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Accelerated Schemes for the L1/L2 Minimization
Chao Wang , Ming Yan , Yaghoub Rahimi, and Yifei Lou

Abstract—In this paper, we consider the L1/L2 minimization
for sparse recovery and study its relationship with the L1-αL2

model. Based on this relationship,we propose three numerical algo-
rithms to minimize this ratio model, two of which work as adaptive
schemes and greatly reduce the computation time. Focusing on
the two adaptive schemes, we discuss their connection to existing
approaches and analyze their convergence. The experimental re-
sults demonstrate that the proposed algorithms are comparable to
state-of-the-art methods in sparse recovery and work particularly
wellwhen theground-truth signal has ahighdynamic range.Lastly,
we reveal some empirical evidence on the exactL1 recovery under
various combinations of sparsity, coherence, and dynamic ranges,
which calls for theoretical justification in the future.

Index Terms—Sparsity, L0, adaptive scheme, dynamic range.

I. INTRODUCTION

INVARIOUS science and engineering applications, one aims
to seek for a low-dimensional representation from high-

dimensional data, and sparsity is a crucial assumption. For
example, it is reasonable to assume in machine learning [1]
that only a few features correspond to the response. In image
processing [2], the restored images are often piecewise constant,
which means that gradients are sparse. In non-negative matrix
factorization [3], the low-rank decomposition enforces sparsity
with respect to singular values.
Sparse signal recovery is to find the sparsest solution of

Ax = bwhereA ∈ Rm×n (m � n),x ∈ Rn, andb ∈ Rm.We
assume thatA has a full row rank andb is nonzero. This problem
is often referred to as compressed sensing (CS) [4], [5] in the
sense that the sparse signal x is compressible. Mathematically,
it can be formulated by the L0 minimization,

min
x∈Rn

‖x‖0 s.t. Ax = b. (1)

Unfortunately, theL0 problem is known to be NP-hard [6]. Vari-
ous approaches in sparse recovery have been investigated. Some
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greedymethods include orthogonalmatching pursuit (OMP) [7],
orthogonal least squares (OLS) [8], and compressive sampling
matching pursuit (CoSaMp) [9].However, these greedymethods
often lack of accuracy when n is large. Alternatively, approxi-
mations/relaxation approaches to theL0 norm have been sought.
For example, convex relaxation, referred to as basis pursuit
(BP) [10], replaces L0 in (1) with the L1 norm. Recently,
nonconvex models attract considerate amount of attentions due
to their sharper approximations of L0 compared to the L1

norm. Some popular nonconvex models include Lp [11]–[13],
L1-L2 [14], [15], transformed L1 (TL1) [16]–[18], nonnegative
garrote [19], and capped-L1 [20]–[22]. Except for L1-L2, all of
these nonconvexmodels involve one parameter to be determined
and adjusted for different types of sparse recovery problems.
In this paper, we study the ratio of L1 and L2 as a scale-

invariant and parameter-free metric to approximate the desired
scale-invariant L0 norm. The ratio of L1 and L2 can be traced
back to [23] as a sparsity measure, and its scale-invariant prop-
erty was explicitly mentioned in [24].
Esser et al. [14], [25] focused on nonnegative signals and

established the equivalence between L1/L2 and L0. The ratio
model was later formulated as a nonlinear constraint that was
solved by a lifted approach [26], [27]. Some applications of
L1/L2 include blind deconvolution [28], [29] and sparse filter-
ing [30], [31].
In our earlier work [32], we focused on a constrained mini-

mization problem,

min
x∈Rn

‖x‖1
‖x‖2 s.t. Ax = b. (2)

Theoretically, we proved that any s-sparse vector is a local
minimizer of theL1/L2 model providedwith a strong null space
property (sNSP) condition. Computationally, we considered to
minimize (2) via the alternating direction method of multipli-
ers (ADMM) [33]. In particular, we introduced two auxiliary
variables and formed the augmented Lagrangian as

L(x,y, z;v,w) = ‖z‖1
‖y‖2 + I(Ax− b) + ρ1

2

∥
∥
∥x− y + 1

ρ1
v
∥
∥
∥

2

2

+ ρ2

2

∥
∥
∥x− z+ 1

ρ2
w
∥
∥
∥

2

2
, (3)

where I(·) is defined as

I(t) =

{

0, t = 0,

+∞, otherwise.
(4)

There is a closed-form solution for each sub-problem. Please
refer to [32] for more details.
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This paper contributes three schemes to minimize (2). We
demonstrate in experiments that the new schemes are compu-
tationally more efficiently compared to the previous ADMM
approach. The novelties of the paper are three-fold:
1) Thanks to the new schemes, L1/L2 can effectively deal

with sparse signals with a high dynamic range, which is
not the case for the ADMM approach;

2) We reveal the connection of the proposed schemes to exist-
ing approaches, which helps to establish the convergence;

3) Our empirical results shed light about the effects of spar-
sity, coherence, and dynamic range on sparse recovery,
which is new in the CS literature.

The rest of the paper is organized as follows. Section II is
devoted to theoretical analysis on the relation between L1/L2

and L1-αL2, which motivates three numerical schemes to min-
imize L1/L2. We interpret the proposed schemes in line with
some existing approaches in Section III, followed by conver-
gence analysis in Section IV.We conduct extensive experiments
in Section V to demonstrate the performance of the L1/L2

model with three minimizing algorithms over state-of-the-art
methods in sparse recovery. Section VI presents how the classic
L1 approach behaves under different dynamic ranges and how
sparsity, coherence, and dynamic range interplay on sparse
recovery. Finally, conclusions and future works are given in
Section VII.

II. NUMERICAL SCHEMES

We establish in Proposition 1 a link between the constrained
L1/L2 formulation (2) and L1-αL2, where α is a positive
parameter. Immediately following this proposition,we develop a
numerical algorithm for minimizing the ratio model. We further
discuss two accelerated approaches in Section II-B.

Proposition 1: Denote

α∗ := inf
x∈Rn

{‖x‖1
‖x‖2 s.t. Ax = b

}

, (5)

and

T (α) := inf
x∈Rn

{‖x‖1 − α‖x‖2 s.t. Ax = b} , (6)

then we have
a) if T (α) < 0, then α > α∗;
b) if T (α) ≥ 0, then α ≤ α∗;
c) if T (α) = 0, then α = α∗.
Proof: Denote the feasible set of (5) by F = {x | Ax = b}.

Since b 	= 0 then 0 /∈ F.
a) If T (α) < 0, then there exists x ∈ F such that ‖x‖1 −

α‖x‖2 < 0, which implies that α > ‖x‖1
‖x‖2 . Therefore, we

have α > α∗.
b) If T (α) ≥ 0, then for all x ∈ Fwe have ‖x‖1 − α‖x‖2 ≥

0. Soα ≤ ‖x‖1
‖x‖2 andhenceα ≤ infx∈F

‖x‖1
‖x‖2 = α∗, i.e.,α ≤

α∗.
c) If T (α) = 0, then by part (b) we get α ≤ α∗. Fur-

thermore, there exists a sequence {xn} ⊂ F such that
limn→∞(‖xn‖1 − α‖xn‖2) = 0. Since xn ∈ F, we have
‖b‖ = ‖Axn‖ ≤ ‖A‖‖xn‖. Hence, {xn} has a lower
bounded, i.e. ‖xn‖ ≥ ‖b‖/‖A‖ for all n, then we get

limn→∞(‖xn‖1 − α‖xn‖2)/‖xn‖2 = 0, which means
α∗ ≤ limn→∞ ‖xn‖1/‖xn‖2 = α. Therefore, we have
α = α∗. �

A. Bisection Search

It follows from Proposition 1 that the optimal value of L1/L2

equals to the value of α in the L1-αL2 model if the objective
value of L1-αL2 is zero. That is to say, the optimal value of
the ratio model is the root of T (α), which can be obtained
by bisection search. Moreover, we have upper/lower bounds of
α, i.e., α ∈ [1,

√
n], since ‖x‖2 ≤ ‖x‖1 ≤ √

n‖x‖2, ∀x ∈ Rn

[34]. The procedure goes as follows:we startwith an initial range
of α to be [1,

√
n] and an initial value of α(0) in between. Then

using this α(0), we solve for the L1-α(0)L2 minimization via
the difference-of-convex algorithm (DCA) [35]; more details on
the DCA implementation will be given in Section II-B. Based
on the objective value of T (α(0)), we update the range of α.
Specifically if T (α(0)) = 0, then we find the minimum ratio and
the corresponding minimizer x∗ in the L1-L2 model is also the
minimizer of the L1/L2 model. If T (α(0)) > 0, then we update
the range as [α(0),

√
n]. If T (α(0)) < 0, then the minimum ratio

is smaller than α(0), so we can shorten the range from [1,
√
n]

to [1, α(0)].We can further shorten the internal as [1, ‖x(k+1)‖1
‖x(k+1)‖2 ],

as the objective value of L1-
‖x(k+1)‖1
‖x(k+1)‖2L2 would be less than or

equal to zero in the next iteration. After the range is updated, we
chooseα(1) using the middle point of two end points and iterate.
We summarize the entire process as Algorithm 1, in which the

stopping criterion is that the error between two adjacentα values
is small enough. As the algorithmic scheme follows directly
from bisection search, we refer the algorithm as L1/L2-BS or
BS if the context is clear. The convergence of BS can be obtained
in the same way that the bisection method converges. However,
due to the nonconvex nature of the L1-αL2 minimization (6),
there is no guarantee to find its global minimizer and hence the
solution to (5) may be suboptimal.

B. Adaptive Algorithms

The BS algorithm is computationally expensive, considering
that the L1-αL2 minimization is conducted for multiple times.
To speed up, we discuss two variants of L1/L2-BS by updating
the parameter α iteratively while minimizing ‖x‖1 − α‖x‖2.
Following theDCA framework [36], [37] tominimize ‖x‖1 −

α‖x‖2, we consider the objective function as the difference of
two convex functions, i.e., minx∈Rn g(x)− h(x). By lineariz-
ing the second term h(·), the DCA iterates as follows,

x(k+1) = arg min
x∈Rn

g(x)−
〈

x,∇h(x(k))
〉

. (7)

Particularly for the L1-αL2 model, we have

g(x) = ‖x‖1 + I(Ax− b) and h(x) = α‖x‖2, (8)

thus leading to the DCA update as

x(k+1) = arg min
x∈Rn

g(x)−
〈

x,
αx(k)

‖x(k)‖2

〉

. (9)
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Algorithm 1: The L1/L2 Minimization Via Bisection
Search (L1/L2-BS).

1: Input: A ∈ Rm×n,b ∈ Rm, kMax, and ε ∈ R

2: Initialize: x(0), α(0), lb = 1, ub =
√
n and k = 0

3: while k < kMax or |α(k) − α(k−1)| > ε do
4: x(k+1) =

argminx∈Rn{‖x‖1 − α(k)‖x‖2 s.t. Ax = b}
5: if ‖x(k+1)‖1 − α(k)‖x(k+1)‖2 < 0 then

6: ub = ‖x(k+1)‖1
‖x(k+1)‖2

7: else if ‖x(k+1)‖1 − α(k)‖x(k+1)‖2 > 0 then
8: lb = α(k)

9: else
10: break
11: end if

α(k+1) = ub+lb
2

12: k = k + 1
13: end while
14: return x(k)

Now we consider to update α iteratively by the ratio of the
current solution, leading to the following scheme,

{

x(k+1) = argminx

{

g(x)−
〈

x, α
(k)x(k)

‖x(k)‖2

〉}

,

α(k+1) = ‖x(k+1)‖1/‖x(k+1)‖2,
(10)

where g is defined in (8). Notice that the x-subproblem in (10)
is a linear programming (LP) problem, which unfortunately has
no guarantee that the optimal solution exists (as the problem can
be unbounded). To increase the robustness of the algorithm, we
further incorporate a quadratic term into the linear problem, i.e.,
{

x(k+1) = argminx

{

g(x)−
〈

x, α(k)x(k)

‖x(k)‖2

〉

+ β
2 ‖x− x(k)‖22

}

,

α(k+1) = ‖x(k+1)‖1/‖x(k+1)‖2.
(11)

We denote these two adaptive methods (10) and (11) as
L1/L2-A1 and L1/L2-A2, respectively or A1 and A2 for short.
Both algorithms are summarized in Algorithm 2.
For the x subproblem of L1/L2-A1, we convert it into an LP

problem. Assume that x = x+ − x− where x+ ≥ 0 and x− ≥
0. Denote x̄ = [x

+

x− ], then Ax = b becomes Āx̄ = b with Ā =
[A −A]. Therefore, the x-subproblem becomes

min
x̄≥0

cT x̄ s.t. Āx̄ = b, (12)

where c=

[
1+α(k)x(k)

‖x(k)‖2
;1−α(k)x(k)

‖x(k)‖2

]
. We adopt the software

Gurobi [38] to solve this LP problem.
The x subproblem of L1/L2-A2 is a quadratic programming

problem, which can be solved via ADMM. By introducing an
auxiliary variable y, we have the augmented Lagrangian,

Lρ(x,y;u)

= ‖y‖1 + I(Ax− b)−
〈

x, α(k)x(k)

‖x(k)‖2

〉

+ β
2 ‖x− x(k)‖22 + uT (x− y) + ρ

2‖x− y‖22. (13)

Algorithm 2: TheL1/L2 Minimization via Adaptive Selec-
tion Method (L1/L2-A1 or A2).

1: Input: A ∈ Rm×n,b ∈ Rm, kMax, and ε ∈ R

2: initialization: x(0), α(0) and k = 1
3: while k < kMax or ‖x(k) − x(k−1)‖2/‖x(k)‖ > ε do
4:

{

Update {x(k+1), α(k+1)} by (10) for A1

Update {x(k+1), α(k+1)} by (11) for A2

5: k = k + 1
6: end while
7: return x(k)

Then the ADMM iteration goes as follows

⎧

⎪⎨

⎪⎩

xj+1 = argminx Lρ(x,yj ;uj),

yj+1 = argminy Lρ(xj+1,y;uj),

uj+1 = uj + ρ (xj+1 − yj+1) ,

(14)

where the subscript j indexes the inner loop, as opposed to the
superscript k for outer iterations used in (11). Thex-subproblem
of (14) is a projection problem to minimize

∥
∥
∥
∥
∥
∥

x−
βx(k) − uj + ρyj +

α(k)x(k)

‖x(k)‖2
β + ρ

∥
∥
∥
∥
∥
∥

2

2

,

under the constraint of Ax = b. Since the closed-form solution
of projecting a vector z to this constraint is

proj(z) = z−AT (AAT )−1(Az− b), (15)

the x-update is given by

xj+1 = proj

⎛

⎝
βx(k) − uj + ρyj +

α(k)x(k)

‖x(k)‖2
β + ρ

⎞

⎠ .

The y-subproblem of (14) is equivalent to

yj+1 = argmin
y

{

‖y‖1 + ρ

2

∥
∥
∥
∥
y − xj+1 − uj

ρ

∥
∥
∥
∥

2

2

}

.

It has a closed-form solution via soft shrinkage, i.e.,

yj+1 = shrink
(

xj+1 +
uj

ρ , 1
ρ

)

, (16)

with shrink(v, μ) = sign(v)max(|v| − μ, 0).

III. CONNECTIONS TO PREVIOUS WORKS

We try to interpret the proposed adaptive methods (A1 and
A2) in line with some existing approaches: parameter selection,
generalized inverse power, and gradient-based methods. Our
efforts contribute to convergence analysis in Section IV.
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A. Parameter Selection

Recall that in L1/L2-BS, the ratio L1/L2 is minimized when
there exists a proper α∗ such that ‖x∗‖1 − α∗‖x∗‖2 = 0 with
x∗ = argminx{‖x‖1 − α∗‖x‖2 s.t. Ax = b}. We can regard
this process as a root-finding problem forα∗, which often occurs
in parameter selection. For example, in the discrepancy principle
method [39]–[41], one aims to find a parameter α such that the
resulting data-fitting term is close to the noise level. In particular,
we represent this process by

{

x(k+1) = argminx f(x, α
(k)),

α(k+1) = l(x(k+1), α(k)),
(17)

where f(·) is a general objective function to be minimized and
l(·) is a certain scheme to update α so that discrepancy principle
holds. Typically, an inner loop is required to find the solution of
x-subproblem, followed by updating this parameter in an outer
iteration. We further present the j-th inner iteration at the k-th
outer iteration by

xj+1 = Ψ(xj , α
(k)), (18)

for the x-subproblem in (17).
To speed-up the process, Wen and Chan [40] proposed an

adaptive scheme that updates the parameter during the inner loop
such that it renders the current data-fitting term equal to the noise
level. In other words, instead of updating α after minimizing f ,
they directly iterated

xj+1 = Ψ(xj , αj+1), (19)

in a way that {xj+1, αj+1} satisfies the discrepancy principle.
In this way, only one loop is needed as opposed to inner/outer
loops in (18). But it requires a closed-form solution for xj+1 so
one can perform a one-dimensional search for αj+1.

The proposed BS scheme falls into the framework of (17) in
that the searching range of parameter is shorten every outer iter-
ation. However, f in our BSmethod is theL1-αL2 minimization
that does not have a closed-form solution. As opposed to (19),
we consider to update

xj+1 = Ψ(xj , αj) (20)

prior to updating α. In other word, we update xj+1 based on
αj rather than αj+1, the latter of which was adopted in the
parameter-selectionmethod [40]. The rationale of (20) is to guar-
antee that {xj+1, αj+1} satisfies ‖xj+1‖1 − αj+1‖xj+1‖1 =
0. The iterative scheme (20) is consistentwithA1 orA2 (depend-
ing on the form of Ψ), if we change the notation from subscript
j to superscript k.

B. Generalized Inverse Power Methods

A standard technique to find the smallest eigenvalue of a
positive semi-definite symmetric matrix B is the inverse power
method [34] that requires to iteratively solve the linear system,

Bx(k+1) = x(k). (21)

The iteration converges to the smallest eigenvector ofB, denoted
by x∗. Then the smallest eigenvalue can be evaluated by λ =

q(x∗), where q(·) is Rayleigh quotient defined as

q(x) =
〈x, Bx〉
‖x‖22

.

Note that (21) is equivalent to the minimization problem

x(k+1) = argmin
x

{
1

2
〈x, Bx〉 − 〈x(k),x〉

}

. (22)

It is well known in linear algebra [34], [42] that eigenvectors
of B are critical points of minx q(x) and the smallest eigen-
value/eigenvector can be found by (22). This idea is naturally
extended to the nonlinear case in [43],where a general quotient is
considered, q(x) = r(x)

s(x) , with arbitrary functions r(·) and s(·).
Similarly to (22), we have the corresponding scheme

x(k+1) = argmin
x

{

r(x)− 〈∇s(x(k)),x〉
}

.

Following [43],we consider to update the eigenvalueλ(k) at each
iteration to guarantee the algorithm’s descent. In particular, the
iterative scheme is given by
⎧

⎨

⎩

x(k+1) = argminx

{

r(x)− λ(k)〈∇s(x(k)),x〉
}

,

λ(k+1) = r(x(k+1))
s(x(k+1))

.
(23)

If we choose r(x) = g(x), s(x) = ‖x‖2, and denote λ as α,
then the generalized inverse power method (23) is L1/L2-A1.
In [44], a modified inverse power method was proposed via the
steepest descent flow. The iteration scheme is to incorporate a
quadratic term in the objective function of the x-subproblem,
which leads to L1/L2-A2.

C. Gradient-Based Methods

Definition 1: A critical point of a constrained optimization
problem is a vector in the feasible set (satisfying the constraints)
that is also a local maximum, minimum, or saddle point of the
objective function.
According to Karush-Kuhn-Tucker (KKT) conditions, x∗ 	=

0 is a critical point of (2) if and only if there exists a vector s
such that

{

0 ∈ ∂‖x∗‖1
‖x∗‖2 − ‖x∗‖1

‖x∗‖22
x∗

‖x∗‖2 +AT s,

0 = Ax∗ − b.
(24)

By introducing ŝ = ‖x∗‖2·s, we have
{

0 ∈ ∂‖x∗‖1 − ‖x∗‖1
‖x∗‖2

x∗
‖x∗‖2 +AT ŝ,

0 = Ax∗ − b.
(25)

The condition (25) is also an optimality condition to another
optimization problem:

min
x

g(x) + w(x), (26)

where g(x) is from (8) and w(x) is some function satisfying

∇w(x) = −‖x‖1
‖x‖2

x

‖x‖2 . (27)

Note that w(·) can not be explicitly determined from (27).
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By applying a proximal gradient method (PGM) [45]–[47] on
the model (26), we obtain the following scheme

x(k+1) = prox 1
β g

(

x(k) − 1

β
∇w(x(k))

)

, (28)

where proxg(y) = argminz{g(z) + 1
2‖z− y‖22}. This itera-

tive scheme is the same as L1/L2-A2.
As for L1/L2-A1, we can interpret it as a generalized con-

ditional gradient method [48] that minimizes g(x) + w(x) by
x(k+1) = miny〈∇w(x(k)),y〉+ g(y).

IV. CONVERGENCE ANALYSIS

Following the discussion in Section III-C, we present the
convergence analysis. We start with the convergence of A2,
which is characterized in Theorem 1. To prove it, we need four
lemmas, whose proofs are given in Appendix.

Lemma 1: (Sufficient decreasing)The sequence{x(k), α(k)}
produced by L1/L2-A2 satisfies

α(k) − α(k+1) ≥ β

2‖x(k+1)‖2 ‖x
(k+1) − x(k)‖22, ∀k > 0.

The next two lemmas (Lemma 2 and Lemma 3) discuss the
Lipschitz properties.

Lemma 2: Define L = 1
‖AT (AAT )−1b‖2 . Then for any x,y ∈

Rn satisfying Ax = Ay = b, we have
∥
∥
∥
∥

x

‖x‖2 − y

‖y‖2

∥
∥
∥
∥
2

≤ L‖x− y‖2.

Since the gradient of theL2 norm is∇‖x‖2 = x
‖x‖2 , Lemma 2

implies that the gradient of Euclidean norm is Lipschitz-
continuous in the domain {x | Ax = b}. The next lemma is
about the Lipschitz property for the implicit function w(·) that
satisfies (27).

Lemma 3: Given L defined in Lemma 2. For any x,y ∈ Rn

satisfying Ax = Ay = b, then

‖∇w(x)−∇w(y)‖2 ≤ Lw‖x− y‖2, (29)

for w satisfying (27) and Lw = 2
√
nL.

Lemma 4: Given g(·) defined in (8) and suppose w(·) satis-
fies (27), we denote

Φ(x) := β
(

x− prox 1
β g

(

x− 1
β∇w(x)

))

, (30)

for an arbitrary β > 0. Then we have
a) Φ(x∗) = 0 if and only if x∗ is a critical point of (2);
b) ‖Φ(x)− Φ(y)‖2 ≤ LΦ‖x− y‖2 with LΦ = Lw + 2β,

for any x,y ∈ Rn satisfying Ax = Ay = b.
It is stated in (28) that L1/L2-A2 can be expressed as

x(k+1) = prox 1
β g(x

(k) − 1
β∇w(x(k))). By the definition of

Φ(·) in (30) and the decreasing property of ‖x‖1/‖x‖2 in
Lemma 1, we can interpret A2 as a gradient descent method

x(k+1) = x(k) − 1

β
Φ(x(k)).

In the following theorem, we rely on Lemma 4 to show that the
descent direction along Φ(·) leads to convergence.

Theorem 1: Given a sequence {x(k), α(k)} generated by
L1/L2-A2. If {x(k)} is bounded, there exists a subsequence
that converges to a critical point of the ratio model (2).

Proof: According to Lemma 1, we know that α(k) is de-
creasing and bounded from below, so there exists a scalar α∗

such that α(k) → α∗. With the boundedness assumption of x,
we get ‖x(k+1) − x(k)‖2 → 0 from Lemma 1, which implies
that ‖Φ(x(k))‖2 → 0. The boundedness of x(k) also leads to a
convergent subsequence, i.e., x(ki) → x∗. Therefore, we have

‖Φ(x∗)‖2 =
∥
∥
∥Φ(x∗)− Φ

(

x(ki)
)

+Φ
(

x(ki)
)∥
∥
∥
2

≤
∥
∥
∥Φ(x∗)− Φ

(

x(ki)
)∥
∥
∥
2
+
∥
∥
∥Φ

(

x(ki)
)∥
∥
∥
2

≤ LΦ‖x(ki) − x∗‖2 +
∥
∥
∥Φ

(

x(ki)
)∥
∥
∥
2
.

As ki → ∞, we get ‖Φ(x∗)‖2 = 0 and hence Φ(x∗) = 0. By
Lemma 4, {x(ki)} converges to a critical point. �

Remark 1: Theorem 1 does not require that the step-size 1
β

is small, which is typically for gradient-based methods. In our
numerical tests, we can choose small β and get good results.

Theorem 2: Given a sequence {x(k), α(k)} generated by
L1/L2-A1. If {x(k)} is bounded, it has a convergent subse-
quence.

Proof: Denote

z(x,x(k)) := ‖x‖1 −
〈

x,
α(k)x(k)

‖x(k)‖2

〉

.

Since z(x(k),x(k)) = 0 by the definition of α(k), the minimal
value of z(x,x(k)) subject to the constraint {x | Ax = b} is
less than or equal to zero. Specifically, z(x(k+1),x(k)) ≤ 0. As
a result, by Cauchy-Schwarz inequality, we have

‖x(k+1)‖1 ≤
〈

x(k+1),
α(k)x(k)

‖x(k)‖2

〉

≤ α(k)‖x(k+1)‖2, (31)

which implies α(k+1) ≤ α(k). Since α(k) ∈ [1,
√
n], the de-

creasing sequence of α(k) converges, i.e., α(k) → α∗.
By the boundedness of x(k), it has a convergent subsequence,

i.e, there exists a vector x∗ such that x(ki) → x∗. �
Remark 2: The sufficient decrease property (Lemma 1) does

not hold forβ = 0whenL1/L2-A2 reduces toA1. So,we cannot
show that A1 converges to a critical point.

Remark 3: According to Theorem 1 and Theorem 2, we
prove that either both algorithms diverge due to unboundedness
or there exists a convergent subsequence. It is possible that the
solution can be unbounded. For example, A has a zero-column,
then the corresponding entry can take +∞ so that the ratio of
L1 and L2 is minimized. In the numerical tests, we demonstrate
empirically that {x(k)} is always bounded and hence convergent
for general (random) matrices A.

V. NUMERICAL EXPERIMENTS

In this section, we compare the proposed algorithms with
state-of-the-art methods in sparse recovery. All the numerical
experiments are conducted on a desktop with CPU (Intel i7-
6700, 3.4 GHz) and MATLAB 9.2 (R2017a).
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We focus on the sparse recovery problemwith highly coherent
matrices, onwhich standardL1models fail. Following theworks
of [15], [49], [50], we consider an oversampled discrete co-
sine transform (DCT), defined asA = [a1,a2, . . . ,an] ∈ Rm×n

with

aj :=
1√
m

cos

(
2πwj

F

)

, j = 1, . . . , n, (32)

where w is a random vector that is uniformly distributed in
[0, 1]m and F ∈ R is a positive parameter to control the co-
herence in a way that a larger F yields a more coherent ma-
trix. Throughout the experiments, we consider over-sampled
DCT matrices of size 64× 1024. The ground truth x ∈ Rn

is simulated as an s-sparse signal, where s is the number of
nonzero entries. As suggested in [50], we require a minimum
separation at least 2F in the support of x. As for the values of
non-zero elements, we follow thework of [51] to consider sparse
signals with a high dynamic range. Define the dynamic range
of a signal x as Θ(x) = max{|xs|}

min{|xs|} , which can be controlled by
an exponential factor D. In particular, we simulate xs by the
following MATLAB command,

xs = sign(randn(s, 1)). ∗ 10.̂ D ∗ rand(s, 1))
In the experiments, we set D = 3 and 5, corresponding to
Θ ≈ 103 and 105, respectively. Note that randn and rand are
theMATLAB commands for the Gaussian distributionN (0, 1)
and the uniform distribution U(0, 1), respectively. To compare
with our previous work [32] of the L1/L2 minimization, we
also consider that the nonzero elements follow the Gaussian
distribution, i.e., (xs)i ∼ N (0, 1), i = 1, 2, . . . , s.

The fidelity of sparse signal recovery is assessed in terms
of success rate, defined as the number of successful trials over
the total number of trials. When the relative error between the
ground truth x and the reconstructed solution x∗, i.e., ‖x∗−x‖2

‖x‖2 ,

is less than 10−3, we declare it as a success. Moreover, we
categorize the failure of not recovering the ground-truth signal
as model/algorithm failures and by comparing the objective
function f(·) at the ground truth x and at the restored solution
x∗. If f(x) > f(x∗), then x is not a global minimizer of the
model, so we regard it as amodel failure. If f(x) < f(x∗), then
the algorithm does not reach a global minimizer. It is referred to
as an algorithm failure. Similarly to success rates, we can define
model-failure rates and algorithm-failure rates.

A. Algorithmic Comparison

We present various computational aspects of the proposed
algorithms, i.e., BS, A1, and A2, together with comparison to
our previous ADMM approach [32]. First of all, we attempt to
demonstrate the convergence of all proposed algorithms using
an example of s = 15,F = 15 (so theminimal separation is 30),
and nonzero elements followingGaussian distribution. Since the
ratio model is solved via the L1-αL2 model, we plot the values
of ‖x(k)‖1 − α(k−1)‖x(k)‖2 and α(k) versus iteration counter k
in Figure 1. For L1/L2-BS, we record the value at each outer
iteration and the stopping conditions are either the maximum
outer iteration reaches 10 or |α(k) − α(k−1)| ≤ 10−2. For each

Fig. 1. Empirical analysis on convergence: ‖x(k)‖1 − α(k−1)‖x(k)‖2 (left)
and α(k) (right) versus iteration counter k for BS, A1, and A2.

Fig. 2. The L2 norm of the ground truth vectors as well as the reconstructed
solutions by A1 and A2.

iteration of A1, A2, and the inner loop of BS, the stopping crite-
rions are the relative error ‖x(k) − x(k−1)‖2/‖x(k)‖2 ≤ 10−8.
The left plot in Figure 1 illustrates the convergence of the three
algorithms in the sense that ‖x(k)‖1 − α(k)‖x(k)‖2 goes down.
Both A1 and A2 are faster than BS as BS starts with a larger
range of α as [1,

√
n] = [1, 32], while A1 and A2 start with a

good initial value of α(0) = ‖x(0)‖1
‖x(0)‖2 , which is very close to the

final optimal value α∗.
The right plot in Figure 1 examines the evolution of α(k),

which gradually becomes stable and approaches to a similar
value around 3.06 for all three algorithms. Figure 1 confirms the
decrease property of α(k) proved in Lemma 1.
In Theorem 1, we require the sequence {x(k)} to be bounded

for the convergence analysis. Here we aim at an empirical
verification on the boundedness. In particular, we test on various
kinds of linear systems with F ∈ {1, 20} and sparsity ranging
from 2 to 22. In each setting, we randomly generate 50 pairs of
ground-truth signals and linear systems to compute theL2 norm
of solutions obtained by A1 and A2, along with the L2 norm
of ground-truth signals. The mean values of these L2 norms are
plotted in Figure 2. As themaximumvalues are finite numbers, it
means that the reconstructed signal is always bounded. Figure 2
also shows that theL2 norms of A1 and A2 align quite well with
the ground truth when the sparsity is below 14, no matter the
system is coherent or not. When the matrix is highly coherent
with more nonzero elements, both A1 and A2 give much larger
values of theL2 norm compared to the ground truth. It is because
a larger L2 norm gives rise to a smaller value in the ratio sof
L1/L2 that we try to minimize. In any cases, the solutions of
both A1 and A2 are shown to be bounded.
Next, we compare the three algorithms with our previous

ADMMapproach [32].We considerF = 1 and 20 with nonzero
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Fig. 3. Algorithmic comparison in the Gaussian distribution case with F = 1 (top) and F = 20 (bottom) in terms of success rates (left), algorithm-failure rates
(middle), and computation time (right).

Fig. 4. Success rates of different L1/L2 minimizing algorithms versus spar-
sity at coherence levelsF = 1 (left) andF = 20 (right) as well as high dynamic
ranges ofD = 3 (top) and D = 5 (bottom).

elements following the Gaussian distribution or having high dy-
namic ranges. We randomly simulate 50 trials for each sparsity
level and compute the average of success rates, algorithm-failure
rates, and computation time. The Gaussian case is illustrated
in Figure 3, showing that ADMM is the worst in terms of
success rates partly due to high algorithm failure rates. Here,
ρ1 = ρ2 = 2000 for ADMM and β = 1, ρ = 20 for A2. In ad-
dition, BS achieves the highest success rates but is the slowest.
Both A1 and A2 have similar performance to BS with much
reduced computation time. Figure 4 examines the case of the
dynamic range for the non-zero values in x with D = 3 and 5.
Herewe setβ = 10−5 and ρ = 0.3 for A2, while ρ1 = ρ2 = 100
for ADMM. Similar performance is observed as the Gaussian
case.
In summary, we rate A1 as the most efficient algorithm

for minimizing the ratio model with a balanced performance

Fig. 5. Success rates of different models versus sparsity at coherence levels
F = 1 (left) and F = 20 (right) as well as high dynamic ranges ofD = 3 (top)
andD = 5 (bottom).

Fig. 6. Success rates of different a values in the TL1model at coherence levels
F = 1 (left) and F = 20 (right) as well as high dynamic ranges ofD = 3 (top)
andD = 5 (bottom).
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Fig. 7. The relative errors ‖x∗ − x̂‖2/‖x̂‖2 produced by the L1 approach for sparse signal recovery.

between accuracy and computational costs. We also observe
that all the algorithms tend to give better performance in terms
of success rates with higher dynamic ranges, which seems
counter-intuitive.Wewill revisit this phenomenon in SectionVI.

B. Model Comparison

We intend to compare various sparse promotingmodels. Since
the Gaussian case was conducted in our previous work [32], we
focus on the dynamic range here. We compare the proposed
L1/L2 model with the following models: L1 [10], Lp [11], L1-
L2 [15], [49], and TL1 [18]. We adopt L1/L2-A1 to solve for
the ratio model, as it is the most efficient algorithm from the
discussion in Section V-A. The initial guess for all non-convex
models is the L1 solution obtained by Gurobi. We choose p =
1/2 for Lp and a = 10D−1 for TL1 when the range factor D is
known a priori.
Figure 5 plots the success rates ofF = 1, 20 andD = 3, 5.We

observe that TL1 is the best except for the low coherence and the
low dynamic case, where Lp is the best. But Lp is the worst in
the other cases. The L1/L2 model is always the second best.
Note that the ratio model is parameter-free, while the per-
formance of TL1 largely relies on the parameter a. Figure 6
examines the success rate of TL1 with different values of a. We
choose a = 10D−1 in themodel comparison, which is almost the
best among these testing values of a. If no such prior information
of the dynamic range were available to tune a, the performance
of TL1 might be worse than L1/L2.

VI. DISCUSSIONS

Candés and Wakin [52] presented two principles in com-
pressed sensing, i.e., sparsity and incoherence. We reported in
our previous work [32] that higher coherence leads to better
sparse recovery,which seems to contradictwith the current belief
in CS. In this paper, we discuss the dynamic range and reveal
its effect on the exact recovery via the L1 approach. To our
best of our knowledge, there has been little discussion on the
dynamic range in the CS literature, except for [51]. We consider
low-coherent matrices with F = 1 and high-coherent ones with
F = 20. We record the success rates of different combinations
of sparsity levels (s = 2 : 4 : 22) and dynamic rangesD = 0 : 5
in Table I. It shows that a higher dynamic range leads a better

TABLE I
SUCCESS RATE (%) IN SOLVING DIFFERENT DYNAMIC RANGES VIA THE L1

MODEL AT TWO COHERENCE LEVELS F = 1 AND F = 20

performance. It seems that the L1 approach is independent on
D for relatively sparser signals.
Now that there are three quantities that may contribute to the

success of sparse recovery, i.e., sparsity, coherence, and dynamic
range, we try to give a comprehensive analysis by using the
relative error ‖x∗ − x‖2/‖x‖2 instead of the success rates, as
the latter depends on the successful threshold.
We plot in Figure 7 the mean and the standard deviation of

the relative errors from 50 random trails versus coherence levels
(F = 1, 5, 10, 15, 20). Based on Table I, we only consider the
number of non-zeros value larger than 18 and D ≥ 3. In each
subfigure of Figure 7, the curves decrease when F increases,
which means that higher coherence leads to better performance.
This is consistent with the observation in [32]. As for the
dynamic range, we discover in Figure 7 that a larger value of
D leads to a smaller relative error.
Finally, the sparsity affects the performance in the way that

smaller relative errors can be achieved for sparser signals. These
numerical phenomena have not been reported in the CS litera-
ture, which motivate for future theoretical justifications.

VII. CONCLUSIONS AND FUTURE WORKS

We studied the scale-invariant and parameter-free minimiza-
tion L1/L2 to promote sparsity. We presented three numerical
algorithms to minimize this nonconvex model based on the
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relationship between L1/L2 and L1-αL2 for certain α. Exper-
imental results compared the proposed algorithms with state-
of-the-art methods in sparse recovery. Particularly important is
the proposed algorithmworks well when the ground-truth signal
has a high dynamic range. Last but not least, we analyzed the
behaviors of the L1 approach towards the exact recovery with
varying sparsity, coherence, and dynamic range. Future works
include the theoretical analysis on the effect of the high dynamic
range towards sparse recovery as well as the applications of the
ratio model in image processing such as blind deconvolution
[28], [29].

APPENDIX

A. Proof of Lemma 1

Proof: Based on the x-subproblem in (11), we get
∥
∥
∥x(k+1)

∥
∥
∥
1
−
〈

x(k+1),
α(k)x(k)

‖x(k)‖2

〉

+
β

2

∥
∥
∥x(k+1) − x(k)

∥
∥
∥

2

2

≤
∥
∥
∥x(k)

∥
∥
∥
1
−
〈

x(k),
α(k)x(k)

‖x(k)‖2

〉

+
β

2
‖x(k) − x(k)‖22

=
∥
∥
∥x(k)

∥
∥
∥
1
−
〈

x(k),
α(k)x(k)

‖x(k)‖2

〉

.

After rearranging, we get the following inequality

‖x(k+1)‖1 + β

2
‖x(k+1) − x(k)‖22

≤ ‖x(k)‖1 + α(k)

〈

x(k+1) − x(k),
x(k)

‖x(k)‖2

〉

≤ ‖x(k)‖1 + α(k)
(

‖x(k+1)‖2 − ‖x(k)‖2
)

= α(k)‖x(k+1)‖2. (33)

The second inequality is owing to the convexity of Euclidean
norm and the definition of α(k). Lemma 1 is then obtained by
dividing ‖x(k+1)‖2 on both sides of (33). �

B. Proof of Lemma 2

Proof: Simple calculations lead to
∥
∥
∥
∥

x

‖x‖2 − y

‖y‖2

∥
∥
∥
∥

2

2

= 1− 2〈x,y〉
‖x‖2‖y‖2 + 1

=
1

‖x‖2‖y‖2 (2‖x‖2‖y‖2 − 2〈x,y〉)

≤ 1

‖x‖2‖y‖2
(‖x‖22 + ‖y‖22 − 2〈x,y〉)

=
1

‖x‖2‖y‖2 ‖x− y‖22. (34)

For any x satisfying Ax = b, the minimal L2 norm is reached
by projecting the origin 0 onto the feasible set of {x |Ax = b}.
It follows from the projection operator defined in (15) that

‖x‖2 ≥ ‖proj(0)‖2 = ‖AT (AAT )−1b‖2. (35)

Combining (34) and (35), we get Lemma 2. �

C. Proof of Lemma 3

Proof: It is straightforward to have

‖∇w(x)−∇w(y)‖2 =

∥
∥
∥
∥

‖x‖1
‖x‖22

x− ‖y‖1
‖y‖22

y

∥
∥
∥
∥
2

=

∥
∥
∥
∥

‖x‖1
‖x‖22

x− ‖x‖1
‖y‖22

y +
‖x‖1
‖y‖22

y − ‖y‖1
‖y‖22

y

∥
∥
∥
∥
2

≤ ‖x‖1
∥
∥
∥
∥

x

‖x‖22
− y

‖y‖22

∥
∥
∥
∥
2

+
1

‖y‖2
∣
∣
∣‖x‖1 − ‖y‖1

∣
∣
∣. (36)

We simplify the first term in (36) by calculating
∥
∥
∥
∥

x

‖x‖22
− y

‖y‖22

∥
∥
∥
∥

2

2

=
1

‖x‖22
+

1

‖y‖22
− 2〈x,y〉

‖x‖22‖y‖22

=
‖x‖22 + ‖y‖22 − 2〈x,y〉

‖x‖22‖y‖22
=

( ‖x− y‖2
‖x‖2‖y‖2

)2

,

and using ‖x‖1 ≤ √
n‖x‖2. Therefore, we get

‖x‖1
∥
∥
∥
∥

x

‖x‖22
− y

‖y‖22

∥
∥
∥
∥
2

≤ √
nL‖x− y‖2. (37)

As for the second term in (36), we have it bounded by

1

‖y‖2
∣
∣
∣‖x‖1 − ‖y‖1

∣
∣
∣ ≤ 1

‖y‖2 ‖x− y‖1

≤
√
n

‖y‖2 ‖x− y‖2 ≤ √
nL‖x− y‖2. (38)

Combining (37) and (38), we obtain (29). �

D. Proof of Lemma 4

Proof: It is straightforward that

Φ(x∗) = 0 ⇐⇒ x∗ = prox 1
β g

(

x∗ − 1

β
∇w(x∗)

)

.

By the optimality condition [47], the latter relation holds if and
only if there exists a vector s such that

0 ∈ ∂‖x∗‖1 +∇w(x∗) + β (x∗ − x∗) +AT s

= ∂‖x∗‖1 +∇w(x∗) +AT s,

which implies that x∗ is a critical point of (26). It follows from
(28) that (26) is equivalent to (2) and hence x∗ is also a critical
point of (2). According to the nonexpansiveness of the proximal
operator and the Lipschitz continuousness of ∇w, we have

‖Φ(x)− Φ(y)‖2
≤ β

∥
∥
∥
∥
prox 1

β g

(

x− 1

β
∇w(x)

)

− prox 1
β g

(

y − 1

β
∇w(y)

)∥
∥
∥
∥
2

+ β‖x− y‖2
≤ β

∥
∥
∥
∥

(

x− 1

β
∇w(x)

)

−
(

y − 1

β
∇w(y)

)∥
∥
∥
∥
2

+ β‖x− y‖2

≤ ‖∇w(x)−∇w(y)‖2 + 2β‖x− y‖2
≤ (Lw + 2β)‖x− y‖2.
The Lemma follows. �
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