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Accelerated Schemes for the L/ L, Minimization

Chao Wang ¥, Ming Yan

Abstract—In this paper, we consider the L; /Lo minimization
for sparse recovery and study its relationship with the L,-aL,
model. Based on this relationship, we propose three numerical algo-
rithms to minimize this ratio model, two of which work as adaptive
schemes and greatly reduce the computation time. Focusing on
the two adaptive schemes, we discuss their connection to existing
approaches and analyze their convergence. The experimental re-
sults demonstrate that the proposed algorithms are comparable to
state-of-the-art methods in sparse recovery and work particularly
well when the ground-truth signal has a high dynamic range. Lastly,
we reveal some empirical evidence on the exact L, recovery under
various combinations of sparsity, coherence, and dynamic ranges,
which calls for theoretical justification in the future.

Index Terms—Sparsity, Lo, adaptive scheme, dynamic range.

I. INTRODUCTION

to seek for a low-dimensional representation from high-
dimensional data, and sparsity is a crucial assumption. For
example, it is reasonable to assume in machine learning [1]
that only a few features correspond to the response. In image
processing [2], the restored images are often piecewise constant,
which means that gradients are sparse. In non-negative matrix
factorization [3], the low-rank decomposition enforces sparsity
with respect to singular values.

Sparse signal recovery is to find the sparsest solution of
Ax = bwhere A € R™*" (m < n),x € R",andb € R™. We
assume that A has a full row rank and b is nonzero. This problem
is often referred to as compressed sensing (CS) [4], [5] in the
sense that the sparse signal x is compressible. Mathematically,
it can be formulated by the Ly minimization,

I N VARIOUS science and engineering applications, one aims

min [|x]o st. Ax=b. ()
xeR™

Unfortunately, the L problem is known to be NP-hard [6]. Vari-
ous approaches in sparse recovery have been investigated. Some
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greedy methods include orthogonal matching pursuit (OMP) [7],
orthogonal least squares (OLS) [8], and compressive sampling
matching pursuit (CoSaMp) [9]. However, these greedy methods
often lack of accuracy when n is large. Alternatively, approxi-
mations/relaxation approaches to the Ly norm have been sought.
For example, convex relaxation, referred to as basis pursuit
(BP) [10], replaces Lo in (1) with the L; norm. Recently,
nonconvex models attract considerate amount of attentions due
to their sharper approximations of Ly compared to the L,
norm. Some popular nonconvex models include L, [11]-[13],
Ly-Ly [14], [15], transformed L; (TL1) [16]-[18], nonnegative
garrote [19], and capped-Lq [20]-[22]. Except for L-Lo, all of
these nonconvex models involve one parameter to be determined
and adjusted for different types of sparse recovery problems.

In this paper, we study the ratio of L; and Lo as a scale-
invariant and parameter-free metric to approximate the desired
scale-invariant Ly norm. The ratio of L, and L can be traced
back to [23] as a sparsity measure, and its scale-invariant prop-
erty was explicitly mentioned in [24].

Esser er al. [14], [25] focused on nonnegative signals and
established the equivalence between L /Lo and Lg. The ratio
model was later formulated as a nonlinear constraint that was
solved by a lifted approach [26], [27]. Some applications of
Ly /Ly include blind deconvolution [28], [29] and sparse filter-
ing [30], [31].

In our earlier work [32], we focused on a constrained mini-
mization problem,

I

min
xeR™ HXHQ

s.t. Ax =b. 2)

Theoretically, we proved that any s-sparse vector is a local
minimizer of the L; / L, model provided with a strong null space
property (sNSP) condition. Computationally, we considered to
minimize (2) via the alternating direction method of multipli-
ers (ADMM) [33]. In particular, we introduced two auxiliary
variables and formed the augmented Lagrangian as

2
L(X5y7Z;V7W) = HZHl +I(AX* b) + % ‘X -y + LVHQ

yllz p1
P 1 ’
2
+ 2 x—z—i—p—QwH27 3)
where I(-) is defined as
0 t=0

I(t) = ) ) 4
® 400, otherwise. @

There is a closed-form solution for each sub-problem. Please
refer to [32] for more details.
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This paper contributes three schemes to minimize (2). We
demonstrate in experiments that the new schemes are compu-
tationally more efficiently compared to the previous ADMM
approach. The novelties of the paper are three-fold:

1) Thanks to the new schemes, L;/Ly can effectively deal
with sparse signals with a high dynamic range, which is
not the case for the ADMM approach;

2) Wereveal the connection of the proposed schemes to exist-
ing approaches, which helps to establish the convergence;

3) Our empirical results shed light about the effects of spar-
sity, coherence, and dynamic range on sparse recovery,
which is new in the CS literature.

The rest of the paper is organized as follows. Section II is
devoted to theoretical analysis on the relation between Ly /Lo
and L;-a Lo, which motivates three numerical schemes to min-
imize Ly /L. We interpret the proposed schemes in line with
some existing approaches in Section III, followed by conver-
gence analysis in Section IV. We conduct extensive experiments
in Section V to demonstrate the performance of the Lq/Lo
model with three minimizing algorithms over state-of-the-art
methods in sparse recovery. Section VI presents how the classic
L, approach behaves under different dynamic ranges and how
sparsity, coherence, and dynamic range interplay on sparse
recovery. Finally, conclusions and future works are given in
Section VII.

II. NUMERICAL SCHEMES

We establish in Proposition 1 a link between the constrained
Ly/Ls formulation (2) and Li-aLy, where « is a positive
parameter. Immediately following this proposition, we develop a
numerical algorithm for minimizing the ratio model. We further
discuss two accelerated approaches in Section II-B.

Proposition 1: Denote

o ;== inf {le
xeR" HXHQ

T(a) =

s.t. Ax = b} , (5)

and
inf {||x|l1 — a|x|2 s.t. Ax = b}, (6)
xeR™

then we have
a) if () <0, then o > a;
b) if T(«) > 0, then o < o
c) if T(a) = 0, then o = ™.
Proof: Denote the feasible set of (5) by F = {x | Ax = b}.
Since b # Othen 0 ¢ F.
a) If T(«) < 0, then there exists x € F such that ||x||; —
a|x|l2 < 0, which implies that o > % Therefore, we
have a > o*.
b) If T'(a) > 0, then forall x € F we have ||x||; — «|x|]2 >

0.Soa < Hi“; andhence o < inf,cp H’;% =afie,a <

o,

¢) If T(a) =0, then by part (b) we get a < «*. Fur-
thermore, there exists a sequence {x,,} C F such that
limy, 00 (||xn]|1 — af|xn||2) = 0. Since x,, € F, we have
IIb]| = | Ax,|| < ||A|l|lx»|. Hence, {x,} has a lower
bounded, i.e. ||x,|| > ||b||/||A]| for all n, then we get
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limy, oo ([I%n |1 — @f|%nll2)/l|Xn]l2 = 0, which means
o < limy, 00 [|Xn]|1/]|Xn|l2 = @ Therefore, we have
a=a’ |

A. Bisection Search

It follows from Proposition 1 that the optimal value of Ly /Lo
equals to the value of « in the L;-aL, model if the objective
value of Li-aLs is zero. That is to say, the optimal value of
the ratio model is the root of T'(«x), which can be obtained
by bisection search. Moreover, we have upper/lower bounds of
a, ie., a € [1,+/n], since [|x||2 < ||x][1 < /n||x]2, ¥x € R™
[34]. The procedure goes as follows: we start with an initial range
of o to be [1, y/n] and an initial value of a(“) in between. Then
using this a(?), we solve for the L;-a(?) L, minimization via
the difference-of-convex algorithm (DCA) [35]; more details on
the DCA implementation will be given in Section II-B. Based
on the objective value of T'(a(?)), we update the range of a.
Specifically if T'(a(?)) = 0, then we find the minimum ratio and
the corresponding minimizer x* in the L;-Ly model is also the
minimizer of the Ly /Ly model. If T'(a(?)) > 0, then we update
the range as [a(?), \/n]. If T(a(?)) < 0, then the minimum ratio
is smaller than o(?), so we can shorten the range from [1, /7]

. (k+1)
to [1, a9)]. We can further shorten the internal as [1, X 1],
[+
. (k1)
as the objective value of Ll—H)’z(,cT)H;Lg would be less than or

equal to zero in the next iteration. After the range is updated, we
choose a1 using the middle point of two end points and iterate.

We summarize the entire process as Algorithm 1, in which the
stopping criterion is that the error between two adjacent « values
is small enough. As the algorithmic scheme follows directly
from bisection search, we refer the algorithm as L /L2-BS or
BS if the context is clear. The convergence of BS can be obtained
in the same way that the bisection method converges. However,
due to the nonconvex nature of the L1-«a Lo minimization (6),
there is no guarantee to find its global minimizer and hence the
solution to (5) may be suboptimal.

B. Adaptive Algorithms

The BS algorithm is computationally expensive, considering
that the L;-aLy minimization is conducted for multiple times.
To speed up, we discuss two variants of L1 /Lo-BS by updating
the parameter « iteratively while minimizing ||x||; — «|x]|2.

Following the DCA framework [36], [37] to minimize ||x||; —
a]|x]|2, we consider the objective function as the difference of
two convex functions, i.e., minyegn g(x) — h(x). By lineariz-
ing the second term h(-), the DCA iterates as follows,

w(E+1) arg min g(x) — <x, Vh(x(’f))> . (7

xeR"™

Particularly for the L;-aLo model, we have

9(x) = [[x[ls + I(Ax —b) and h(x) =alx]2, (®)

ax®
<X’ ||x<k>|2>' ©

thus leading to the DCA update as

x+D) — arg min g(x) —
xeR™
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Algorithm 1: The L,/L, Minimization Via Bisection
Search (L1 /L2-BS).

Algorithm 2: The L, / L, Minimization via Adaptive Selec-
tion Method (L1 /Lo-Al or A2).

I: Input: A € R™"™ b € R™, kMax, and ¢ € R

2:  Initialize: (¥, a9, b =1, ub = y/nand k = 0
3:  while k < kMax or [a®) — a(*~D| > ¢ do
4; xktD) =
arg minyegr- {[|x[|1 — a®|x||2 s.t. Ax = b}
50 if [xFHD | — a®|x*E+F||5 < 0 then
6: ub = X0
[[ -+
7: elseif x|, — a®)||x*+D]|[; > 0 then
8: Ib=ak)
9:  else
10: break
11: end if

Qk+1) — ub;—lb

12: k=k+1
13:  end while
14: return x(®)

Now we consider to update « iteratively by the ratio of the
current solution, leading to the following scheme,

) (k)5 (k)
{x(k+1) = arg miny {g(x) — <X, Cﬁx(kflb >} ,

A1) = [ /54D o,

(10)

where ¢ is defined in (8). Notice that the x-subproblem in (10)
is a linear programming (LP) problem, which unfortunately has
no guarantee that the optimal solution exists (as the problem can
be unbounded). To increase the robustness of the algorithm, we
further incorporate a quadratic term into the linear problem, i.e.,

x(F+1) = arg miny {g(x)—<x, 7"“‘;)3‘(‘? > +5x — X(’ﬁ)”%} ’
a4 — b0 | D)o
(11)

We denote these two adaptive methods (10) and (11) as
Ly/Lo-Al and Ly /Lo-A2, respectively or Al and A2 for short.
Both algorithms are summarized in Algorithm 2.

For the x subproblem of L1 /Lo-Al, we convert it into an LP
problem. Assume that x = xT — x~ where x* > 0 and x~ >
0. Denote X = [’;: ], then Ax = b becomes Ax = b with A =
[A — A]. Therefore, the x-subproblem becomes

12)

minc’x s.t. Ax =b,
x>0

where

P G
Gurobi [38] to solve this LP problem.
The x subproblem of L /Ls-A2 is a quadratic programming
problem, which can be solved via ADMM. By introducing an
auxiliary variable y, we have the augmented Lagrangian,

c:{1+“(k)x(k)-1—(*“”')*““)] We adopt the software

L,(x,y;u)

= Iyl + I(Ax ~ b) - (x

@ (F) 5 ()
T x®2

+ 2 x —x® 3 +uT(x—y)+ 2lx—y[3.  (13)

I: Input: A € R™"™ b € R™, kMax, and ¢ € R
2: initialization: x(©, () and k = 1

3: while & < kMax or ||x*) — x(*=D ||, /||x*)|| > e do
4:

Update {x*+1) o(*+1} by (10) for Al
Update {x*+1D) o+ by (11)  for A2
50 k=k+1
6: end while

7: return x(F)

Then the ADMM iteration goes as follows

Xj+1 = argminy Lp(X» Yis uj)7
yj+1 = argminy L,(x;41,y;15),
Wi =W+ p (X401 — Y1)

(14)

where the subscript j indexes the inner loop, as opposed to the

superscript k for outer iterations used in (11). The x-subproblem

of (14) is a projection problem to minimize

(k) NOMONIE

BX —uj + PY; + x|

X = )
B+p

2

under the constraint of Ax = b. Since the closed-form solution
of projecting a vector z to this constraint is

proj(z) =z — AT (AAT) ' (Az — b), (15)
the x-update is given by
Xj4+1 = proj Bx) —u; + py; + %
B+p
The y-subproblem of (14) is equivalent to
. 14 u; °
yj+1 = argmin {|Y||1 +3 Hy — X - 2} :
It has a closed-form solution via soft shrinkage, i.e.,
yj+1 = shrink (xj+1 + %, %) , (16)

with shrink(v, u) = sign(v) max(|v| — u,0).

III. CONNECTIONS TO PREVIOUS WORKS

We try to interpret the proposed adaptive methods (Al and
A2) in line with some existing approaches: parameter selection,
generalized inverse power, and gradient-based methods. Our
efforts contribute to convergence analysis in Section IV.
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A. Parameter Selection

Recall thatin L, / Lo-BS, the ratio Ly / L is minimized when
there exists a proper «* such that ||x*||; — *||x*||2 = 0 with
x* = argming {||x[|1 — a*[|x]|2 s.t. Ax = b}. We can regard
this process as a root-finding problem for ", which often occurs
in parameter selection. For example, in the discrepancy principle
method [39]-[41], one aims to find a parameter « such that the
resulting data-fitting term is close to the noise level. In particular,
we represent this process by

alk+1) — g(x (kD) q(R))) (17)

{x(k‘H) = arg min, f(x, a(F)),
where f(-) is a general objective function to be minimized and
[(+) is a certain scheme to update « so that discrepancy principle
holds. Typically, an inner loop is required to find the solution of
x-subproblem, followed by updating this parameter in an outer
iteration. We further present the j-th inner iteration at the k-th
outer iteration by

Xj+1 = \IJ(Xj,Oé(k)), (18)

for the x-subproblem in (17).

To speed-up the process, Wen and Chan [40] proposed an
adaptive scheme that updates the parameter during the inner loop
such that it renders the current data-fitting term equal to the noise
level. In other words, instead of updating « after minimizing f,
they directly iterated

Xj11 = V(x5,541), (19)

in a way that {x;1, oj41} satisfies the discrepancy principle.
In this way, only one loop is needed as opposed to inner/outer
loops in (18). But it requires a closed-form solution for x; 1 so
one can perform a one-dimensional search for ;1.

The proposed BS scheme falls into the framework of (17) in
that the searching range of parameter is shorten every outer iter-
ation. However, f in our BS method is the L-« Lo minimization
that does not have a closed-form solution. As opposed to (19),
we consider to update

Xj+1 = W(x;, ;) (20)

prior to updating «. In other word, we update x;,; based on
aj rather than o1, the latter of which was adopted in the
parameter-selection method [40]. The rationale of (20) is to guar-
antee that {x;41, 41} satisfies [|x;41]|1 — aj1|xj41]1 =
0. The iterative scheme (20) is consistent with A1 or A2 (depend-
ing on the form of W), if we change the notation from subscript
7J to superscript k.

B. Generalized Inverse Power Methods

A standard technique to find the smallest eigenvalue of a
positive semi-definite symmetric matrix B is the inverse power
method [34] that requires to iteratively solve the linear system,

Bx*+D) = x (k) 1)

The iteration converges to the smallest eigenvector of B, denoted
by x*. Then the smallest eigenvalue can be evaluated by \ =

2663
q(x*), where ¢(-) is Rayleigh quotient defined as
(x, Bx)
q(x) =
=113
Note that (21) is equivalent to the minimization problem
1
x*1) — argmin {§<X, Bx) — (x(®), x}} . (22)

It is well known in linear algebra [34], [42] that eigenvectors
of B are critical points of miny ¢(x) and the smallest eigen-
value/eigenvector can be found by (22). This idea is naturally
extended to the nonlinear case in [43], where a general quotient is
considered, ¢(x) = :E:g , with arbitrary functions r(-) and s(-).
Similarly to (22), we have the corresponding scheme

x(k+1) — argm}in {r(x) — <Vs(x(k)),x>} .

Following [43], we consider to update the eigenvalue A®) ateach
iteration to guarantee the algorithm’s descent. In particular, the
iterative scheme is given by

x(F+1) = arg miny {r(x) — AE) (T (x ), x)} )

k41 r(x(k+1)
)\( " ) = ng(k+1)§.

(23)

If we choose r(x) = g(x), s(x) = ||x||2, and denote \ as «,
then the generalized inverse power method (23) is L1/Lo-Al.
In [44], a modified inverse power method was proposed via the
steepest descent flow. The iteration scheme is to incorporate a
quadratic term in the objective function of the x-subproblem,
which leads to L /La-A2.

C. Gradient-Based Methods

Definition 1: A critical point of a constrained optimization
problem is a vector in the feasible set (satisfying the constraints)
that is also a local maximum, minimum, or saddle point of the
objective function.

According to Karush-Kuhn-Tucker (KKT) conditions, x* #
0 is a critical point of (2) if and only if there exists a vector s
such that

Ol =l _x T
0€ Tefy ~ g em T4 24)
0= Ax* —b.
By introducing 8 = ||x*[|2s, we have
* [x ] _x* Tg
0€ 0l = ey ey + 478, (25)
0= Ax* —b.

The condition (25) is also an optimality condition to another

optimization problem:
min g(x) + w(x), (26)

where g(x) is from (8) and w(x) is some function satisfying
|

x|l _x

Vuw(x) = 27

2 fIx[l2”

Note that w(-) can not be explicitly determined from (27).

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 05,2020 at 23:49:42 UTC from IEEE Xplore. Restrictions apply.
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By applying a proximal gradient method (PGM) [45]-[47] on
the model (26), we obtain the following scheme

1
x(FHD) — prox, (x(k) — va(x(k))> , (28)

where prox,(y) = argmin,{g(z) + %[z — y||3}. This itera-
tive scheme is the same as Ly /Lo-A2.

As for Ly /Ly-Al, we can interpret it as a generalized con-
ditional gradient method [48] that minimizes g(x) + w(x) by
x5 = miny (Vw(x®),y) + g(y).

IV. CONVERGENCE ANALYSIS

Following the discussion in Section III-C, we present the
convergence analysis. We start with the convergence of A2,
which is characterized in Theorem 1. To prove it, we need four
lemmas, whose proofs are given in Appendix.

Lemma 1: (Sufficient decreasing) The sequence {x(*), a(¥)}
produced by L /Lo-A?2 satisfies

QB _ kD) B

B oY) (k)2
> 2Hx(k+1)||2||x x5, Vk>O0.

The next two lemmas (Lemma 2 and Lemma 3) discuss the
Lipschitz properties.

Lemma 2: Define L = m. Then for any x,y €
R™ satistying Ax = Ay = b, we have

X y
%[z [lyll2

< Llx =yl
2

Since the gradient of the Ly normis V||x||2 = o> Lemma 2
implies that the gradient of Euclidean norm is Lipschitz-
continuous in the domain {x | Ax = b}. The next lemma is
about the Lipschitz property for the implicit function w(-) that
satisfies (27).

Lemma 3: Given L defined in Lemma 2. For any x,y € R"
satisfying Ax = Ay = b, then

IVw(x) = Vw(y)lly < Lolx =y,

for w satisfying (27) and L,, = 2v/nL.
Lemma 4: Given g(-) defined in (8) and suppose w(-) satis-
fies (27), we denote

P(x) =4 (x — proxi, (X - %VM(X))) 5

for an arbitrary 3 > 0. Then we have
a) ®(x*) = 0if and only if x* is a critical point of (2);
b) 19(x) — ®(y) 2 < Lax — yll2 with Le = Ly, + 2,
for any x,y € R" satisfying Ax = Ay = b.

It is stated in (28) that L;/Lo-A2 can be expressed as
x(kF1) = prox%g(x(k) — 5 Vuw(x®))). By the definition of
() in (30) and the decreasing property of ||x||1/]|x]|2 in
Lemma 1, we can interpret A2 as a gradient descent method

(29)

(30)

gmn:gmfé@@m»

In the following theorem, we rely on Lemma 4 to show that the
descent direction along ®(-) leads to convergence.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Theorem 1: Given a sequence {x*), (%)} generated by
L1/ Ly-A2. If {x(®)} is bounded, there exists a subsequence
that converges to a critical point of the ratio model (2).

Proof: According to Lemma 1, we know that o(®) is de-
creasing and bounded from below, so there exists a scalar a*
such that o) — o*. With the boundedness assumption of x,
we get [|x(*T1) — x(#)||y — 0 from Lemma 1, which implies
that ||®(x(¥))||s — 0. The boundedness of x(*) also leads to a
convergent subsequence, i.e., x(ki) 5 x* Therefore, we have

[o(x)lz = || @) = @ (x5) + @ (x*) |
o+ 64, o)

<t <l o (<)

IN

2

As k; — oo, we get |[®(x*)|2 = 0 and hence ®(x*) = 0. By
Lemma 4, {x(¥)} converges to a critical point. |

Remark 1: Theorem 1 does not require that the step-size +
is small, which is typically for gradient-based methods. In our
numerical tests, we can choose small 5 and get good results.

Theorem 2: Given a sequence {x*) a(*)} generated by
Ly1/Ly-Al. If {x®} is bounded, it has a convergent subse-
quence.

Proof: Denote

(k) (F)
(k)Y . _ X
2(x,x") = |x||1 <xnﬂmb>-

Since z(x*),x(®)) = 0 by the definition of a*), the minimal
value of z(x,x(*)) subject to the constraint {x | Ax = b} is
less than or equal to zero. Specifically, z(x**+1) x(®)) < 0. As
aresult, by Cauchy-Schwarz inequality, we have

HX(kJrl)”1 < <x(’“+1), M> < Oé(k)HX(kH)Hz’ (31)

[x®]]
which implies ot < o®) . Since a®) € [1,/n], the de-
creasing sequence of a(®) converges, i.e., a¥) — o*.

By the boundedness of x(*), it has a convergent subsequence,
i.e, there exists a vector x* such that x(*1) — x*. |

Remark 2: The sufficient decrease property (Lemma 1) does
nothold for 3 = O when L1 / Ly-A2 reduces to Al. So, we cannot
show that A1 converges to a critical point.

Remark 3: According to Theorem 1 and Theorem 2, we
prove that either both algorithms diverge due to unboundedness
or there exists a convergent subsequence. It is possible that the
solution can be unbounded. For example, A has a zero-column,
then the corresponding entry can take +oo so that the ratio of
L1 and L» is minimized. In the numerical tests, we demonstrate
empirically that {x(*)} is always bounded and hence convergent
for general (random) matrices A.

V. NUMERICAL EXPERIMENTS

In this section, we compare the proposed algorithms with
state-of-the-art methods in sparse recovery. All the numerical
experiments are conducted on a desktop with CPU (Intel i7-
6700, 3.4 GHz) and MATLAB 9.2 (R2017a).

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 05,2020 at 23:49:42 UTC from IEEE Xplore. Restrictions apply.
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We focus on the sparse recovery problem with highly coherent
matrices, on which standard L; models fail. Following the works
of [15], [49], [50], we consider an oversampled discrete co-

sine transform (DCT), definedas A = [a1, aa, ..., a,] € R™*"
with
1 2TwWj .
a; ;= ——cos , J=1...,n, (32)

where w is a random vector that is uniformly distributed in
[0,1]™ and F € R is a positive parameter to control the co-
herence in a way that a larger F' yields a more coherent ma-
trix. Throughout the experiments, we consider over-sampled
DCT matrices of size 64 x 1024. The ground truth x € R"
is simulated as an s-sparse signal, where s is the number of
nonzero entries. As suggested in [50], we require a minimum
separation at least 2F" in the support of x. As for the values of
non-zero elements, we follow the work of [51] to consider sparse
signals with a high dynamic range. Define the dynamic range
of a signal x as O(x) = %, which can be controlled by
an exponential factor D. In particular, we simulate x; by the
following MATLAB command,

xs = sign(randn(s,1)). * 10.”D * rand(s, 1))

In the experiments, we set D =3 and 5, corresponding to
© =~ 102 and 10°, respectively. Note that randn and rand are
the MATLAB commands for the Gaussian distribution A/(0, 1)
and the uniform distribution ¢/(0, 1), respectively. To compare
with our previous work [32] of the L;/L> minimization, we
also consider that the nonzero elements follow the Gaussian
distribution, i.e., (x5); ~ N(0,1),i =1,2,...,s.

The fidelity of sparse signal recovery is assessed in terms
of success rate, defined as the number of successful trials over
the total number of trials. When the relative error between the

ground truth x and the reconstructed solution x*, i.e., HXH:H’ZHZ 7

is less than 1073, we declare it as a success. Moreover, we
categorize the failure of not recovering the ground-truth signal
as model/algorithm failures and by comparing the objective
function f(-) at the ground truth x and at the restored solution
x* If f(x) > f(x*), then x is not a global minimizer of the
model, so we regard it as a model failure. If f(x) < f(x*), then
the algorithm does not reach a global minimizer. It is referred to
as an algorithm failure. Similarly to success rates, we can define
model-failure rates and algorithm-failure rates.

A. Algorithmic Comparison

We present various computational aspects of the proposed
algorithms, i.e., BS, Al, and A2, together with comparison to
our previous ADMM approach [32]. First of all, we attempt to
demonstrate the convergence of all proposed algorithms using
an example of s = 15, F' = 15 (so the minimal separation is 30),
and nonzero elements following Gaussian distribution. Since the
ratio model is solved via the L1-aL model, we plot the values
of [|x®)||; — a*=D||x*) |5 and a*) versus iteration counter k
in Figure 1. For L;/L4-BS, we record the value at each outer
iteration and the stopping conditions are either the maximum
outer iteration reaches 10 or |a*) — o*~1)| < 1072, For each
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——BS

Fig. 1. Empirical analysis on convergence: ||x (%) ||; — a5~ |x(¥)||5 (left)
and a(F) (right) versus iteration counter k for BS, A1, and A2.

F=1

—e—ground truth

F=20

—e—ground truth
12+ |—0—A1

——n2 —e—a2

2 4 & 8 10 12 14 16 18 20 22 2 4 5 8 10 12 14 16 18 20 22

s s

Fig. 2. The L2 norm of the ground truth vectors as well as the reconstructed
solutions by Al and A2.

iteration of A1, A2, and the inner loop of BS, the stopping crite-
rions are the relative error ||x*) — x(*=1 |5 /[|x*)||; < 1078,
The left plot in Figure 1 illustrates the convergence of the three
algorithms in the sense that |[|x*)||; — a(®)||x(¥)||5 goes down.
Both Al and A2 are faster than BS as BS starts with a larger
range of « as [1,/n] = [1,32], while Al and A2 start with a

) — 1x©
[[x(©)]|2°

good initial value of « which is very close to the

final optimal value o*.

The right plot in Figure 1 examines the evolution of o/*),
which gradually becomes stable and approaches to a similar
value around 3.06 for all three algorithms. Figure 1 confirms the
decrease property of a®) proved in Lemma 1.

In Theorem 1, we require the sequence {x(k)} to be bounded
for the convergence analysis. Here we aim at an empirical
verification on the boundedness. In particular, we test on various
kinds of linear systems with F' € {1,20} and sparsity ranging
from 2 to 22. In each setting, we randomly generate 50 pairs of
ground-truth signals and linear systems to compute the L5 norm
of solutions obtained by Al and A2, along with the Ly norm
of ground-truth signals. The mean values of these L, norms are
plotted in Figure 2. As the maximum values are finite numbers, it
means that the reconstructed signal is always bounded. Figure 2
also shows that the Lo norms of Al and A2 align quite well with
the ground truth when the sparsity is below 14, no matter the
system is coherent or not. When the matrix is highly coherent
with more nonzero elements, both A1 and A2 give much larger
values of the L, norm compared to the ground truth. Itis because
a larger Lo norm gives rise to a smaller value in the ratio sof
Ly /L that we try to minimize. In any cases, the solutions of
both Al and A2 are shown to be bounded.

Next, we compare the three algorithms with our previous
ADMM approach [32]. We consider F' = 1 and 20 with nonzero
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computation time

—e—ADMM
90| |—60—BS
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——A2
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——A2

100 [—e— ADMM
90 |—6—BS
—e—A1
——A2
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——Al
3 |—+—A2

Fig. 3.
(middle), and computation time (right).

2 4 6 8 10 12 14 s 18 20 2 2 4 65 8

s s

Fig. 4.  Success rates of different L1 /L2 minimizing algorithms versus spar-
sity at coherence levels F' = 1 (left) and F' = 20 (right) as well as high dynamic
ranges of D = 3 (top) and D = 5 (bottom).

elements following the Gaussian distribution or having high dy-
namic ranges. We randomly simulate 50 trials for each sparsity
level and compute the average of success rates, algorithm-failure
rates, and computation time. The Gaussian case is illustrated
in Figure 3, showing that ADMM is the worst in terms of
success rates partly due to high algorithm failure rates. Here,
p1 = p2 = 2000 for ADMM and 5 =1, p = 20 for A2. In ad-
dition, BS achieves the highest success rates but is the slowest.
Both Al and A2 have similar performance to BS with much
reduced computation time. Figure 4 examines the case of the
dynamic range for the non-zero values in x with D = 3 and 5.
Here we set 3 = 107° and p = 0.3 for A2, while p; = po = 100
for ADMM. Similar performance is observed as the Gaussian
case.

In summary, we rate Al as the most efficient algorithm
for minimizing the ratio model with a balanced performance

Algorithmic comparison in the Gaussian distribution case with F' = 1 (top) and F' = 20 (bottom) in terms of success rates (left), algorithm-failure rates

W e 18 20 2 2 4 5 & w6 18 2 2

Fig. 5. Success rates of different models versus sparsity at coherence levels
F =1 (left) and F' = 20 (right) as well as high dynamic ranges of D = 3 (top)
and D = 5 (bottom).

F=1D=3 F=20,D=3
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n 7n
w0 o

2 % 2 %
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0 e
T+ 5 9 w0 w w s 6w
s
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Fig.6. Success rates of different a values in the TL1 model at coherence levels
F =1 (left) and F' = 20 (right) as well as high dynamic ranges of D = 3 (top)
and D = 5 (bottom).
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Fig. 7. The relative errors || x* — X||2/||%X||2 produced by the L, approach for sparse signal recovery.

between accuracy and computational costs. We also observe
that all the algorithms tend to give better performance in terms
of success rates with higher dynamic ranges, which seems
counter-intuitive. We will revisit this phenomenon in Section VI.

B. Model Comparison

We intend to compare various sparse promoting models. Since
the Gaussian case was conducted in our previous work [32], we
focus on the dynamic range here. We compare the proposed
L, /Ly model with the following models: L; [10], L, [11], L;-
Lo [15], [49], and TL1 [18]. We adopt L1 /L2-Al to solve for
the ratio model, as it is the most efficient algorithm from the
discussion in Section V-A. The initial guess for all non-convex
models is the L solution obtained by Gurobi. We choose p =
1/2 for L, and @ = 10P~! for TL1 when the range factor D is
known a priori.

Figure 5 plots the successrates of F' = 1,20and D = 3,5. We
observe that TL1 is the best except for the low coherence and the
low dynamic case, where L, is the best. But L,, is the worst in
the other cases. The Ly /Ls model is always the second best.
Note that the ratio model is parameter-free, while the per-
formance of TL1 largely relies on the parameter a. Figure 6
examines the success rate of TL1 with different values of a. We
choose a = 10”1 in the model comparison, which is almost the
best among these testing values of a. If no such prior information
of the dynamic range were available to tune a, the performance
of TL1 might be worse than L /Ls.

VI. DISCUSSIONS

Candés and Wakin [52] presented two principles in com-
pressed sensing, i.e., sparsity and incoherence. We reported in
our previous work [32] that higher coherence leads to better
sparse recovery, which seems to contradict with the current belief
in CS. In this paper, we discuss the dynamic range and reveal
its effect on the exact recovery via the L; approach. To our
best of our knowledge, there has been little discussion on the
dynamic range in the CS literature, except for [51]. We consider
low-coherent matrices with F' = 1 and high-coherent ones with
F' = 20. We record the success rates of different combinations
of sparsity levels (s = 2 : 4 : 22) and dynamicranges D =0: 5
in Table I. It shows that a higher dynamic range leads a better

TABLE 1
SUCCESS RATE (%) IN SOLVING DIFFERENT DYNAMIC RANGES VIA THE L
MODEL AT TWO COHERENCE LEVELS F' = 1 AND F' = 20

F=1
s 2 6 10 14 18 | 22
D=0 | 100 | 100 | 80 4 0 0
D=1 | 100 | 100 | 80 4 0 0
D=2 | 100 | 100 | 80 4 0 0
D=3 | 100 | 100 | 80 4 0 0
D=4 1| 100 | 100 | 86 16 0 0
D=5 | 100 | 100 | 88 38 1210

=20
s 2 6 10 14 18 | 22
D=0 | 100 | 100 | 100 | 100 | 50 | O
D=1 100 | 100 | 100 | 100 | 52 | O
D=2 {100 | 100 | 100 | 100 | 52 | O
D=3 1| 100 | 100 | 100 | 100 | 52 | O
D=4 1100 | 100 | 100 | 100 | 54 | O
D=5 | 100 | 100 | 100 | 100 | 76 | 16

performance. It seems that the L, approach is independent on
D for relatively sparser signals.

Now that there are three quantities that may contribute to the
success of sparse recovery, i.e., sparsity, coherence, and dynamic
range, we try to give a comprehensive analysis by using the
relative error ||x* — x||2/[|x]||2 instead of the success rates, as
the latter depends on the successful threshold.

We plot in Figure 7 the mean and the standard deviation of
the relative errors from 50 random trails versus coherence levels
(F =1,5,10,15,20). Based on Table I, we only consider the
number of non-zeros value larger than 18 and D > 3. In each
subfigure of Figure 7, the curves decrease when F' increases,
which means that higher coherence leads to better performance.
This is consistent with the observation in [32]. As for the
dynamic range, we discover in Figure 7 that a larger value of
D leads to a smaller relative error.

Finally, the sparsity affects the performance in the way that
smaller relative errors can be achieved for sparser signals. These
numerical phenomena have not been reported in the CS litera-
ture, which motivate for future theoretical justifications.

VII. CONCLUSIONS AND FUTURE WORKS

We studied the scale-invariant and parameter-free minimiza-
tion L1 /Lo to promote sparsity. We presented three numerical
algorithms to minimize this nonconvex model based on the
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relationship between L /Lo and Ly-ceLo for certain «v. Exper-
imental results compared the proposed algorithms with state-
of-the-art methods in sparse recovery. Particularly important is
the proposed algorithm works well when the ground-truth signal
has a high dynamic range. Last but not least, we analyzed the
behaviors of the L approach towards the exact recovery with
varying sparsity, coherence, and dynamic range. Future works
include the theoretical analysis on the effect of the high dynamic
range towards sparse recovery as well as the applications of the
ratio model in image processing such as blind deconvolution
[28], [29].

APPENDIX

A. Proof of Lemma 1

Proof: Based on the x-subproblem in (11), we get

k k
Hx(k+1)H _ g 2Bx® +§HX<k+1>_X<k>H2
1 ECIVAR :

(k) (k)
W _ [ XN B ) o2
< |x®|. <x ’||x(k>||2>+2"‘ x(9)|12

_ me H _{x® a®x® ,
1 " ®
After rearranging, we get the following inequality

D)y 4 ) - <2

k
< x®y + ol <X<k+1> ) L>
B EIP

< x® )y + a® (D)1 - x 0,

= o) |x B+ |,. (33)

The second inequality is owing to the convexity of Euclidean
norm and the definition of a(¥). Lemma 1 is then obtained by
dividing ||x(**1)||5 on both sides of (33). u

B. Proof of Lemma 2

Proof: Simple calculations lead to
2

[ESA .
||X||2 ||y||2 9 ||X||2||y||2
1
= =iyl Gy le =266 y))
= <RIy Tz (||X||§ + [ly]13 — 2(x, )
2
v (34)
ey <Yk

For any x satisfying Ax = b, the minimal L norm is reached
by projecting the origin 0 onto the feasible set of {x | Ax = b}.
It follows from the projection operator defined in (15) that

[x]l2 > lproj(0)[2 = |AT(AAT) 'b. (35
Combining (34) and (35), we get Lemma 2. |

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

C. Proof of Lemma 3

Proof: Tt is straightforward to have

Ixll vl
V() — Vuy)| =\ -
2= I3 i1,
e
= - y+ y—
‘IXI% Iyz> T IvIzY T vz,
b'¢ y 1
< lxlh |72 - +—— Il = lvl| - 36)
I<E Tyl T Tyl

We simplify the first term in (36) by calculating
2

’ X y 1 1 2(x,y)
x5 lyl3l, =13 Iyl IxI3ly3
2
I3+ Iyl - 20xy) <||X}’|2>
Ix[31y113 Ixll2llyllz/
and using ||x||; < v/n||x||2. Therefore, we get
X y
1%[l1 |75 — =5 || < VrL|x —y].. (37)
x5 llyl3 1l
As for the second term in (36), we have it bounded by
e~ iyl | < o - v
Xt —IYll1] = X=Ylil
[¥1l2 [¥1l2
n
< kgl < VaLlx -yl (9
[¥ll2
Combining (37) and (38), we obtain (29). |

D. Proof of Lemma 4

Proof: 1t is straightforward that

B

By the optimality condition [47], the latter relation holds if and
only if there exists a vector s such that

0 € 9||x*||1 + Vw(x*) + B (x* —x*) + ATs
= 0||x*||1 + Vw(x*) + AT,

1
P(x") =0 < x" = proxs (x* - —Vw(x*)) :

which implies that x* is a critical point of (26). It follows from
(28) that (26) is equivalent to (2) and hence x* is also a critical
point of (2). According to the nonexpansiveness of the proximal
operator and the Lipschitz continuousness of Vw, we have

12(x) — @(y)ll,

1 1
<p proxi, (x — va(X)> — proxi, (y — BVw(y)) ,
+ Blx = yll2
< (x= §7ue) - (v = 570 )| +8lx -yl
2

< [Vw(x) = Vu(y) |2 + 28[x — yll2
< (L +2B)[Ix = y[2-

The Lemma follows. |
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