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Insurance loss prevention survey, specifically windstorm risk inspection survey is the process of 
investigating potential damages associated with a building or structure in the event of an extreme weather 
condition such as a hurricane or tornado. This process is performed by a trained windstorm risk engineer 
who physically goes to a facility to assess the wind vulnerabilities associated with it.  This process is highly 
subjective, and the accuracy of findings depends on the experience and skillsets of the engineer. Although 
using sensors and automation enabled systems help engineers gather data, their ability to make sense of this 
information is vital. Further, their Situation Awareness (SA) can be affected by the use of such systems. 
Using a between-subjects experimental design, this study explored the use of various context-based 
visualization strategies to support the SA requirements and performance of windstorm risk engineers.  The 
independent variable included in this study is the type of context-based visualizations used (with 3 levels: 
no visual aids, checklist based and predictive display based visual aids). We measured SA using SAGAT 
and performance using a questionnaire. SA and performance were found to be higher for the predictive 
display and checklist based conditions. The findings from this study will inform the design of context-
based decision aids to support the SA of risk engineers. 
 

INTRODUCTION 
  
 In past ten years an average of 170 wind related fatalities 
were reported in the United States every year. In 2017 only 
128 fatalities were reported (“NWS Analyze, Forecast and 
Support Office,” 2018). Such wind related natural disasters as 
hurricanes, tornado and thunderstorm affect individuals, 
society and economy (Tokgoz, 2012). Property damage is one 
of the most important consequences of such natural disasters. 
In recent years hurricanes caused billions of dollars losses in 
property damage (Fernández, 2001). However, natural 
disasters are unexpected and unavoidable. So, it is important 
to improve the resilience of infrastructure system to protect it. 
To limit the extent of damage and to minimize disruptions, 
wind vulnerabilities need to be identified and mitigated 
(Smith, 2011). Insurance companies carry out routine 
inspections at their clients’ facility to assess wind vulnerability 
to develop risk mitigation and management strategies. This 
process is known as windstorm loss prevention survey or risk 
inspection (“What is the Windstorm Inspection Program?,” 
1999). While this process is primarily qualitative, the results 
of the inspection depends on the skillsets of the engineers 
conducting this inspection.  
 A qualitative research investigating the sensemaking 
process of risk engineers identified some of the critical 
challenges faced by windstorm risk engineers. Lack of a 
standardized survey protocol, and individual differences lead 
to disparities in the results of outcome (Agnisarman, 
Khasawneh, Ponathil, Lopes, & Madathil, 2018). Experience 
level is an important factor that directly predicts the accuracy 
of the report produced by risk engineers (Agnisarman et al., 
2018). Risk engineers are required to predict what is going to 
happen in the event of an extreme weather condition based on 
their assessment of the current state of the infrastructure. More 
specifically, novice engineers find it challenging to develop an 
accurate mental model of the future state of the infrastructure 
as they seldom receive feedback on the performance of the 
infrastructure in the future (Agnisarman et al., 2018).   

Automated technologies have been in use to improve the 
performance of infrastructure inspectors (Agnisarman, Lopes, 
Chalil Madathil, Piratla, & Gramopadhye, 2019). Artificial 
intelligence based technologies can be used to augment 
engineers’ decision making (Fenves, 1984). However, the 
engineers’ skill to make sense of the information is vital. 
Intelligent decision systems need to be developed to support 
the needs of the users of such systems (Agnisarman et al., 
2019). Operator performance in such systems is mediated by 
vigilance decrements, complacency and loss of situation 
awareness (Endsley, 1999; Endsley & Kiris, 1995).  
 Situation Awareness (SA) is defined as a three level 
construct with Level 1 SA involving perceiving elements in 
the environment, Level 2 SA involving comprehending these 
elements and Level 3 SA involving projecting the state of the 
environment into the future (Endsley, 1995). Any of these 
levels of SA can be affected by automated systems that keep 
humans out-of-the-loop. Going out-of-the loop is a known 
consequence of automation as explained in the earlier studies 
on human-automation interaction (Endsley & Kiris, 1995). 
Though the three level SA theory proposed by Endsley (1995) 
has been used extensively in other domains such as aviation, 
aircraft maintenance and medicine, few studies have been 
conducted in the domain of civil infrastructure inspection 
investigating the SA requirements.  
 This study proposes the use of context-based visual 
decision aids to support the SA requirements of engineers 
performing windstorm risk inspection. Specifically, we 
augmented context-based information to the risk engineers to 
support their SA while conducting windstorm risk inspection. 
The visualization aids were designed based on the principles 
proposed by Endsley (2016) to design for SA. In depth 
interviews were carried out to understand the SA requirements 
of windstorm risk engineers (Agnisarman, Khasawneh, 
Ponathil, Lopes, & Madathil, 2018). The insights gained from 
this interview guided our effort to develop context-based 
visual decision aids. The overall objective of this study is to 
understand the type of context-based visual aids that can be 
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used to support the SA of windstorm risk engineers. Further, 
we also investigated the effect of these visual decision aids on 
the performance of risk engineers. While measuring 
performance of windstorm risk engineers, two aspects need to 
be considered: 1) their mental model about the future state of 
the infrastructure in the event of an extreme weather condition 
and 2) their ability to perceive and make sense of the elements 
in the environment to write an accurate report. This research 
explores the following research questions: 
RQ1: What is the effect of various context-based decision aids 
on the SA of risk engineers? 
RQ2: What is the effect of various context-based decision aids 
on the performance of risk engineers? 
 

METHOD 
 
Hypotheses 
 
The following hypotheses were tested: 
H1: SA increases when the type of visualization changes from 
no visual aid to a predictive display based visual aid. 
H2: Performance increases when the type of visualization 
changes from no visual aid to a predictive display based visual 
aid. 
 
Study Sample 
 

This study was approved by Clemson University’s 
Institution-al Review Board (IRB). We recruited 30 civil 
engineering/construction science and management junior, 
senior or graduate level students, ranging from 21 to 41 years 
old (M = 24.33, SD = 4.05)) for this study. More demographic 
information can be found in Table 1. This study sample was 
chosen to simulate the technical skills of actual windstorm risk 
engineers.  

 
Table 1 
Demographic characteristics of the participants 
Variable (N = 30) N % 
Gender   
Female 7 23.33 
Male 23 76.67 
Race   
White 16 53.33 
Asian 11 36.67 
Black/African 
American 

2 6.67 

Other 1 3.33 
Major   
Civil Engineering 27 90 
Construction 
Science 

3 10 

Degree Pursuing   
Undergraduate 13 43.33 
Graduate 9 30 
Doctorate 8 26.67 
 
 
 

Apparatus 
 

A Dell desktop computer was used to run windstorm risk 
inspection simulation. Participants completed the study in this 
simulated environment. Study questionnaires was 
administered using a Dell laptop computer through Qualtrics 
research suite (Qualtrics,  Provo, UT).  
 
Scenarios 
 
 This study used a simulation of an academic building 
located in a high wind exposure area developed using Unity 
game engine. The artefacts used in the simulation are designed 
based on the findings from a qualitative research carried out to 
investigate the sensemaking process of windstorm risk 
engineers (Agnisarman, Khasawneh, Ponathil, Lopes, & 
Madathil, 2018). The following roof components as suggested 
by Unanwa (1997) were used to develop scenarios in the 
simulation: 1) Roof covering, 2) Roof sheathing and roof 
frame, 3) Rooftop equipment, 4) Building envelope, 5) 
Structural system. 
Experimental Design 
 
Independent variable. This study used a one-way between-
subjects design. The primary variable of interest was the type 
of context-based visual aid presented. This is a between-
subjects variable with 3 levels:  

1. No visualization/control condition. No context-based 
visual decision aids were presented to the participants 
in this condition. Participants walked around and 
assess the wind vulnerabilities.   

2. Checklist based. This text-based visualization helped 
users perceive and gather information in the 
environment. An example of this type of visual aid is 
shown in Figure 1. This checklist prompts 
participants to notice and perceive cues in the 
environment.  
 

 
Figure 1. Example of checklist based decision aid 

 
3. Predictive visualization. This type of visualization 

includes the elements of checklist based 
visualization. In addition, this type of visualization 
contains an interactive display of the behavior of 
some of the critical components of the building in the 
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event of a hurricane causing severe damage (damage 
state 4 as defined in HAZUZ) (Hazus Hurricane 
Model User Guidance, 2018). An example of this 
type of visual aid is shown in Figure 2. This 
visualization type is expected to help the participants 
form a more accurate mental model of the future state 
of the building infrastructure.  
 

 
 

Figure 2. Example of predictive display decision aid 
 

Dependent variable. The primary outcome of interest is the 
SA of the participants. SA was measured using the Situation 
Awareness Global Assessment Technique (SAGAT). SAGAT 
is a global measure based on the 3-level theory of SA 
proposed by Endsley (1995). This method measures the SA of 
the participants through a freeze probe protocol. As no 
SAGAT queries exist for infrastructure inspection domain, the 
questionnaire battery was developed based on the results of a 
previous qualitative research (Agnisarman, Khasawneh, 
Ponathil, Lopes, & Madathil, 2018).  
 The second outcome of interest is the performance of the 
participants. Though higher SA doesn’t guarantee improved 
performance, there is a probabilistic relationship between SA 
and performance (Endsley & Garland, 2000). Participants’ 
performance was measured using a questionnaire that is 
administered at the end of each task. This questionnaire was 
developed based on the scenarios used and was validated by a 
subject matter expert.  
 
Procedure 
 

This study started with the participants completing a 
demographic questionnaire. Then the participants were 
exposed to a training session during which the participants 
were given an overview of windstorm risk inspection process. 
The training was administered using a pre-recorded video 
explaining the windstorm risk inspection process. The 
participants were then asked to complete a training scenario to 
get used to the simulation and control commands. They were 
given instructions about the freeze probe SAGAT tool. Then 
the participants were randomly assigned to one of the study 
conditions. The participants completed all the assigned tasks 
in the virtual environment. After each task, the simulation 
froze to administer SAGAT query. However, they were not 
told in advance the exact time at which we administer the 
SAGAT questionnaire. The participants then completed a 
performance questionnaire. Participants were then debriefed to 

understand their metal model about the current state and future 
state of the infrastructure.  
 
Analysis 
 
 Data was analyzed using the statistical packages 
available in R programming language. Outliers were identified 
and eliminated using Standardized Deviance residuals. 
Participants’ response to SAGAT query and performance 
questionnaire was analyzed using one-way ANOVA.  
 

RESULTS 
 

Situation Awareness (SAGAT) 
The response to the SAGAT questionnaire was coded as 0 
(incorrect) and 1 (correct). SAGAT questionnaires were 
administered at 5 different time points. The cumulative 
SAGAT score was calculated and the percentage of correctly 
answered questions was calculated. The normality of the data 
set was tested using the Shapiro-Wilk test. Performance score 
was normally distributed for the checklist groups, as assessed 
by Shapiro-Wilk's test (p > .05).  The Shapiro-Wilk test was 
significant for the control condition and predictive display 
condition. However, the data were normally distributed as the 
skewness and kurtosis values were with +/-3. There was only 
one data point with a residual value not within +/-3. This data 
point has a residual value of -3.03. So, this data point was kept 
in the analysis. There was homogeneity of variances, as 
assessed by Levene's test of homogeneity of variances (p = 
0.512). A between-subjects one-way ANOVA was carried out 
to determine if the SAGAT score percentage was different for 
different experimental conditions. Performance score was 
statistically significantly different between different 
experimental conditions, as illustrated in Figure 3, F(2, 27) = 
17.25, p <0.001, ω2 = 0.520. Benjamini-Hochberg post hoc 
analysis revealed that significant differences in SAGAT score 
percentage were observed between predictive display 
condition (M = 80.00, SD = 14.63) and control condition (M = 
47.83, SD = 9.61), p <0.001, and checklist condition (M = 
71.30, SD = 13.24) and control condition, p<0.001. However, 
no significant difference was observed between checklist 
condition and predictive display condition. 
Performance 

Response to the performance questionnaire was graded 
and the cumulative score was calculated for each participant. 
The maximum score a participant could score was 56. The 
normality of the data set was tested using the Shapiro-Wilk 
test. Performance score was normally distributed for the 
control, checklist and predictive display groups, as assessed by 
Shapiro-Wilk's test (p > .05). There were no outliers, as 
assessed by examination of standardized residuals for values 
greater than +/- 3; and there was homogeneity of variances, as 
assessed by Levene's test of homogeneity of variances (p = 
0.304). A between-subjects one-way ANOVA was carried out 
to determine if the performance score was different for 
different experimental conditions. Performance score was 
statistically significantly different between different 
experimental conditions as illustrated in Figure 4, F(2, 27) = 
6.961, p = 0.0037, ω2 = 0.284. Benjamini-Hochberg post hoc 
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analysis revealed that significant differences in performance 
score were observed between predictive display condition (M 
= 42.90, SD = 5.73) and checklist condition (M = 35.0, SD = 
9.13), p = 0.035, and predictive display condition and control 
condition (M = 30.85, SD = 6.73), p = 0.003.  
 

 
Figure 3. Effect of experimental condition on SAGAT score 

 

 
 

Figure 4. Effect of experimental condition on performance 
 

DISCUSSION 
 

This study investigated the effect of various context-
based visual decision aids on the SA of windstorm risk 
engineers. The study used a between-subjects study design 
with one independent variable (type of context-based decision 
aids). The outcome variables of interest were the SAGAT 
score and performance score. 
 Participants who received the checklist and the predictive 
display condition had higher SAGAT score than the 
participants who completed the task in control condition. 
Though the SAGAT score was not significantly higher for 
predictive display condition, compared to checklist condition, 

the SAGAT score was consistently higher for predictive 
display condition, indicating that the elements of the 
predictive display condition supported the SA requirement of 
the participants.  
 The checklist condition helped participants to be vigilant 
and investigate various aspects of the building thoroughly. The 
checklist condition directly played an important role in 
acquiring Level 1 and Level 2 SA. The participants were cued 
to investigate and perceive various issues and problems in the 
building. In addition, the items in the checklist also helped the 
participants understand the interaction among various 
components in the infrastructure system. For example, the 
building simulation had faulty perimeter flashing system. 
Participants in the control condition failed to notice it. 
However, participants in the checklist and predictive display 
condition noticed this issue as they were asked to look for 
faulty flashing. In addition, participants in the predictive 
display condition were better equipped to predict the 
consequences of having a faulty perimeter flashing system. 
They were able to accurately predict various issues associated 
with fault perimeter flashing system such as water entry and 
roof tear. The predictive display condition showed a 
hypothetical scenario of a category 4 hurricane causing 
damages to the building. Participants exposed to this condition 
were able to develop better Level 3 SA as they were shown 
what could happen if there is a category 4 hurricane.  
 Further, the participants in the checklist condition and 
predictive display condition had a higher likelihood of 
perceiving cues in the environment, which directly influenced 
their Level 1 SA. For example, participants in the checklist 
condition and predictive display condition were explicitly 
asked to look for missiles. They were also asked to look for 
any other potential missile impacts such as objects from the 
rooftop of other buildings. However, participants in the 
control condition failed to notice the other building and 
potential missile impact from the other building. Another 
study in the domain of surgical safety investigated the 
effectiveness of an intervention involving procedural checklist 
on surgical team’s SA. Though the results were not 
statistically significant, the teams exposed to the checklist 
condition reported higher SA in a subjective (Calland et al., 
2011). Since Level 1 and Level 2 SA information was 
presented directly in the checklist condition and control 
condition, the SA of the participants was higher in these 
conditions (Endsley, 2016). 
 Use of checklist to assist complex tasks has been proven 
to have a positive effect on user performance and human error 
reduction (Hales & Pronovost, 2006). In addition, there is a 
probabilistic relation between situation awareness and 
performance (Endsley & Garland, 2000). In this study we 
observed higher performance for participants in the 
experimental condition. Though, the performance was not 
statistically significantly higher for checklist condition 
compared to control condition, a statistically significant 
positive performance difference was observed between control 
condition and predictive display condition. This higher 
performance can be attributed to higher situation awareness. 
Further, the checklist items and the information presented in 
the predictive display may have helped the participants to 
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form a more accurate mental model of the current and future 
state of the infrastructure system leading to higher 
performance.  

The participants were asked about their experience 
during the retrospective think-aloud session. None of the 
participants had any relevant previous experience in the 
domain of windstorm risk inspection. Participants who 
received the checklist found it useful. Further, some 
participants in the control condition mentioned that having a 
procedural checklist would have helped them perform better. 
They also said that they forgot to do some important tasks 
such as measuring fastener spacing and parapet height. Having 
a checklist would have helped them remember these 
seemingly trivial tasks. Further, participants in the predictive 
display condition mentioned that the predictive visualization 
of the future state of infrastructure helped them visualize the 
interaction between various elements in the infrastructure 
system. Although the SA of participants in the predictive 
display condition was not statistically significantly higher than 
checklist only condition, participants really liked the 
interactive visualization. They also said that the predictive 
display may be only useful during the training period. 
However, they would like to use the checklist, if they were 
performing the windstorm inspection task in a real-world 
scenario. 

Though this study was able to identify the pros and cons 
of different context-based visual decision aids, the research is 
not without limitations. The study was not carried out with 
real windstorm risk engineers. Instead, a convenient sample of 
civil engineering students was used in this study. Additionally, 
a subjective performance measure was used to measure the 
performance of participants. A post-test survey was used to 
measure their performance. The response to this questionnaire 
may not necessarily reflect their actual performance. However, 
measuring actual performance can be challenging in this 
application. Additionally, there is a need to use other 
subjective measures such as trust in automation and 
automation complacency potential to investigate how users 
perceive these technologies (Khasawneh, Rogers, Bertrand, 
Madathil, & Gramopadhye, 2019). Further, it is important to 
measure the workload imposed by these displays on the users 
(Agnisarman, Madathil, & Stanley, 2018).   
 

CONCLUSION 
 This study examined the effect of various context-based 
visual decision aids on the SA of participants. Our findings 
highlight the importance of using a procedural checklist to 
improve the SA requirements of windstorm risk engineers. 
Further research needs to be carried out with a higher sample 
size to investigate the influence of predictive display on the 
SA of participants. In addition, future research efforts can use 
a multidimensional performance measure including a 
subjective questionnaire, time taken to complete the task as 
well as the area covered by the participants to obtain a more 
accurate measure of performance. Additionally, the insight 
gained from this study can be used to develop training 
strategies for windstorm risk engineers.  
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