CUTTING A PART FROM MANY MEASURES
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ABsTrRACT. Holmsen, Kyn¢l and Valculescu recently conjectured that if a finite set X with ¢n points
in R9 that is colored by m different colors can be partitioned into n subsets of £ points each, such that
each subset contains points of at least d different colors, then there exists such a partition of X with the
additional property that the convex hulls of the n subsets are pairwise disjoint.

We prove a continuous analogue of this conjecture, generalized so that each subset contains points
of at least ¢ different colors, where we also allow ¢ to be greater than d. Furthermore, we give lower
bounds on the fraction of the points each of the subsets contains from c¢ different colors. For example,
when n > 2, d > 2, ¢ > d with m > n(c — d) + d are integers, and p1,...,um are m positive finite
absolutely continuous measures on R?, we prove that there exists a partition of R? into n convex pieces
which equiparts the measures pi,...,u4—1, and in addition every piece of the partition has positive
measure with respect to at least ¢ of the measures p1, ..., tm.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The classical measure partition problems ask whether, for a given collection of measures of some
Euclidean space, the ambient Euclidean space can be partitioned in a prescribed way so that each of the
given measures gets cut into equal pieces.

The first example of such a result is the well known ham-sandwich theorem, conjectured by Steinhaus
and later proved by Banach. It claims that given d measures in R?, one can cut R? by an affine hyperplane
into two pieces so that each of the measures is cut into halves. Motivated by the ham-sandwich theorem,
Griinbaum posed a more general hyperplane measure partition problem in 1960 [9, Sec. 4 (v)]. He asked
whether any given measure in the Euclidean space R? can be cut by k affine hyperplanes into 2% equal
pieces. An even more general problem was proposed and considered by Hadwiger [10] and Ramos [15]:
Determine the minimal dimension d such that for every collection of j measures on R? there exists an
arrangement of k affine hyperplanes in R? that cut all measures into 2* equal pieces. For a survey on the
Griinbaum-Hadwiger—Ramos hyperplane measure partition problem consult [3].

Furthermore, in 2001 Barany and Matousek [2] considered partitions of measures on the sphere S? by
fans with the requirement that each angle of the fan contains a prescribed proportion of every measure.

In this paper, motivated by a conjecture of Holmsen, Kynél & Valculescu [12, Con. 3], we consider
many measures in a Euclidean space, and instead of searching for equiparting convex partitions we look
for convex partitions that in each piece capture a positive amount from a (large) prescribed number of
the given measures.

Definition 1.1. Let d > 1 and n > 1 be integers. An ordered collection of closed subsets (Cy,...,C})
of R? is called a partition of R? if

(1) UL, € = BY,

(2) int(C;) # 0 for every 1 <4 < n, and

(3) int(C;) Nint(Cy) =P forall 1 <i < j <n.
A partition (C1,...,C,) is called convez if all subsets C1,...,C, are convex.
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Let m>1,n>1,¢>1andd > 1 be integers, and let M = (1, ..., um) be a collection of m finite
absolutely continuous measures in R?. Moreover, assume that 1) (R?) > 0, for every 1 < j < m. For us a
measure is an absolutely continuous measure if it is absolutely continuous with respect to the standard
Lebesgue measure.

We are interested in the existence of a convex partition (C1,...,C,) of R? with the property that each
set C; contains a positive amount of at least ¢ of the measures, that is

#{i:1<j<m, p;(Ci) >0} >,
for every 1 <4 < n. In the case when the measures are given by finite point sets, we say that a point set
X C R%is in general position if no d+1 points from X lie in an affine hyperplane in R%. For the point set

measures in general position Holmsen, Kyn¢l and Valculescu proposed the following natural conjecture
[12, Con. 3].

Conjecture 1.2 (Holmsen, Kynél, Valculescu, 2017). Let d > 2, £ > 2, m > 2 and n > 1 be integers
with m > d and ¢ > d. Consider a set X C R® of ¢n points in general position that is colored with at
least m different colors. If there exists a partition of the set X into n subsets of size £ such that each
subset contains points colored by at least d colors, then there exists such a partition of X that in addition
has the property that the convex hulls of the n subsets are pairwise disjoint.

The conjecture was settled for d = 2 in the same paper by Holmsen, Kyn¢l and Valculescu [12]. On
the other hand, if instead of finite collections of points one considers finite positive absolutely continuous
measures in R%, Soberén [16] gave a positive answer on splitting d measures in R? into convex pieces such
that each piece has positive measure with respect to each of the measures. Moreover, he proved existence
of convex partitions that equipart all measures. A discretization of Sober6n’s result by Blagojevi¢, Rote,
Steinmeyer and Ziegler [5] gave a positive answer to Conjecture 1.2 in the case when m = d. In addition,
they were able to show that the set X can be partitioned into n subsets in such a way that all color
classes are equipartitioned simultaneously.

In this paper we prove several continuous results of a similar flavor, trying to come closer to a positive
answer to Conjecture 1.2 in the case when m > d. The first of the three results is the following.

Theorem 1.3. Letd>2, m > 2, n > 2, and c > d be integers. If
m > n(c—d)+d,

then for every collection M = (pi1, ..., pm) of m positive finite absolutely continuous measures on R?,
there exists a partition of R? into n convex subsets (Cy,...,Cy), which is a convex n-fan, such that each
of the subsets has positive measure with respect to at least ¢ of the measures py, ..., bm- In other words,

#{j:1<j<m, p;(C;) >0} >c¢
for every 1 <i <n.
The following two theorems have stronger statements — in Theorem 1.4 we additionally show that
one of the measures can be equipartioned without changing the bound on m, and in Theorem 1.5 we

prove that the sum of all the measures can be equipartitioned if we allow the number of measures m to
increase.

Theorem 1.4. Let d > 2, m > 2, and ¢ > d be integers, and let n = p* be a prime power. If
d
mzn(c—d)—l——n—ﬁ—i—l,
p p

then for every collection M = (p1, ..., pm) of m positive finite absolutely continuous measures on R?,
there exists a partition of R? into n convex subsets (Cy,...,C,) that equiparts the measure ji,, with the
additional property that each of the subsets has positive measure with respect to at least ¢ of the measures
U1y« m- In other words,

pm(C1) =+ = pm(Cr) = Eﬂm(Rd)v
and
#{j:1<j<m, p;(C;) >0} >c
for every 1 <i <n.
Theorem 1.5. Let d > 2, m > 2, and ¢ > d be integers, and let n = p* be a prime power. If
(a) n(c—1) >m and max{m,n} > n(c—d) + d?" — 5 +n, or
(b) n(c—1) <m,
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then for every collection M = (1, ..., pm) of m positive finite absolutely continuous measures on R?,
there exists a partition of R% into n convexr subsets (Cy,...,C,) that equiparts the sum of the measures
L= p1+ -+ pm with the additional property that each of the subsets has positive measure with respect
to at least ¢ of the measures uy, ..., thm. In other words,

pCY) == () = (R,

and
#{j:1<j<m, p;(C;) >0} >c¢
for every 1 <i <mn.

Previous solutions for measure partition problems relied on a variety of advanced methods from equi-
variant topology. Different configuration space/test map schemes (CS/TM schemes) related partition
problems with the questions of non-existence of appropriately constructed equivariant maps from config-
uration spaces into suitable test spaces. For example, in the proof of the ham-sandwich theorem a sphere
with the antipodal action appears as a test space. The test space in the Griinbaum-Hadwiger-Ramos
hyperplane measure partition problem is again a sphere, but with an action of the sign permutation
group, while the test space in the Barany and MatouSek fan partition problem is a complement of an
arrangement of linear subspaces equipped with an action of the Dihedral or generalized quaternion group.
In this paper the proof of Theorem 1.3 is elementary and it does not use any topology. However, the
proofs of Theorem 1.4 and Theorem 1.5 rely on a novel CS/TM scheme presented in Theorem 2.1 and
Theorem 2.2: For the first time the test space is the union of an arrangement of affine subspaces, equipped
in this case with an action of a symmetric group.

Furthermore, even stronger measure partition result can be obtained directly without any use of
advanced methods of equivariant topology. We prove the following result with two similar arguments
given in Section 4.3 and Section 4.5.

Theorem 1.6. Letd>2, m > 2, n > 2, and c > d be integers. If
m=n(c—d)+d,

then for every collection M = (1, ..., pm) of m positive finite absolutely continuous measures on R?,
there exists a partition of R? into n conver subsets (C1,...,Cy) that equiparts the first d — 1 measures
W1, .-y fha—1 with the additional property that each of the subsets has positive measure with respect to at
least ¢ of the measures yy, . .., fhm- In other words,

1
pr(Cr) = - = up(Cp) = ﬁﬂk(Rd)
forevery 1 <k <d-—1, and
#{7:1<j<m, pi(Ci) >0} >c
for every 1 <i <mn.

As a direct corollary of the proof of Theorem 1.6 given in Section 4.5 we get the following straightening.
Corollary 1.7. Letd>2, m > 2, n > 2, and ¢ > d be integers. If
m=n(c—d)+d,

then for every collection M = (u1, ..., im) of m positive finite absolutely continuous measures on R?
with the property that

a(RY) = gy (RY) = -+ = g (RY)
there exists a partition of R? into n convexr subsets (Cy,...,C,) that equiparts the measures
M1y ey fhd—1, Md T+ fhm, g1+ i,

and has the additional property that each of the subsets has positive measure with respect to at least ¢ of
the measures p1, . .., - In other words,

#{j:1<j<m, p;(Ci) >0} > ¢
for every 1 <i <mn.
For theorems 1.3, 1.4, 1.5 and 1.6 one can wonder: Are the lower bounds on the number of the measures

m optimal 7 We show that in the case when we require equipartition of d — 1, out of m, measures the
lower bound m = n(c — d) + d from Theorem 1.6 is optimal.
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Theorem 1.8. Let d > 1, n > 2 and ¢ > d be integers, and let m = n(c —d) + d — 1. There exists a
collection of m positive finite absolutely continuous measures in R? such that for every cpartition of R?
into n convex subsets (C1,...,Cy) that equiparte the first d — 1 measures there is at least one part of the
partition that has positive measure with respect to at most ¢ — 1 of the measures 1, ..., thm-

The technique used in the proof of Theorem 1.6 can be further utilized to determine the fraction of
the measures obtained by a partition. We prove the following extension of Theorem 1.6.
Theorem 1.9. Letd>2, m > 2, n > 2, and ¢ > d be integers. If
m=n(c—d)+d,

then for every collection M = (p1, ..., pm) of m positive finite absolutely continuous measures on R?,
there exists a partition of R? into n convex subsets (C1,...,Cy) such that each of the subsets Cy,...,Cp
has at least an
1 d
g = > —
n((n —1)([51-1) + 1) cn
fraction of at least ¢ of the measures puy,. .., fm. In other words,

#{j:1<j<m, pi(Ci) > ep; (RN} > ¢
for every 1 <i <mn.

Furthermore, we prove that in some situations a fraction of measure each convex piece of a partition
contains can be prescribed in advance. First, observe that if all the measures are equal we cannot hope

to get more than a fraction of % in many measures for each convex piece, (the smallest part prohibits
this). Nevertheless, we prove that we can get as close as a = % as we want, provided we pay the price of

using more measures.

Theorem 1.10. Letd > 2, m > 2, n > 2, and ¢ > 2d be integers, and let 0 < o < % be a real number.

If
mZ(c—d)(}_a)—f—d—l,

then for every collection M = (1, ..., pm) of m positive finite absolutely continuous measures on R?,
there exists a partition of R¢ into n conver subsets (C1,...,C,) such that each of the subsets C1,...,Cy
has at least a fraction in at least ¢ of the measures py,. .., . In other words,

#{5 11 <5 <my pi(Ci) > ap (R} > e
for every 1 < i < n. Moreover, if }__‘Z is an integer, then it suffices to have

n

mz(c—d)(}_a)7

S —a
n
mMeasures.

l1—«

The reader may notice that, since > n if a > 0, if we make o — 0 we recover the same number

of measures as Theorem 1.3 and Theorem 1.6 for ¢ > 2d. In Theorem 1.3 we have a stronger control
on the kind of partitions obtained and in Theorem 1.6 we can also guarantee the equipartition of d — 1
measures.

The rest of the paper is organized as follows. The proofs of Theorem 1.4 and Theorem 1.5 run in
parallel and follow CS/TM schemes that are given in Section 2. The topological results about non-
existence of equivariant maps are proved in Section 3. Finally, the proofs of theorems 1.3, 1.4, 1.5, 1.6,
1.8, 1.9 and 1.10 are given in Section 4. Note that the proofs of theorems 1.3, 1.6, 1.8, 1.9, and 1.10 can
be read independently of the previous sections.

Acknowledgement. We are grateful to Jonathan Kliem, Johanna K. Steinmeyer and Roman Karasev
for many useful observations and suggestions.

2. EXISTENCE OF A PARTITION FROM NON-EXISTENCE OF A MAP

In this section we develop CS/TM schemes that relate the existence of convex partitions from theorems
1.4 and 1.5 with the non-existence of particular equivariant maps. These two CS/TM schemes are very
similar to each other.



CUTTING A PART FROM MANY MEASURES 5

2.1. Existence of an equipartition of one measure from non-existence of a map. Let d > 2,
m > 2, n > 1, and ¢ > 2 be integers, and let M = (u1,..., ) be a collection of finite absolutely
continuous measures on R?. Throughout the paper we assume that m > ¢, since it is a requirement that
naturally comes from the mass partition problem. Following notation from [6], let EMP(p,,, n) denote
the space of all convex partitions of R? into n convex pieces (C1,...,C,) that equipart the measure y,y,,
as studied in [14], that is

i (C1) = -+ = um(Cp) = %MmaRd)-
Now define a continuous map faq: EMP (g, n) — RM=1xn = (RmM=1)n aq
m(Cr)  pa(C2) ... (C)
Corr o C) s uz(-(h) M2(.C2) M2(.Cn)
,umfl(cl) ,umfl(c2) o ,umfl(cn)

The symmetric group &,, acts on EMP (g, n) and (R™~1)" as follows
’/T~(Cl,...,Cn):(Cw(l),...,cw(n)) and 7T~(Y1,...,Yn):(Yﬂ(l),...,yw(n)),

where (Cy,...,Cpn) € EMP(um,n), (Y1,...,Yn) € R™ 1" and 7 € &,,. These actions are introduced
in such a way that the map faq becomes an &,-equivariant map. The image of the map fu is a subset
of the affine set V' C R(m=1)xn = (R™~1)" given by

V= {(yjk) e Rm—bxn . Zyjk = p1;(R?) for every 1 < j <m — 1} > Rim=Dx(n=1),
k=1

Consequently, we can assume that fas: EMP(py,,n) — V C R(m—1)xn,

Let 1 < i < n,and let I C [m — 1] be a subset of cardinality |[I| = m — ¢+ 1, where [m — 1] denotes
the set of integers {1,2,...,m — 1}. Consider the subspace L;  of V given by

Lig:={(yjx) €V : ypi = 0 for every r € I'},
and the associated arrangement
A=A(m,n,c):={L;;:1<i<n, IC[m-1], |I|=m—c+1}. (1)

The arrangement A is an &,-invariant affine arrangement in R(™~D*" meaning that r - L;1 € A for

every m € &,,. Now we explain the key property of the arrangement A. Let (Cy,...,C,) be a convex
partition of R? tat equiparts u,, with a property that at least one of the subsets C1, ..., C, has positive
measure with respect to at most ¢ — 1 of the measures pi, ..., f;m, which means that (Ci,...,C,) is
not a partition we are searching for. Since, by construction p.,(C;) > 0 for every 1 < i < n, it follows
that at least one of the subsets C1,...,C), has positive measure with respect to at most ¢ — 2 of the
measures fi1,...,Mm—1. Then there is a column of the matrix fa((C1,...,Cp) € V C RM=Dxn with
at most ¢ — 2 positive coordinates. In other words, there is a column of the matrix fa((C1,...,Cp)
with at least m — ¢ + 1 zeros, and consequently the matrix fa(Cy,...,Cy) is an element of the union
UA:=Up, eaLir of the arrangement A.

Let us now assume that for integers d > 2, m > 2, n > 1, and ¢ > 1, there exists a collection
M = (u1,...,ln) of absolutely continuous positive finite measures in R? such that in every convex
partition (C1,...,C,) of R? that equiparts i, there is at least one subset C} that does not have positive
measure with respect to at least ¢ measures, or equivalently it has measure zero with respect to at least

m — ¢+ 1 of the measures py, ..., ty,. Consequently, fa(C1,...,Cp) € |JA for every convex partition
(C1,...,Cy) of RY that equiparts the measure p,,. In particular, this means that the &,-equivariant
map faq factors as follows
EMP (ftyn, ) Jx v
» /
UJA(m,n,c),

where i: |JA — V is the inclusion and f},: EMP(u,,,n) — |J A is the &,,-equivariant map obtained
from faq by restricting the codomain. Thus, we have proved the following theorem.
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Theorem 2.1. Letd > 2, m > 2, n > 1, and ¢ > 2 be integers, and let M = (p1,...,um) be be a
collection of absolutely continuous positive finite measures on R%. If there is no &, -equivariant map

EMP(:U’WU n) — U A(m7 n, C)a

then there exists a convex partition (C1,...,Cy) of R? that equiparts the measure i, with the addi-
tional property that each of the subsets C; has positive measure with respect to at least ¢ of the measures

W1y« m, that is
1
Um(cl) == .um(cn) = E“m(Rd)v

and
#{j:1<j<m, p1;(Ci) >0 >c
for every 1 <i <n.
2.2. Existence of an equipartition of the sum of measures from non-existence of a map. As

we have already mentioned, the CS/TM scheme needed for proving Theorem 1.5 is very similar to the
one presented in Section 2.1. Nevertheless, it will be developed separately here.

Let d > 2, m >2,n>1, and ¢ > 2 be integers, and let M = (u1, ..., tm) be a collection of absolutely

continuous positive finite measures on R?. Denote by u the sum of the measures ji1, ..., tm, that is
M= Z;U:I Hj- _
Similarly as in Section 2.1, we define a continuous map faq: EMP(u,n) — R™*™ as
m(Cr)  pa(C2) o pa(Cr)
p2(Cr)  p2(C2) oo p2(Cr)
(C’l,...,Cn)»—) . : . . s
/f"m(cl) HW(CQ) s Nm(cn)

where the domain of the map fM is the space of all convex partitions of R¢ that equipart the measure
. The map faq is S,-equivariant by construction. Furthermore, the image of the map faq is a subset
of the affine set V' C R™*"™ given by

V= {(yjk) eR™™ o Sy =p(RY)  for every 1 < j <m,
ZT:l Yik = 2p(R?Y)  for every 1 <k < n}

Now we define an affine arrangement that resembles the arrangement A from Section 2.1. Let 1 <i <n,
and let I C [m] be a subset of cardinality |I| = m — ¢ + 1. Consider the subspace L; ; of V' given by

Z“ = {(yjk) cev: Yri = 0 for every r € I},

and the associated G,,-invariant arrangement
A= Aim,n,c) = {Z“ 1<i<n, IC[m], |I|=m—c+ 1}. 2)

Following the steps from Section 2.1, we study the key property of the arrangement A. Let (C1,...,Ch)
be a convex partition of R? that does not satisfy the property asked in Theorem 1.5. More precisely,
assume that for some i the subset C; has positive measure with respect to at most ¢ — 1 of the measures
[1y -« fm. This means that the i-th column of the matrix fM (C1,...,Cp) € R™*™ has at least m—c+1
zeros. In other words, fM(Cl, L0 el A. Therefore, we have obtained the following theorem.

Theorem 2.2. Letd > 2, m >2,n>1, and ¢ > 2 be integers, and let M = (1, ..., pm) be a collection
of absolutely continuous positive finite measures on R%. If there is no &, -equivariant map

EMP(u,n) — U A(m,n,c),

then there exists a convex partition (Cy,...,C,) of RY that egiparts the measure pn = p11 + -+ + [l with
the additional property that each of the subsets C; has positive measure with respect to at least ¢ of the
MEASUTES [L1, - - - , b, that is

p(O) =+ = p(Cr) = —p(RY)
and

#{j:1<j<m, p(C;) >0} >c
for every 1 <i <n.
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3. NON-EXISTENCE OF THE EQUIVARIANT MAPS

This section is devoted to the proof of (non)-existence of equivariant maps from the space of regular
convex partitions to appropriate affine arrangements. In Section 3.1 we consider the existence of an &,,-
equivariant maps EMP (g, n) — |JA(m, n, c), whereas in Section 3.2 we focus on the existence &,,-
equivariant maps EMP(u,n) — J ,z(m7 n, ¢) will be considered for different values of integer parameters
d, m, n and c.

3.1. Non-existence of an &,,-equivariant map EMP (p,,,n) — |J.A(m,n,c). In order to prove the
(non-)existence of an &,-equivariant map

EMP (ptm,n) — U A(m,n,c),

we first construct various equivariant maps and prove a few auxiliary lemmas. In the following we use
particular tools from the theory of homotopy colimits; for further details on these methods consult for
example [7], [19], or [17].

Let X be a topological space and let n > 1 be an integer. The ordered configuration space Conf(X,n)
of n ordered pairwise distinct points of X is the space

Conf(X,n) = {(z1,...,2n) € X" | x; #z; forall 1 <i<j<n}.

It was shown in [6, Sec. 2] that a subspace of EMP(p,,,n) consisting only of regular convex partitions
can be parametrized by the configuration space Conf(R%, n). In particular, we have the following lemma.

Lemma 3.1. There exists an &,,-equivariant map

a: Conf(R%, 1) — EMP(fiy,, n).

Let P := P(A) denote the intersection poset of the arrangement .4 = A(m,n, ¢), ordered by the reverse
inclusion. The elements of the poset P are non-empty intersections of subspaces in A, thus they are of
the form

pai= () Lir={(ys) € VCRM D" : y;; =0, forall 1 <i<nandje L},
G,1)EA

where A C [n] x (JZ;&) and I; := U(i, neal- Observe that sets I; can be empty. Alternatively, each

poset element pa can be presented as an (m — 1) x n matrix (a;x), where a;; = 0 if and only if j € I;. In
other words, a coordinate a;j in the matrix presentation of pa equals zero if and only if y;, = 0 for every
element (y;i) € pa. An example of the poset P(A) for parameters n = 2,m = 4 and ¢ = 3 is shown in
Figure 2.

Lia,q2p). 2010} Ly, iy, 2420}
Ly 1,2y Ly q1,21)y

Ly Lia.23)) L2,y Lg2,021)y

FIGURE 1. Hasse diagram of the poset P(A(4,2,3)).

Let C be the P-diagram that corresponds to the arrangement A = A(m,n,c), that is C(pa) := pa and
C(par 2 par): par —> pas is the inclusion, see [19, Sec.2.1]. The Equivariant Projection Lemma [17,
Lem. 2.1] implies the following.

Lemma 3.2. The projection map
hocolimp( 4y C — colimp(4)C = U A
1s an S, -equivariant homotopy equivalence. In particular, there exists an S, -equivariant map

B: UA — hocolimp(4) C.
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Now, let @ be the face poset of the (n — 1)-dimensional simplex where the order is given by the
inclusion. Define the monotone map ¢: P — @ by
o(pa)={ien]:(i1I) €A for some I C[m—1]}.

Thus, ¢ maps an element p to the set of indices of its columns that contain zeros. It is important to
notice that ¢ does not have to be surjective, and therefore we set Q' := ¢(P) C Q.

Next we consider the homotopy pushdown D of the diagram C along the map ¢ over Q’, see [19,
Sec. 3.2]. This means that for g € Q’

D(q) := hocolimg,_l(Q/Zq) C|¢_1(Q/2q) o~ A(gofl(Q'Zq)),

and for every ¢ > r in @' the map D(q > r): D(q) — D(r) is the corresponding inclusion. The next
result follows from the Homotopy Pushdown Lemma [19, Prop. 3.12] adapted to the equivariant setting.

Lemma 3.3. There is an &, -equivariant homotopy equivalence
hocolimg: D — hocolimp4) C.
In particular, there exists an &, -equivariant map

7v: hocolimp 4y C — hocolimg: D.

We introduce another Q'-diagram £ by setting for ¢ € Q' that

£(g) = D(1) ~ A(p~'({1})), ifg=1¢€ Q" is the maximum of Q,
V= pt, otherwise,

and for every ¢ > r in Q' the map £(q > r) to be the constant map. In addition, we define a morphism
of diagrams (U,v): D — &, where ¢: Q' — @’ is the identity map, and ¥(q): D(q) — &(q) is
the identity map when ¢ is the maximal element, and constant map otherwise. The morphism (¥, )
of diagrams induces an &,-equivariant map between associated homotopy colimits, consult [19, Sec. 3].
Thus, we have established the following.

Lemma 3.4. There exists an S, -equivariant map

0: hocolimg D — hocolimg £.

In the final lemma we describe the hocolimg: £ up to an &,-equivariant homotopy. First note that if
q,7 € Q are such that ¢ > r and ¢ € @', then r € Q'. In particular, if 1 € Q’, then Q' = Q, where 1 is
the maximum of Q.

Lemma 3.5.
(i) If 1 € Q', that is Q' = Q, then there exists an &, -equivariant homotopy equivalence

hocolimg: € ~ A(Q\{1}) * A(¢71({1}))

where 1 is the mazimum of Q, and dim (A(gp’l({i}))) =nc—m—2n+1. In particular, there
ezists an S, -equivariant map

n: hocolimg & — A(Q'\{1}) * A(p*({1})).
(ii) If1 ¢ Q' then there exists an &, -equivariant homotopy equivalence
hocolimg € ~ A(Q'),
where Aim(A(Q")) < n — 2. In particular, there exists an &, -equivariant map
n: hocolimg & — A(Q').

Proof. (i) Let us first consider the case when 1 € @Q’. Then, since all the maps of the diagram & are
constant maps, the Wedge Lemma [19, Lem. 4.9] yields a homotopy equivalence

hocolimg € =~ \/ (A(QL,) *E(9) VAQ) = AQ\{1}) * Ap~'({1})).
q€Q’

Here we use that A(Q’) ~ pt because Q' has the maximum. Furthermore, since for ¢ # 1 all the spaces
£(q) are points, this homotopy equivalence is an &,,-equivariant homotopy equivalence.
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The poset ¢~ ({1}) consists of all points py € P that correspond to matrices which have zeros in all
columns. Since it is a subposet of P(A), every element of ¢~1({1}) must contain at least m — c+ 1 zeros
in each column and at most n — 1 zeros in each row. The partial order is given by

pr <pa <= (Vj € [m—1]) (Vk € [n]) ajk :Oéa;vk:(),

where py = (a;x) and par = (a};). Maximal chains in the poset ©~1(1) can be obtained by removing zeros
from a maximal element py one by one, taking care that there must be at least m — ¢+ 1 zeros in each
column. Maximal elements of ¢~!(1) have exactly one non-zero element in each row, thus (m —1)(n—1)
zeros. Since 1 € Q' the minimal elements of the poset (1) have m — ¢ + 1 zeros in each column, thus
n(m — ¢+ 1) zeros. Therefore, the length of a maximal chain in ¢~'(1), and consequently the dimension
of its order complex A(¢~*(1)), is nc — m — 2n + 1. In particular, we obtained that when 1 € Q' then
nc—m —2n+ 1> 0, or equivalently n(c —2) +1 > m.

(ii) Let 1 ¢ @Q’. Then using the inclusion-exclusion principle it is not hard to see that n(c—2)+1 < m.
Again, the Wedge Lemma [19, Lem. 4.9] yields a homotopy equivalence

hocolimg € ~ \/ (A(QL,) xE(q)) VA(Q) ~ A(Q'),
qeQ’

since now all the spaces £(q) are points for ¢ € Q'.

From the assumption 1 ¢ Q' we get that Q' C Q\{1} and consequently A(Q') € A(Q\{1}). On
the other hand A(Q\{1}) is homeomorphic with the boundary of an (n — 1)-dimensional simplex and so
dim(A(Q")) <n-—2. O

In the example for parameters n = 2,m = 4,¢ = 3, the poset ¢ '({1}) consists of two points
Liiq2y).2,411) and L{(1,{1}),(2,{2})} with no relations between them, as shown in red in Figure
2.

Now we have assembled all the ingredients for the proof of the central result about the non-existence
of an &,-equivariant map EMP(u,,,n) — | A.

Theorem 3.6. Let d > 2, m > 2, and ¢ > 2 be integers, and let n = p* be a prime power. If
d
mZn(cfd)Jr—nfﬁJrl7
p p

then there is mo continuous &, -equivariant map

EMP(M"“ TL) — U -A(ma n, C)a (3)
where iy, is a finite absolutely continuous measure on R, and the affine arrangement A(m,n,c) is as
defined in (1).

Proof. Let n = p* be a prime power. Denote by G = (Z/p)* a subgroup of the symmetric group &,
given by the regular embedding (reg): G — &,,, for more details see for example [1, Ex. II1.2.7].

In order to prove the non-existence of an &,-equivariant map (3), we proceed by contradiction. Let
f+ EMP(um,n) — |JA(m, n, c) be a continuous &,,-equivariant map. Then from Lemmas 3.1, 3.2, 3.3,
3.4 and 3.5 we get the following composition of &,-equivariant maps

EMP (pm, ) ! UAa o hocolimp( 4y C SN hocolimg: D 0, hocolimg €

| d

:=nodoyoBofo
Conf(R, n) = — - — - — — = — — FTEERE X

where
.o AN A1), ifleq)
- la@). if1¢ Q"
Thus, the existence of an &,,-equivariant map f: EMP(u,,,n) — |J.A implies the existence of an &,,-
equivariant map g: Conf(R%,n) — C. We will reach contradiction with the assumption that the map
f exists by proving that the map g cannot exist. More precisely, we will show that there cannot exist a
G-equivariant map
Conf(R%, n) — X. (4)
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Our argument starts with a continuous &,, and also G-equivariant map g: Conf(R%,n) — X. The
map ¢ induces a morphism between Borel construction fibrations:

id Xgg

EG x ¢ Conf(R%, n) EG xg X

| |

BG i BG,

* %

which in turn induces a morphism between corresponding Serre spectral sequences Ey*(g): Ex"(p) —
E?*()). The crucial property of the morphism E}™*(g) we use is that E5°(g) = id. A contradiction with
the assumption that there is a map ¢ is going to be obtained from an analysis of the morphism E;"*(g).
For that we first describe the spectral sequences Ex*(\) and E(p).

The Serre spectral sequence of the fibration
Conf(R? n) —— EG x g Conf(R%,n) —— BG
has the Fs-term given by
EY(\) = HY(BG; H?(Conf(R%,n); F,)) = H(G; H’ (Conf(R?,n); F,)).

Here H(BG;H?(Y;F,)) denotes the cohomology of BG with local coefficients in H7(Y;F,) determined
by the action of the fundamental group of the base space 7 (BG) = G. The second description uses
the fact that cohomology of the classifying space BG of the group G is by definition the cohomology of
the group G with coefficients in the G-module H7(Conf(R?, n);F,). For more details on the cohomology
with local coefficients consult for example [11, Sec. 3.H]. The spectral sequence Fi*(\) was completely
determined in the case k = 1, i.e., n = p a prime, by Cohen [8, Thm. 8.2] and recently in [4, Thm. 6.1].
A partial description of E;*()) in the case k > 2 was given in [4, Thm. 6.3 and Thm. 7.1]. In particular,
for k=1

Ey(N) = EyT(A) = - = BT () and EGT L 0(0) = = B, (5)
while for £ > 2

K

Ey"(A\) = E3"(\) = ... = B A). 6
) = B PETRECY (6)

(d—1)(n—1)

@-m-2|_|

(d—1)-2 :I

0 H (G Fy) | H(G,F,)

v
\j

0 d-1)(n—1) (d—1)(n—1)

FIGURE 2. An illustration of E3*(\) and E3"(p) in the case when n = p is a prime.

In the second step we consider the Serre spectral sequence of the fibration
X— FEG xg X —— BG
whose Fs-term is given by
Ey(p) = H'(BG; ! (X; Fy)) = H'(G; HY (X;Fy)).

We conclude the proof by considering two separate cases.
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(a) Let 1 € Q', or equivalently nc —m — 2n + 1 > 0. Then the simplicial complex X = A(Q\{1}) *
A(p~1({1})) is at most (nc —m — n)-dimensional, implying that E57(p) = 0 for all j > nc —m —n + 1.
Consequently all differentials r,. for r > nc — m — n 4+ 2 vanish and so

Bl nia(p) = Bl ia(p) = - = E¥(p). (7)
Next, since the path-connected simplical complex X does not have fixed points with respect to the action

of the elementary abelian group G, a consequence of the localization theorem [13, Cor. 1, p.45] implies
that H*(G;F,) = E3°(p) 2 E=°(p). Having in mind (7) we conclude that

H(GiF,) = Ey°(p) 2 B! (p)-

nc—m—n+2

For our proof, without loss of generality, we can assume that

HY(GiF,) = B%(p) = B n(p) % EL o iap). (8)

ne—m—n+1 ne—m—n+2
Now, from the assumption on m, we deduce that for k = 1
d-=1)(n—1)+1>nc—m-—-n+2,
and for &k > 2
(d—l)(n—g) +1>nc—m-n+2.

Hence the fact that E5°(g) = id, in combination with relations (5), (6) and (8), yields a contradiction:

the homomorphism E° +2(9) sends the zero to a non-zero element. This concludes the proof of the

theorem in the case when nc —2n+1 > m.
(b) Let 1 ¢ @', or equivalently nc —m — 2n + 1 < 0. The simplicial complex X = A(Q’) is at most
(n — 2)-dimensional. Hence, E57(p) =0 for all j > n — 1, and
E(p) = Epli(p) = - = EY(p) (9)
The simplical complex X is path-connected and without fixed points with respect to the action of the
elementary abelian group G. Consequence of the localization theorem [13, Cor.1, p.45] implies that
H*(G;F,) = E3°(p) % EX°(p). From (9) we have that
H*(G;F,) = Ey°(p) 2 E(p).
For our proof, without loss of generality, we can assume that
H*(G:F,) = Ey°(p) = E°(p) # E(p). (10)
Now, we need that for k =1
(@-1)n—1)+1>n,
and for k > 2
(d-1)(n-2)+1>n
p

is satisfied. Indeed, these conditions are satisfied for d > 2,p > 2 and n = p*. Thus, the fact that
E3°(g) = id with (5), (6) and (10) gives a contradiction: the homomorphism E*°(g) sends the zero to a
non-zero element. This concludes the proof of the theorem in the case when nc —2n +1 < m. ]

The previous proof can also be phrased in the language of the iterated index theory introduced by
Volovikov in [18].

3.2. Non-existence of an G,,-equivariant map EMP(u,n) — U.Z(m, n,c). Motivated by Theorem
2.2, in this section we prove the (non-)existence of a continuous &,-equivariant map

EMP(u,n) — U A(m,n,c)

for different values of parameters d, m,n and c. Following the structure of Section 3.1, we first prove a
few auxilary lemmas in order to arrive to the topological result, Theorem 2.2, at the end of this section.

Recalling that a subspace of EMP(u, n) consisting only of regular convex partitions can be identified
with the configuration space Conf(R%,n), see [6, Sec. 2| for more details, we obtain the following lemma.

Lemma 3.7. There exists an &,,-equivariant map

a: Conf(R% n) — EMP(u,n).
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Denote by P= P(/T) the intersection poset of the affine arrangement A. Its elements are given by
DA = ﬂ EM = {(yjk) cv CR™™:y;; =0, foralll1<i<nandje IZ-},
(i,I)eEA
where A C [n] x (mL”Z]Jrl) and I; :=J(; e I- An element pa can also be seen as an m x n matrix (ajx),

where a;;, = 0 if and only if j € I;.

Next we consider a f’—diagram C determined by the arrangement A= .,Z(m,mc). More precisely,

we define C(pa) := pa and C(par 2 par): Pav — par to be the inclusion. The Equivariant Projection
Lemma [17, Lem. 2.1] implies the following.

Lemma 3.8. The projection map
hocolim 3 C— colim C= U.Z
is an &, -equivariant homotopy equivalence. In particular, there exists an S, -equivariant map
B: U.Z — hocolim C.
Recall that @ denotes the face poset of an (n — 1)-dimensional simplex, and define a map @ : P Q

by
o(pa) == {z €[n]: (4,I) € A for some I C [m]}

Additionally, denote the poset ¢(P) C @ by @'. Note that if ¢,7 € @Q are such that ¢ € Q" and r < ¢,
then r is also an element of Q. In particular, if ¢ = 1 is the maximal element of Q and ¢ € @', then
Q' =Q.
Let D be the homotopy pushdown of the diagram C along the map @ over ). This means that
D(q) := hocolimz-1 (g ) C|571(szq) ~ AEHQL,))

for ¢ € @', and the map D(q > r): D(q) — D(r) is the corresponding inclusion for every ¢ > r in Q.
Once more, the Homotopy Pushdown Lemma [19, Prop. 3.12] adapted to equivariant setting yields the
following fact.

Lemma 3.9. There is an &, -equivariant homotopy equivalence
hocolim: D—s hocolim 5 C.
In particular, there exists an &,,-equivariant map

7: hocolim 5 C—s hocolimg: D.
Finally, we consider another Q'-diagram & by setting for ¢ € Q' that

E(q) =

~ AP~ ({1})), ifg=1€ @ is the meximum of Q,
pt, otherwise,

and the map g(q > r) to be the constant map for every ¢ > r in Q’. Similarly as we have done it in
Section 3.1, we define a morphism of diagrams (\Tl, 1;) D—» g, where {/;: Q' — @’ is the identity map,
and \Tl(q): 5(q) — & (q) is the identity map when ¢ = 1 is the maximal element in @, and constant map
otherwise. Since the morphism (\fl, QZ) of diagrams induces an &,,-equivariant map between associated
homotopy colimits, we have established the following.

Lemma 3.10. There exists an S, -equivariant map
5 hocolimg: D— hocolimg: E.

Just like in Section 3.1, the final lemma will describe the hocolimg- g up to an G,,-equivariant homo-
topy.

Lemma 3.11.
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(1) If1 € @, that is if Q' = Q, then there exists an &, -equivariant homotopy equivalence
hocolimg € ~ A(Q\{1}) * A~ ({i}))

where 1 is the mazimaum of Q, and dim (A(~*(1))) = nc — n — max{m,n}. In particular,

there exists an &, -equivariant map
7: hocolimg € — A(Q\{1}) * A ({1})).
(i) If1 ¢ Q' then there exists an &, -equivariant homotopy equivalence
hocolimg € ~ A(Q'),
where dim(A(Q")) <n — 2. In particular, there exists an &, -equivariant map
7: hocolimg: E— AQ).

Proof. The proof of the claim (ii) is identical to the proof of the second part of Lemma 3.5. For the claim
(i) it suffices to compute the dimension of the simplicial complex A(Z~*({1})), since the rest of the proof
follows the lines of the proof of the first part of Lemma 3.5.

The elements of the poset 3~ '({1}) are presented by matrices o5 = (a;x) that contain zeros in every
column. The partial order is given by

pr <par <= (Vj € [m]) (Vk € [n]) aj, = 0= aj, =0,

where pa = (a;) and pyr = (af,) are elements of the poset & 1({i}) € P. Maximal chains in g~*({1})
can be obtained by removing zeros one by one from a matrix that represents a maximal element, taking
care of the fact that every column has to contain at least m — ¢ + 1 zeros. The maximal elements are
presented by matrices that have at most n — 1 zeros in each row, and at most m — 1 zeros in each column.
Thus, maximal elements are presented by matrices with mn — max(m, n) zeros. The minimal elements,
on the other hand, are presented by matrices that contain n(m — ¢ + 1) zeros. Therefore, the dimension
of A(g~1(1)) is nc —n — max{m,n} > 0. Since ¢ > 2, this implies that n(c — 1) > m. O

Now we are ready to prove the central result about the non-existence of an &,-equivariant map
EMP (p,n) — U A.

Theorem 3.12. Let d > 2, m > 2, and ¢ > 2 be integers, and let n = p* be a prime power. If
(a) n(c—1) > m and max{m,n} > n(c—d) + %" — 5 +n, or
(b) n(c—1) <m,

then there is no &, -equivariant map
EMP(p,n) — U.Z(m, n,c), (11)

where p = p1 + -+ + py is the sum of m finite absolutely continuous measures on R?, and the affine
arrangement A(m,n,c) is as defined in (2).

Proof. Tt is not surprising that this proof will follow the lines of the proof of Theorem 3.6. Let n = p* be
a prime power and denote by G = (Z/p)* a subgroup of the symmetric group &, given by the regular
embedding (reg): G — G,

The proof will proceed by contradiction. Therefore, assume that f: EMP(y,n) — (JA(m,n,c) is a
continuous &,-equivariant map. From Lemmas 3.7, 3.8, 3.9, 3.10 and 3.11 we again get a composition
of &,,-equivariant maps

EMP (p, n) ! Ua o hocolim c— hocolimg- D2 hocolimg- g

g::ﬁogo;?ogofo& oy

where

5. Ia@\Ip=aE{i), ifleq,
- la@), itl¢q.
It suffices to show that the map g cannot exist, since that would contradict the existence of the map f

Actually, we will prove here that there is no continuous G-equivariant map

Conf(R%, n) — X. (12)
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We start by considering a continuous &,, and also G-equivariant map g: Conf(R? n) — X. It induces
a morphism between Borel construction fibrations:

id xgg

EG x¢ Conf(RY, n) EG xg X

|

BG id BG,

which furthermore induces a morphism between the corresponding Serre spectral sequences
EXN(9): BN (p) — EXT(N).
Like in the proof of Theorem 3.6, we use the fact that E;O(ﬁ) = id. Next we analyse the morphism

EZ"(g). Since the spectral sequence Ei"(\) was already described in the proof of Theorem 3.6, we
concentrate here on the spectral sequence E"*(p).

The Serre spectral sequence of the fibration

X — S EG X X —BG
has the E>-term given by
Ey’(p) = H'(BG; W (X;F,)) = H'(G; H (X;Fy)).
In order to conclude the proof we consider two separate cases.

(a) Let 1 € Q" and let m satisfy the condition of the theorem. Then n(c — 1) > m, so the simplicial
complex X = A(Q\{1}) * A(F~1({1})) is at most (nc — max{m,n} — 1)-dimensional. This implyies that
E37(p) = 0 for all j > ne — max{m,n}, and consequently,

E:L,g—max{m,n}-&-l(ﬁ) = E:L’g—max{m,n}+2(ﬁ) 2. = Eég(ﬁ) (13)

Once more a consequence of the localization theorem [13, Cor.1, p.45| implies that H*(G;F,) =

E3°(p) % E%0(p), because the path-connected simplical complex X does not have fixed points with
respect to the action of the elementary abelian group G. Having in mind (13) we conclude that

H*(G;Fy) = E3°(5) 2 EnYcimmys1 (D)-

For our proof, without loss of generality, we can assume that

H*(G;F,) = E3°(p) = E;:’Co_max{m,n}_g(ﬁ) # EZf_max{m,n}_l(ﬁl (14)
Now, the assumption on m and n, means for k =1
(d=1)(n—1)+1>nc—max{m,n} + 1,
and for k£ > 2
(d—1)(n— g) + 1> ne — max{m,n} + 1.
Therefore, the relations (5), (6) and (14), together with the fact that E3°(g) = id, yield a contradiction:

the homomorphism E:;(lmax {(m.n} +1(9) sends the zero to a non-zero element. This concludes the proof

of the theorem in the case when n(c — 1) > m.
(b) Let 1 ¢ Q', or equivalently n(c — 1) < m. The simplicial complex X = A(Q') is at most (n — 2)-
dimensional, by Lemma 3.11(ii). Thus, E5”(p) =0 for all j > n — 1, and furthemore
EJ() = EL(p) = - = EL(). (15)

For the same reason as above, we have H*(G;F,) = E3°(p) 2 E%O(p). This fact combined with the
isomorphisms in (15) yields that

H*(G;F,) = E3°(p) 2 E°(p).
Again, without loss of generality, we can assume that
H*(G;F,) = E3°(p) = B2 (p) # E°(p). (16)
In order to complete the proof we need that for k£ =1

(d=1n-1)+12>n,
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and for k > 2

(d—l)(n—%)+1>n.

Indeed, both of these inequalities are satisfied, thus the fact that E3°(g) = id with (5), (6) and (16) gives
a contradiction: the homomorphism E?°(g) sends the zero to a non-zero element. This concludes the
proof of the theorem in the case when n(c —1) < m. O

4. PROOFS

Finally, in this section proofs of theorems 1.3, 1.4, 1.5, 1.6, 1.8, 1.9, and 1.10 will be presented. The
proofs of theorems 1.3 and 1.8 are completely geometric and they do not involve any topological methods.
The proofs of theorems 1.6, 1.9, and 1.10 rely on earlier results that use much simpler topological tools
than those involved in theorem 1.4 and 1.5. In particular, the proofs of theorems 1.3, 1.6, 1.8, 1.9, and
1.10 are independent from Sections 2 and 3. On the other hand, the proofs of Theorem 1.4 and Theorem
1.5 heavily depend on the topological results from the previous sections.

4.1. Proof of Theorem 1.3. Let d > 2, m > 2, n > 2 and ¢ > d be integers such that m > n(c—d) +d.
Since the measures p1, . . ., iy, are positive, finite, and absolutely continuous with respect to the standard
Lebesgue measure, the interiors of their supports are non-empty. For each 1 < j < m, choose a point
vj € int(supp(y;)) in the interior of the support of the measure p1;. Set V := {v1,..., v }. Perturb the
points v1,...,v,, if necessary, so that they are in general position, that is no d + 1 of them lie in the
same affine hyperplane. The set P := conv(V) is a d-dimensional simplicial polytope in R%. Choose any
(d — 2)-dimensional face F' of the polytope P. Since P is simplicial the face F' is a simplex and so has
d — 1 vertices that belong to V.

First, we look for an affine hyperplane H in R? with the properties that:

— FCH,

— #(VNH)=#VNF)+1=d, and

— #(VNint(H')) =c—d.
The hyperplane H cuts R? into two half-spaces closed half-spaces H+ and H~ such that HT has positive
measure with respect to at least ¢ of the measures uq, ..., m,m, because it intersects interiors of supports
of at least ¢ measures. Such a hyperplane exists. Indeed, since F' is a face of P there exists a supporting
hyperplane H' for F, that is a hyperplane that contains the face F' and one of its closed half-spaces
contains P, see Figure 3(a). Rotate the hyperplane H' around the (d — 2)-dimensional subspace spanned
by F to get the hyperplane H such that there are exactly ¢ — d points of V in int(H ™), and furthermore
there is one additional point from V\F on H. Since the affine span of F' is a hyperplane in H the
additional point, say w, lies in the relative interior of one of the half-hyperplanes of H determined by F'.
Denote the half-hyperplanes of H determined by F with Ky and K,,_.+1 such that w € relint(Ky). In
particular, Ko U K,;,—c11 = H.

The set V™~ := V N H™ is of cardinality m — c¢. Consider all half-hyperplanes whose boundary is the
affine span of F' and contains a point of V'~ in its relative interior. Since the set V is in general position,
there are exactly m — ¢ such half-hyperplanes. Label them Ki,..., K,,_. in order, starting from the
half-hyperplane that forms the smallest angle with the half-hyperplane Ky, as illustrated in Figure 3(c).
The affine span of F' and the half-hyperplanes

Ko, Ke—d, Kac—ay, -y Kn-2)(c=ad)» Km—c+1

define an n-fan whose every region intersects interiors of the supports of at least ¢ of the measures
[1, - -5 - Indeed, the region defined by

— HT, or equivalently by K,,_ .11 and Ky contains exactly ¢ points from V/,

— Ky and K._4 contains exactly d — 1+ ¢ — d + 1 = ¢ points from V/,

— K.—q and Ky(._q) contains exactly d — 1+ ¢ —d + 1 = ¢ points from V,

— K(n—9)(c—a) and K, _c;1 containsd—1+m—c—(n—2)(c—d)+1=(m—-nc+nd—d)+c>c

points from V.

An example for d = 2, n =5 and ¢ = 4 is shown in Figure 3(d).

Thus, we constructed a convex partition of R? such that each piece of the partition has a positive
measure with respect to at least c of the measures 1, .. ., tt,. This concludes the proof of the theorem. [
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(a) The face F' and the hyperplane H’'. (b) The face F, the point w and the final position of
the hyperplane H' = H.

(c) Labeling of the half-hyperplanes in half-space H~. (d) A 5-fan that partitions R? into convex pieces so that
each piece has positive measure with respect to at least
4 measures.

FIGURE 3. An example of a fan partition of R? for n = 5 and c = 4.

Remark 4.1. As a consequence of the previous proof, there is a convex partition (C1,...,C,) of R?,
such that each piece C; has positive measure with respect to at least ¢ of the measures p1, ..., ttm, and
additionally all pieces (1, ..., C, have positive measure with respect to d — 1 measures f;,,..., i, .,
where F' = conv{vj,,...,v;, ,} and vj, € relint(supp(y;,)), for every 1 < k < d — 1. In contrast to the
statement of Theorem 1.4, we cannot guarantee an equipartition, and we cannot choose which measure
will be contained in each piece.

4.2. Proof of Theorem 1.4. Let d > 2, m > 2, and ¢ > 2 be integers, and let n > 2 be a prime power.
Under the assumptions of the theorem on m, Theorem 3.6 yields the non-existence of an &,,-equivariant
map

EMP (ptn,p) — U A(m,n,c).

Consequently, Theorem 2.1 implies that for every collection of m measures j1,. .., ft,, in R? there exists

a convex partition (C1, ..., C,) of R? with the property that each of the subsets C; has positive measure

with respect to at least ¢ of the measures p1, ..., fy,. In other words,
#{j:1<j<m, y;(Cy) >0} >c

for every 1 < i <n. O

Remark 4.2. In order to prove the non-existence of the G-equivariant map f : EMP(u,,n) — (J A,
one could directly try show that there is no G-equivariant map Conf(R% n) — |JA = colimpa)C.
However, since the dimension of the order complex of P(A) is

dim(A(P(A))) =nc—n—c,
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this method proves Theorem 1.4 only for ¢ < d, which follows directly from the result of Soberén [16].

4.3. Proof of Theorem 1.5. Let d > 2 and ¢ > 2 be integers, let n > 2 be a prime power and let m > 2
be an integer that satisfies the conditions of the theorem. Theorem 3.12 yields the non-existence of an
G, -equivariant map

EMP(u, p) — U.Z(m,n, c),

and Theorem 2.2 implies that for every collection of m measures piy,. .., f;, in R? there exists a convex
partition (Cj,...,C,) of R? with the property that each of the subsets C; has positive measure with
respect to at least ¢ of the measures 1, ..., tm. In other words,

#{7:1<j<m, pu(Ci) >0} >c

for every 1 < i <n.

4.4. The first proof of Theorem 1.6. Let d > 2, n > 2 and ¢ > d be integers, and set m = n(c—d)+d.
Consider m measures i1, . . ., ftm on R? which are positive, finite and absolutely continuous with respect to
the standard Lebesgue measure. Thus, the interiors of their supports are non-empty. For each d < j < m,
choose a point v; € int(supp(y;)) in the interior of the support of the measure p;. Now consider the set
V:i={v4,...,vm} as a point measure.

The result of Soberdn [16] applied to the collection of measures p1, . .., tg—1, V guaranties the existence
of a convex partition (C1,...,C,) of R? that equiparts pi1,...,us—1 and in addition the point measure
V. For the point measure V it means that

=c—d+1,

—d+1 —d)+d—-d+1
#(VOCi)Z[m + W>VL(C )+ + W
n n
for every 1 < ¢ < n. Consequently,
#{i:1<j<m, p;(Ci) >0t >c
forall 1 <i<n.
4.5. The second proof of Theorem 1.6. Let d > 2, n > 2 and ¢ > d be integers, and let m =
n(c—d) +d. Consider m measures fiy, ..., i, on R? which are positive, finite and absolutely continuous
with respect to the standard Lebesgue measure. We introduce a new measure v by

_ - pail(A)
V)= ; pi(R7)’

for A C R? a measurable set. Then v(R?) = m—(d—1) = n(c—d)+1, and each of the measures jg, . . . , fim
can contribute at most 1 to v(A) for any A C R%. Therefore, if v(A) > k for some non-negative integer

k, then A must have positive size in at least k + 1 of the measures from pg, .. ., fiy.-

Again, the result of Sober6n [16] applied to the collection of measures pu1, ..., uq—1, v guaranties the
existence of a convex partition (Cy,...,Cy) of R? that equiparts measures ji1,. .., tg—1 as well as the
measure v. In particular,

nlc—d)+1
ey =M= DHL s
n
for every 1 < i < n. Therefore, each of the pieces C; of the partition has positive size in at least c—d+1
measures among fiq, - .., fmy. Having in addition exactly % fraction of each of the measures pq, ..., pg—1
each convex piece C; of the partition has positive size in at least ¢ measures among iy, ..., fim. O

4.6. Proof of Theorem 1.8. First, we prove that m = n(c — d) + d is the optimal bound in Theorem
1.8 for d = 1. It suffices to consider n(c — 1) + 1 measures on R, each concentrated near a point, so that
the supports are pairwise disjoint. Each convex partition is given by a family of intervals whose interiors
are pairwise disjoint. Thus, and consecutive intervals can share the support of at most one measure. A
careful counting, as illustrated in Figure 4, shows that n(c — 1) + 1 measures are needed for each interval
to intersect the support of ¢ measures.

Convex partition of R C Cy Cn1 Cn

L L L
Measures on R! LI ) ° ee o e TTTriTTrrmmTTmrEETTTTEERs e o o0 ° LI Y
Number of measures c—1 1 c—2 1 1 c—2 1 c—1

FIGURE 4. Optimality of the bound in Theorem 1.8 in the case d = 1.
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For the case d > 2 we use the following construction illustrated in Figure 5. Let eq,...,eq denote
the vector of the standard basis, and let ¢ be the line e4 + span(eq—1). We place m — d + 1 measure
Idy - - - b concentrated in points of £, as in the case of dimension 1. Now consider a regular simplex
in the affine subspace —egy + span(ey,...,eq—2), of dimension d — 2, centered around —ey. Place d — 1
measures i1, .- -, fd—1, €ach concentrated near a vertex of the simplex we just constructed. We ask from
our partition into convex subsets to equiparts the measures pq, ..., ug—1. Thus, each piece of the convex
partition has positive size in p1,...,tg—1. In oder for the interior of their convex hulls to be disjoint,
they have to intersect the remaining measures fiq, . . ., fi;, as in the case of dimension 1. Since they must
each intersect at least ¢ — (d — 1) measure on the line ¢, and ¢ has m — (d — 1) measures, the case of
dimension one implies that

m—(d—1)>n(c—(d—1)—1)+1 = m >n(c—d)+d.
This concludes the proof of the theorem. O

€3 /

€2

H2
€1

M1

FIGURE 5. Optimality of the bound in Theorem 1.8 in the case d > 2.

4.7. Proof of Theorem 1.9. For the proof of the theorem we first derive the following version of the
pigeonhole principle.

Claim 4.3. Let m > 1 and 1 < r < m be integers, and let 0 < z1,..., 2, <1 and 0 < e < 1 be real
numbers. If

1+t axm>r—1+e(m—r+1), (17)
then there exist at least t indices 1 < iy < --- < iy < m such that
min{x;,,...,z; } > €.
Proof. Suppose that the claim does not hold. Without lost of generality we can assume that
0<zm<- <z <1 <--- <21 <1

Then
Ty <-o- <y < e
Consequently,
Tt =@+ o)+ (@ ) <r—14e(m—r+1).
We reached a contradiction with the assumption (17). O

Now we proceed with the proof of Theorem 1.9. Let d > 2, n > 2 and ¢ > d be integers, and let
m = n(c —d) + d. Consider m measures p, ..., i, on R? which are positive, finite and absolutely
continuous with respect to the standard Lebesgue measure. We partition our set of m measures into d
subsets Iy, ..., I  such that

— c= 22:1 r, > d for some positive integers r1,...,ry, and
— #hy=mp=n(rp—1)+1forall 1 <k <d.
For each 1 < k < d we define the measure v, on R? by

D (A) — 1(A)
k(4) = ,; (R

where A C R? is a measurable set. Consequently, v (RY) = #1I}, = n(ry — 1) + 1.
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Using the result of Soberon [16] applied to the collection of measures vy,...,vy we get a convex
partition (C1,...,C,) of R? with the property that
v (R4 1
Z/k(ci):M:Tk—l—F*
n n

for every 1 < k < d and every 1 <i < n.

Now fix k and ¢, and consider mj, real numbers Z&%;, u € I, in the interval [0, 1]. Since

>

HEI

Z((]g;)) = l/k(Ci) =T — 1+ %,

we can apply Claim 4.3 to get at least rp numbers out of z E]g};g, w € Iy, greater or equal than ¢ =

Thus, there is at least rp measures p in the set I such that

1
n(mg —rg + 1)

N S
n(mp—rr+1)°

pu(Cy) > epp(RY) = p(RY),
where 1 < k < d. Now, we choose each 74 to be either |$] or [§] in such a way that ZZ=1 rE = C.
Consequently, we obtain a uniform lower bound for each fraction ¢, that we were seeking for.

Hence, each of the subsets C1,...,C), has at least ¢ fraction in at least ¢ of the measures 1, ..., tm,
and the proof of the theorem is concluded. a

4.8. Proof of Theorem 1.10. The proof of the theorem proceeds along the lines of the proof of Theorem
1.9 presented in Section 4.7. Let d > 2, m > 2, n > 2, and ¢ > 2d be integers, and let 0 < a < % be a
real number. Assume that

mz(c—d)(i:i)—i—d—l.

Let rq,...,rq be integers such that r, > 2 for all 1 < k < d, and let 1 +--- + rq4 = ¢. For each

1 <k <d we set
my = [(rk_l)(i:aaﬂ > 0.

Then my, < (rj, — 1)(1=%) + 1 for 1 < k < d, and consequently

.
1—«
m1—|—-~-—|—md<(c—d)(1 >+d§m+1.
e
n
Since m,myq, ..., mq are all integers, the previous inequality implies that

mi+ - +mg <m.

Now, out of thee set of m measures {ui,..., s} we can choose d non-empty disjoint subsets of
measures Iy, ..., I; such that #I; = my, 1 < k < d. For each 1 < k < d we define, as before, the measure
v, on R? by

A
ve(A) = Z M((RMJ));
pEl} H

where A C R? is a measurable set. Hence,

Ve(RY) = 41, — my = [(rk71)<}72)—‘ > (rkfl)(}*a).

n n

The inequality

mkz(rk—l)(}_a)

s -«
n
can be rearranged into
m
=k >ry— 1+ a(mgp —rp+1).
n

The result of Soberén [16] applied on the collection of measures vy, ..., gives a convex partition
(C1,...,C,) of R? with the property that
Vi (Rd) mi

v (C;) = " :TZTk*1+Oé(mk*Tk+1)-




20 BLAGOJEVIC, PALIC, SOBERON, AND ZIEGLER

for every 1 < k < dand every 1 <7 <n. Now, fixany 1 <7 <nand 1 <k < d. Consider the my
p(Ci)
n(RE) i )
at least «. If we repeat this for every k, we obtain that C; has a fraction « of at least 1 + -+ 71 = ¢

measures, as desired.

numbers of the form for p € I. From Claim 4.3, it follows that at leas r; of those numbers are

If the number ii‘; is an integer, then we set my = (ryp — 1) (i:‘j;) Consequently, we only require
the bound ' ) |
-«
m > (c— d)( i )
n
on the number of measures to derive the theorem. ]

Remark 4.4. One can observe that the extra “+(d — 1)” on the bound of m is not always needed, but
the precise value would then depend on a careful choice of the parameters rq, ..., 74, which would require
a case-by-case analysis. Some cases yield very clean bounds. For example, if a = ﬁ, we are getting
many measure that have more than half of what would be the optimal bound. Indeed, for m = 2n(c —d)
measures in R¢, there exists a partition of R? into n convex parts such that each part has at least

fraction of at least of ¢ measures.

1
2n—1
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