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Abstract

Even index pairings are integer-valued homotopy invariants combining an even Fred-
holm module with a Ky-class specified by a projection. Numerous classical examples are
known from differential and non-commutative geometry and physics. Here it is shown
how to construct a finite dimensional selfadjoint and invertible matrix, called the spectral
localizer, such that half its signature is equal to the even index pairing. This makes the
invariant numerically accessible. The index-theoretic proof heavily uses fuzzy spheres.

1 Overview

1.1 Even Fredholm modules and index pairings

Even index pairings involve a selfadjoint invertible H on a separable Hilbert space H which
is paired with a so-called even unbounded Fredholm module given by a Dirac operator D. A
Fredholm module is also called a spectral triple or an unbounded K-cycle. From the pairing
results a Fredholm operator and thus a Noether index. In the literature [4, 7], H is supposed
to lie in a given C*-algebra A, or a matrix algebra over A, and then specifies a class in the
Ko-group Ko(A) via the projection P = 1(1—H|H|™"). The Fredholm module usually involves
representations of A. Here we rather work with a hands-on purely operator theoretic approach
in which A is simply the enveloping commutative algebra of H.

Definition 1 An even Fredholm module for an invertible operator H = H* on H is a selfad-
joint, invertible operator D on H & H with compact resolvent and a selfadjoint unitary grading
operator I' = diag(1, —1) such that I'DI' = —D and the commutator [H & H, D] extends to a
bounded operator. Going into the eigenbasis of I', the operator D decomposes
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with an invertible unbounded operator Do on H. One then extracts a unitary operator F' on H.:
F = Dy|Do|™".

The operator D 1is called the Dirac operator. The identity D' = —D is also referred to as the
chirality of D, and then F' is called the Dirac phase.

The following result is well-known, again e.g. [4] or p. 462 in [7].

Theorem 1 An even Fredholm module for a selfadjoint invertible H leads to a bounded Fred-
holm operator on H

T =PFP+ (1-P), (1)
where P = x(H < 0) is the spectral projection of H on the negative spectrum and F is the
Dirac phase of the chiral Dirac operator.

Definition 2 Given an even Fredholm module for an invertible H = H*, the associated Fred-
holm operator T" and Noether index Ind(T) is referred to as the even index pairing.

The aim in the following is to provide a new approach to the calculation of Ind(7") which
in concrete situations allows its evaluation by numerical computation. Indeed, it will be shown
that it is given in terms of a finite dimensional matrix called the associated spectral localizer.
In a prior paper [12] a similar result was obtained for pairings of odd Fredholm modules with
Ki-classes. The construction in the even case is different and the proof is considerably more
involved. In particular, a key step is a special deformation of the two-sphere (see Proposition 3
below) that is similar to a map from the two-torus to the two-sphere used in prior works [5, 9].

1.2 Spectral localizer of an even index pairing

The spectral localizer associated to an even Fredholm module D for an invertible selfadjoint H
is by definition the operator

_(H sDg\ _
Lﬁ_<ﬁD0 _H)—/@D+H®F,

acting on H @ H. Here x > 0 is a tuning parameter comparing D to H which we will assume
to satisfy ||H|| > 1. We will consider finite volume restrictions of the spectral localizer w.r.t.
the spatial structure given by the spectrum of the Dirac operator. Let m, be the surjective
partial isometry onto the finite dimensional subspace (K @® ), = Ran(x(D? < p?)) of H ® H.
Here x is the characteristic function and p > 0. For any operator 7" on H & H, let us then
set T, = m,T'm, which is simply the restriction of 7" with Dirichlet boundary conditions. In
particular, 1, = m,7 is the identity of (H @® H),. With these notations, the finite volume
spectral localizer is the selfadjoint matrix acting on (H @ H), given by

Ley = (kDy + HOT) . (2)

We will mainly be interested in the signature of L, ,. Of course, one first has to assure that
it is well-defined. This is the object of the following result, the proof of which is analogous to
that of [12, Theorem 5].



Theorem 2 Let g = ||[H||™' > 0 be the gap of H and suppose that k and p are such that
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Then the matriz L, , is invertible and satisfies (L, ,)? > % 1,. Moreover, the value of L, , is
independent of the choices of k and p, as long as (3) and (4) hold.

Having a bounded commutator [D, H & H| is interpreted as a non-commutative differen-
tiability of H w.r.t. to the differential structure induced by D. If this is given, one can always
choose the tuning parameter x sufficiently small so that (3) holds, and in a second step the
radius p sufficiently large such that (4) holds. It is also possible to revert the logic, namely first
choose p and then k:

Corollary 1 Let g = ||H |7t > 0 be the gap of H. If p is such that
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then L, , is invertible, satisfies (L, ,)?* > 94—2 1,, and Sig(L,,,) is independent of the choices of p
and k in this range.

We do not claim (or believe) that the conditions (3) and (4) or (5) and (6) are optimal,
but numerical results show that they cannot be improved by much. Clearly, L, , is invertible
with vanishing signature when x = 0, and, more generally, when « is less than g/p. This shows
that the first bound in (6) is close to optimal. A similar argument shows any improved upper
bound on « needs to be of order O(1). As L, , is an even-dimensional selfadjoint and invertible
matrix, its signature is indeed divisible by 2.

Definition 3 Whenever r and p satisfy (3) and (4), the integer § Sig(Ly.,) is called the local-
ized index pairing of H w.r.t. D.

Let us add a comment on the finite volume approximation. As D? = diag(Dg Dy, DyD;), one
has (HOH), = H,+DH, - with H, = Ran(x(DyDo < p*)) and H,_ = Ran(x(DoDj < p?)).
Introducing the surjective partial isometries 7,1 : H — H, 1, one has 7, = 7,  © 7, _ and

L, — < T+ Hmpr  km,y Dg 7T;_> '

*
kM- Doy, —mp- Hmpy

If Dy is normal, then clearly H, . = H,_ and 7, = 7, _. In the main result described next,
we will make this simplifying assumption.



1.3 Main result and comments

The main result of this paper connects the Noether index of an even index pairing to the
localized index pairing, namely the half-signature of the finite volume approximation L, , of
the associated spectral localizer. The main supplementary hypothesis is, from the perspective
of non-commutative geometry, that the spacial coordinates encoded in the unbounded operator
Dy retains some commutativity. Theorem 2 suggests that this may not be necessary, but several
steps in the proof below would have to be considerably modified.

Theorem 3 Let D specify an even Fredholm module for an invertible selfadjoint H. Suppose
that k and p satisfy (3) and (4). Furthermore assume that Dy is normal. Then the index
pairing is given by:

1
d(PFP + (1-P)) = 5Sig(Le,)

If the operator H has some symmetry property involving a real structure, it may be possible
to extract a Zs-invariant as the sign of the determinant or Pfaffian, see [11, 12|, and connect
them to Zs-indices as defined in [8, 1]. These issues will be examined in a subsequent paper.

Our initial motivation to prove this theorem rooted in applications to the field of topological
insulators. In a one-particle and tight-binding approximation, these quantum systems are
described by a Hamiltonian H on ¢?(Z¢,CV) with spectral gap at the Fermi level (making the
system into an insulator), but also a topologically non-trivial Fermi projection P = x(H < 0)
in the sense that it has non-trivial winding numbers or Chern numbers. An overview of the
physics and mathematics literature on the subject is contained in [9, 11, 15]. Theorem 3 is of
interest for systems in even spatial dimension and provides a very efficient means to numerically
calculate the topological invariant. Initial numerical results are contained in [11] and [6], but
the method will be further explored elsewhere. For odd dimensional physical systems (with
chiral symmetry), one has to consider odd index pairings of a invertible A specifying a K7-
class with an odd Fredholm module given by a Dirac operator D without chiral symmetry,
see [15]. If II = x(D < 0) is the associated Hardy projection, one has a Fredholm operator
ITAIT+ (1 —1II) with an index which can also be calculated as the signature of a suitably defined
spectral localizer [12]. Before turning to the proof of Theorem 3, let us spell out in the next
section how the even Fredholm module for a Hamiltonian describing a topological insulator is
constructed and how the index pairing is related to Chern numbers.

1.4 Examples from physics

Let d be even. The Hamiltonian H is a selfadjoint and invertible, bounded operator on the
Hilbert space H = ¢%(Z¢,C"). Furthermore, on H act the d components X,..., X, of the
selfadjoint commuting position operators defined by X;|n) = n;|n) where n = (ny,...,ng) € Z%
and |n) € £%(Z%) is the Dirac Bra-Ket notation for the unit vector localized at n. Moreover,
let be given a self-adjoint irreducible representation 71, . .., v4_1 of the Clifford algebra C;_; on



CV. Hence N = 25. From this data, one sets

d—1

Dy = ZXa'@% + 10) (0] ® 71, Dy = X;®1.

J=1

If then o1 = (0 1), 09 = (0 _Z>, 03

10 .0 (1 0) are the standard Pauli matrices, the selfadjoint Dirac
operator is

0-1

D =D ®o; + Dy®os, (7)

or equivalently Dy = Dy +1Dsy. Then D is odd w.r.t. [' = 1 ® o3, namely I'DI' = — D. Clearly,
D has a compact resolvent and [Dy, Dy] = 0, namely the off-diagonal entry Dgy of D is normal.
It defines a Fredholm module for H if

11Dy, H]|| < 0o, [[[Dy, H]|| < 00 (8)

From a physicists perspective, the bounds (8) express the locality of the Hamiltonian H, while
for a mathematician it is rather the non-commutative differentiability of H. The index pairing
is known to be connected to the d-th Chern number by an index theorem, see [14] and [15,
Corollary 6.3.2]:

Ind(PFP + (1 —P)) = Chy(P).

For the Dirac operator (7), one has H,+ = (*(D,,C") where D, = {z € Z¢ : ||z| < p} denotes
the discrete disc of radius p. Therefore, the spectral localizer is really an operator localized in
physical space.

Most numerical studies of topological insulator have been conducted on square samples.
The truncation of the spectral localizer L, can be made to a square {z € Z? : |z;] < p}.
The proof of Theorem 2 can be modified to show the signature is still equal to index when a
square sample is used, or any sample that includes the disk of radius p. One can also vary the
local geometry of model, replacing Z? by the vertices of a quasi-lattice [6] or use more random
collections of points, as in an amorphous system [2]. The spectral localizer method works in
these cases since it uses Dirichlet boundary conditions.

1.5 Outline of the proof

The main technical tools in the proofs are fuzzy spheres. While they can be defined in arbitrary
dimension, we will only work of fuzzy 2-spheres an refer to them simply as fuzzy spheres.

Definition 4 Let K be a C*-algebra with unitization K. A fuzzy sphere (X1, Xo, X3) of width
d < 1in K is a collection of three self-adjoints X1, Xo, X3 € KT with spectrum in [—1,1] such
that, for 1,7 =1,2,3,

Hl — (X7 + X5 + X3)

<5, XX <6



There is a tight link between fuzzy spheres and classes in the Ky-group Ko(KC) of K. While
the standard description of this group is in terms of homotopy equivalence classes of projections
in matrix algebras M, (K) over K, it is also possible (e.g. [8, 12]) to use homotopy equivalence
classes [L]y of invertible selfadjoint matrices L € My, (KT) having a scalar part s(L) € Ma,(C)
that is homotopic to diag(1,, —1,). The additive structure is then simply given by direct sum.

Proposition 1 A fuzzy sphere (X1, X, X3) of width § < i in IC specifies a class [L]o € Ko(K)
by the self-adjoint invertible operator

L= > X;®0 € MyK"),

j=1,2,3
where 01,09, 03 are the Pauli matrices and My(KCT) the 2 x 2 matrices with entries in KT

Proof. Indeed,

L= (X;+ X+ X)L+ ) [X,X;]® 005, (9)
i<j
so that
L >1— || X{+ X5 + X5 —1| —3sup|[X;, X5]| > (1 —46)1.
i<j
Thus 6 < i implies the invertibility of L. O

As the notation already suggests, we will show in Section 4 that the spectral localizer can
be deformed into a fuzzy sphere within the space of compact operators, actually even inside
the matrices of fixed size. More precisely, the following will be proved:

Proposition 2 Suppose that k is chosen sufficiently small and p sufficiently large so that, in
particular, (3) and (4) hold. Then there is a fuzzy sphere (X1, Xo, X3) of matrices of half the
size of L, , such that Zj=1,2,3 X, ® oj is homotopic to L, , within the invertible self-adjoint
matrices. The width of the fuzzy sphere (X1, Xy, X3) is of the order p=*.

Hence the spectral localizer can be identified with a fuzzy sphere. Actually, this fuzzy sphere
will be constructed explicitly in Section 4. On the other hand, also the index pairing (1) itself
can be identified with a fuzzy sphere. Indeed, it specifies a class [7(T")]; in the Kj-group K;(Q)
of the Calkin algebra Q over the Hilbert space H (here 7 : B — Q denotes the projection from
the bounded operators on H onto the Calkin algebra). Via the index map this class is mapped
to an element in Ky(K) which under suitable conditions is given by a fuzzy sphere in K. This
is a consequence of the following abstract result.

Theorem 4 Let 0 - K — B 5 Q — 0 be a short exact sequence of C*-algebras with Q
unital. Let A € B be a contraction such that w(A) € Q is invertible specifying an element

[m(A)]y € K1(Q). Set Ay = 3(A+ A*) € B and Ay = (A — A*) € B and assume that

I[A1, Ao]|| < €, (10)
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for some € sufficiently small. Also introduce a non-negative operator B = (A2 + A2)3. Further
let ¢ : [0,1] — [0,1] and ¢ : [0,1] — [—1,1] be smooth functions with bounded derivatives such
that

¢(1) =1 =—¢(0),  2*¢(@) + o(x)* = 1. (11)

Next set

Vi = ¢(B)A(B)
Yo = —(B)Ax(B), (12)
Y3 = ¢(B).

Then the K -theoretic index map satisfies

nd[r(A)]; = [ 3 Yj®aj]0,

j=1,2,3
and (Y1,Y5,Y3) is a fuzzy sphere in KC of width depending on € as well as ¥ and ¢.
Proof. It is well-known (e.g. Proposition 3 in [12]) that

) A1 aalan - A
Il’ld[?T(A)]1 = |:(2(1 . A*A)%A*(l _ AA*)i —(QAA* - 1) ):|0 '

As both A*A and AA* are close to B2, one can replace without changing the Kj-class:

Ind[r(A)], = Kz(l B Bzﬁi;& ) 2(1 —_'ﬁ;f(_ll_) 32)1)}0 .

This shows that the result holds for 1(z) = v2(1 — 22)7 and ¢(z) = 222 — 1. Of course,
these functions can be homotopically changed without changing the class in Ky(K). Choosing
1 and ¢ smooth, the assumption (10) combined with smooth spectral calculus assures for the
commutators

A, B < Ce,  [A¢B)] < Ce.

This implies that [Y3,Y3] = ¥(B)[A, ¢(B)](B) is small in norm, and similarly [Ys, Y3] and
[V, Y5] are also small. Furthermore, the last equation in (11) assures Y + Y2 + Y2 — 1 is small,
so that (Y7, Y5, Y3) indeed forms a fuzzy sphere. O

In the application of Theorem 4 to the proof of Theorem 3, the algebras I and B are
respectively the compact and bounded operators on H and Q is the Calkin algebra. The
suitable lift A with 7(A) = «(7T") with T" given by (1) is explicitly constructed in Section 5. Let
us note that by the lifting result in [13, Theorem 3.1] one can always achieve (10) if 7(A) is
unitary.

Getting back to the main argument, we note that there is one fuzzy sphere (X;, X, X3) in
the algebra of compact operators K associated to the spectral localizer by Proposition 2, and
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another fuzzy sphere (Y1,Y2,Y3) in K associated to the index pairing (1) by Theorem 4. The
proof of Theorem 3, the main result of the paper, will then be completed by showing that these
two fuzzy spheres can be deformed into each other within the space of fuzzy spheres. For this
purpose, we will use a particular smooth map F : S? — S? of mapping degree 1.

Proposition 3 Let ¥ : [-1,1] — [0,1] and @ : [-1,1] — [—1,1] be continuous functions such

that for x > 0:

U(—z)=0,  P(-z)=(x), @0)=1=-01), (1-2°)¥(2)"+ dx)* =1.
(13)

For (z1,z9,73) € S?, set

2= W(ag)ay U(as) + U(—as)(1 — 22)2W(—xy) ,
Z9 = —\I/(l'g)l’glp(l'g), (14)
zZ3 = q)(l’g) .

Then F(x1, 22, x3) = (21, 20, 23) defines a continuous map F : S* — S* which has mapping de-

gree 1. If W and ® are differentiable with bounded derivatives, there exists an explicit homotopy
A € [0,1] — Fy of differentiable degree 1 maps of S* connecting F, = F to the identity Fy.

The proof of Proposition 3 will be given in Section 6. Of course, the above functions
commute so that one can also write 2o = W(x3)%xs, and so on. However, when F is applied to
a fuzzy sphere, the order of the factors is relevant. From the fuzzy sphere (X;, Xo, X3) as given
in Proposition 2, let us thus set

7y = W(X3) X0 W(X5) + W(—X3)(1 = X5)2U(=Xs)

Zy = —VU(X3)Xo0(X3) , (15)

Zy = ®(X3) .
By construction, these operators are selfadjoint with spectrum in [—1, 1]. It will also be verified
in Section 6 that (Z;, Zs, Z3) forms a fuzzy sphere in K if (X, Xy, X3) does so. As F has
degree 1, it can be shown that the two fuzzy spheres (Xi, Xo, X3) and (21, Zs, Z3) lie in the
same class in Ky(K) via Proposition 1. In Section 7 the proof is then concluded by showing

that (Y7, Y2,Y3s) defines the same Ky-class as (27, Zs, Z3), provided that the functions v, ¢ and
W, ¢ are chosen dual to each other via the relations

ba) = (VI—aP), o) = d(VI— ). (16)
Otherwise stated:
Theorem 5 Under the same assumptions as in Theorem 3,
Ind[m(PFP +1—P)l; = [Lgpo -

As Ki(Q) = Z and Ky(K) = Z, Theorem 3 follows immediately. This concludes the
overview of the proof of Theorem 3. The remainder of the paper provides the details.
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2 Technical tools

In the proofs below, k will always be chosen sufficiently small so that (3) holds. Then it is kept
fixed while p is taken sufficiently large, often much larger then necessary for (4). The errors are
then estimated in terms of p~t. Therefore it is convenient to use the following notation. Given
two nets (A,) and (B,) of bounded operators and with positive family index p > 0 and given
any v > 1, we write A, ~,y B, whenever there is a constant C' such that ||A, — B,|| < Cp~7.
By abuse of notation, we also simply write A ~, B if it is clear from the context that A = (A,)
and B = (B,) are nets indexed by p. We will use the following basic

Lemma 1 Let A= (A,) and B = (B,) be selfadjoint and uniformly bounded in p. Furthermore
let us suppose that A ~, B.

(i) If f : R = R is smooth on the spectrum of both A and B, then f(A) ~, f(B).

(ii) If, moreover, P = P* = P* is an orthogonal projection, then f(PAP) ~, Pf(A)P.
: 1 1
(iii) If A and B are non-negative and v > 1, then A7 ~,y B7.

Proof. The claim (i) can be proved using from Dykin’s functional calculus (often also called
Helffer-Sjorstrand formula)

2271'

F(4,) = / & 052 (A, — o)

Here f: C — C is a suitable quasianalytic extension of f. Now invoking the resolvent identity

FA) =3B = [ 5% F0) (By= 27 (A= B4 =)

2 271

As f can be chosen with arbitrary decay on the real axis, the bound |A, = B,|| < Cp~” implies

1 f(A,) — f(B,)| < Cp~7 for some different constant C'. For (ii) one can proceed in the same

manner by using the geometric resolvent identity. Item (iii) directly follows from the bound
1 1

1A, — BJ || < ||A, — Bp||%, e.g. [12, Lemma 1]. O

In the following sections it will be crucial to control the functional calculus of D and H
with slow-varying functions.

Lemma 2 Let G, : R — R be a differentiable function of the form Gy(x) = Gi(5) with a
derivative having an integrable Fourier transform ||é\’1||L1(R) < 00. Here the Fourier transform
is defined by [ dxe PGl (x), so without a factor 2m. For any bounded operator A = A* on

H ® H, one then has

IIG,(D), Alll < o7 G|y D, Al (17)
and
I[D, G, (Al < @mp) |Gl (1D, Al - (18)
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Proof. A short calculation shows that ||é\f’p|| LI(R) = p‘1||é71|| rim). Therefore the first claim
follows immediately from [3, Theorem 3.2.32] or [7, Lemma 10.15], and the second from [16,
Proposition 3.3.6]. 0

We will choose a particular so-called tapering function F; : R — [0, 1] which is even, vanishes

on R\ [—1, 1] and is equal to 1 on [—3, 5]. Lemma 4 of [12] explicitly constructs such a function

with ||ﬁ||L1(R) < 8. Asin Lemma 2, let us then set F,,(x) = F1(7). The function F, is supported
by [~p, p] and is equal to 1 on [—%,£]. The bound (19) holds for G, = F, and A = H ® 0y

where 0( denotes the 2 x 2 identity matrix:

IF,(D), H@ ool < 8p~" |[D, H® ool - (19)

3 Invertibility of the spectral localizer

The object of this section is to prove Theorem 2 and thus that the signature of the finite
volume spectral localizer is well-defined and stable. Several elements of this proof will be used
in Section 4.

Proof of Theorem 2. To connect different values of p, let us consider the matrix
Lﬁ7p7p/()\) = KTy Dﬂ';/ + 7Tp/F)\7p(H X F) FA,P 71';/ 3
acting on (H @ H), where
F, = (1= N1 + AF,(D).
and p < p' and 0 < XA < 1, and (3) and (4) are true. Notice that L, ,,(0) = L, ,. The first

goal is to show that L, , ,(\) is always invertible and that it is bounded below by %lp/ when
A = 0. The square of L, , (\) simplifies to

Lupy(N? = K2 my D + (myFr, (H@T) Fy,my)’ + kg Fa, [D, (H © 09)] TFy s .
Let us bound the second summand as follows:
(7 Fap(H @ D) Fy yh)?
= Ty Frp (H®00) 5, (H ® 09) Fy
> wyFy\, (H® o) Fp(D)2 (H ® 09) Fy oy
= T E5pFp(D) (H ® o)’ Fy(D)Eypmy + 7y Fy, [Fo(D) (H @ 00) , [F,(D), (H ® 09)]] Fx
> Gy FL F) (D) + g Py [Fo(D) (H @ 00), [Fy(D), (H © o0)]] Py
> ¢°my Fy(D)'nly + my Py, [Fo(D) (H ® 00) , [Fp(D), (H @ 09)]] F -

For the special case of A = 0 one has the better estimate

(7o Fop (H ® 00) TFy )
> 927Tp’Fp(D)27T;' + 7, [F,(D) (H @ 09) , [F,(D), (H ® 09)]] F/\,pW;’
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Furthermore, by spectral calculus of D one has the bound

K (Dy)* 2 ¢*my(1— F(D)*)m

k
N

because the bound holds for spectral parameters in [1p, p'] due to (4) and 1 — F,(D)? < 1,
while it holds trivially on [0, $p]. Since

1~ F,(D)? + F,(D)" >

>

1,
it thus follows
Lupw(N)? > 391,47, Fy, ([F,(D) (H ® 00) , [F,(D), (H ® 00)]] + £ [D, (H ® 00)] ') Fx p7)y
and in the special case A = 0,
L (0)? > g* 1y + 1y F, ([Fp(D) (H @ 00) , [Fp(D), (H ® 00)]] + £ [D, (H ® 00)] L) Fy 0y .
Finally the error term is bounded using the tapering estimate (19):

|[F,(D) H @ 00, [F,(D), H® 9] + k[H ® a9, D]T||

< (201F,(D) H @ 00| 8(p) " + ) |[H @ o0, D]

< (1H18 ()" + 1) xlI[H @ 00, D]|
|H)|9g™" 5| [H @ o0, D]

3 2
29 >

N

IA A

where the second inequality used (4) as well as ||F,(D)|| = 1, the third one |[H|| > 1, and
finally the last inequality follows from hypothesis (3). Together one infers L, , s(\)* > 0 and
Ln,p,p’(o)z Z ig;
Finally, let us show that
Sig (me) = Sig (LH’7P’) )

for pairs x,p and &/, p" in the permitted range of parameters. Without loss of generality let
p < p. Clearly L, is continuous in &, and since any x that is valid for p is valid for p’ a
homotopy argument allows to reduce to the case k = k’, namely one needs to show

Sig (Ln,p,p(o)) = Sig (Ln,pﬁp’(o)) )

when p < p' and (3) and (4) are true for x and p. Clearly L, ,,(\) is continuous in A, so it
suffices to prove

Slg (mep(l)) = Slg (Lﬁ,p’,p’(l)) .
Consider
L“’p’p'(l) - ’WTP'DW;’ + WP’FP(D)(H ® F>Fp(D)7T*/ .

p
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Now D commutes with 7,77, so that L, ,, (1) decomposes into a direct sum. Let 7, , = 7, O,
be the surjective partial isometry onto (H & H), © (H & H),. Then

L"@Pvﬁ’(l) = LI{,p,p(l) @ ﬂ-p”pHDﬂ-;/7

P
The signature of 7, , D7, , vanishes so that

Sig(Ly pp (1)) = Sig(Lep,(1)) -
As L, , (1) is continuous in p, one has Sig(Ly , (1)) = Sig(Ls, (1)) by homotopy. O

4 Deforming spectral localizer to a fuzzy sphere

The first step consists in deforming the invertible selfadjoint operator H into the selfadjoint
unitary 1 — 2P where P = x(H < 0). This will be done by the homotopy of invertibles

Ae[0,1] —» H\) = (1—NH + A(1—2P).

One obtains an associated path A € [0,1] — L, ,(\) of spectral localizers and has to assure
that this path lies within the invertibles, provided s is sufficiently small and p is sufficiently
large. This follows from Theorem 2 applied to H () because PP = p(H) for a smooth function p
satisfying [[p/|| 11 r) < 2mg~" (which can again be constructed explicitly as in Lemma 4 in [12]).
Then by (18)

I[D, P& ao]|| = [I[D.p(H@00)]ll < g7 |[D, H®aol|| ,

and thus, for g <1,
I[D, HN) @ ool < (1= A+2Xg™D[D, H @ aol| < 297'[[D, H & oo -

Replacing x and p by k3 and p% respectively thus assures that Theorem 2 applies for all
A € [0, 1]. From now on, we may thus assume that H is a selfadjoint unitary and that g = 1.

The construction of the fuzzy sphere (X7, Xs, X3) appearing in Proposition 2 will invoke the
even and smooth tapering function F, : R — [0, 1] already introduced in Section 2 and used in
Section 3. A dual tapering function f,: R — [0, 1] is defined by the equation

f@)* + F (o) = 1. (20)

The function f, is also even, vanishes on [—
folz) = fl(%), it satisfies the same bound (19

;%] and is equal to 1 on R\ [—p, p|. As again

~— N

Ilfo(D), H @ oo]l] < Cp~ ||[D, H® ool - (21)

Of course, here C' is a different constant. In fact, in the following C' will denote different
constants (independent of p, however). We will also need the bound (17) for the odd function

Gylz) = fo(x)*(a?) 20 = Gi(2):
ILfo(D)*[DI™' D, H @ oo]|| < Cp~* ||[D, H® ool - (22)

12



From now on, we will heavily use that Dy is normal. Then H, = H,+ and 7, = 7, _. We
will use the notation T, = m, +T'm, + also for restrictions of operators 7" on H. Also, let us set
Dy = 5(Dy + D§) and Dy = 5-(Dy — Dj;). Then [Dy, Dy] = 0. Furthermore, let us introduce a
non-negative operator R on H by

R* = D+ Dj. (23)

One has D* = R* ® 0y and |D| = R ® 0. For the even function f, also f,(D) = f,(R) ® 0.
Thus (22) implies

ILfo(R)*R™ (Dy 0 Do), H]|| < Cp™' [[[D, H @ ao]||
and therefore also, for i = 1, 2,
I[f,(R)*R™"D;, H|| < 2Cp " |I[D, H @ o] - (24)
Let us now introduce 3 selfadjoint operators on the finite dimensional Hilbert space H,:

X, = f(R)R 2Dy, R f,(R) ,
X; = f(R)R™> Dy, R™2 f,(R) , (25)
X3 = Fy(R)H, F,(R) .

Each of the X;, j = 1,2,3, depends on p and will also be seen as a net X; = (Xj,) in the
following.

Lemma 3 Let Dy be normal. Then (X1, Xo, X3) is a fuzzy sphere of width of order p=!.
Proof. First note that X; = f,(R)?R™! Dy ,. Due to H> =1,
X?+ X3+ X3 = f,(R)'R? (D}, + D3,) + F,(R)" + F,(R)1,[H, F,(R)*|HF,(R) .
Now, using ||F,(R)|| <1 and (19),
IH, E,(R)?)| < 2|[H, Fy(R))| < 16p7" |[H ® 0o, D]l ,
and the last factor can be bounded by (3), with a bound that is independent of p. Using (20)
IXT + X3 + X5 — 1] < 16]|H]| [[H® 00, D][| p~ < Cp,

for some constant C. Furthermore, the commutator [X;, X5] vanishes, and the two others
(X1, X;3] and [X5, X3] can be bounded by a constant times p~! by using (24). O

Proof of Proposition 2. The basic idea of the argument is the same as in the previous Section 3.
Let us set

LR = 1=MNkTR*1, + Af,(R), F,(R A = (1-M\)1, + AF,(R).

13



and then

and finally from these operators
Leo(N) = > X;(N @0
j=1,2,3

Then L, ,(0) = L, , is the spectral localizer and L, ,(1) is the selfadjoint associated to the
fuzzy sphere (25). The proof is hence concluded by showing that L, ,()\) is invertible for all
A € [0, 1] and for p sufficiently large.

Again one starts by calculating L, ,(A)? as in (9). Due to the [Dy, Dy] = 0, the summand
X1(A)? 4+ X5(\)? can readily be calculated:

Xi(A)? 4+ Xo(A\)? = (D}, + D3 )R f,(R.A)! = fo(RN)".
Furthermore, one summand can be bounded similar as in the proof of Theorem 2:
X3(\)? = F,(R,A\)HF,(R,\)*HE, (R, \)
> F,(R,\)HF,(R)’*HF,(R,\)
Fy(R N, (RIEF,(R,A) + (R N)[[H, Fy(R)], Fy(R) H] Fy(R, )
> F,(R)* + F,(R,\)|[[H, F,(R)],F,(R)H|F,(R,\) ,
where H? =1 was used. As ||F,(R,\)|| <1 and ||[H, E,(R)]|| < Cp~' by (19),
IX5(A)* = F(R)Y| < Cpt
uniformly in A € [0, 1]. Another summand vanishes as [X;(\), Xo(A)] = 0 and, for i = 1,2,
126N, Xa(WI| = [ Fp(R, N)[fo(R.A)? R™ Diy, Hy F,(R, )|
< |lfp(R,\)* R~ Dy, Hy|

< (1= sll[Dip, ]II + 201 = NAe2[|[f(R,A) B2 Dy, Hy|
+ N|fp(R)* R Dy, H|

< (1= N2 [Di HY|| + 201 = N2 f,(R) B2 || |[Dips H,]|
+ 201 = MARE||[fo(R) B2, H)|l | Dipll + N[[f,(R)> R Dy, H]|| -
Now f, vanishes on [—£, 2] so that ||f,(R) R ~2|| < 22p~2. Also, fo(R R)R 2 = p_%Gp(R) for

some function G, for which (17) holds. Thus, with || D; || < p,
IGO0, Xs Il < (1= A% (185) ™ + 21 = N (2873 (185) 7 + 972 C) + NC (o)
< (=N + O
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for some constant C” depending on s, but not on A. Then replacing all the above shows
Leo NP = B(R) + By '~ (=02 + 07 p7h)

It hence only remains to show that the r.h.s. remains positive. By functional calculus of R,,
this is merely a statement about the functions involved. For spectral parameters r € [0, £], the
claim is obvious because then F,(r) = 1. For r € [§, p],

E,(r)* + fo(r, )t = (1= X)L = ME,(m)* + (51 =N+ X)) — (1= X%

v

2
P
PRIE Z/8(1 A= 1=k

> A+ (1= = (1-))%

18 7

the latter due to (4). This is strictly larger than C” p~2 for p sufficiently large. O

5 Image of the index map as a fuzzy sphere

In this section, it will be shown how to modify the Fredholm operator T = PF P + (1 — P)
appearing in the even index pairing of Theorem 1 within the set of Fredholm operators to an
operator A satisfying hypothesis of Theorem 4, with C and B being the compact and bounded
operators on H. We will already assume [Dy, Dy] = 0. Then R? = | Dy +1 Do|* = D? + D3 as in
(23), and [D;, R] = 0 for i = 1,2. First, let us decompose T" = T; +1T» into real and imaginary
part:

T, = PR'D/,P + (1-P), T, =PR'D,P.

Now f,(R) — 1 is compact. Hence setting
Ay =Pf,(R?*R'DiP + (1-P)f,(R?*(1—-P), Ay =Pf,(R?’R'DyP, (26)

as well as A = Ay + 1 Ay, one clearly has m(A) = 7(T) where 7 is the projection onto the
Calkin algebra. Again, A;, Ay and A depend on p and will be seen as nets with index p. As
H=1-2P, (24) implies

[Al,Ag] ~p 0.
Thus choosing p sufficiently large, one can assure (10) so that Theorem 4 can be applied. This
provides a fuzzy sphere (Y7,Ys,Y3) in K which provides the image of the index map. Again

this fuzzy sphere depends on p. The following result spells out a slightly modified version
(Y{, Y5, YZ) of this fuzzy sphere.

Proposition 4 Let ¢ : [0,1] — [0,1] and ¢ : [0,1] — [—1,1] be the two smooth functions
appearing in Theorem 4, notably satisfying (11). Set

Y] = Py(f,(R)*)’ fo(R)? R D1 P + (1 = P)Y(f,(R)*)*f,(R)*(1 — P),

Yz/ = _Pw(fp(R)z)z fp(R)2 R_l D2P>

Yy = o(fo(R)?) .

15



Then (Y{,Y,,Y]) form a fuzzy sphere in K of width of order of p=2 and the image of the index
paring T as given in (1) under the K-theoretic index is

md[m(T)y = | 3 Y/ @0

.
§=1,2,3

Proof. The proof consists in proving that (Y7, Y3, Y3) given by (12) with A; and A, as in (26)
is equal to (Y7,Y;,Yy), up to errors of order p~'. Let us begin by calculating B? = A? + A2:

B> =Pf,(R?*R "D, Pf,(R?°R "D, P+ (1-P)f,(R)?*(1— P)f,(R)?*(1—P)
+ Pf(R)}?R "Dy Pf,(R}PR "Dy P .

Note that

B* < Pf,(R?R Dy f,(R>R™" D1 P + (1= P)f,(R)*f,(R)?*(1—P)
+ Pf(R)}?*R "Dy f,(R}*R "Dy P
= pr(R)4P + (1 - P)fp(R)4(1 - P) )

and, in particular, B? < 1. More precisely, one has due to (24)
B® ~, (Pf(R)*P + (1-P)f,(R)* (1 - P)).

Again by (21) one also has P f,(R)*(1— P) ~, 0 so that B> ~, f,(R)*. Applying Lemma 1(iii)
one therefore finally obtains for the roots

B ~, f,(R)*.

As ¢ is smooth, this also implies by Lemma 1(i) that Y3 — Y{ = ¢(B) — ¢(f,(R)?) is of order
p~2. Furthermore, ¢(B) — ¢ (f,(R)?) is of order p~2 so that

Yy ~pe = 0(f(R)*) Az (fo(R)?) .
As now also [¢(f,(R)?), P] ~, 0, one has

D(fo(R)) As ¥ (fo(R)?) ~pe PU(fp(R)*)* fo(R)* R™ Dy P
This means that Y5 ~,2 Y;. Similarly, Y7 ~,2 Y/. O

6 Deforming the fuzzy sphere (X, X5, Xj3)

Let us first prove Proposition 3 which is the explicit analysis of a degree 1 map F on the
2-sphere. This map (21, 22, 23) = F (21, T2, x3) is of the form

21 U(23)%m; + W(—23)%(1 — 23)3 U(x3)?xy 4 x(xs <0)(1— (I’(IL"?))Q)%
Z9 = — \I](l’3>2$2 - — \11(1'3)21'2 )
Z3 @([L’g) (I)(LL’g)
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where U : [-1,1] — [0,1] and ® : [-1,1] — [—1, 1] are continuous functions satisfying the
conditions (13), and x(z3 < 0) denotes the indicator function on negativ 3. Beforehand, let
us give a particular realization:

0, z <0,
_ (27)
I4+2)™H)*, 2>0.

Oz) =1 - 2]z, Ula) = { (1

=

Let us also note that the equation (1 — 2?)¥(z)* 4+ ®(2)? = 1 fixes ¥ if ® is given, or inversely
it fixes ® if U is given. For example, the even function ® with ®(0) = 1 = —®(1) determines
U(x) for x > 0 due to (1 —2?)¥(2)* + ®(x)> =1, and ¥(—z) = 0 for z > 0 is imposed anyway.
While the above choice of ® is continuous, it is not differentiable. It may, however, be useful to
have a concrete example to visualize the constructions below. Differentiable choices with nice
behavior at the boundary points 0 and 1 are obtained if ®(z) = 1 —cax® 4+ o(x*) with a > 4 and
O(z) = =1+ c(z — 1)? + o((x — 1)) with 3 > 5. Then analysis of (1 — 22)¥(z)* + ®(x)? =1
shows that also ¥ has then bounded derivatives at 0 and 1.

Proof of Proposition 3: The map F indeed maps S? to itself because, due to ¥(—z)¥(z) =0
for all z € [—1,1] and the identities (13),

Azt = Ula) (o] +a3) + U(—ay)'(1 - 23) + D(x3)*
= ((z)" + U(—a3)")(1 — 23) + O(z3)*
1

It ought to be stressed that the mapping is surjective, but highly non-injective. Actually, a
whole half-sphere is mapped to just one arch. Nevertheless, the map is continuous and thus

has a mapping degree. It is most easy to calculate this degree at a regular point by use of
differential topology (e.g. [10]). For example, let us suppose that ¥ and & are given by (27)
and then consider the point (21, 22, 23) = (0,1,0). From 23 = ®(z3) = 0 one infers z3 = £3; as
29 > 0 it follows that actually x3 = %; as z; = 0 one then deduces z; = 0; finally 1 = —\II(%)2.TZ}'2
implies xo = —?. Hence (21, 22, z3) = (0, 1,0) has only one preimage (x1, z2, x3) = (0, —@, .
As the mapping degree is equal to the sum of signs of the determinants of Jacobians over all
preimages, it can only be 1 or —1. Calculating the derivates at (x1, 22, x3) = (0, —?, %) shows
that the mapping degree is actually 1. Now for any other function ® one can consider the
homotopy A € [0,1] = @y (z) = (1 — A)(1 —2|z|) + AD(x) and (uniquely) associated functions
W, during which the mapping degree does not change.

Now, as the mapping degree of F is equal to 1, it is well-known that F is homotopic to
the identity. To write out an explicit homotopy A € [0,1] — F) of differentiable maps, let
us set @ (z) = ®(1 — 755(1 — z)) and then define Uy by Wy(z) = 0 for # < A — 1 and by
(1 —2?)Wy(2)* + @5 (x)* =1 for z > X\ — 1. Then set

1 Uy (z3)%11 + x(z3 < A —1) (1 - @A(xg)z)%
Falz] = — U\ (23)%12 ; (28)
T3 Dy (23)
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where x(z3 < A — 1) denotes the characteristic function on x5 < A — 1. As (A —1) =1, the
map F) is continuous, and actually even differentiable at the discontinuity of the characteristic
function. Also, by construction Fy sends S* to S*. Moreover, ®; : [—1,1] — [—1,1] can
be smoothly deformed into minus the identity (e.g. by a linear homotopy) and then W is
accordingly deformed to the function identically equal to 1. Thus Fy is homotopic to the
map (x1,xo,3) — (x1, —T2, —x3), which after a rotation in the 2-3 plane by 7 is seen to be
homotopic to the identity. O

Now the homotopy A € [0, 1] — F, of differentiable maps on S? is used to obtain a homotopy

of fuzzy spheres.

Proposition 5 For p sufficiently large, the fuzzy sphere (X1, X, X3) given in Proposition 2
can be deformed within the set of fuzzy sphere on K to the fuzzy sphere (Z1, Zy, Z3) defined by
(15). In particular, both spheres define the same element of Ko(K) via Proposition 1.

Proof. The homotopy A € [0, 1] — (Z1 5, Za, Z3,5) is defined using the maps (28):

[NIES

Ziy = Uy (X3) X100 (X3) + x(X3 <A —1)(1 - D,(X3)?)
Zoxn = —Ux(X3) X, 0,(X3)
Zsy = Py(X3) .

Y

As U (X3)x(Xs <A —1)=0=x(X3 < A—1)¥,(X3) and the commutators [V, (X3), X;] and
(@ (X3), X;] are of the order p~t for i = 1,2, it follows from the commutative identities that
(Zy.x, Zax, Z3,0) is indeed a fuzzy sphere of width p~! for all X € [0, 1]. O

7 Comparing fuzzy spheres

In this section, we complete the proof of Theorem 3 by showing the fuzzy sphere (Y{,Y;,Yy)
given in Proposition 4 is homotopic to (21, Zs, Z3) given in (15) with (X, X5, X3) as in (25)
provided that the functions 1, ¢ and W, ® are related via (16) and p is sufficiently large.
Proof of Theorem 5: Let us begin by expressing (7, Zs, Z3) in terms of R, D; and Dy by replac-
ing (25) in (15). This requires the evaluation of V(F,(R)H,F,(R)) and ®(F,(R)H,F,(R)). Here
U and ¢ are smooth real functions on [—1, 1] specified in Proposition 3, and F,(R)H,F,(R) =
F,(R)HF,(R) is a selfadjoint operator (of finite dimensional range) of norm less than or equal
to 1. Using H = P — (1 — P) and the commutator estimate (19) one has

Fy(R)H,F,(R) = F,(R)PF,(R) — F,(R)(1—P)F,(R)
~p PF,(R)*P + (1= P)(=F,(R)*)(1-P).

Let us stress that the operator on the Lh.s. is strictly local (supported by #,) while the one
on the r.h.s. is not. On the other, the two summands on the r.h.s. are orthogonal, which is not
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true on the L.h.s. Squaring leads to

(Fy(RVH,F)(R))* = PE,(R)?PE,(R?P + (1—P)E,(R)?(1—P)E,(R)* (1 P)
~p PFP(R)4P + (1_P)FP(R)4(1_P)
~p FP(R)4'

As ® is smooth, one now gets with Lemma 1(ii)

(
R’P + (1-P)(=F,(R)*)(1-P))

(I)(FP(R)HPF/J(R)) ~p (I)(PF(
= ( F,(R)*P) + ®((1 - P)(~F,(R)*) (1~ P))
~p PO(F,(R)*)P + (1 - P)®(~F,(R)*) (1~ P)
= PO(F,(R)?’)P + (1—P)®(F,(R)*) (1~ P)
~p ®(F,(R)?) .

Similarly

V(F,(R)H,Fy(R)) ~, PY(F,(R)*) P + (1-P)¥(=F,(R)*)(1-P)

and
\D(_FP(R)HPFP(R)) ~p (1 - P) \II(FP(R)2) (1 - P) .

Replacing X3 = F,(R)H,F,(R) and the above into (15) leads to

Zy ~, PY(F,(R)*) PX, PU(F,(R)?*) P

+ (1= P)U(F,(R)*) (1= P) (1 — F,(R)")2 (1 — P)U(F,(R)*)(1— P),
Zy ~, —PY(F,(R)?*)PXy PU(F,(R)?*) P,
Zy ~, ®(F,(R)?) .

Now the P and 1 — P can be commuted to the outside, up to errors of the order of p~'. As
X; = f,(R)R'D; ,f,(R), one thus gets

Zy ~, PU(F,(R)*) f,(R)R™' Dy, f,(R) U(F,(R)*) P

+ (1= P)W(E,(R)®) (1 = F,(R))? W(F,(R)) (1 - P),
Zy ~p —PU(F,(R)?) fo(R)R™ Dy fp(R) W(F,(R)*) P,
Zy ~, ®(F,(R)?) .

Using [D;, R] = 0 and (20), one hence has
Zy ~, PU(F,(R)*)? f,(R)}?R™'Di P + (1 — P)V(F,(R)*)?* f,(R)*(1— P),
7y ~y — PUE,RYY: f, (R R Dy P (29)
Zy ~, ®(F,(R)?).
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Using the duality equation (16) combined with (20), one finds W(F,(R)?) = ¥(f,(R)?) and
O(F,(R)*) = ¢(f,(R)?). Therefore comparing with Proposition 4 shows that (29) merely says
Zi ~, Y/ fori=1,23. Combined with Proposition 4 this concludes the proof. O
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