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Abstract

The scientific computing community has long taken a leadership role in understanding and
assessing the relationship of reproducibility to cyberinfrastructure, ensuring that computational
results - such as those from simulations - are “reproducible,” that is, the same results are obtained
when one re-uses the same input data, methods, software and analysis conditions. Starting
almost a decade ago, the community has regularly published and advocated for advances in this
area. In this article we trace this thinking and relate it to current national efforts, including the
2019 National Academies of Science, Engineering, and Medicine report on “Reproducibility and
Replication in Science.”

To this end, this work considers high performance computing workflows that emphasize
workflows combining traditional simulations (e.g. Molecular Dynamics simulations) with in situ
analytics. We leverage an analysis of such workflows to (a) contextualize the 2019 National
Academies of Science, Engineering, and Medicine report’s recommendations in the HPC setting
and (b) envision a path forward in the tradition of community driven approaches to reproducibil-
ity and the acceleration of science and discovery. The work also articulates avenues for future
research at the intersection of transparency, reproducibility, and computational infrastructure
that supports scientific discovery.

Keywords: reproducibility, replicability, transparency, high-performance computing,
molecular dynamics, n situ analytics.

1. Introduction

In recent years, issues of reproducibility and replicability have come to the fore in venues as
diverse as scholarly publications, numerous panels and presentations at conferences and other
gatherings, and publications in the scholarly literature. These discussions and topics have en-
gaged researchers in a diverse set of disciplinary areas such as scientific computing, the life
sciences, statistics, geophysics, psychology, and more. A frequent thread in these discussions is
the shortcomings in the clarity, completeness, and specificity of computational and data analy-
sis methods in research dissemination. At the same time, journal editors and scientific societies
have considered approaches to making available the code and data relied on published articles.
In addition, national and international research funders have and are adopting requirements
to promote transparency in research artifacts, such as data and code, that result from funded
research.

Some of this activity can be rooted in examples that have been raised in the research
community: the journal Nature recently reported that experiments at CERN had not shown
neutrinos to be faster than light as originally reported [§]; data can be lost or unavailable
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and analysis algorithms in proprietary codes [46]; and a recent workshop at the ACM/IEEE
Supercomputing (SC) conference discussed how parallelized simulation codes can in some cases
produce unexpected nondeterminism in scientific findings [28]. Attention has recently been drawn
to principles for advancing reproducibility in the computational context [41-43|. As a heuristic for
understanding the salience of reproducibility issues, a Google Scholar search for “reproducibility”
and “replicability” yields over 5,000 hits in 2019 alone, compared to 2009 with fewer than 800.

In this article, we trace the context and history of discussions and efforts regarding repro-
ducibility in the high performance computing (HPC) context and list key efforts to improving
our understanding of the costs and benefits of advancing reproducibility across the cyberinfras-
tructure ecosystem. We then relate these efforts to the National Academies of Science, Engi-
neering, and Medicine 2019 report on “Reproducibility and Replication in Science” [33]. We use
the framing of the report to discuss three of its recommendations regarding reproducibility and
replication that are particularly actionable for research teams in HPC but whose level of abstrac-
tions may create interpretation ambiguity. To address the ambiguity, we discuss and interpret
these recommendations in an exemplar case, the A4AMD study [45], with the aim of enabling
and advancing HPC communities in their current efforts to create reproducible, replicable, and
transparent HPC ecosystems for smart cyberinfrastructures |10, (14}, 20} 29} 39]. We then leverage
to formalisms, PRIMAD [24] and Whole Tale’s Tale [15], to apply the recommendations in the
use case. We conclude with a call to extend these analysis to other use cases.

2. Reproducibility in HPC-driven Communities: Overview

2.1. Community Efforts

The notion of “really reproducible research” was introduced in 1992 [18} |19, 37] and coined
in 1995 [9]. The term was intended to refer to the ability to computationally regenerate the
results in a publication. Since these early days this idea has been developed and applied in
many contexts [22], including policy development for journals [34] and research funding, as well
as best practice and guidance development for institutions, repositories, and researchers. Many
challenges to these ideas have been raised [6} [16, 32]. Most recently two of the authors partic-
ipated in the development of seven guidance points for the community when stepping toward
computational reproducibility [42]. Several conferences including the SC conference, the PPoPP
conference, and the CGO conference, are taking steps toward to enable the integration of trans-
parency in their paper artifacts and engaging students in the effort to promote reproducibility,
replicability, and transparency. One of the authors has led the effort in the past five years to
make sure that the papers accepted to the SC conference have enough information to trust their
results. At SC19, for the first time, all accepted papers included an appendix with a detailed
artifact description of environments and methodologies that were used for achieving the key
results in the papers. In pursuing the success of the reproducibility initiative, the conference
has engaged the next HPC generation through the Reproducibility Challenge in the Student
Cluster Competition (SCC): a paper accepted to a past SC conference is used as source for the
Reproducibility Challenge of the next SC conference. SCC is an SC program that engages 16
teams (of 6 undergraduate students each) every year who are tasked to work with a vendor
to build a HPC cluster from scratch and run a set of key HPC benchmarks on it during the
conference. These benchmarks now include the replication of artifacts in the selected paper on



the 16 different cluster architectures, creating a unique setting for practitioners to study the

impact of different hardware platforms on the performance of a single common application.

2.2. Identifying Sources of Irreproducibility

First efforts to address sources of irreproducibility tackled numerical reproducibility |11} 44].
Numerical reproducibility focuses on the relationship between system software, hardware, and
the ability to return bit-wise identical output |21} [27]. In the scientific domains there is generally
less concern with obtaining bit-wise identical results from one study or experiment to another,
however changes in the underlying computational system can give rise to uncertainties that
can affect the scientific interpretation of computational results [40]. There are several possible
computational sources of irreproducibility including;:

e Hardware: Many fundamental operations of a computer are inherently non-deterministic.
I/0 devices report interrupts at unpredictable times, affecting scheduling of processes and
progress of I/0, each visible to the application at the system call layer.

e Concurrency: Current systems provide high degrees of concurrency at all levels (e.g.,
applications use multiple processes, multiple threads, multiple cores, and/or rely on parallel
accelerators like GPUs).

e Algorithmic Randomness: Many fundamental scientific algorithms rely upon random num-
ber generators: Monte Carlo sampling algorithms, random walks, and so on.

e Application Complexity: The overall application extends beyond the application code,
and includes supporting libraries and services, configuration files, the operating system,
and perhaps even the configuration of the network upon which it relies. It is typical to
employ more than one application in the discovery process, adding to the complexity as
interactions and dependencies between applications may not be well understood. Each
of the environment elements may be configured and updated independently by different
parties, e.g. end user(s), system and network administrators, and automatic processes.

e Provenance Capture: Assessing and verifying the significance of a data or computationally-
enabled scientific finding typically requires understanding the statistical, modeling, and
calibration steps taken, including the capture and reporting of negative findings and the
steps used to create visualizations and figures that present results. In addition, many
applications embed state information into their output to help with debugging and general
provenance, however such information may not be sufficient to assess whether results that
differ bit-wise are scientifically equivalent.

Applications such as Coulomb n-body atomic system simulations, planetary orbit calculations,
supernova simulations all require stringent bit-wise numerical reproducibility [4].

2.3. Formalisms and Abstractions

The community is taking a structured approach to reason about and assess reproducibility
in the cyberinfrastructure context at large, beyond bit-wise reproducibility. We outline the use of
two formalisms to allow the community to understand the impact of changes including costs and
benefits: the PRIMAD model designed to understand changes when research is replicated [24],
and the “Tale” description of reproducible published computational research [15].

The PRIMAD Model: PRIMAD is a general model intended to guide reproducibility.
PRIMAD helps meet an acute need in the scientific community to ground reproducibility, yet it



is inherently abstract due to its applicability across all scientific domains, leading to challenges
in establishing a useful level of specificity. PRIMAD breaks reproducibility into six named com-
ponents (Platform, Research objective, Implementation, Methods, Actors, and Data), each of
which represents an element of a computational experiment where reproducibility can be en-
forced by design, or conversely where a lack of such design can allow irreproducibility to seep in
and potentially corrode the overall integrity of the experiment. As a first example of a PRIMAD
applicability study, two of the authors have successfully evaluated the efficacy of PRIMAD as
a tool for characterizing the reproducibility of more traditional applications such as real-world
computational science workflows. Specifically, we examined computational workflows used to
detect gravitational waves using data from the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) [1] and the Virgo Observatory [2]. Our findings outlined how PRIMAD can be
used as a general model to guide reproducibility from publications [12].

The Whole Tale “Tale”: The object defined as a “Tale” is a digital bundle of artifacts
and descriptors for the dissemination and publication of computational scientific findings in
the scholarly record [15]. The NSF-funded Whole Tale project is developing a computational
environment designed to capture the entire computational pipeline associated with a scientific
experiment and thereby enable computational reproducibility [7]. In other words, research pub-
lished from the Whole Tale project is published in the Tale format, which allows researchers
to create and package the code, data, and information about the workflow and computational
environment necessary to support, review, and recreate the computational results reported in
published research. As shown in Table[l], the Tale captures the artifacts and information needed
to facilitate greater understanding, transparency, and executability of the Tale for review and
reproducibility at the time of publication.

Metadata Description

Authors List of Tale authors

Creators Tale Creators (may differ from authors)
Title Title of the Tale

Description Description of the Tale

Categories List of subject categories (keywords)

Tllustration Ilustration for the Whole Tale browse page

Create Date Date the Tale was created

Update Date | Date the Tale was last updated

License License selected by the user

Environment | Computational environment information

Workspace Code/scripts, workflow, narrative, documentation, data, results
External data | Data by reference to external source

Identifier Persistent identifier for published Tale

Table 1. A manifest of objects that comprise the Whole
Tale “Tale” and whose descriptions are included as Tale
metadata. Adapted from [15].

Without standardization, decisions about what constitutes “relevant information” are in-
evitably ad-hoc, and may not be uniform from publication to publication or across multiple
workflows within a single publication. Thus, formalisms such as PRIMAD and the Tale offer an



abstraction with which to build sustainable reproducibility in a uniform fashion across scientific

domains.

3. The 2019 National Academies Report Recommendations
and the HPC Ecosystem

The 2019 National Academies of Science, Engineering, and Medicine (NASEM) consensus
report “Reproducibility and Replication in Science,” of which one of us was a committee mem-
ber, found its origin in the 2017 “American Innovation and Competitiveness Act.” In this Act
Congress made a provision that directed the National Science Foundation to assess “research and
data reproducibility and replicability issues in interdisciplinary research” and make “recommen-
dations for improving rigor and transparency in scientific research.” This opportunity offered a
chance to understand the problem and the current state of reform efforts, and to articulate ways
the National Science Foundation and others might improve reproducibility and replicability in
research. The NASEM report set forth definitions of the terms “reproducibility” and “replica-
tion” and offers a number of recommendations regarding reproducibility and replication [33].
We discuss each of those aspects in turn.

Key words used in reproducibility discussions may have different interpretations or meanings
in different disciplines and even in different discussions. For the purposes of the NASEM report
the committee established the following definitions (reproduced without modification). We follow
this convention in the current writing as it is consistent with previous efforts [38].

Reproducibility is obtaining consistent results using the same input data, com-
putational steps, methods, and code, and conditions of analysis. This definition is
synonymous with “computational reproducibility,” and the terms are used inter-
changeably in this report.

Replicability is obtaining consistent results across studies aimed at answering
the same scientific question, each of which has obtained its own data. Two studies
may be considered to have replicated if they obtain consistent results given the level
of uncertainty inherent in the system under study.

Generalizability, another term frequently used in science, refers to the extent
that results of a study apply in other contexts or populations that differ from the
original one. A single scientific study may include elements or any combination of
these concepts.

Reproducibility involves the original data and code; replicability involves carrying out new
studies or experiments to ascertain consistency with previous answers to the same research
question. In addition, these definitions suggest that when underlying digital artifacts are made
accessible, the results should ideally be reproducible. However, a study conducted according
to best practices and utilizing correct analysis may of course fail to replicate due to inherent
uncertainties of other factors.

Among the recommendations regarding reproducibility and replication provided by the re-
port, some are more actionable than others for research teams in the HPC setting. Accordingly,
we prioritize discussion of recommendations that both describe or refer to potential changes to
computational scientists’ day-to-day engineering practices that could encourage or enable repro-
ducibility and replicability of their research, and advocate for enhancements of computational



scientists’ software infrastructure, where success will positively impact computational science
ranging from workstation-scale prototyping to studies run on leadership-class HPC systems.

Our empirical and experiential evaluation identified three NASEM report recommendations
that are particularly suitable to be tailored for HPC workflows and HPC practitioners. These
are reproduced from the report without modification:

RECOMMENDATION 4-1: To help ensure the reproducibility of computa-
tional results, researchers should convey clear, specific, and complete information
about any computational methods and data products that support their published
results to enable other researchers to repeat the analysis, unless such information
is restricted by non-public data policies. That information should include the data,
study methods, and computational environment:

e the input data used in the study either in extension (e.g., a text file or a binary)
or in intension (e.g., a script to generate the data), as well as intermediate results
and output data for steps that are non-deterministic and cannot be reproduced
in principle;

e a detailed description of the study methods (ideally in executable form) together
with its computational steps and associated parameters; and

e information about the computational environment where the study was orig-
inally executed, such as operating system, hardware architecture, and library
dependencies (which are relationships described in and managed by a software
dependency manager tool to mitigate problems that occur when installed soft-
ware packages have dependencies on specific versions of other software pack-

ages).

RECOMMENDATION 5-1: Researchers should, as applicable to the specific
study, provide an accurate and appropriate characterization of relevant uncertainties
when they report or publish their research. Researchers should thoughtfully com-
municate all recognized uncertainties and estimate or acknowledge other potential
sources of uncertainty that bear on their results, including stochastic uncertainties
and uncertainties in measurement, computation, knowledge, modeling, and methods

of analysis.

RECOMMENDATION 6-3: Funding agencies and organizations should con-
sider investing in research and development of open-source, usable tools and infras-
tructure that support reproducibility for a broad range of studies across different
domains in a seamless fashion. Concurrently, investments would be helpful in out-

reach to inform and train researchers on best practices and how to use these tools.

We refer the reader to the report for more details on these and the other recommenda-
tions [33]. In the next section we interpret these recommendations in the context of a specific
HPC workflow, Analytics for Molecular Dynamics (A4MD).



4. Assessing the Impact of the 2019 NASEM Report

Recommendations on an HPC Workflow: The A4MD Use
Case

In this section we discuss the applicability of the three targeted NASEM recommendations
to a real HPC use case, the Analytics for Molecular Dynamics (A4MD) workflow [45]. This
use case focuses on molecular dynamics simulations that are augmented with in situ analytics
components, thus allowing us to study a research workflow that integrates data factors into
a traditionally compute intensive only project. We utilize the specific use case approach to
concretize and interpret the NASEM recommendations.

4.1. The A4MD Use Case

Molecular Dynamics (MD) simulations studying the time evolution of a molecular system
at atomic resolution. The fields of chemistry, material sciences, molecular biology, and drug
design widely utilize MD simulations. The system sizes and time-scales accessible to MD simu-
lations have been steadily increasing. Next-generation HPC systems will have dramatically larger
compute performance than do current systems. This increase in computing capability directly
translates into the ability to execute an increasing number of longer simulations and thus to
expand the range of biomolecular phenomena that can be studied by MD simulation.

4.2. The NASEM Recommendations in the Context of the AAMD Workflow

The A4MD workflow presents unique challenges for compliance with the best practices
outlined in NASEM recommendations, particularly in terms of capturing and disseminating the
A4MD computational environment, and all of its relevant data products. Recommendation 4-1
explicitly states that the “operating system, hardware architecture, and library dependencies”
of a computational experiment should be captured and shared. Since A4MD consists of three
distinct computational components (the molecular dynamics simulation itself, the data staging
server, and the in situ analytic packages), each of which may execute on separate hardware
resources, the difficulty of fulfilling this requirement is magnified. We summarize in Figure
a set of metadata for each of the three A4AMD components that can conceivably fulfill the
requirements of environment sharing specified in Recommendation 4-1. These metadata can,
in principle, be captured in an automated fashion as part of the job scripts that comprise the
workflow.

Beyond capture of the computational environment, Recommendation 4-1 also calls for “input
data used in the study either in extension (e.g., a text file or a binary) or in intension (e.g., a
script to generate the data), as well as intermediate results and output data for steps that are
nondeterministic and cannot be reproduced in principle”. While capture of intermediate data
products can potentially bolster efforts to achieve reproducibility, doing so necessarily comes at
the cost of scalability, especially in the HPC setting. Efforts to achieve scalable record and replay
of HPC applications indicate that capturing fine-grained data about the intermediate state of
parallel executions remains an active and challenging area of research [13]. Hence, in our view
the feasibility of Recommendation 4-1’s guidelines regarding capture of intermediate data must
be managed on a case-by-case basis. In Figure |2| we sketch out a possible set of data products
that could be recorded per execution of the AAMD workflow, ranging from the highly feasible,



¢ #nodes / # cores

Data Feedback

| MD code

Analytics

Analytics Component

MD Component . —-_——— ML-inferred

* Hardware Run n-Stride algorithms * Hardware
* Node architecture simulation steps Collective * Node architecture
* Interconnect variables * Interconnect

* # nodes / # cores

* Software _ (e.g., GROMACS) Dataflow e * Software _
* MD framework/version Plumed + algorithms * Python version
¢ MD system initial | ' Staging Area * Analytics library versions
conditions Dataflow Ingestor ‘ DataSpaces Retriever

* Support software versions
(e.g., MPI, Plumed)

Data Generation Data Storage

Data Analytics

Hardware Software
« Size of virtual

shared memory

Data Staging Component

* DataSpaces version
* DataSpaces config.

Figure 1. Capturing A4MD’s computational environment.

e.g., the input files to the MD simulation, to the highly challenging (e.g., the evolving state of

the data staging server).
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Figure 2. Capturing A4MD’s input, output, and intermediary data.

NASEM Recommendation 5-1 stresses the importance of uncertainty quantification in com-
putational experiments. In an effort to comply with this recommendation, an empirical evalua-
tion of the A4MD workflow was conducted in [45] (specifically, in Section III.C) to quantify the
effect of imbalances the rate at which the MD simulation produces data and the rate at which
the in situ analytics module consumes that data. That evaluation has provided insights for the
revision of Rec. 5-1 in the next section.

Finally, in an effort to make the A4MD workflow more accessible to other researchers,
the experiments described in [45] are packaged as a Jupyter notebook. However, the A4MD
workflow typically involves submission of multiple interdependent jobs to a batch-scheduler; an
activity not native supported by the Jupyter notebook environment. Instead, the authors of
A4MD had to leverage various third-party workarounds (e.g., the signac workflow manager [3])
to encapsulate these implementation details away from the user experience of A4MD. These
efforts highlight the need of the NASEM Recommendation 6-3 revision presented below, namely
the need for investment in open-source, reproducibility-oriented software infrastructure.

The NASEM recommendations have broad applicability across computational settings, and
we interpret the recommendations focused on in this work in the specific setting of leadership-
class high performance computing (HPC) platforms. These recommendations have the highest



potential for positive impact on trust and traceability of scientific findings and face unique

challenges due to the characteristics of HPC platforms and HPC software.

5. The NASEM Recommendations in the HPC Setting

We leverage lessons learned from the use case in Section to address the challenges
that research teams will face when implementing a subset of the NASEM recommendations for
their HPC-enabled scientific workflows. Additionally, and where appropriate, we propose HPC-
tailored refinements of the recommendations with the intent of facilitating their widespread
adoption. We will refer to the NASEM recommendations by their numerical identifier as given
in the report (e.g., Rec. 4-1).

5.1. Recommendation 4-1: Sharing Methods, Data, and Environment

Scientific workflows, especially those deployed on HPC resources, rarely consist of a single
computational element. More often, workflows consist of multiple executables that generate or
consume data sets, and multiple scripts that serve functions such as pre- and post-processing of
data sets, visualization, and gluing together other computational elements. Furthermore, these
computational elements are not executed directly by researchers on a static resource (e.g., a
single workstation), but instead are scheduled onto available resources—either by a traditional
batch-scheduler (e.g., SLURM) or a more sophisticated workflow manager (e.g., Pegasus [20]).

All of these factors motivate the need to refine Rec. 4-1’s request to “convey clear, specific,
and complete information about any computational methods”. It may be tempting to interpret
this as being fulfilled by English text descriptions in publications (i.e., the text of a “Methods” or
“Evaluation” section), we contend that this is insufficient—especially in the HPC setting. Instead,
the “computational methods” should be described as a directed graph of executable elements.
Each vertex in this graph would represent a single executable, script, or scheduled job, each asso-
ciated with metadata such as commit hashes, library versions, and input parameters. In contrast
with a possibly-ambiguous or incomplete English language description of “computational meth-
ods”, this representation affords researchers with the ability to distinguish between structurally
similar, but nevertheless distinct computational methods which is critical to investigating the
reproducibility of scientific findings.

Even if an unambiguous and formal, yet shareable and ergonomic representation of “com-
putational methods” gains traction in the scientific community, a further challenge remains:
namely updating the peer-review process to appropriately evaluate study methods expressed in
this form. This challenge is starting to take shape in the present day as computational notebooks
(e.g., Jupyter) become more and more popular as vehicles for sharing scientific findings.

5.2. Recommendation 5-1: Broadening Notions of Uncertainty
Quantification

Despite the relative ubiquity of uncertainty quantification (UQ) in the HPC setting, it is
usually targeted towards probing the effect of uncertainty of inputs to simulations, rather than
uncertainty inherent in the HPC platform itself. However, we contend that in the HPC setting,
three factors contribute to the need to treat HPC platforms as dynamic environments in need



of UQ just as much as the inputs of sensitive simulations: (1) use of multiple parallel runtimes;
(2) multi-tenancy on HPC systems; and (3) opacity of code generation.

For multiple parallel runtimes, to cope with evolving HPC system architectures, the use of
multiple parallel runtimes (e.g., MPI + OpenMP) in a single codebase has become increasingly
common in scientific computing. The effect of mixing these runtimes on application-level non-
determinism has been identified as a major challenge in the push to exascale [26], and the scarcity
of tools for mitigating non-determinism in these types of codebases has been documented [13].

For multi-tenancy, beyond the challenge of reproducing the internal state of non-
deterministic applications from run to run, a greater challenge lies in reproducing the state
of the system on which those applications ran, at the time that they ran. The majority of com-
putational science on HPC systems is performed on systems in which the investigator is not the
sole tenant. Thus, contention for resources such as network bandwidth between compute nodes
or I0 bandwidth between the system and a parallel file system can conceivably contribute to
reproducibility challenges.

Finally, for opacity of code generation, the increasing complexity of scientific codebases cou-
pled with the rising popularity of high-level user-friendly interfaces to them (e.g., computational
notebooks) contributes to an increased risk of computational scientists being fundamentally un-
familiar with the code they execute. Incremental increases in complexity may be unavoidable
for scientific codebases, we encourage computational scientists to familiarize themselves with
modern tools that can increase their awareness of code-generation effects that may impede re-
producibility. For example, the FLiT tool [35, 36] allows users to assess the effects of various
combinations of compiler options on their code’s numerical properties, while tools like Spack [25]
ease the burden of maintaining and organizing multiple versions of complex scientific software

built against multiple toolchains.

5.3. Recommendation 6-3: Investment in Open-source Tools to Facilitate
Reproducible Research

The NASEM recommendations advocate for increased investment from funding agencies in
open-source tools tailored towards reproducible research. While tools and infrastructure have
emerged recently (e.g., Whole Tale [7], Popper [30, |31], ReproZip [17], Repo2Docker [23]) these
tools may require that their users adhere to specific organizational patterns for their projects, or
simply require additional steps in setup that researchers may find cumbersome. We contend that
the fundamental tools by which researchers develop experiments ought to have reproducibility-
oriented features baked in as first-class citizens [43]. In particular, we contend that computational
notebooks are an attractive candidate for such an overhaul due to their increasing ubiquity;
their design that co-locates data, code, and exposition; and their as-of-yet untapped capacity to
capture metadata about computational experiments in support of reproducibility.

Were a funding body to invest in greenfield development of a reproducibility-oriented com-
putation notebook environment, we suggest that the following features be prioritized: (1) auto-
mated experiment metadata collection; (2) interoperability with existing version control systems;
and (3) interoperability with HPC system software.

Automated Metadata Collection: Computational notebooks present a user-friendly
environment where typically, a scripting language’s read—eval-print loop (REPL), data visual-
ization capabilities, and free form textual exposition, are able to be colocated. We suggest that
in addition to these advantages, computational notebooks are uniquely positioned to capture



metadata about computational experiments (e.g., versions of third-party libraries, identifiers for
datasets, configuration details for how figures were generated) that are essential for achieving
reproducibility. The HPC community has stressed the importance of collecting this metadata
and provided tools for doing so, such as the SC Reproducibility Initiative’s Artifact Descriptor
Toolkit [5]. However the inherent drawback of tools like this is that they constitute an extra,
post-hoc step for researchers—separate from their day-to-day experimental workflow. Were this
functionality to be integrated directly into a reproducibility-oriented computational notebook,
this metadata would be captured as a matter of course-and consequently more likely to be
available to the greater scientific community.

Interoperability with version control: Currently, computational notebooks present
challenges for version control. The notebook is typically stored in a hierarchical format such
that small changes from the perspective of the user interface may induce relatively large changes
in the underlying document (e.g., swapping cell orders in a Jupyter notebook). While this does
not exclude notebooks from versioning via, e.g., Git, per se, it does render the commit history
for a notebook significantly less transparent and informative than the commit history for a
regular source file. A future reproducibility-oriented redesign of the computational notebook
should prioritize improving integration with version control.

Interoperability with HPC system software: Despite the ease-of-use computational
notebooks have enjoyed for prototyping experiments, there remain pain-points when it comes to
porting these prototypes to run on large-scale HPC resources [14]. We argue that it is impera-
tive that computational notebooks evolve to integrate seamlessly with batch schedulers so that
researchers may more easily and reproducibly scale up their prototypes.

6. Applying Formalisms to Assess the NASEM
Recommendations for the HPC Ecosystem

The formalisms discussed in Section suggest guidance to understanding how to generalize
findings from use cases and thereby indicate potential avenues to build sustainable reproducibil-
ity efforts in a uniform fashion across scientific domains. We identify how specific components
of the two proposed formalisms (i.e., PRIMAD and the Whole Tale) can be identified or defined
in order to support applicability of the three targeted recommendations (i.e., 4-1, 5-1, and 6-3)
across workflows in a specific domain and for desired levels of reproducibility. The first step is to
apply the formalism, the second is to update the interpretation of the three recommendations
targeted in this work.

6.1. Applying the PRIMAD Formalism

We begin by presenting the elements of the PRIMAD formalism in Table [2 The second
column of the Table applies these elements to the A4MD use case discussed in this work.

A clear division between implementation and methods in the PRIMAD model is fundamental
for Rec. 4-1 but such a separation is subjective. Minor adjustments to an algorithm generally
fall into implementation, yet it is hard to determine when changes are substantial enough to
call it a new algorithm and thus a change in methods. In other cases, the effects of the human
actors on reproducibility may be difficult to document. Even within the same research group
and under consistent leadership, research objectives, and computational environments, changes
in team members and shifts in member responsibility can introduce unacknowledged sources



PRIMAD Element | Application to A4MD Use Case

Platform NERSC’s Cori Cray XC40 System

Research Molecular Dynamics (MD) simulations executed on a

state-of-the-art supercomputer that characterize the impact of in situ
and in transit analytics on overall MD workflow performance,

and the capability for capturing rapid, rare events in the simulated

molecular system.

Implementation Two workflow configurations are run that represent in situ and
in transit analytics on Haswell nodes of NERSC’s Cori.

Each Haswell node has twol6-core Intel Xeon processors, 128GB
memory, and are connected by a Cray Aries interconnect.

Methods In the first type of workflow, because the analysis is not able to
consume the frame in a timely manner, the MD either

simulation waits in I/O to write to the in-memory staging area of
DataSpaces (idle simulation time) or discards any frame that cannot
be ingested into the staging area. In the second type of workflow the
MD simulation generates a new frame with large strides and the
analytics are waiting in I/O and the associated resources are idle.
Trends for the time spent waiting in I/O for the simulation and idle
time for the analytics are measured and observed.

Actors Researchers at multiple institutions.

Data MD-generated data created as output from the workflow.

Table 2. Applying the PRIMAD Formalism in the A4MD Use Case.

of variability. Appropriately documenting the knowledge and experience that is applied to the
elements of a workflow is a challenge and it is important to understand when and how scientific
results rely on specific human actions for example.

6.2. Applying the Tale Formalism

The Tale description is given in Table [3] with associated detail for the A4AMD as best as we
are able since the implementation of the A4AMD use case in Whole Tale is currently underway.
However, some aspects of the Tale format could be refined to fit the A4MD workflow better. In
particular, since the A4AMD workflow consists of multiple applications (i.e., the MD simulation,
the data staging server, and the in situ analytics modules) that potentially execute on different

hardware platforms, the monolithic “environment”

component of the Tale ought to be decom-
posed into a collection of environments. Links between various sub-components of the Tale’s
“workspace” and individual environments within that collection could then make explicit the

correct way to set up and execute an equivalent A4MD workflow in a future replication study.

6.3. Application of the Formalisms to Our Analysis of Three NASEM
Recommendations

In our analysis of the NASEM recommendations in the HPC setting, we observe significant
overlap between aspects of the recommendations and the common components of reproducibility



Tale Element

Application to AAMD Use Case

Authors Thomas, S., Wyatt, M., Do, T.M.A., Pottier, L., da Silva, R.F.,
Weinstein, H.,Cuendet, M.A., Estrada, T., Deelman, E., Taufer, M.

Creators C. Willis

Title Characterizing in-situ and in transit analytics of molecular dynamics
simulations for next generation supercomputers.

Description This tale implements the computational pipeline associated with the
publication cited in [45)].

Categories Scientific workflows, data analytics, performance, workload modeling,
remote direct memory access.

Nlustration Figure 1 “Capturing A4MD’s computational environment.”

Create Date

February 2020

Update Date

February 2020

License [License selected by the user]
Environment [Computational environment information]
Workspace Code/scripts, workflow, results

External data

None.

Identifier

As yet unpublished Tale

Table 3. Applying the Whole Tale “Tale” Formalism in the A4MD use case.

formalisms such as PRIMAD and Whole Tale. In particular, there is a clear parallel between
Recommendation 4-1’s emphasis on sharing study methods, computational environment, and
data, and "methods”, “platform,” and “data” components of PRIMAD, or the “environment,”
“workspace,” and “external data” components of Whole Tale. Our approach of leveraging for-
malisms helps refine and define what this might mean in particularly research settings. In Sec-
tion we discuss the potential pitfalls of compliance with Recommendation 4-1 in the HPC
setting, and suggest possible refinements. Reproducibility formalisms are a natural vehicle by
which those refinements can be made explicit and actionable for research teams.

Elsewhere, specifically with respect to Recommendation 5-1, there is less overlap with ex-
isting reproducibility formalisms. Neither PRIMAD nor Whole Tale explicitly guide researchers
towards incorporating uncertainty quantification into their studies. We contend that failure to
quantify and report potential uncertainties of the computational environment can have dramatic
impacts on reproducibility, and thus warrants explicit incorporation into future reproducibility
formalisms. As Whole Tale is an active and ongoing development effort, there is potential to
align aspects of the Tale format with Recommendation 5-1.

Finally, while in our discussion in Section we focus on potential improvements to com-
putational notebooks, we also see in well-funded open-source software a natural avenue for re-
producibility formalisms to become useful and ubiquitous. As software tools for computational
scientists mature, integration of a reproducibility formalism and tools into the common software
stacks can reduce the degree of effort required for research teams to conduct reproducible ex-
periments and disseminate sufficient information for the broader community to build on their
work.



7. Future Directions

Even in the absence of a community-standardized formalism for reproducibility, individual
research teams can nevertheless strive to comply with the NASEM recommendations, to the
extent that the NASEM recommendations are sensibly interpreted for their specific use case.
In this work, we presented one example of this with the A4MD workflow, and based on our
example we articulated a set of refinements to Recommendations 4-1, 5-1, and 6-3 that renders
them more suitable for computational science conducted in the HPC setting. We also showed an
approach to making the recommendation implementations explicit and actionable through the
use of a reproducibility formalism.

The results presented in this work are intended to indicate areas for further investigations.
We see two principal avenues to extend our work.

First, our analysis was augmented with one single HPC use case. Still, our use case allowed
us to concretize and interpret the NASEM recommendations, as well as to indicate future direc-
tions while opening the door to the empirical analysis of the impact of the recommendations in
a broader HPC settings and workflows. The extension of our empirical approach based on use
cases to a larger and diverse suites of HPC workflows can allow scientists and practitioners to un-
derstand the impact, costs, and benefits of the NASEM recommendations on the reproducibility
of more and more complex HPC ecosystems.

Second, the two considered formalisms were not initially designed to resolve questions tack-
led in this work such as “how do suggested adjustments to research workflows affect HPC
ecosystems as a whole and improve their reproducibility?” Still, the clarity they can each bring
is an important step. Ultimately reproducibility formalisms should be further refined to com-
pletely and automatically capture the appropriate elements of the HPC ecosystem that are most
impacted by the implementation of increased computational reproducibility.
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