal recovery of an unknown function u in a Hilbert space V from
measurements of the form `j(u), j = 1, . . . ,m, where the `j are known linear functionals on V .
We are motivated by the setting where u is a solution to a PDE with some unknown parameters,
therefore lying on a certain manifold contained in V . Following the approach adopted in [Maday,
Patera, Penn and Yano, Int. J. Numer. Methods Engrg., 102 (2015), pp. 933–965, Binev, Cohen,
Dahmen, DeVore, Petrova, and Wojtaszczyk, SIAM J. Uncertainty Quantification, 5 (2017), pp.
1–29], the prior on the unknown function can be described in terms of its approximability by finite-
dimensional reduced model spaces (Vn)n≥1 where dim(Vn) = n. Examples of such spaces include
classical approximation spaces, e.g., finite elements or trigonometric polynomials, as well as reduced
basis spaces which are designed to match the solution manifold more closely. The error bounds for
optimal recovery under such priors are of the form µ(Vn,Wm)εn, where εn is the accuracy of the
reduced model Vn and µ(Vn,Wm) is the inverse of an inf-sup constant that describe the angle between
Vn and the space Wm spanned by the Riesz representers of (`1, . . . , `m). This paper addresses the
problem of properly selecting the measurement functionals, in order to control at best the stability
constant µ(Vn,Wm), for a given reduced model space Vn. Assuming that the `j can be picked from a
given dictionary D we introduce and analyze greedy algorithms that perform a suboptimal selection
in reasonable computational time. We study the particular case of dictionaries that consist either of
point value evaluations or local averages, as idealized models for sensors in physical systems. Our
theoretical analysis and greedy algorithms may therefore be used in order to optimize the position
of such sensors.
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1. Introduction.

1.1. State estimation from data in parametric PDEs. One typical recovery problem in
a Hilbert space V is the following: we observe m measurements of an unknown element u ∈ V
and would like to recover u up to some accuracy. Specifically, we observe

(1.1) zi := `i(u), i = 1, . . . ,m,
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§Université Paris-Dauphine, PSL University, CNRS, UMR 7534, CEREMADE, 75016 Paris, France

(mula@ceremade.dauphine.fr).

1101D
ow

nl
oa

de
d 

04
/2

5/
19

 to
 1

29
.2

52
.1

39
.2

37
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/juq/6-3/M115763.html
mailto:binev@math.sc.edu
mailto:cohen@ann.jussieu.fr
mailto:james.ashton.nichols@gmail.com
mailto:mula@ceremade.dauphine.fr


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

1102 P. BINEV, A. COHEN, O. MULA, AND J. NICHOLS

where the `i are independent continuous linear functionals over V . In this paper we consider
a Hilbert space V and denote by ‖ · ‖ its norm and by 〈·, ·〉 its inner product. The knowledge
of z = (zi)i=1,...,m is equivalent to that of the orthogonal projection w = PWmu, where

(1.2) Wm := span{ω1, . . . , ωm}

and ωi ∈ V are the Riesz representers of the linear functionals `i, that is,

(1.3) `i(v) = 〈ωi, v〉, v ∈ V.

Obviously, there are infinitely many v ∈ V such that PWmv = w, and the only way to recover
u up to a guaranteed accuracy is to combine the measurements with some a priori information
on u.

One particularly relevant scenario is when u is a solution to some parameter-dependent
PDE of the general form

(1.4) P(u, a) = 0,

where P is a differential operator and a is a parameter that describes some physical property
and lives in a given set A. We assume for each a ∈ A the problem is well posed, that is, there
exists a solution u(a) ∈ V . Therefore, in such a scenario, our prior on u is that it belongs to
the set

(1.5) M := {u(a) : a ∈ A},

which is sometimes called the solution manifold. We assume that this manifold is a pre-
compact set in V , which allows us to approximate it by finite-dimensional spaces.

For example, one could consider the diffusion equation

(1.6) − div(a∇u) = f,

on a given domain D with fixed right side f and homogeneous Dirichlet boundary condition.
Then with A a set of symmetric matrix valued functions such that

(1.7) rI ≤ a(x) ≤ RI, x ∈ D, a ∈ A

for some 0 < r ≤ R < ∞, the solution u(a) is well defined in V = H1
0 (D). Assuming

in addition that A is compact in L∞(D), the compactness of M in V follows by standard
continuity properties of the map a→ u(a).

1.2. Reduced model based estimation. The above prior is generally not easily exploitable
due to the fact that M does not have a simple geometry. For example it is not a convex set,
which prevents classical convex optimization techniques when trying to recover u in such a
set. On the other hand, the particular PDE structure often allows one to derive interesting
approximation properties of the solution manifold M by linear spaces Vn of moderate dimen-
sion n. Such spaces can for example be obtained through a scalar parametrization of a(y) of
a where y = (y1, . . . , yd), using polynomial approximations of the form

(1.8) un(y) =
∑
ν∈Λn

vνy
ν , yν :=

∏
j≥1

y
νj
j ,
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GREEDY ALGORITHMS FOR MEASUREMENT SELECTION 1103

where Λn is a conveniently chosen set of multi-indices such that #(Λn) = n. See in particular
[7, 8] where convergence estimates of the form

(1.9) sup
y∈U
‖u(y)− un(y)‖ ≤ Cn−s

are established for some s > 0 even when d = ∞. Thus, all solutions M are approximated
in the space Vn := span{vν : ν ∈ Λn}. Another typical instance is provided by reduced
bases. In such approximations, one directly builds a family of n-dimensional spaces Vn :=
span{v1, . . . , vn} with vi ∈ M, in such a way that all solutions in M are uniformly well
approximated in Vn. In particular the approximation rate compares favorably with that
achieved by the best n-dimensional spaces, that is, the Kolmogorov n-width of M; see [4, 9].

The common feature of these reduced models is that they yield a hierarchy of spaces
(Vn)n≥1 with dim(Vn) = n such that the solution manifold is uniformly well approximated in
such spaces, in the sense that

(1.10) sup
u∈M

dist(u, Vn) ≤ εn,

where εn is some known tolerance. Therefore, one natural option is to replace M by the
simpler prior class described by the cylinder

(1.11) K = {v ∈ V : dist(v, Vn) ≤ εn}

for some given n. This point of view is adopted in [12] and further analyzed in [5] where the
optimal recovery solution u∗(w) from the data w is characterized. This solution is defined as
the center of the ellipsoid

(1.12) Kw = {v ∈ K : PW v = w},

and equivalently given by

(1.13) u∗(w) := argmin{‖v − PVnv‖ : PWmv = w}.

It can be computed from the data w by solving a finite set of linear equations. The worst case
performance for this reconstruction is given by

(1.14) max
u∈K
‖u− u∗(PWu)‖ = µ(Vn,Wm)εn,

where, for any pair of closed subspaces (X,Y ) of V , we have set µ(X,Y ) := β(X,Y )−1, with
β(X,Y ) the inf-sup constant

(1.15) β(X,Y ) := inf
x∈X

sup
y∈Y

〈x, y〉
‖x‖ ‖y‖

= inf
x∈X

‖PY x‖
‖x‖

∈ [0, 1].

Note that finiteness in µ(Vn,Wm), equivalent to β(Vn,Wm) > 0, requires that m ≥ n. It is
also shown in [5] that β(Vn,Wm) can be computed as the smallest singular value of the n×m
cross-Gramian matrix with entries 〈φi, ψj〉 between any pair of orthonormal bases (φi)i=1,...,n

and (ψj)j=1,...,m of Vn and Wm, respectively.

Remark 1.1. As already mentioned, the map u 7→ u∗(w) in (1.13) is linear. Conversely it
can easily be checked that any linear recovery algorithm may be rewritten in the form of (1.13)
for a certain space Vn. On the other hand, let us note that these linear recovery methods
apply to general solution manifolds that may result from nonlinear PDEs.
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1.3. Optimal measurement selection. For a given reduced model space Vn with accuracy
εn, one natural objective is therefore that µ(Vn,Wm) is maintained of moderate size, with
a number of measurements m ≥ n as small possible. Note that taking Wm = Vn would
automatically give the minimal value µ(Vn,Wm) = 1 with m = n. However, in a typical data
acquisition scenario, the measurements that comprise the basis of Wm are chosen from within
a limited class. This is the case for example when placing m pointwise sensors at various
locations within the physical domain D.

We model this restriction by asking that the `i be picked from a dictionary D of V ′, that
is, a set of linear functionals normalized according to

‖`‖V ′ = 1, ` ∈ D,

which is complete in the sense that `(v) = 0 for all ` ∈ D implies that v = 0. With an abuse
of notation, we identify D with the subset of V that consists of all Riesz representers ω of the
above linear functionals `. With such an identification, D is the set of functions normalized
according to

‖ω‖ = 1, ω ∈ D,

such that the finite linear combinations of elements of D are dense in V . Our task is therefore
to pick {ω1, . . . , ωm} ∈ D in such a way that

(1.16) β(Vn,Wm) ≥ β∗ > 0

for some prescribed 0 < β∗ < 1, with m larger than n but as small as possible. In particular,
we may introduce

(1.17) m∗ = m∗(β∗,D, Vn),

the minimal value of m such that there exists {ω1, . . . , ωm} ∈ D satisfying (1.16).
We start section 2 with a discussion of the typical range of m∗ compared to n. We first

show the following two “extreme” results:
• For any Vn and D, there exists β∗ > 0 such that m∗ = n; that is, the inf-sup condition

(1.16) holds with the minimal possible number of measurements. However this β∗

could be arbitrarily close to 0.
• For any prescribed β∗ > 0 and any model space Vn, there are instances of dictionaries
D such that m∗ is arbitrarily large.

We then discuss particular cases of relevant dictionaries for the particular space V = H1
0 (D),

with inner product and norms

(1.18) 〈u, v〉 :=

∫
D
∇u(x) · ∇v(x) dx and ‖u‖ := ‖∇u‖L2 ,

motivated by the aforementioned example of parametric elliptic PDEs. These dictionaries
model local sensors, either as point evaluations (which is only when D is univariate) or as
local averages. In such a case, we provide upper estimates of m∗ in the case of spaces Vn
that satisfy some inverse estimates, such as finite element or trigonometric polynomial spaces.
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The optimal value m∗ is proved to be of the same order as n when the sensors are uniformly
spaced.

This a priori analysis is not possible for more general spaces Vn such as reduced basis
spaces, which are preferred to finite element spaces due to their advantageous approximation
properties. For such general spaces, we need a strategy to select the measurements. In
practice, V is of finite but very large dimension and D is of finite but very large cardinality

(1.19) M := #(D) >> 1.

For this reason, the exhaustive search of the set {ω1, . . . , ωm} ⊂ D maximizing β(Vn,Wm) for
a given m > 1 is out of reach. One natural alternative is to rely on greedy algorithms where
the ωj are picked incrementally.

Our starting point to the design of such algorithms is the observation that (1.16) is equiv-
alent to having

(1.20) σm = σ(Vn,Wm) := sup
v∈Vn,‖v‖=1

‖v − PWmv‖ ≤ σ∗, σ∗ :=
√

1− (β∗)2 < 1.

Therefore, our objective is to construct a space Wm spanned by m elements from D that
captures all unit norm vectors of Vn with the prescribed accuracy σ∗ < 1. This leads us
to study and analyze algorithms which may be thought as generalization to the well-studied
orthogonal matching pursuit algorithm (OMP), equivalent to the algorithms we study here
when applied to the case n = 1 with a unit norm vector φ1 that generates V1. Two algorithms
are proposed and analyzed in section 3 and section 4, respectively. In particular, we show
that they always converge, ensuring that (1.16) holds for m sufficiently large, and we also give
conditions on D that allow us to a priori estimate the minimal value of m where this happens.

We close our paper in section 5 with numerical experiments that illustrate the ability of
our greedy algorithms to pick good points. In particular, we return to the case of dictionaries
of point evaluations or local averages, and show that the selection performed by the greedy
algorithms is near optimal in the sense that it achieves (1.16) after a number of iteration of
the same order as that established for m∗ in the results of section 2 when Vn is a trigonometric
polynomial space. We also illustrate the interest of the greedy selection of the measurement
for the reduced basis spaces. We close by some remarks on the relevance of the method in the
case of hyperbolic PDEs, for which reduced basis approximation is known to be less effective
than for elliptic or parabolic problems due the presence of shocks.

Remark 1.2. The problem of optimal placement of sensors, which corresponds to the par-
ticular setting where the linear functionals are point evaluations or local averages as in sec-
tion 2, has been extensively studied since the 1970s in control and systems theory. In this
context, the state function to be estimated is the realization of a Gaussian stochastic process,
typically obtained as the solution of a linear PDE with a white noise forcing term. The error
is then measured in the mean square sense, rather than in the worst case performance sense
(1.14) which is the point of view adopted in our work. The function to be minimized by the
sensors locations is then the trace of the error covariance, while we target at minimizing the
inverse inf-sup constant µ(Vn,W ). See in particular [3] where the existence and character-
ization of the optimal sensor location is established in this stochastic setting. Continuous
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optimization algorithms have been proposed for computing the optimal sensor location; see,
e.g., [1, 6, 16]. One common feature with our approach is that the criterion to be minimized
by the optimal location is nonconvex, which leads to potential difficulties when the number
of sensors is large. This is our main motivation for introducing a greedy selection algorithm,
which in addition allows us to consider more general dictionaries.

2. A priori analysis of measurement selection strategies. The goal of this section is to
present several results that provide with estimates on the inf-sup constant β(Vn,Wm). We first
discuss general dictionaries D and approximation spaces Vn, in which case it is not possible to
control how large m has to be compared to n in order to ensure a prescribed inf-sup constant.
We then show that this goal can be met with m proportional to n for more specific choices of
dictionaries and approximation spaces.

2.1. Two extreme results. The following result shows that one can always achieve a
positive inf-sup constant β(Vn,Wn) using a minimal number of measurement m = n; however,
there are no guarantees on the lower limit of the inf-sup constant, other that it is greater than
zero.

Theorem 2.1. Given a space Vn of dimension n and any complete dictionary D, there exists
a selection {ω1, . . . , ωn} from D such that β(Vn,Wn) > 0.

Proof. We define the ωi inductively, together with certain functions φi that constitute a
basis of Vn. We first pick any element φ1 ∈ Vn of unit norm. Since the dictionary is complete,
there exists ω1 ∈ D such that

(2.1) 〈φ1, ω1〉 6= 0.

Assuming that {φ1, . . . , φk−1} and {ω1, . . . , ωk−1} have been constructed for k ≤ n, we pick
φk ∈ Vn of unit norm and orthogonal to Wk−1 := span{ω1, . . . , ωk−1}. Then, we select ωk ∈ D
such that

(2.2) 〈φk, ωk〉 6= 0.

With such a selection procedure, we find that the cross-Gramian matrix (〈ωi, φj〉)i,j=1,...,n

is lower triangular with nonzero diagonal entries. These both show that {ω1, . . . , ωn} and
{φ1, . . . , φn} are bases, and that there is no nontrivial element of Vn that is orthogonal to Wn,
which means that β(Vn,Wn) > 0.

On the negative side, the following result shows that, for a general space Vn and dictionary
D, there is no hope to control the value of β(Vn,Wm) by below, even for arbitrarily large m
(here we assume that V is infinite dimensional).

Theorem 2.2. Given any space Vn of dimension n > 0, any ε > 0, and any m > 0, there
exists a dictionary D such that, for any selection {ω1, . . . , ωn} from D, one has β(Vn,Wn) ≤ ε.

Proof. It suffices to prove the result for n = 1 since enriching the space Vn has the effect
of lowering the inf-sup constant. We thus take V1 = Rφ for some φ ∈ V of unit norm, and
we take for D an orthonormal basis of V . By appropriate rotation, we can always choose this
basis so that |〈φ, ω〉| ≤ ε for all ω ∈ D.
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2.2. Pointwise evaluations. In this section, we consider the particular dictionary that
consists of all point evaluation functionals δx for x ∈ D, where D is some domain of Rd.
This means that the Hilbert space V should be a reproducing kernel Hilbert space (RKHS) of
functions defined on D, that is, a Hilbert space that continuously embeds in C(D). Examples
of such spaces are the Sobolev spaces Hs(D) for s > d/2, possibly with additional boundary
conditions.

As a simple example, motivated by parametric second-order elliptic PDEs, for a bounded
univariate interval I we consider V = H1

0 (I) which is continuously embedded in C(I). Without
loss of generality we take I =]0, 1[. For every x ∈]0, 1[, the Riesz representer of δx is given
by the solution of ω′′ = δx with zero boundary condition. Normalizing this solution ω with
respect to the V -norm (1.18), we obtain

(2.3) ωx(t) =


t(1−x)√
x(1−x)

for t ≤ x,
(1−t)x√
x(1−x)

for t > x.

For any set of m distinct points 0 < x1 < · · · < xm < 1, the associated measurement
space Wm = span{ωx1 , . . . , ωxm} coincides with the space of piecewise affine polynomials with
nodes at x1, . . . , xm that vanish at the boundary. Denoting x0 := 0 and xm+1 := 1, we have

Wm = {ω ∈ C0([0, 1]), ω|[xk,xk+1] ∈ P1, 0 ≤ k ≤ m, and ω(0) = ω(1) = 0}.(2.4)

As an example for the space Vn, let us consider the span of the Fourier basis (here orthonor-
malized in V ),

(2.5) φk :=

√
2

πk
sin(kπx), 1 ≤ k ≤ n.

With such choices, we can establish a lower bound (1.16) on β(Vn,Wm) with a number
of measurements m∗ that scales linearly with n, when using equally spaced measurements, as
shown by the following result.

Theorem 2.3. For any 0 < β∗ < 1, and any n > 0, taking point evaluations at xi = i
m+1

for i = 1, . . . ,m, we have β(Vn,Wm) ≥ β∗ as soon as m ≥ n
σ∗ − 1, where σ∗ =

√
1− (β∗)2.

Therefore,

(2.6) m∗(β∗,D, Vn) ≤
⌈ n
σ∗
− 1
⌉
≤ n

σ∗
.

Proof. We introduce the interpolation operator IWm : V → Wm, so that the projection
error in the V norm is bounded by

(2.7) ‖v − PWmv‖ ≤ ‖v − IWmv‖ ≤
1

π
h‖v′′‖L2 ,

with h := max0≤k≤m |xk+1 − xk|. The constant 1
π in the second inequality is optimal for

the interpolation error and can be derived from the Poincaré inequality ‖g′‖L2([xk,xk+1]) ≤
xk+1−xk

π ‖g′′‖L2([xk,xk+1]) for g′. On the other hand, one has the inverse estimate

(2.8) ‖v′′‖L2([0,1]) ≤ πn‖v′‖L2([0,1]), v ∈ Vn,
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and therefore

(2.9) ‖v − PWmv‖ ≤ hn‖v‖, v ∈ Vn.

When using equally spaced measurements, we have h = (m+ 1)−1 and therefore

(2.10) ‖v − PWmv‖ ≤
n

m+ 1
‖v‖.

To satisfy supv∈Vn,‖v‖=1 ‖v − PWmv‖ ≤ σ∗, we need

m ≥ n

σ∗
− 1(2.11)

equispaced points.

Bearing in mind that β(Vn,Wm) = 0 for m < n, it is fair to say that the estimate (2.11)
gives a relatively sharp estimation of the minimal m which is required.

Remark 2.4. The interplay between pointwise evaluation and Fourier reconstruction has
been the object of much attention in the area of sparse recovery and compressed sensing.
It is known in particular that, with high probability, trigonometric polynomials of degree N
which are n-sparse can be exactly reconstructed from their sampling at m randomly chosen
points according to the uniform measure, if m is larger than n by some logarithmic factors.
We refer to [13] for an instance of such results. In our case the setting is different since we
are searching for a recovery in the fixed trigonometric space Vn, which allows us to have m
exactly proportional to n.

2.3. Local averages. We return to the situation where D is a general domain in Rd. Since
real world pointwise sensors have a nonzero point spread, it is natural to model them by linear
functionals that are local averages rather than point evaluations, that is,

(2.12) `x,τ (u) =

∫
D
u(y)ϕτ (y − x) dy,

where

(2.13) ϕτ (y) := τ−dϕ
(y
τ

)
for some fixed radial function ϕ compactly supported in the unit ball B = {|x| ≤ 1} of Rd
and such that

∫
ϕ = 1, and τ > 0 representing the point spread. Here, we assume in addition

that ϕ belongs to H1
0 (B). Taking the measurement point x at a distance at least τ from the

boundary of D, we are ensured that the support of ϕτ (· − x) is fully contained in D.
Note that in several space dimension d > 1 the point evaluation functionals are not contin-

uous on H1
0 (D); however, the above local averages are. We may therefore use these functionals

in the case where V = H1
0 (D), in arbitrary multivariate dimension. The corresponding Riesz

representers ωx,τ ∈ V are the solutions to

(2.14) −∆ωx,τ = gx,τ , gx,τ := ϕτ (· − x),

with homogeneous Dirichlet boundary conditions.
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For simplicity we work in dimension d ≤ 3. We consider measurement points x1, . . . , xm
that are uniformly spaced, in the sense that they are at the vertices of a quasi-uniform mesh
Th for the domain D with mesh size h > 0. Therefore

(2.15) m ∼ h−d.

We are interested in the approximation properties of the corresponding space Wm. We cannot
hope for an estimate similar to (2.7) since these approximation properties should also depend
on τ > 0. This is reflected by the following direct estimate.

Lemma 2.5. One has the estimate for the projection error in the V -norm

(2.16) ‖v − PWmv‖ ≤ C
(
τ +

h2

τ

)
‖v‖H2 , v ∈ H2(D) ∩ V,

where C is independent of (h, τ).

Proof. We shall establish the following estimate in H−1(D):

(2.17) min
c1,...,cm∈Rm

∥∥∥∥∥w −
m∑
i=1

cigxi,τ

∥∥∥∥∥
H−1

≤ C
(
τ +

h2

τ

)
‖w‖L2 , w ∈ L2(D).

Then, (2.16) immediately follows by application of (2.17) to w = ∆v.
In order to prove (2.17), we first introduce the nodal P1 finite element basis ψi associated

to the mesh points xi. So, under some reasonable geometric assumptions on D (piecewise
smoothness of its boundary), we have the interpolation error estimate

(2.18)

∥∥∥∥∥v −
m∑
i=1

v(xi)ψj

∥∥∥∥∥
L2

≤ Ch2‖v‖H2 , v ∈ H2(D).

Here we have used the fact that d ≤ 3 in order to be able to apply point evaluation of the
elements of H2(D). We introduce the dual space

(2.19) G−2(D) := H2(D)′,

which differs from H−2(D), and obtain by a duality argument that

(2.20)

∥∥∥∥∥w −
m∑
i=1

ciδxi

∥∥∥∥∥
G−2

≤ Ch2‖w‖L2 , ci :=

∫
D
wψi, w ∈ L2.

In order to derive (2.17), we note that gxi,τ = δxi ∗ ϕτ , from which it follows that, for any
w ∈ L2(D),

(2.21)

∥∥∥∥∥w −
m∑
i=1

cigxi,τ

∥∥∥∥∥
H−1

≤ ‖w − w ∗ ϕτ‖H−1 +

∥∥∥∥∥ϕτ ∗
(
w −

m∑
i=1

ciδxi

)∥∥∥∥∥
H−1

.
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1110 P. BINEV, A. COHEN, O. MULA, AND J. NICHOLS

Here, the convolution of w is meant in the sense

(2.22) (w ∗ ϕτ )(x) :=

∫
D
w(y)ϕτ (x− y)dy =

∫
Rd

w̃(y)ϕτ (x− y)dy,

where w̃ is the extension of w by 0 outside of D.
For the first term on the right side of (2.21), we write

‖w − w ∗ ϕτ‖H−1= max
‖ψ‖=1

∫
D

(w − w ∗ ϕτ )ψ

= max
‖ψ‖=1

∫
D
w(ψ − ψ ∗ ϕτ )

≤ ‖w‖L2 max
‖ψ‖=1

‖ψ − ψ ∗ ϕτ‖L2 .

We now remark that the extension ψ → ψ̃ by 0 outside of D is continuous from V to H1(Rd).
Thus, for ψ ∈ V , we may write

(2.23) ‖ψ − ψ ∗ ϕτ‖L2(D) ≤ ‖ψ̃ − ψ̃ ∗ ϕτ‖L2(Rd) ≤ Cτ‖ψ̃‖H1(Rd) ≤ Cτ‖ψ‖,

up to a change in the constant C in the last inequality, and where the second inequality is a
standard estimate for regularization by convolution. It follows that

(2.24) ‖w − w ∗ ϕτ‖H−1 ≤ Cτ‖w‖L2 .

For the second term on the right side of (2.21), we write∥∥∥∥∥ϕτ ∗
(
w −

m∑
i=1

ciδxi

)∥∥∥∥∥
H−1

= max
‖ψ‖=1

∫
D

(
ϕτ ∗ w −

m∑
i=1

ciϕτ (· − xi)

)
ψ

= max
‖ψ‖=1

(∫
D
w(ϕτ ∗ ψ)−

m∑
i=1

ci(ϕτ ∗ ψ)(xi)

)

≤ max
‖ψ‖=1

‖w −
m∑
i=1

ciδxi‖G−2‖ϕτ ∗ ψ‖H2

≤ Ch2‖w‖L2 max
‖ψ‖=1

‖ϕτ ∗ ψ‖H2 ,

where we have used (2.20). Using again the extension ψ̃ of ψ by 0 outside of D, we write
(2.25)
‖ϕτ ∗ ψ‖H2(D) = ‖ϕτ ∗ ψ̃‖H2(Rd) ≤ ‖ϕτ‖H1(Rd)‖ψ̃‖H1(Rd) ≤ Cτ−1‖ψ̃‖H1(Rd) ≤ Cτ−1‖ψ‖,

where the first inequality is straightforward by Fourier transform, and the second inequality
follows from the definition of ϕτ by scaling. It follows that

(2.26)

∥∥∥∥∥ϕτ ∗
(
w −

m∑
i=1

ciδxi

)∥∥∥∥∥
H−1

≤ Ch
2

τ
‖w‖L2 .

By summation of (2.24) and (2.26), we reach (2.17).
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Remark 2.6. The estimate (2.16) deteriorates for too small or too large τ . The choice
τ ∼ h gives the optimal approximation order O(h).

We may use the above approximation result to estimate the number of local average
measurements needed to control the inf-sup constant β(Vn,Wm), provided that Vn satisfies
some inverse estimate. As an example, consider the case where D = [0, 1]d and the space Vn
is the span of the Fourier basis

(2.27) φk := sin(πk · x), k = (k1, . . . , kd), 1 ≤ ki ≤ K,

so that n = dim(Vn) = Kd. Combining the direct estimate (2.16) with an inverse estimate,
we obtain

(2.28) ‖v − PWmv‖ ≤ C
(
τ +

h2

τ

)
n

1
d ‖v‖, v ∈ Vn.

Using m = Jd equally spaced measurements at points on the tensorized grid

(2.29)
1

J + 1
(j1, . . . , jd), 1 ≤ ji ≤ J,

we find that h ∼ m−1/d and therefore

(2.30) ‖v − PWmv‖ ≤ C

(
τ +

m−2/d

τ

)
n

1
d ‖v‖, v ∈ Vn.

This shows that β(Vn,Wm) ≥ β∗ can be achieved provided that

(2.31) C

(
τ +

m−2/d

τ

)
n

1
d ≤ σ∗,

where σ∗ =
√

1− (β∗)2.
In this analysis, the number m of required measurements deteriorates for large or small

values of τ , due to the deterioration of the approximation estimate already noted in Remark
2.6. This fact will be confirmed in the numerical experiments given in section 5.2. In the case
where τ is of the optimal order of τ ∼ h ∼ m−1/d, the above condition becomes C(n/m)

1
d ≤ σ∗,

which shows that β(Vn,Wm) ≥ β∗ can be achieved with a number of measurements m∗ that
scales linearly with n, similar to univariate pointwise evaluation described by Theorem 2.3.
Note that we are not able recover the results on univariate pointwise evaluation from the
results on local averages, since the estimate (2.30) deteriorate as τ → 0 even when d = 1.
This hints that there is some room for improvement in this estimate.

3. A collective OMP algorithm. In this section we discuss a first numerical algorithm
for the incremental selection of the spaces Wm, inspired by the orthonormal matching pursuit
(OMP) algorithm which is recalled below. More precisely, our algorithm may be viewed as ap-
plying the OMP algorithm for the collective approximation of the elements of an orthonormal
basis of Vn by linear combinations of m members of the dictionary.

Our objective is to reach a bound (1.20) for the quantity σm. Note that this quantity can
also be written as

σm = ‖(I − PWm)|Vn‖L(Vn,V ),

that is, σm is the spectral norm of I − PWm restricted to Vn.
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1112 P. BINEV, A. COHEN, O. MULA, AND J. NICHOLS

3.1. Description of the algorithm. When n = 1, there is only one unit vector φ1 ∈ V1 up
to a sign change. A commonly used strategy for approximating φ1 by a small combination of
elements from D is to apply a greedy algorithm, the most prominent one being the orthogonal
matching pursuit (OMP): we iteratively select

(3.1) ωk = argmax
ω∈D

|〈ω, φ1 − PWk−1
φ1〉|,

where Wk−1 := span{ω1, . . . , ωk−1} and W0 := {0}. In practice, one often relaxes the above
maximization, by taking ωk such that

|〈ωk, φ1 − PWk−1
φ1〉| ≥ κmax

ω∈D
|〈ω, φ1 − PWk−1

φ1〉|(3.2)

for some fixed 0 < κ < 1, for example κ = 1
2 . This is known as the weak OMP algorithm,

but we refer to it as OMP, as well. It has been studied in [2, 10]; see also [14] for a complete
survey on greedy approximation.

For a general value of n, one natural strategy is to define our greedy algorithm as follows:
we iteratively select

(3.3) ωk = argmax
ω∈D

max
v∈Vn,‖v‖=1

|〈ω, v − PWk−1
v〉| = argmax

ω∈D
‖PVn(ω − PWk−1

ω)‖.

Note that in the case n = 1 we obtain the original OMP algorithm applied to φ1.
As to the implementation of this algorithm, we take (φ1, . . . , φn) to be any orthonormal

basis of Vn. Then

‖PVn(ω − PWk−1
ω)‖2 =

n∑
i=1

|〈ω − PWk−1
ω, φi〉|2 =

n∑
i=1

|〈φi − PWk−1
φi, ω〉|2.

Therefore, at every step k, we have

ωk = argmax
ω∈D

n∑
i=1

|〈φi − PWk−1
φi, ω〉|2,

which amounts to a stepwise optimization of a similar nature as in the standard OMP. Note
that, while the basis (φ1, . . . , φn) is used for the implementation, the actual definition of the
greedy selection algorithm is independent of the choice of this basis in view of (3.3). It only
involves Vn and the dictionary D. Similar to OMP, we may weaken the algorithm by taking
ωk such that

n∑
i=1

|〈φi − PWk−1
φi, ωk〉|2 ≥ κ2 max

ω∈D

n∑
i=1

|〈φi − PWk−1
φi, ω〉|2

for some fixed 0 < κ < 1.
For such a basis, we introduce the residual quantity

rm :=
n∑
i=1

‖φi − PWmφi‖2.
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This quantity allows us to control the validity of (1.16) since we have

σm = sup
v∈Vn,‖v‖=1

‖v − PWmv‖ = sup∑n
i=1 c

2
i =1

∥∥∥∥∥
n∑
i=1

ci(φi − PWmφi)

∥∥∥∥∥ ≤ r1/2
m ,

and therefore (1.16) holds provided that rm ≤ σ2 = 1− γ2.

Remark 3.1. The quantity r
1/2
m is the Hilbert–Schmidt norm of the operator I − PWm

restricted to Vn. The inequality σm ≤ r1/2
m simply expresses the fact that the Hilbert–Schmidt

norm controls the spectral norm. On the other hand, in dimension n, the Hilbert–Schmidt
norm can be up to n1/2 times the spectral norm. This lack of sharpness is one principle
limitation in our convergence analysis which uses the fact that we can estimate the decay of
rm, but not directly that of σm.

3.2. Convergence analysis. By analogy to the analysis of OMP provided in [10], we
introduce for any Ψ = (ψ1, . . . , ψn) ∈ V n the quantity

‖Ψ‖`1(D) := inf
cω,i

∑
ω∈D

(
n∑
i=1

|cω,i|2
)1/2

: ψi =
∑
ω∈D

cω,iω, i = 1, . . . , n

 ,

or equivalently, denoting cω := {cω,i}ni=1,

‖Ψ‖`1(D) := inf
cω

{∑
ω∈D
‖cω‖2 : Ψ =

∑
ω∈D

cωω

}
.

This quantity is a norm on the subspace of V n on which it is finite.
Given that Φ = (φ1, . . . , φn) is any orthonormal basis of Vn, we write

J(Vn) := ‖Φ‖`1(D).

This quantity is indeed independent on the orthonormal basis Φ: if Φ̃ = (φ̃1, . . . , φ̃n) is
another orthonormal basis, we have Φ̃ = UΦ where U is unitary. Therefore any representation
Φ =

∑
ω∈D cωω induces the representation

Φ̃ =
∑
ω∈D

c̃ωω, c̃ω = Ucω,

with the equality ∑
ω∈D
‖c̃ω‖2 =

∑
ω∈D
‖cω‖2,

so that ‖Φ‖`1(D) = ‖Φ̃‖`1(D).
One important observation is that if Φ = (φ1, . . . , φn) is an orthonormal basis of Vn and

if Φ =
∑

ω∈D cωω, one has

n =

n∑
i=1

‖φi‖ ≤
n∑
i=1

∑
ω∈D
|cω,i| =

∑
ω∈D
‖cω‖1 ≤

∑
ω∈D

n1/2‖cω‖2.

Therefore, we always have
J(Vn) ≥ n1/2.
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Using the quantity J(Vn), we can generalize the result of [10] on the OMP algorithm in the
following way.

Theorem 3.2. Assuming that J(Vn) <∞, the collective OMP algorithm satisfies

(3.4) rm ≤
J(Vn)2

κ2
(m+ 1)−1, m ≥ 0.

Proof. For m = 0, we have

r0 =
n∑
i=1

‖φi‖2 = n ≤ J(Vn)2.

We then write

rm = rm−1 −
n∑
i=1

‖(PWm − PWm−1)φi‖2 ≤ rm−1 −
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2.

On the other hand, if Φ =
∑

ω∈D cωω, we have

rm−1 =
n∑
i=1

|〈φi − PWm−1φi, φi〉| ≤
∑
ω∈D

n∑
i=1

|cω,i| |〈φi − PWm−1φi, ω〉|,

which by the Cauchy–Schwarz inequality implies

rm−1 ≤
∑
ω∈D
‖cω‖2

(
n∑
i=1

|〈φi − PWm−1φi, ω〉|2
)1/2

≤ κ−1

(
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2
)1/2 ∑

ω∈D
‖cω‖2,

and therefore
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2 ≥
κ2r2

m−1

J(Vn)2
.

This implies that

rm ≤ rm−1

(
1− κ2

J(Vn)2
rm−1

)
,

from which (3.4) follows by the same elementary induction argument as used in [10].

Remark 3.3. Note that the right side of (3.4) is always larger than n(m + 1)−1, which is
consistent with the fact that β(Vn,Wm) = 0 if m < n.

One natural strategy for selecting the measurement space Wm is therefore to apply the
above described greedy algorithm until the first value m̃ = m̃(n) is met such that β(Vn,Wm) ≥
γ. According to (3.4), this value satisfies

m(n) ≤ J(Vn)2

κ2σ2
.(3.5)
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For a general dictionary D and space Vn we have no control on the quantity J(Vn), which could
even be infinite, and therefore the above result does not guarantee that the above selection
strategy eventually meets the target bound β(Vn,Wm) ≥ γ. In order to treat this case, we
establish a perturbation result similar to that obtained in [2] for the standard OMP algorithm.

Theorem 3.4. Let Φ = (φ1, . . . , φn) be an orthonormal basis of Vn and Ψ = (ψ1, . . . , ψn) ∈
V n be arbitrary. Then the application of the collective OMP algorithm on the space Vn gives

(3.6) rm ≤ 4
‖Ψ‖2`1(D)

κ2
(m+ 1)−1 + ‖Φ−Ψ‖2, m ≥ 1,

where ‖Φ−Ψ‖2 := ‖Φ−Ψ‖2V n =
∑n

i=1 ‖φi − ψi‖2.

Proof. We introduce
tm := rm − ‖Φ−Ψ‖2,

so that, by the same argument as in the proof of Theorem 3.2, we have

(3.7) tm ≤ tm−1 −
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2.

Next, we write

rm−1 =
n∑
i=1

〈φi − PWm−1φi, ψi〉+
n∑
i=1

〈φi − PWm−1φi, φi − ψi〉

By the same argument as in the proof of Theorem 3.2, the first term is bounded by

n∑
i=1

〈φi − PWm−1φi, ψi〉 ≤ κ−1

(
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2
)1/2

‖Ψ‖`1(D).

By Cauchy–Schwarz and Young inequalities, the second term is bounded by

n∑
i=1

〈φi − PWm−1φi, φi − ψi〉 ≤ r
1/2
m−1‖Φ−Ψ‖ ≤ 1

2
(rm−1 + ‖Φ−Ψ‖2).

It follows that

tm−1 ≤ 2κ−1

(
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2
)1/2

‖Ψ‖`1(D),

which combined with (3.7) gives

tm ≤ tm−1

(
1− κ2

4‖Ψ‖2
`1(D)

tm−1

)
.

We may apply the same induction argument as for rm in the proof of Theorem 3.2 to conclude
that

(3.8) tm ≤
4‖Ψ‖2`1(D)

κ2
(m+ 1)−1,
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which is the announced result. This argument requires that for the first step we have t0 ≤
4‖Ψ‖2

`1(D)

κ2
. However, if t0 ≥

4‖Ψ‖2
`1(D)

κ2
, then the above recursion shows that t1 ≤ 0, which

implies the result for all values of m ≥ 1 by monotonicity of m 7→ tm.

As an immediate consequence of the above result, we obtain that the collective OMP
converges for any space Vn, even when J(Vn) is not finite.

Corollary 3.5. For any n-dimensional space Vn, the application of the collective OMP al-
gorithm on the space Vn gives that limm→+∞ rm = 0.

Proof. By completeness of D, for any δ, there exists a finite subset F ⊂ D and vector
coefficients cω such that

‖Φ−Ψ‖ ≤ (δ/2)1/2, Ψ :=
∑
ω∈F

cωω.

One obviously has ‖Ψ‖`1(D) <∞, and therefore one has

4
‖Ψ‖2`1(D)

κ2
(m+ 1)−1 ≤ δ

2

for m ≥ m(δ) sufficiently large. It follows that rm ≤ δ for m ≥ m(δ).

The above corollary shows that if γ > 0, one has β(Vn,Wm) ≥ γ for m large enough.

Remark 3.6. One alternative strategy to select the measurements could be to apply the
OMP algorithm separately on each basis element φj . This leads for each j ∈ {1, . . . , n} to the
selection of ω1,j , . . . , ωmj ,j ∈ D and to a space

Wm := span{ωk,j : k = 1, . . . ,mj , j = 1, . . .m}, m1 + · · ·+mj = m.

The following argument shows that, even when optimizing the choice of the number of itera-
tions mj used for each basis element, this strategy leads to convergence bounds that are not
as good as those achieved by the collective OMP algorithm. Since the residual satisfies

rm =

n∑
j=1

‖φj − PWmφj‖2 ≤
n∑
j=1

κ−2(mj + 1)−1‖φj‖2`1(D),

we optimize by choosing mj := bm‖φj‖`1(D)(
∑n

j=1 ‖φj‖`1(D))
−1c. This leads to the conver-

gence bound

rm ≤ κ−2m−1
n∑
j=1

‖φj‖`1(D).

This bound is not as good as (3.4), since we have

(3.9)

n∑
j=1

‖φj‖`1(D) = inf

{∑
ω∈D
‖cω‖1 :

∑
ω∈D

cωω = φ

}
≤ ‖Φ‖`1(D) = J(Vn).
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Remark 3.7. In the case n = 1, a well-known variant to the OMP algorithm, also discussed
in [2], is the so-called relaxed greedy algorithm. This variant avoids the computation of the
projection onto Wk: the approximation of φ1 is updated by

(3.10) Akφ1 = αkAk−1φ1 + βk〈φ1 −Ak−1φ1, ωk〉ωk,

where ωk is selected by maximizing |〈φ1−Ak−1φ1, ω〉| over ω ∈ D and (αk, βk) are appropriate
weights. This strategy is generalized in [11] to the collective setting (with αk = 1− (k + 1)−1

and βk minimizing the norm of the residual), and is proved to achieve similar convergence
properties as the collective OMP algorithm.

4. A worst case OMP algorithm. We present in this section a variant of the previous
collective OMP algorithm. In our numerical experiments presented in section 5 this variant
performs better than the collective OMP algorithm; however, its analysis is more delicate. In
particular we do not obtain convergence bounds that are as good.

4.1. Description of the algorithm. We first take

(4.1) vk := argmax
{
‖v − PWk−1

v‖ : v ∈ Vn, ‖v‖ = 1
}
,

the vector in the unit ball of Vn that is less well captured by Wk−1, and then define ωk by
applying one step of OMP to this vector, that is,

(4.2) |〈vk − PWk−1
vk, ωk〉| ≥ κmax

{
|〈vk − PWk−1

vk, ω〉| : ω ∈ D
}

for some fixed 0 < κ < 1.

Remark 4.1. A variant to this algorithm was priorily suggested in [12] in the particular case
where the dictionary consists of the ωx,τ in (2.14) associated to the local average functionals in
(2.12) with ϕτ a Gaussian of fixed width (see algorithm 2 in [12], called SGreedy, therein). In
this variant, the selection is done by searching for the point xk where |vk −PWk−1

vk| takes its
maximum, and taking ωk = ωxk,τ . There is no evidence provided that this selection process
has convergence properties similar to those that we prove next for the selection by (4.2).

4.2. Convergence analysis. The first result gives a convergence rate of rm under the
assumption that J(Vn) <∞, similar to Theorem 3.2, but with a multiplicative constant that
is inflated by n2.

Theorem 4.2. Assuming that J(Vn) <∞, the worst case OMP algorithm satisfies

(4.3) rm ≤
n2J(Vn)2

κ2
(m+ 1)−1, m ≥ 0.

Proof. As in the proof of Theorem 3.2, we use the inequality

rm ≤ rm−1 −
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2,
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1118 P. BINEV, A. COHEN, O. MULA, AND J. NICHOLS

and try to bound
∑n

i=1 |〈φi − PWm−1φi, ωm〉|2 from below. For this purpose, we write

(4.4) rm−1 =
n∑
j=1

‖φj − PWm−1φj‖2 ≤ n‖vm − PWm−1vm‖2 = n〈vm − PWm−1vm, vm〉

We have vm =
∑n

i=1 ajφj for a vector a = (a1, . . . , an) such that ‖a‖2 = 1. Thus, if Φ =∑
ω∈D cωω we may write

vm =
∑
ω∈D

dωω, dω := 〈cω, a〉2

and therefore

rm−1 ≤ n
∑
ω∈D
|dω| |〈vm − PWm−1vm, ω〉|

≤ n|〈vm − PWm−1vm, ωm〉|
∑
ω∈D
|dω|

≤ n|〈vm − PWm−1vm, ωm〉|
∑
ω∈D
‖cω‖2.

Next we find by Cauchy–Schwartz that

|〈vm − PWm−1vm, ωm〉| =

∣∣∣∣∣∣
n∑
j=1

aj〈φj − PWm−1φj , ωm〉

∣∣∣∣∣∣ ≤
 n∑
j=1

|〈φj − PWk
φj , ωm〉|2

1/2

.

We have thus obtained the lower bound

n∑
i=1

|〈φi − PWm−1φi, ωm〉|2 ≥
κ2r2

m−1

n2J(Vn)2
,

from which we conclude in a similar way as in Theorem 3.2.

For the general case, we establish a perturbation result similar to Theorem 3.4, with again
a multiplicative constant that depends on the dimension of Vn.

Theorem 4.3. Let Φ = (φ1, . . . , φn) be an orthonormal basis of Vn and Ψ = (ψ1, . . . , ψn) ∈
V n be arbitrary. Then the application of the worst case OMP algorithm on the space Vn gives

(4.5) rm ≤ 4
n2‖Ψ‖2`1(D)

κ2
(m+ 1)−1 + n2‖Φ−Ψ‖2, m ≥ 1,

where ‖Φ−Ψ‖2 := ‖Φ−Ψ‖2V n =
∑n

i=1 ‖φi − ψi‖2.

Proof. We introduce
tm := rm − n2‖Φ−Ψ‖2,

for which we have

(4.6) tm ≤ tm−1 −
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2.
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We next write, as in the proof of Theorem 4.2,

vm =
n∑
i=1

ajφj =
n∑
i=1

ajψj +
n∑
i=1

aj(φj − ψi)

for a vector a = (a1, . . . , an) such that ‖a‖2 = 1. If Ψ =
∑

ω∈D cωω, using (4.4), we now reach

rm−1 ≤ n|〈vm − PWm−1vm, ωm〉|
∑
ω∈D
‖cω‖2 + n

n∑
j=1

aj |〈vm − PWm−1vm, φj − ψj〉|.

By Cauchy–Schwartz and Young inequalities, the second term is bounded by 1
2rm−1+ 1

2n
2‖Φ−

Ψ‖2. By subtracting, we thus obtain

tm−1 ≤ 2n|〈vm − PWm−1vm, ωm〉|
∑
ω∈D
‖cω‖2.

Proceeding in a similar way as in the proof of Theorem 4.2, we obtain the lower bound
n∑
i=1

|〈φi − PWm−1φi, ωm〉|2 ≥
κ2t2m−1

4n2J(Vn)2
,

and we conclude in the same way as in the proof of Theorem 3.4.

By the exact same argument as in the proof of Corollary 3.5 we find that that the worst
case OMP converges for any space Vn, even when J(Vn) is not finite.

Corollary 4.4. For any n-dimensional space Vn, the application of the worst case OMP
algorithm on the space Vn gives that limm→+∞ rm = 0.

4.3. Application to point evaluation. Let us now estimate m(n) if we choose the points
with the greedy algorithms that we have introduced. This boils down to estimating for J(Vn).
In this simple case,

J(Vn) := ‖Φ‖`1(D) = inf

{∫
x∈[0,1]

‖cx‖2 dx : Φ =

∫
x∈[0,1]

cxωx dx

}
and we can derive cx for every x ∈ [0, 1] by differentiating twice the components of Φ since

Φ′′(x) =

∫
y∈[0,1]

cyω
′′
y (x) dy = −

∫
y∈[0,1]

cyδy(x) dx = −cx.

Thus, using the basis functions φk defined by (2.5), we have

J(Vn) =

∫
x∈[0,1]

(
n∑
k=1

|φ′′k(x)2|

)1/2

dx =

∫
x∈[0,1]

(
n∑
k=1

2kπ| sin(kπx)|2
)1/2

dx ∼ n3/2.

Estimate (3.5) for the convergence of the collective OMP approach yields

m(n) &
n3

κ2σ2
,

while, for the worst case OMP, estimate (4.3) gives

m(n) &
n5

κ2σ2
.
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As already anticipated, these bounds deviate from the optimal estimation (2.11) due to the
use of the Hilbert–Schmidt norm in the analysis. The numerical results in the next section
reveal that greedy algorithms actually behave much better in this case.

5. Numerical tests. All numerical tests presented in this section were performed in
Python using the standard NumPy and SciPy packages.

5.1. Pointwise evaluation. In this test we consider the setting as outlined in section 2.2.
That is, we have V = H1

0 (I), where the interval I =]0, 1[, the approximation space is the

Fourier basis, Vn = span{φk : k ∈ 1, . . . , n} where φk(t) =
√

2
πk sin(kπt), and we pick the

measurement functionals that define the space Wm from a dictionary of pointwise evaluations
in ]0, 1[. The dictionary D is thus composed of elements ωx, the normalized Riesz representers
of function evaluation at the point x, given explicitly in (2.3).

The selection of the evaluation points performed both using the collective OMP and worst
case OMP algorithms. The inner product between ωx and φk can be computed using an explicit
formula, hence there is no discretization or approximation in this aspect of our implementation.
In both algorithms we require a search of the dictionary D to find the element that maximizes
either (3.2) or (4.2). Evidently we require D to be of finite size to perform this search, so
we use

D = {ωx : x ∈ 1/M, . . . , (M − 1)/M},

where we take M to be some large number. In practice we found that M = 104 offered similar
results to any larger number, so we kept this value.

We compare the inf-sup constant β(Vn,Wm) for the evaluation points picked by these two
OMP algorithms with those obtained when these points are picked at random with uniform law
on ]0, 1[. In all cases, the selected points are nested as we increase m ≥ n, that is, Wm ⊂Wm+1,
so that β is monotone increasing. We also compare with the value of β(Vn,Wm) obtained for
equally spaced points, which in view of Theorem 2.3 are expected to be a near optimal choice,
but are not nested.

Results in Figure 5.1 show the behavior of β(Vn,Wm) as m increases for two representative
values of n. They reveal that the worst case OMP algorithm produces a slightly better
behaved inf-sup constant than the collective OMP algorithm, not far from the near optimal
value obtained with evenly spaced evaluations. In contrast, the random selection is clearly
suboptimal.

Figure 5.2 displays the minimum value m̃ = m̃(n) required to make β(Vn,Wm̃) > β∗ := 0.5
for a variety of n. It shows a clear linear trend, with the rate of increase almost equal to 1 for
the worst case OMP algorithm. This shows that the estimates on m̃(n) obtained in section 4.3
from our theoretical results are in this case too pessimistic.

We note that the obtained curves (solid lines) are not monotone increasing, due to the fact
that the selected points for different values of n have no nestedness properties. An alternative
strategy that leads to a nested sequence consist in intertwining the greedy algorithm with the
growth of Vn: assuming that we have selected m̃(n) points such that β(Vn,Wm̃(n)) > β∗, we
apply the greedy algorithm for Vn+1 to enrich Wm̃(n) until we reach the first value m̃(n + 1)
such that β(Vn+1,Wm̃(n+1)) > β∗. We may again use either the collective or worst case OMP
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Figure 5.1. Comparisons of collective OMP, worst case OMP, uniformly spaced and equally spaced point
selection, using a Fourier basis Vn, with n = 20 or n = 40, and increasing values of m ≥ n.

Figure 5.2. Minimum m̃ = m̃(n) required for β(Vn,Wm̃) > β∗ = 0.5 against a variety of n, using collective
OMP and worst case OMP, and intertwining the growth of Vn and Wm (dashed).

algorithm. In this fashion we construct a sequence of Wm̃(1) ⊂ · · · ⊂ Wm̃(n) ⊂ · · · that
pair with each Vn and always ensure an inf-sup constant larger than β∗. This strategy bears
similarity to the generalized empirical interpolation method [15] where, at each step, one adds
a new function to Vn and a new linear functional to Wm. In that case, we always have m = n,
but no theoretical guarantee that β(Vn,Wn) remains bounded away from zero.

The resulting curves are also plotted on Figure 5.2 (dashed lines). We see that we do not
pay a significant penalty, as m̃(n) is not significantly worse for this incremental method than
when Wm is built from nothing for each Vn. We again find that the worst case algorithm is
slightly superior to the collective algorithm.
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Figure 5.3. Comparisons of collective OMP, worst-case OMP for a dictionary of local average functions,
as well as randomly selected local average locations, using a Fourier basis Vn, with n = 20 or n = 40, and
increasing values of m ≥ n.

5.2. Local averages. In this test we perform the collective and worst case OMP algo-
rithms on dictionaries of local averages. Here we build our measurement spaces Wm against
a Fourier space Vn, working on the unit interval I =]0, 1[ as in section 5.1.

The dictionary D is the collection of Riesz representers ωx,τ of M local averages of width
τ , with x equispaced between τ/2 and 1− τ/2, that is,

(5.1) D =

{
ωx,τ : x =

τ

2
,

1− τ
M − 1

+
τ

2
, . . . ,

(M − 2)(1− τ)

M − 1
+
τ

2
, 1− τ

2

}
.

Again, the value M = 104 appeared to produce satisfactory results, similar to those at any
larger M .

Figure 5.3 illustrates the behavior of both greedy algorithms for the particular value
τ = 10−2 and shows that they are slightly better than what had been previously obtained
with point values (which correspond to τ = 0).

The dependence on τ , which appears in the theoretical analysis in section 2.3, is reflected
in Figure 5.4: increasing τ first allows both OMP algorithms to obtain better β values, until a
certain value where β deteriorates as τ gets larger. In this particular case, we actually notice
that if τ is a multiple of 2/n, then we have 〈ωx,τ , φn〉 = 0 for any x appearing in (5.1), and
hence β(Vn,Wm) = 0.

5.3. Reduced bases. In our last test we consider the elliptic problem proposed in sec-
tion 1.1, on the unit square D =]0, 1[2 with Dirichelet boundary conditions, and a parameter
dependence in the field a, that is,

(5.2) − div(a(y)∇u) = f for all x ∈ D with u(x) = 0 on ∂D.

In this example we consider “checkerboard” random fields where a(y) is piecewise constant
on a dyadic subdivision of the unit square. That is, for a given level j ≥ 0, we consider the
dyadic partition
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Figure 5.4. The resulting β(Vn,Wm) against m for n = 20 and n = 40 and a selection of measurement
widths τ .

D =

2j−1⋃
k,l=0

S
(j)
k,l

with
S

(j)
k,l := [k 2−j , (k + 1)2−j [× [` 2−j , (`+ 1)2−j [, k, ` ∈ 0, . . . , 2j − 1.

The random field is defined as

(5.3) a(y) = 1 +
1

2

2j−1∑
k,`=0

χ
S
(j)
k,l

yk,`,

where χ
S
(j)
k,l

is the indicator function on S
(j)
k,l , and the yk,` are random coefficients that are

independent, each with identical uniform distribution on [−1, 1].
For the reduced basis space, we generate n random parameters y(1), . . . , y(n), with each

y(k) ∈ [−1, 1]2
2j

, and solve the variational form of (5.2) using P1 finite elements to produce the
corresponding solutions uh(y(k)). In our numerical test, we take j = 2, that is, 16 parameters,
and we use for the finite element space a triangulation Th on a regular grid of mesh size
h = 2−7. Our approximation space is then defined as

(5.4) Vn = span
{
uh(y(1)), . . . , uh(y(n))

}
.

Regarding the dictionary D, we consider local averages by the nodal basis functions of the finite
element space, so the linear form `x in this dictionary are indexed by the mesh points of Th.

Here, we compare the performance of the above reduced basis space which we label here
V red
n , with the trigonometric polynomial spaces

V sin
n = span{φk,` : 1 ≤ k × ` ≤ n},

where the φk,` are given by the linear interpolation on Th of
√

2
π
√
k2+`2

sin(kπx1) sin(`πx2) for

k, l = 1, . . . , r and n = r2.
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Figure 5.5. Results on the unit square.

We recall that the worst case performance of the state estimation algorithm as defined in
(1.13) is given by the product of the inverse inf-sup constant µ(Vn,Wm) by the approximation
error εn = dist(M, Vn). Since the exact computation of εn is out of reach, we instead study
the average projection error for a collection of solutions uh(a(y)) to Vn = V red

n or V sin
n . The

left side of Figure 5.5 shows that the reduced bases outperform the trigonometric polynomial
spaces by several order of magnitude, with respect to the decay of this approximation error.
On the other hand, the right side of Figure 5.5 shows (here in the case n = 20) that when
applying the greedy algorithm, the inf-sup constant β(Vn,Wm) is better behaved for the
trigonometric polynomial spaces, but only by a moderate factor of around 1.1. Therefore the
final tradeoff is clearly in favor of reduced basis spaces.

5.4. An adversary case: Hyperbolic PDEs. In the case of parametrized elliptic PDEs,
reduced bases are known to bring significant improvements over more conventional approxi-
mation spaces, as illustrated in the previous example by the left side of Figure 5.5. In this
example, the solutions typically exhibit singularities which prevent the Fourier method from
performing; however, these singularities are at fixed locations independently of the parameter
value, which make the reduced basis particularly effective for capturing them.

The situation is quite different when the locations of the singularities vary together with
the parameters, in which case reduced basis approximation cannot be as effective. This
typically occurs for hyperbolic PDEs when parameters influence the transport velocity and
therefore the positions of shocks. As a toy example, let us consider the univariate transport
equation

(5.5) ∂tu(x, t) + y∂xu(x, t) = 0, x ∈ R, t ≥ 0,

with initial value u0(x) = χ]−∞,0] and parameter y ∈ [0, 1]. We consider the parametrized
family of solutions at time t = 1 restricted to x ∈ [0, 1], that is,

(5.6) M = {χ[0,y] : y ∈ [0, 1]}.

D
ow

nl
oa

de
d 

04
/2

5/
19

 to
 1

29
.2

52
.1

39
.2

37
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

GREEDY ALGORITHMS FOR MEASUREMENT SELECTION 1125

Here, we choose to work in the Hilbert space V = L2([0, 1]) which contains such discontinuous
functions. Due to the presence of discontinuities, it can easily be seen that if Vn is the Fourier
space generated by the functions φk in (2.5), one has the approximation rate

(5.7) sup
u∈M

‖u− PVnu‖ ∼ n−1/2.

On the other hand, a reduced basis space is of the form

(5.8) Vn = span{χ[0,yi] : i = 1, . . . , n}

for some points y1, . . . , yn ∈ [0, 1], and therefore a space of piecewise constant functions on
the intervals [yi, yi+1], assuming that these points have been increasingly ordered. By taking
a y to be the midpoint of the largest of such intervals, that has length larger than n−1, it is
easily checked that

(5.9) ‖χ[0,y] − PVnχ[0,y]‖ ≥
1

2
n−1/2,

and therefore the approximation rate is not better than with the Fourier space. More generally
it can be checked that the Kolmogorov n-width of M in V decays like n−1/2, that is, any
linear approximation method cannot have a better rate.

This is illustrated by the left side of Figure 5.6, which shows the slow decay of the ap-
proximation error for the reduced basis spaces, slightly worse that when using Fourier spaces.
It is of course still possible to apply the collective and worst case OMP algorithms in order to
select measurements in this setting. Here, we use a dictionary of local averages

(5.10) D = {`x,ε : x ∈ [0, 1]}, `x,ε(v) =
1

2ε

∫ x+ε

x−ε
v,

which are continuous linear functionals on L2. The behavior of the inf-sup constant is displayed
on the right side of Figure 5.6, and shows that the greedy algorithm performs well, for both
Fourier and reduced bases. However the recovery performance is affected by the fact that
both of these linear spaces have poor approximation properties over the class M.

Figure 5.6. Results on the unit square.
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More generally, we stress that for this class of problems, linear recovery methods can
be highly suboptimal. Consider for example the case where the data are given by a single
measurement in the form of the global average

(5.11) `(v) =

∫ 1

0
v.

Then, we find that `(χ[0,y]) = y, so that an optimal reconstruction map from w = `(u) that
gives exact recovery is simply given by

(5.12) A∗(w) = χ[0,w].

This map is nonlinear since χ[0,w1] + χ[0,w2] obviously differs from χ[0,w1+w2].
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