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Abstract

Insects have evolved resistance to almost all insecticides

developed for their control. Multiple mechanisms of re-

sistance, including enhanced metabolism and excretion of

insecticides, target‐site insensitivity, reduced penetration

of insecticides, and avoidance behavior, have been re-

ported. The genes coding for proteins involved in re-

sistance have been identified in numerous insects. The

enzymes and transporters required for all three phases of

insecticide metabolism and excretion including cytochrome

P450 monooxygenases, glutathione S‐transferases, UDP‐
glucuronosyltransferases, carboxylesterases, and ATP‐
binding cassette transmembrane transporters have been

identified. Recent research in multiple insect species iden-

tified CNC‐bZIP transcription factor superfamily members

as regulators of genes coding for enzymes and transporters

involved in insecticide metabolic resistance. The informa-

tion on the pathway including reactive oxygen species, cap

“n” collar isoform‐C, and its heterodimer partner, muscle

aponeurosis fibromatosis transcription factors involved in

overexpression of enzymes and transporters involved

insecticide resistance will be summarized.
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1 | INTRODUCTION

There is a constant battle between humans and other animals, including insects, for scarce resources

available on earth. Some insects are beneficials and provide resources such as honey or silk, and services

such as pollination or destruction of pest insects, and disease vectors. While others are pests that compete

with humans for food, fiber, timber, and other natural resources, destroy dwellings and transmit deadly

diseases. As a result, humans have developed methods to control insect pests and disease vectors. However,

insects developed ways to overcome methods employed by humans to control them. For example,

insects have developed resistance to almost all classes of chemicals introduced to control them

(Ffrench‐Constant, 2013; Ffrench‐Constant, Daborn, & Le Goff, 2004; Hemingway, 1999; Hemingway &

Ranson, 2000; Liu, 2015). Enhanced metabolism of insecticides, target‐site insensitivity, altered behavior,

and reduced penetration of insecticides are among the major mechanisms insects employ to resist in-

secticides used to control them (Liu, 2015; Liu, Li, Gong, Liu, & Li, 2015). Insects use detoxification enzymes

that increase oxidation, epoxidation, dehydrogenation, hydrolysis and reduction (Phase I), conjugation

(Phase II), and excretion (Phase III) of both natural and synthetic toxic compounds referred to as xenobiotics

to protect themselves from the toxicity exerted by these chemicals. Constitutive or induced overexpression

of genes coding for enzymes involved in detoxification (e.g., cytochrome P450 monooxygenases [P450s]),

conjugation (e.g., glutathione S‐transferases [GSTs]), UDP‐glucuronosyltransferases) or further detoxifica-

tion (e.g., carboxylesterases) and excretion (e.g., ATP‐binding cassette [ABC] transmembrane transporters)

have been reported in insects that developed resistance to most classes of insecticides introduced for their

control (Scott, 1999; Scott, Liu, & Wen, 1998). However, the mechanisms employed by insecticide‐resistant
insects for overexpression of these genes were not identified until recently. Studies in multiple insect species

during the past few years showed that insects co‐opted a xenobiotic stress response pathway involving

reactive oxygen species (ROS), cap “n” collar isoform‐C (CncC) and its heterodimer partner, muscle apo-

neurosis fibromatosis (Maf) transcription factors for overexpression of enzymes and transporters involved

insecticide resistance. (Figure 1).

2 | XENOBIOTIC RESPONSE SYSTEM

Animals evolved an elaborate three‐phase system to detoxify xenobiotics, including pesticides, pollutants, natural

toxins, and pharmaceuticals. The genes coding for enzymes and transporters that function in detoxification and

excretion of xenobiotics are induced by toxic compounds that enter the body via multiple routes. In mammals,

transcription factors belonging to the nuclear receptor superfamily (e.g., pregnane X receptor [PXR]; constitutive

androstane receptor [CAR]; FXR, VDR, and HNF4), the basic helix–loop–helix (bHLH)‐PAS domain transcription

factors superfamily (e.g., aryl hydrocarbon receptor [AHR], AHR nuclear translocator [ARNT]) and the NF‐E2‐
related factor 2 [Nrf2] CNC‐bZIP transcription factor family (e.g., CncC) play key roles in induction of xenobiotic

response genes (Hankinson, 1995; Higgins & Hayes, 2011; Maglich et al., 2002; Pascussi et al., 2008; Rowlands &

Gustafsson, 1997; Sonoda, Rosenfeld, Xu, Evans, & Xie, 2003; Sykiotis & Bohmann, 2010; Vorrink &

Domann, 2014). Recent studies employing advanced molecular methods including RNA sequencing, RNA inter-

ferences, and cell‐based reporter assays identified nuclear receptor, bHLH‐PAS domain and CNC‐bZIP transcrip-

tion factor superfamily members as regulators of genes coding for enzymes and transporters involved in insecticide

resistance in various pest insects. A recent publication reviewed antioxidant response elements and the tran-

scription factors that bind to these elements (Wilding, 2018). Due to the word limit and space restrictions, the

scope of this microreview will be limited to CNC‐b‐ZIP transcription factors.
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3 | DISCOVERY OF CncC AS A XENOBIOTIC TRANSCRIPTION FACTOR
IN DROSOPHILA MELANOGASTER

Constitutive or induced overexpression of genes coding for enzymes and transporters involved in insecticide

detoxification and excretion in resistant strains have been reported in many insect species, including the fruit

fly, D. melanogaster. To identify transcription factors responsible for overexpression of xenobiotic response

genes, the function of the single D. melanogaster ortholog of mammalian xenobiotic nuclear receptors (PXR

and CAR) the DHR96, was studied by mutagenesis experiments. These studies showed that only 10% of

genes induced by xenobiotic phenobarbital required DHR96 (King‐Jones, Horner, Lam, & Thummel, 2006),

suggesting that other transcription factors may be involved in the regulation of xenobiotic‐responsive genes

in the fruit fly and other insects. Subsequent studies in the fruit fly identified that the CncC/Kelch‐like
ECH‐associated protein 1 (Keap1) pathway plays a key role in the xenobiotic response (Misra, Horner,

Lam, & Thummel, 2011). These studies showed that CncC regulates 70% of the genes induced by pheno-

barbital. Also, constitutive activation of the CncC/Keap1 pathway conferred resistance to the insecticide

malathion. These studies established CncC as the central regulator of the xenobiotic response in the fruit fly.

The CncC/Keap1 pathway was also found to be constitutively active in two DDT‐resistant strains of

D. melanogaster (91R and RDDTR) in inducing expression of multiple genes coding for enzymes involved

detoxification of DDT (Misra, Lam, & Thummel, 2013; Table 1)

F IGURE 1 A model for CncC and Maf regulation of xenobiotic response genes. CncC heterodimerizes with
Keap1 and stays in cytoplasm anchored to actin filaments. Under xenobiotic stress conditions, ROS or other
molecules induce dissociation of CncC and Keap1 allowing CncC to translocate to the nucleus and

heterodimerize with Maf. The heterodimer binds to CncC/Maf response elements located in the promoter of
xenobiotic response genes and induce their expression. ABCT, ATP‐binding cassette (ABC) transmembrane
transporters; CncC, cap “n” collar isoform‐C; GST, glutathione S‐transferases; Keap1, Kelch‐like ECH‐associated
protein 1; Maf, muscle aponeurosis fibromatosis; P450, cytochrome P450 monooxygenases; ROS, reactive
oxygen species; TIC, transcription initiation complex
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4 | DISCOVERY OF CncC/Maf TRANSCRIPTION FACTORS AS THE MAJOR
CONTRIBUTORS TO METABOLIC RESISTANCE TO INSECTICIDES IN BEETLES

The red flour beetle, Tribolium castaneum strain (QTC279) developed resistance to pyrethroids through constitutive

overexpression of P450 genes including CYP6BQ9 (Zhu et al., 2010). RNAi‐mediated knockdown of genes coding

for candidate nuclear receptor, bHLH‐PAS domain transcription and the Nrf2 CNC‐bZIP transcription factor family

members, identified CncC and Maf as the key regulator of P450 genes responsible for pyrethroid resistance in the

QTC279 strain (Kalsi & Palli, 2015). The promoters of these genes contain binding sites for CncC and Maf. These

studies identified for the first time that the CncC and Maf transcription factors are responsible for overexpression

of P450 genes in insecticide‐resistant pest insects. To identify other genes coding for enzymes and transporters

involved in detoxification of pyrethroid insecticides in the QTC279 strain, these beetles were injected with dsRNA

targeting CncC or a gene coding for green fluorescence protein (GFP, control). RNA isolated from these beetles was

sequenced, and differential gene expression analysis was performed. These studies identified 662 upregulated and

91 downregulated genes in CncC knockdown beetles (Kalsi & Palli, 2017a). Twenty‐one of the downregulated

genes coded for enzymes and transporters with potential function in xenobiotic detoxification identified previously

(Zhu, Moural, Shah, & Palli, 2013). The function of genes coding for CYP4G7, CYP4G14, GST‐1 and four

ABC transporters, ABCA‐UB, ABCA‐A1 and ABCA‐A1L and ABCA‐9B identified as CncC targets were tested by

RNAi knockdown and insecticide efficacy bioassays. These studies showed that these gene products are involved

in the detoxification of pyrethroids. These studies also identified CncC as the transcription factor involved in

the regulation of genes coding for enzymes and transporters involved in all three phases of insecticide

detoxification.

The Colorado potato beetle (CPB), Leptinotarsa decemlineata is a major pest on solanaceous plants, co‐evolution
with these plants containing high levels of glycoalkaloid toxins helped this pest to develop an efficient detoxification

system. As a result, this pest developed resistance to almost every insecticide introduced for its control. Several genes

coding for enzymes involved in detoxification and overexpressed in insecticide‐resistant strains have been identified

TABLE 1 Examples of CncC/Maf‐regulated metabolic resistance genes

Insect/mite name
Transcription factor
identified Targets References

Drosophila melanogaster CncC P450 and GST Misra et al. (2011)

Keap1

CncC P450 Misra et al. (2013)

Tribolium castaneum CncC P450 Kalsi and Palli (2015)

Maf

CncC P450 Kalsi and Palli (2017a)

Leptinotarsa decemlineata CncC P450 Kalsi and Palli (2017b)

CncC P450, GST, and ABCT Gaddelapati et al. (2018)

Aphis gossypii CncC P450 Peng et al. (2016)

Anopheles gambiae Maf P450 and GST Ingham et al. (2017)

Spodoptera exigua CncC,Maf, AhR, and ARNT GST Hu, Hu et al. (2019); Hu, Huang

et al. (2019)

Spodoptera litura CncC and Maf P450 Lu et al. (2020)

Bactrocera dorsalis Maf P450 and GST Tang et al. (2019)

Tetranychus cinnabarinus CncC and Maf P450 Shi et al. (2017)
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(Zhu, Moural, Nelson, & Palli, 2016). For example, the imidacloprid‐resistant CPB employs P450 enzymes to detoxify

this insecticide. Knockdown of four of these genes (CYP6BJa/b, CYP6BJ1v1, CYP9Z25, and CYP9Z29) reduced

resistance to imidacloprid. RNAi studies showed that CncC and Maf transcription factors are required for over-

expression of these P450 genes in resistant beetles (Kalsi & Palli, 2017b). In addition, binding sites for CncC and Maf

were identified in the promoters of these P450 genes suggesting that these transcription factors play an important

role in constitutive overexpression of P450 genes in the imidacloprid‐resistant CPB (Kalsi & Palli, 2017b).

Sequencing of RNA isolated from the imidacloprid‐resistant CPB injected with dsCncC or dsGFP followed by

differential gene expression analysis identified 1,798 genes regulated by CncC (Gaddelapati, Kalsi, Roy, &

Palli, 2018). Interestingly, 1,499 out of 1,798 differentially expressed genes were downregulated in CncC knock-

down beetles. These include 79% of P450 genes identified as overexpressed in imidacloprid‐resistant beetles. Some

of the genes coding for GSTs, carboxylesterases and ABC transporters that are overexpressed in imidacloprid‐
resistant CPB also require CncC for their expression (Gaddelapati et al., 2018). These studies identified CncC as a

major transcription factor responsible for overexpression of genes coding for enzymes and transporters involved in

detoxification of insecticide in imidacloprid‐resistant CPB.

5 | CncC/Maf TRANSCRIPTION FACTORS AS THE MAJOR CONTRIBUTORS TO
METABOLIC RESISTANCE IN OTHER INSECTS AND MITES

Recent studies in the African malaria vector, Anopheles gambiae showed that the transcription factor Maf‐S reg-

ulates expression of genes coding for multiple detoxification enzymes including CYP6M2 and GSTD1 (Ingham,

Pignatelli, Moore, Wagstaff, & Ranson, 2017). RNAi‐mediated knockdown of Maf‐S resulted in a decrease in the

expression of genes coding for detoxification enzymes and a significant increase in mortality caused by the pyr-

ethroid insecticides and DDT. In another mosquito species, Aedes aegypti, CncC was shown to affect intestinal

homeostasis, insecticide resistance, and Zika virus susceptibility (Bottino‐Rojas et al., 2018).

The expression of CYP6DA2 in the cotton aphid, Aphis gossypii increases after feeding on cotton plants

containing gossypol. Reporter assays showed that CncC binds to elements in the promoter of CYP6DA2 gene

and induce it's expression (Peng et al., 2016). RNAi‐mediated knockdown in the expression of CncC

gene resulted in a decrease in the expression of CYP6DA2 gene and an increase in the toxicity to gossypol.

These studies showed that CncC is involved in the regulation of xenobiotic response to the plant toxin,

gossypol.

In Bactrocera dorsalis, resistance to insecticide, abamectin occurs as a result of an increase in the expression of

GSTZ2 and CYP473A3 (Tang et al., 2019). Interestingly, the gene coding for MafB transcription factor also showed

an increase in its expression in the resistant strain. Knockdown of CncC and MafB genes resulted in a decrease in

the expression of GSTZ2 and CYP473A3 gene as well as resistance levels to abamectin in the resistant strain. These

data suggest that MafB is a key player in constitutive over of expression of genes coding for metabolic enzymes in

abamectin resistant strain of B. dorsalis.

Constitutive overexpression of six P450 genes contributes to fenpropathrin resistance in the spider mite,

Tetranychus cinnabarinus (Shi et al., 2017). After evaluating six transcription factors for their ability to reg-

ulate expression of P450 genes responsible for fenpropathrin resistance using RNAi, CncC and Maf were

identified as the major players in constitutive overexpression of P450 genes in the fenpropathrin‐resistant
strain of T. cinnabarinus (Shi et al., 2017). Interestingly, CncC and Maf genes are expressed at higher levels in

the fenpropathrin‐resistant strain of T. cinnabarinus when compared to their expression levels in the sus-

ceptible strain. CncC/Maf binding sites were identified in the promoters of P450 genes and overexpressed in

the fenpropathrin‐resistant strain of T. cinnabarinus. These experiments demonstrated that CncC and Maf

regulate expression of P450 genes and influence the susceptibility of T. cinnabarinus to acaricide,

fenpropathrin.
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6 | ROS, THE INDUCER OF CncC/Maf XENOBIOTIC RESPONSE SYSTEM?

There needs to be some signal to induce CncC/Maf xenobiotic response system after the xenobiotic compounds

enter the insect through multiple routes. Recent studies in Spodoptera exigua and Spodoptera litura suggest that

these signaling molecules could be ROS. In S. exigua genes coding for multiple GSTs involved in resistance to

chlorpyrifos and cypermethrin are overexpressed in the resistant strain (Hu, Huang et al., 2019). In this strain

transcription factors, CncC/Maf and AhR/ARNT are expressed at higher levels when compared to their levels in the

susceptible strain. The transcription factors play an important role in the upregulation of genes coding for GSTs

that are involved in chlorpyrifos and cypermethrin resistance (Hu, Huang et al., 2019). Another study by the same

group found that seven out of 31 GST genes showed an increase in their expression after exposure to lambda‐
cyhalothrin, chlorpyrifos and chlorantraniliprole (Hu, Hu et al., 2019). CncC/Maf binding sites were identified in the

promoters of all seven GST genes. Reporter assays showed that the CncC/Maf binding sites are required for

insecticide induced increase in expression of these genes. Interestingly, the same three insecticides increased the

ROS levels and ROS inhibitor N‐acetylcysteine (NAC) blocked insecticide‐induced reporter gene under the control

of GST promoter (Hu, Hu et al., 2019). These studies point to the involvement of ROS in CncC/Maf mediated

insecticide induction of GST gene expression.

In the tobacco cutworm, S. litura λ‐cyhalothrin induces expression of the gene coding for CYP6AB1.2

(Lu et al., 2020). λ‐Cyhalothrin also induced the expression of the gene coding for CncC and Maf, hydrogen

peroxide (H2O2) levels and antioxidant enzyme activity. Knockdown of CncC gene reduced CYP6AB12 expression

and increased tolerance to λ‐cyhalothrin. The CncC agonist curcumin induced CYP6AB12 expression and enhanced

insecticide tolerance. Treatment with ROS scavenger NAC reduced H2O2 accumulation, expression of CncC,

Maf, CYP6AB12 and tolerance to λ‐cyhalothrin (Lu et al., 2020). These studies suggest that ROS may initiate

CncC/Maf pathway involved in the induction of CYP6AB12 by the insecticide.

7 | PROPOSED MODEL FOR INSECTICIDE ‐ROS ‐CncC/Maf‐METABOLIC
ENZYMES/TRANSPORTER‐ INSECTICIDE DETOXIFICATION PATHWAY

In animals, Nrf2 transcription factor is a major player in mediating the response to oxidative stress (Sykiotis &

Bohmann, 2010). Under normal conditions, Nrf2 is localized in the cytoplasm as a heterodimer with the actin‐binding
protein Keap1. Stress conditions disrupt the Nrf2/Keap1 heterodimer allowing translocation of Nrf2 into the nucleus.

Upon entering the nucleus, Nrf2 heterodimerizes with Maf and binds to response elements located in the promoters

of antioxidant response genes and induce their expression (Sykiotis & Bohmann, 2008, 2010). A similar mechanism of

action could occur in insecticide‐resistant insects for induced and constitutive overexpression of genes coding for

detoxification enzymes and transporters (Figure 1). ROS might sense insecticide signals or other forms of stress in

insecticide‐resistant insects and induce dissociation of CncC and Keap1, allowing CncC translocation into the nucleus.

Upon entering the nucleus, CncC may then heterodimerize with Maf and binds to CncC/Maf binding sites located in

the promoters of genes coding for detoxification enzymes and transporters and induce their expression. This results

in the production of detoxification enzymes and transporters, which then could aid in detoxification and excretion of

insecticides leading to tolerance of insects to the insecticides.
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