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Abstract

We study the Muskat problem for one fluid or two fluids, with or without
viscosity jump, with or without rigid boundaries, and in arbitrary space dimension
d of the interface. The Muskat problem is scaling invariant in the Sobolev space
H* (R?) where s. = 1+ %. Employing a paradifferential approach, we prove local
well-posedness for large data in any subcritical Sobolev spaces H*(RY), s > s.
Moreover, the rigid boundaries are only required to be Lipschitz and can have
arbitrarily large variation. The Rayleigh—Taylor stability condition is assumed for
the case of two fluids with viscosity jump but is proved to be automatically satisfied
for the case of one fluid. The starting point of this work is a reformulation solely
in terms of the Drichlet-Neumann operator. The key elements of proofs are new
paralinearization and contraction results for the Drichlet-Neumann operator in
rough domains.

1. Introduction

1.1. The Muskat problem
In its full generality, the Muskat problem describes the dynamics of two immis-
cible fluids in a porous medium with different densities p= and different viscosities

w*. Let us denote the interface between the two fluids by ¥ and assume that it is
the graph of a time-dependent function n(x, t), that is

5 = {0, 0) xR, (1.1)
The associated time-dependent fluid domains are then given by

Qf = {(x, y) eRY xR:p(t,x) <y < g+(x)} (12)
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and
Q;:{(x,y)eRde:Q_(x)<y<n(t,x)} (1.3)
where b* are the parametrizations of the rigid boundaries
r+— [(x,gi(x)):xeRd}. (1.4)
------------------------------------------------- F:‘_‘_,,..---""'"."
- Q*
‘/Q\_/_‘H Z
F=
Q-
-
(a) The one-phase problem (b) The two-phase problem

The incompressible fluid velocity u® in each region is governed by Darcy’s
law:
WEUE + Vo pt = —(0,p7) inQF, (1.5)
and
div, yu® =0 in QF. (1.6)
Note that we have normalized gravity to 1 in (1.5).
At the interface X, the normal velocity is continuous:

ut-n=u"-n ony, (L.7)

1

N 1+IVn?

interface moves with the fluid:

an=+/1+|VnlPu -nls,. (1.8)

By neglecting the effect of surface tension, the pressure is continuous at the inter-
face:

where n = (=Vn, 1) is the upward pointing unit normal to X;. Then, the

pt=p~ onz,. (1.9)

Finally, at the two rigid boundaries, the no-penetration boundary conditions are
imposed:
ut vEF =0 onl?, (1.10)

L (—Vb*, 1) denotes the outward pointing unit normal to

I'*. We will also consider the case that at least one of I'* is empty (infinite depth);
(1.10) is then replaced by the vanishing of u at infinity.

We shall refer to the system (1.2)—(1.10) as the two-phase Muskat problem.
When the top phase corresponds to vacuum, that is u™ = p™ = 0, the two-phase
Muskat problem reduces to the one-phase Muskat problem and (1.9) becomes

where vE = +

p- =0 on %;. (1.11)
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1.2. Presentation of the Main Results

It turns out that the Muskat problem can be recast as a quasilinear evolution
problem of the interface n only (see for example [6,25,28,39,50]). Moreover, in
the case of infinite bottom, if n(z, x) is a solution then so is

m(t, %) == A" 'n(e, Ax), A >0,

and thus the Sobolev space H 145 (RY) is scaling invariant. Our main results assert
that the Muskat problem in arbitrary dimension is locally well-posed for large data
in all subcritical Sobolev spaces H*(R), s > 1 + %, either in the case of one fluid
or the case of two fluids with or without viscosity jump, and when the bottom is
either empty or is the graph of a Lipshitz function with arbitrarily large variation.
We state here an informal version of our main results and refer to Theorems 2.3
and 2.4 for precise statements.

Theorem 1.1. (Informal version) Letd = 1 and s > 1 + %.

(i) (The one-phase problem) Consider p~ > pT™ =0and u= > pu™ = 0. Assume
either that the depth is infinite or that the bottom is the graph of a Lipschitz
function that does not touch the surface. Then the one-phase Muskat problem
is locally well posed in H* (R?).

(ii) (The two-phase problem) Consider p~ > pt > 0and u* > 0. Assume that the
upper and lower boundaries are either empty or graphs of Lipschitz functions
that do not touch the interface. The two-phase Muskat problem is locally well
posed in HS(R?) in the sense that any initial data in H®(R?) satisfying the
Rayleigh-Taylor condition leads to a unique solution in L ([0, T1; H (R?))
for some T > 0.

The starting point of our analysis is the fact that the Muskat problem has a very
simple reformulation in terms of the Dirichlet—-Neumann map G (see the definition
(2.2) below); most strikingly, in the case of one fluid, it is equivalent to

I+ G@mn=0 (1.12)

(see Proposition 2.1). This makes it clear that

e Any precise result on the continuity of the Dirichlet—-Neumann map leads to
direct application for the Muskat problem. This is especially relevant in view
of the recent intensive work in the context of water-waves [2,3,7,31,47].

e The Muskat problem is the natural parabolic analog of the water-wave prob-
lem and as such is a useful toy-model to understand some of the outstanding
challenges for the water-wave problem.

The second point above applies to the study of possible splash singularities, see
[14,15]. Another problem is the question of optimal low-regularity well-posedness
for quasilinear problems. This seems a rather formidable problem for water-waves
since the mechanism of dispersion is harder to properly pin down in the quasilinear
case (see [1-4,32,46,54,61,62]), but becomes much more tractable in the case of
the Muskat problem due to its parabolicity. This is the question we consider here.
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The Muskat problem exists in many incarnations: with or without viscosity
jump, with or without surface tension, with or without bottom, with or without
permeability jump, in 2d or 3d, when the interface are graphs or curves. Our main
objective is to provide a flexible approach that covers many aspects at the same
time and provides almost sharp well-posedness results. The main questions that we
do not address here are

e The case of surface tension or jump in permeability (see for example [11,41,
50,51,56]). This can also be covered by the paradifferential formalism, but we
decided to leave it for another work in order to highlight the centrality of the
Dirichlet-Neumann operator.

e The case the interface is not a graph. We believe that so long as the interface is a
graph over some smooth reference surface, the approach here may be adapted,
but this would require substantial additional technicalities.

e The case of beaches when the bottom and the interface meet. This is again a
difficult problem (see for example [30]).

e The case of critical regularity. This is a delicate issue, especially for large data,
or in the presence of corners. We believe that the approach outlined here could
lead to interesting new insights into this question, but the estimates we provide
would need to be significantly refined.

Finally, let us stress the fact that in our quasilinear case, there is a significant dif-
ference between small and large data, even for local existence. Indeed, the solution
is created through some scheme which amounts to decomposing

o = Dn + 11,

where 9, — D can be more or less explicitly integrated, while IT contains the
perturbative terms. There are two ways the terms can be perturbative in an expansion

(1) because they are small and at the same level of regularity,
(2) because they are more regular.

The first possibility allows us, in the case of small data, to bypass the precise
understanding of the terms entailing derivative losses, so long as they are compatible
with the regularity of solutions to (d; — D)n = 0. In our case, when considering
large data, we need to extract the terms corresponding to the loss of derivatives
in (1.12) and this is where the paradifferential calculus approach is particularly
useful.

1.3. Prior Results

The Muskat problem was introduced in [53] and has recently been the subject of
intense study, both numerically and analytically. Interestingly, the Muskat problem
is mathematically analogous to the Hele-Shaw problem [43,44,57] for viscous flows
between two closely spaced parallel plates. We will mostly discuss the issue of well-
posedness and refer to [14,15,37] for interesting results on singularity formation
and to [36,40] for recent reviews on the Muskat problem. In the case of small
data and infinite depth, global strong solutions have been constructed in subcritical
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spaces [13,17-22,25,28,59] and in critical spaces [39]. We note in particular that
[28] allows for interfaces with large slope and that [18,39] allow for viscosity jump.
Global weak solutions were obtained in [20,29,38]. We also refer to [26,27,34,42]

As noted earlier there is a significant difference between small and large data for
this quasilinear problem. We now discuss in detail the issue of local well-posedness
for large data. Early results on local well-posedness for large data in Sobolev spaces
date back to[17,33,63] and [8,9]. COrRDOBA and GANCEDO [25] introduced the con-
tour dynamic formulation for the Muskat problem without viscosity jump and with
infinite depth, and proved local well-posedness in H d+2 (Rd), d = 1, 2; here the
interface is the graph of a function. In [23,24], CORDOBA, CORDOBA and GANCEDO
extended this result to the case of viscosity jump and nongraph interfaces satisfying
the arc-chord and the Rayleigh—Taylor conditions. Note that in the case with viscos-
ity jump, one needs to invert a highly nonlocal equation to obtain the vorticity as an
operator of the interface. Using an ALE (Arbitrary Lagrangian—Eulerian) approach,
CHENG et al. [18] proved local well-posedness for the one-phase problem with flat
bottom when the initial surface n € H?(T) which allows for unbounded curvature.
This result was then extended by Matioc [51] to the case of viscosity jump (but
no bottom). For the case of constant viscosity, using nonlinear lower bounds, the
authors in [21] obtained local well-posedness for n € W2P(R) with p € (1, c0].
Note that W>!(R) is scaling invariant yet requires 1/2 more derivative compared
to H3/2(R). By rewriting the problem as an abstract parabolic equation in a suit-
able functional setting, MATIOC [50] sharpened the local well-posedness theory to
n € H3/7¢(R) for the case of constant viscosity and infinite depth. This covers
all subcritical (L?-based) Sobolev spaces for the given one-dimensional setting.
We also note the recent work of ALAZARD-LAZAR [5] which extends this result by
allowing non L>-data.

Our Theorem 1.1 thus confirms local-wellposedness for large data in all sub-
critical Sobolev spaces for a rather general setting allowing for viscosity jump,
large bottom variations and higher dimensions. A notable feature of our approach
is that it is entirely phrased in terms of the Dirichlet-Neumann operator and as a
result, once this operator is properly understood, there is no significant difficulty
in passing from constant viscosity to viscosity jump. Furthermore, we obtain an
explicit quasilinear parabolic form [see (2.19) and (2.21)] of the Muskat problem
by extracting the elliptic and the transport part in the nonlinearity.

1.4. Organization of the Paper

In Section?2, we reformulate the Muskat problem in terms of the Dirichlet—
Neumann operator and present the main results of the paper. In Section 3, we prop-
erly define the Dirichlet—-Neumann operator in our setting and obtain preliminary
low-regularity bounds which are then used to obtain paralinearization and con-
traction estimates in higher norms via a paradifferential approach. These are key
technical ingredients for the proof of the main results which are given in Section4.
“Appendix A” gathers trace theorems for homogeneous Sobolev spaces; “Appendix
B” is devoted to the proof of (2.8) and (2.9); finally, a review of the paradifferential
calculus machinery is presented in “Appendix C”.
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2. Reformulation and Main Results

2.1. Reformulation

In order to state our reformulation for the Muskat problem, let us define the
Dirichlet-Neumann operators Gi(n) associated to Q*. For a given function f, if
¢ solves

Ay T =0 in QF,

ot =f on ¥, .1
% =0 on I'*t

then

9 +
Graf =1+ |vn|2;;n. (2.2)

The Dirichlet-Neumann operator will be studied in detail in Section 3. We can now
restate the Muskat problem in terms of G*.

Proposition 2.1. Lerd = 1.

Q) If (u, p, n) solve the one-phase Muskat problem then n : R? — R obeys the
equation
B +KG =0, K ="—. 23)

I
Conversely, if n is a solution of (2.3) then the one-phase Muskat problem has
a solution which admits n as the free surface.

(i) If (u™, p*, n) is a solution of the two-phase Muskat problem then

1
an=——G"(f", (2.4)
n

where f*:= p*|s + pTn satisfy

fr=f"=0"=pm,

2.5
LG st — G~ =0. 2

Conversely, if  is a solution of (2.4) with f* solution of (2.5) then the two-
phase Muskat problem has a solution which admits 1 as the free interface.

We refer to [6,16] for similar reformulations and derivation of a number of
interesting properties.

Proof. (1) Assume firstthat (u™, p~, n) solve the one-phase Muskat problem.
Setting ¢ = p~ + p ™y, then g solves the elliptic problem

Ay yg =0 in Q, gq=p n on %, dg=0 onI'". (2.6)

Since /1 + |Vn|2u™ - n|lg, = =G~ (n)(p™1n), (2.3) follows from (1.8) and
(1.5).
Conversely, if 1 satisfies (2.3) then the pressure p~ = g — p~ y is obtained by
solving (2.6), and the velocity is determined from the Darcy’s law (1.5).
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(i) As before, (2.4) follows from (1.8) and (1.5) for Q7. The jump of f in (2.5) is
a consequence of the continuity (1.9) of the pressure. Lastly, the jump of Dirichlet—
Neumann operators is exactly the continuity (1.7) of the normal velocity. Con-
versely, if 7 is known then (ui, pi) can be easily determined. O

Remark 2.2. For a given function 7 € W1 (R?) N Hz (R?), we prove in Propo-
sition 4.8 below that there exists a unique pair f¥ solving (2.5) in a variational
sense.

2.2. Main Results

The Rayleigh—Taylor stability condition requires that the pressure is increasing
in the normal direction when crossing the interface from the top fluid to the bottom
fluid. More precisely,

RT(x, 1) = (Vx,yp* = Vi yp7) -nlx, > 0. 2.7)
In terms of n and f*, we have
RT(x, 1) = (1 + V03 ([o] - [B), 28)
where
[pl=p"—p", [B]=B —B"
and

V- VfE+GEm St
1+ |Vn?

B:l:
Using the Darcy law (1.5) we can write that
_1 _
RT(x,0) = [plA+1Val) 2+ [pufu-n, [u]l=@ —pH. 29
See Appendix B for the proof of (2.8) and (2.9). Let us denote
Z8(T) = L®(0. T H*R) N L2(0, T); T2 RY).  (2.10)

For the one-phase problem, we prove local well-posedness without assuming the
Rayleigh-Taylor stability condition which in fact always holds, even in finite depth
(see Remark 2.6).

Theorem 2.3. Let u= > Oand p~ > 0. Lets > 1+ % withd 2 1. Consider either
'"=0orb™ € WLo(RY). Let ng € H* (RY) satisfy

dist(ng, T™) = 2h > 0. @2.11)

Then, there exist a positive time T depending only on (s, k), h and ||ng ||Hx(]Rd), and
a unique solution n € Z°(T) to equation(2.3) such that n|;—o = no and

dist(n(t),T7) = h Vt e [0, T]. 2.12)

Furthermore, the L* norm of 1 in nonincreasing in time.
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As for the two-phase problem, we prove local well-posedness in the stable regime
(p™ < p7) for large data satisfying the Rayleigh-Taylor stability condition.

Theorem 2.4. Let u* > Oand p~ > pT > 0. Lets > 1+ % withd = 1. Consider
any combination of T = @ and b* € WL (RY). Let ny € H* (R?) satisfy

dist(no, T') = 2h > 0, (2.13)
inf RT(x,0) > 2a > 0. (2.14)
xeR4

Then, there exist a positive time T depending only on (s, ,ui, [eD, (h, o) and
M0l s (ray, and a unique solution n € Z*(T) to Egs. (2.4)~(2.5) such that n|=o =
10,

dist(n(t), T*) > h vt €0, T), (2.15)

inf  RT(x,7) > a. (2.16)
(x,t)e]Rdx[O,T]

Furthermore, the L* norm of ) is nonincreasing in time.
Several remarks on our main results are in order.

Remark 2.5. The solutions constructed in Theorems 2.3 and 2.4 are unique in
L{°H; and the solution maps are locally Lipschitz in LY° H; with respect to the
topology of L{°H} ~1. The proof of Theorem 2.4 also provides the following esti-
mate for f*:

£ 0 fiy ety S F s ey 171l s ey 2.17)

where the space ﬁi (R?) is defined by (3.24). Modulo some minor modifications,
our proofs work equally for the periodic case.

Remark 2.6. The Rayleigh-Taylor (RT) condition is ubiquitous in free boundary
problems. For irrotational water-waves (one fluid), Wu [61] proved that this con-
dition is automatically satisfied if there is no bottom. In the presence of a bottom
that is the graph of a function, LANNES [47] proved this condition assuming that
the second fundamental form of the bottom is sufficiently small, covering the case
of flat bottoms. In the context of the Muskat problem, there are various scenarios
for the stable regime p™ < p~. When the interface is a general curve/surface, the
RT condition was assumed in [8,23,24]. On the other hand, when the interface is
a graph, we see from (2.9) that this condition always holds if there is no viscos-
ity jump but need not be so otherwise. In particular, for the one-phase problem,
the local well-posedness result in [18] assumes the RT condition for flat bottoms.
However, we prove in Proposition 4.3 that the RT condition holds in the one-phase
case so long as the bottom is either empty or is the graph of a Lipschitz function
which can be unbounded and have large variation.

Remark 2.7. When the surface tension effect is taken into account, well-posedness
holds without the Rayleigh—Taylor condition. It turns out that H 1+9 R4 is also
the scaling invariant Sobolev space for the Muskat problem with surface tension.
Local well-posedness for all subcritical data in H* (Rd), s>1+ %, is established
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in [55]. Furthermore, at the same level of regularity, Flynn and Nguyen [35] proves
that solutions constructed in Theorems 2.3 and 2.4 are limits of solutions to the
problem with surface tension as surface tension vanishes.

2.3. Strategy of Proof

Letus briefly explain our strategy for a priori estimates. The main step consists in
obtaining a precise paralinearization for the Dirichlet-Neumann operator G* () f
whenn € H*(RY),s > 1+ % and f has the maximal regularity H*(R?). We prove
in Theorem 3.18 that

G mf=0(f=Tsn) —Tv-Vn+ R )/, (2.18)

where (B, V) are explicit functions (see (3.54)), X is an elliptic first-order symbol
(see (3.50)) and the remainder R™ (1) f obeys

IRZGDfN oy = Fllnlla) (1 + IIUIIHH%,,;)IIfIIgi,

provided that 0 < 6 < min(s — 1 — %, %). Here we note that the term f — Tpn
comes from the consideration of Alinhac’s good unknown.

(1) For the one-phase problem (2.3), taking f = 7 yields
on=—«Tha-pn+«Ty-Vn+ Ry, (2.19)

where
| R IIHS_% < Flmllas) (1 + ||7l||HS+%_5)||’7||H-“ (2.20)

We observe that the transport term Ty - Vn is harmless for energy estimates
and the term —« Ty (1— gyn would give the parabolicity if 1 — B > 0. Then this
latter term entails a gain of % derivative when measured in L?, compensating
the loss of % derivative in the remainder R{. Moreover, the fact that the highest
order term ||17||HS s in (2.20) appears linearly with a gain of § derivative
gives room to choose the time 7" as a small parameter. We thus obtain a closed

1
a priori estimate in L{° Hy N L[2 H ; *2 Finally, we prove in Proposition 4.3 that
the stability condition 1 — B > 0 is automatically satisfied.
(2) As for the two-phase problem (2.4)—(2.5), we apply the paralinearization (2.18)
and obtain a reduced equation similar to (2.19):

on = — — T[[V]] -Vn+ Ry, 2.21)

T ([p]- +—
= S lel-IBDT T

w4+
where R; obeys the same bound (2.20) as R;. Consequently, the parabolicity holds
if [p] — [B] > 0 and in view of (2.8), this is equivalent to RT > 0. This shows
a remarkable link between Alinhac’s good unknown and the Rayleigh—Taylor sta-
bility condition.

Finally, we remark that the contraction estimate for the solutions requires a fine
contraction estimate for the Dirichlet—Neumann operator, see Theorem 3.24.
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3. The Dirichlet-Neumann Operator: Continuity, Paralinearization and
Contraction Estimates

This section is devoted to the study of the Dirichlet-Neumann operator. For
the two-phase problem (2.4), the function f~ obtained from solving (2.5) is only
determined up to additive constants and we need to define G~ (1) f for f belonging
to a suitable homogeneous space. Since f is the trace of a harmonic function (see
(2.1)) with bounded gradient in L2, the trace theory recently developed in [49] is
perfectly suited for this purpose, allowing us to take f in a “screened’” homogeneous
Sobolev space (see (3.5)) tailored to the bottom. This is the content of Section 3.1,
where we obtain existence and modest regularity of the variational solution to the
appropriate Dirichlet problem.

Next, in Section 3.2, we obtain a precise paralinearization for G~ (1) f by
extracting all the first order symbols. This is done when 7 has subcritical regularity
HS[RY),s > 1+ %, and f has the maximal regularity H* (R?). The error estimate is
precise enough to obtain closed a priori estimates afterwards. Finally, in Section 3.3
we prove a contraction estimate for G~ (11) — G~ (2), showing a gain of derivative
for n; — n2 which will be crucial for the contraction estimate of solutions.

3.1. Definition and Continuity

We study the Dirichlet-Neumann problem associated to the fluid domain 2~
underneath the free interface ¥ = {(x, n(x)) : x € Rd}. Here and in what follows,
the time variable is frozen. We say that a function g : RY — R is Lipschitz,
g € Who(RY), if Vg € L®(RY). As for the bottom ', we assume that either

e " =0or )
o ' = {(x,b~(x)) : x € R%} where b~ € WI®(R) satisfies

dist(X,T'7) > h > 0. 3.1)
In either case, dist(X, ') > h > 0. Consider the elliptic problem

Axyp =0 in Q,
p=1r on X, (3.2)
38—"1 =0 on '™,

v

where in the case of infinite depth (I'” = (), the Neumann condition is replaced
by the vanishing of V, ¢ as y — —o0

lim V, ¢ =0. (3.3)

y—>—00

The Dirichlet—-Neumann operator associated to 2~ is formally defined by

a
G mf=yl+ Ianzﬁ, (3.4)
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where we recall that n is the upward-pointing unit normal to ¥. Similarly, if ¢ solves
the elliptic problem (3.2) with (7, '™, v™) replaced by (T, ', v™) then we

define 9
Gt =14 |Vy|2=—.
mf + [Vl o

Note that # is inward-pointing for Q. In the rest of this section, we only state
results for G~ (i) since corresponding results for G () are completely parallel.

The Dirichletdata f for (3.2) will be taken in the following “screened” fractional
Sobolev space [49]

Né(Rd) = {f e S®RHNL; (RY):

_ 2
/ / S@ R = FO ar <00l /R, (35)
Re J By (0,0(x)

|k|d+l

where ® : RY — (0, oo] is a given lower semi-continuous function. We will choose
for an arbitrary number a € (0, 1) that

oo when I' =40,
Ox) = B il corad (3.6)
0(x) :=a(n(x) —b~(x)) when b~ € WH(R%).
In view of assumption (3.1),
0 = ah. (3.7)
We also define the slightly-homogeneous Sobolev spaces
HY R =({f e SRHNLL.(RY) :Vfe H IR/ R. (3.8)

~L
Remark 3.1. According to Theorem 2.2(b) in [60], f € H (R?) (® = 1) if and
only if f € S'(RY)N leoc (R?) and f is locally L? in the complement of the origin
such that

/R min(lgl, 1§ )1 ) dg < oo (3.9)

moreover, | f ||2 1 is bounded above and below by a multiple of (3.9) so that
HP () ~1 -

HRY = H" 2 (RY). (3.10)

~1 ~
On the other hand, f € H%(RY) (® = oo) if and only if f € L} (R?) and f is
locally L? in the complement of the origin, with

/Rd EILF©)1 dE < 00; (3.11)

moreover, || | , is aconstant multiple of (3.11). Thus, we have the continuous
HZ RS
embeddings

. ~1 ~1L ~1L
HIRY) = AL ®RY) ¢ B2RY) ¢ HER?Y) = H2(RY) (3.12)
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upon recalling the lower bound (3.7) for 9. In addition, under condition (3.1),

~1 ~1
if n, b~ e Wh*R?Y) then HZ(R?) = H(RY). (3.13)

See Theorem 3.13 [49]. To accommodate unbounded bottoms, we have only
assumed that b~ € W1-2°(R?) and thus (3.13) is not applicable. Nevertheless,
we have the following proposition:

Proposition 3.2. Assume that o1, 07 : R4 — (0, o0] satisfy

infd{a] (x),02(x)} > h >0, |01 —02llpeogs) =M < oo. (3.14)
xeR
Then there exists C = C(d, h, M) such that

~L
Ifl s SCIfIl Vf e Hj(RY). (3.15)
HP (R) Hy (RY)

It follows that for any two surfaces n; and 7, in LOO(Rd) satisfying (3.1), the

~1
screened Sobolev space Hy (R%), d given by (3.6), is independent of 7 ;- The proof
of Proposition 3.2 is given in Appendix A.4. ]
We will solve (3.2) in the homogeneous Sobolev space H 1(©7) where

H'WU)={uel? (U):VuelL*U)}/R (3.16)

loc
for U c RN connected. Here, the norm of H!(U) is given by lull gy =
IVullr2wy-

Proposition 3.3. The vector space H'(U) equipped with the norm ||lull gy =
IVullp 2y is complete.

Proof. Suppose that u, is a Cauchy sequence in H! (U).Then Vu, — FinL2(U).

We claim that F = Vu for some u € leo .(U). Indeed, for any bounded domain

V C U, the sequence u, — |V|_1 fv u, is bounded in L2(V), according to the
Poincaré inequality, hence weakly converges in L2(V). By a diagonal process, we

canfindu € LIZOC(U ) and a subsequence n; — oo such that

Up, — |V|_1/ Up, — U in LZ(V)
v

for any bounded V C U.Letp € C2°(U) be a test vector field with suppp C V €
U. We have

/go-wndx=/sovmn—|vr1/ up dy) dx
U |4 Vv
:—/(un—|V|_1/ un dy) div e dx — —f u div @ dx.
\% \4 \%4
Thus,
/F-godx: lim Vun-gadxz—/ u div ¢ dx
U n—o0 U U

for any test vector field ¢. This proves that F = Vu and thus finishes the
proof. O
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We refer to “Appendix A” of the present paper for a summary of trace theory, taken
from [49], when U is an infinite strip-like domain or a Lipschitz half space.

Proposition 3.4. Consider the finite-depth case with b= € WM RY). If n €

. ~1
Wl’oo(Rd) then for every f € Hy (RY), there exists a unique variational solu-
tion ¢ € H'(Q27) to (3.2). Moreover, ¢ satisfies

IVxy@lliz2-) = FUVAllLII 1 (3.17)
H (RY)

for some F : Rt — RY depending only on h and |Vb™ Il .00 (Ret)-

Proof. By virtue of Theorem A.2, there exists f € H'(27) such that

Tr(f)(x, n(x)) = f(x), Tr(f)(x, b~ (x)) = f(x), and
IVay 2 = f(IIanlLOO)IIfIIﬁj(Rd) (3.18)

where F depends only on & and [|[Vb™ || o (ray. Set
Hy (@) ={ueH(Q): Trwls =0}
endowed with the norm of H' (27). We then define ¢ solution to (3.2) to be
¢(x,y) = fx,y) +ulx,y), (3.19)

where u € HOl .(87) is the unique solution to the variational problem

/ Veyut-Vy yodrdy = —/ Viyf Viyodxdy Yo e Hi, (Q7). (3.20)
Q- Q-

The existence and uniqueness of u is guaranteed by the Lax—Milgram theorem upon
using the bound (3.18). Setting ¢ = u in (3.20) and recalling the definition (3.19)
of ¢ we obtain the estimate (3.17). It follows from (3.20) that

/ Viyd - Viypdrdy =0 Vo € Hy (Q7).
o

Thus, if ¢ is smooth then ¢ solves (3.2) in the classical sense upon integrating by
parts. Finally, it is easy to see that the solution ¢ constructed by (3.19) and (3.20)
is independent of the choice of f € H 1(U) that has trace f on £. O

Remark 3.5. As the functions b* are fixed, we shall omit the dependence on
IVEE | oo -

Proposition 3.6. Consider the infinite-depth case T~ = @. If n € W (R?) then
1

forevery f € ﬁgo (RY) there exists a unique variational solution ¢ € H'(27) to
(3.2). Moreover, ¢ satisfies

IVey@lliz-y = FUValL=) Iy (3.21)
Hg (RY)

for some F : Rt — R depending only on h.
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Proof. The proof follows along the same lines as in the proof of Proposition 3.4
upon using the trace Theorem A.3 and the lifting Theorem A.4 for the half space
U = Q7. The fact that V¢ € L>(Q27) gives a sense to the boundary condition
(3.3). O

Notation 3.7. We denote

ﬁ%_ 20( dy ifr- =g, (322)
AR ifh e WIe®RY),

and
1
~1 HL@RY) ifrt =g,
+ =) ~1 .
Haz/(Rd) if b e WEO®RY), '(x) :=a®x) —b"(x)), a € (0,1).
(3.23)
For s > %, we denote
~ ~1
HS = H: N H"[RY). (3.24)

Proposition 3. 8 Ifn € WY °(RY) then the Dirichlet—Neumann operator is con-

tinuous from H? : to H™? (RY). Moreover, there exists a constant C > 0 depending
only on h such that

1G=m Al -y <f(IIV77I|L>°)||f||~, (3.25)

Proof. Let ¢ solve (3.2). By virtue of Propositions 3.4 and 3.6, we have ¢ €
H'(Q7)and Ap = 0. According to Theorem A.5, the trace

99 _
1+ |V77|28—|2 =G (nf
n
is well-defined in H~? (R¢) and
G~ (U)fll -l < Ch*f(l + ||Vn||L°°)”v¢”L2(Q )

where C is an absolute constantand 2, = {(x, y) € RI+L . nx)—h <y < nx)}.
Thus, (3.25) follows from (3.17) and (3.21). O

To propagate higher Sobolev regularity for ¢ and hence for G~ (n) f, following
[3,47] we straighten the boundary as follows: set

Qy ={(x,y):x eRY nx) —h <y <nx)},

3.26
Q) ={(x,y) € Q7 1y = n(x) —h} (:20)
and
Qr =R x (~1,0),

Q) ={(x,2) € R x (=00, —1]: (x,z+ 1+ n(x) —h) € @7}, (327
Q=9 UQ;.
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Define
0(x, 2) = (1 + 2)e™PIn(x) — 2{e” TPy 0y — n} i (v, 2) € Q,

ox,2) =z+1+nkx)—h if (x,z) € 2,
(3.28)
where T > 0 will be chosen in the next lemma.

Lemma 3.9. Assume n € B;O’I(Rd).

(1) There exists a constant C > 0 independent of t such that
IVezoll @) < 1+ Cllnllg

forall (x,7) € 51
(2) There exists K > 0 such that if

tinlg (3.29)

<
- 2K
then min(1, %) < 9,0 < K||r)||B;o.l and thus the mappings (x,z) € @, +
(x,0(x,2)) € , k = 1, 2 are Lipschitz diffeomorphisms.

Lemma 3.9 follows from straightforward calculations which we omit. Note that
HS(RY B;O, ((RY) for any s > 1 + % A direct calculation shows that if

f: Q" — Rthen f(x, z) = f(x, 0(x, 7)) satisfies

divy - (AVy , ) (x, 2) = 3.0(Ax, f)(x, 0(x, 2)) (3.30)
with
d0;0-1d —Vyo
A= . 3.31
|:—(VxQ)T —“'af;@'z] 33D

In order to study functions inside the domain, we introduce adapted functional
spaces. Given u € R we define the interpolation spaces

XH(I) = CO(I; H*(RY)) N 1.2 (1; Hﬂ+%(Rd)) ,

. (3.32)
YA = LI H*(RY)) + L2 (1; H“T(Rd)) .
We prove the following useful inequalities:
Lemma 3.10. Let so, 51 and sy be real numbers, and let J C R.
1
so = min{s; + 1,52 + 1},
S1+S2>So+%—l, (3.33)

s1+s2+1>0,

then
luruzllysocry S llwtllxsionlluzllxs ). (3.34)
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@1
so = min{sy, 52},
s1 4+ 52 > 50+ %1, (3.35)
s1+s2 >0,
then
luruzllysory S lutllysi o luallxs2 ). (3.36)

In fact, we have

1T utllysory S Nutllysinlluzllpoor w2y ifso < s,

d
s1+ 52 > 50+ 5 (3.37)

1 Ty uallyso sy S Nlutllyss oy lluallps s a2y if so < s2,

d
S1+ 82 > 50+ > (3.38)

IR, u)l L1y moy S Nurllysi o lluzllxs2 oy ifs1 +s2 >0,

d
S1+ 82 > 850 + 5 (3.39)

The proof of Lemma 3.10 is given in “Appendix D”.

Lemma 3.11. Let n € H*(RY) withs > 1 + % and t > 0 such that (3.29) holds.
If
Vi f € L3 ([—1,05; L*(R%)),
divy - (AVy . /) € L3 ([—1,0]; H~'(RY))
then V.. f € X~2([—1,0]) and
IV fIl 1 < FUnllas) UV, Fll 22— 101:22)

X 2(-10) —
I dive (AVr Ol 2 q=1,01:H-1)- (3.40)

Proof. By the definition of X _%([—1, 0]), it suffices to prove that Vi . f €
C(-1,0; H _%(Rd)) with norm bounded by the right-hand side of (3.40). By
virtue of the interpolation Theorem A.6, V, f e C(—1,0; H -3 (RY) and
< Vi f] . V. f] -
CLopH b S IV fllz2qr01:02) + 10 Ve fll2q-1.012-1) (3.41)
S IV fllizq=1,01:02)

o=
19 Fl

Thus, it remains to prove that azf e C([-1,0]; H_%(Rd)). Setting E(x,z) =
~ 2 ~
—Veo-Vif + %E&f we find that 9, 8 is a divergence

9,8 = —divy 8,0V [ — V03, f) + divy ,(AVy . ).
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Consequently,

13- Ell 2100 5-1y S Fnlas) U Ve, fll 2100 22)
—|—||d1sz(.Aszf)”L2([l() 1)

On the other hand, using Lemma 3.9, it is easy to see that
I 2q-10k22) S FAnl NV Fll2qo1.0122)-
Then, applying Theorem A.6 we obtain that & € C([—1,0]; H -3 (R%)) and
) < Fnllas) Ve Fll 21012
+11dive 2 (AVee Dll 21 o1m-1)-

Now from the definition of & we have

= 9;0
0, f = ———=(E(x, Vio-Vif).
S l+|va|2( (x,2) + Vyo xﬂ

™)

c(i-1.01:H2

Fors > 1+ ‘71 > %, using the product rule (C.12) and the nonlinear estimate (C.13)
gives

—%e g 1
L+ |Veol? = c(i-101H72)
< (1 Torgm = e(cronm) eyt

S FUnla) (Ve £l 210122y + I diVx,z(AVx,zf)||L2([—1,0];H1)>

and

d;0Vy0
”1+|Vx th V. Sl ( 1,01;H*%>

d:0Vyo0
< 5 s—1\ || Vi
1+ |V, |2 ||C([ 1,0]; H 1)” f” ([71,0];H*%)

< ‘7:(||77||H‘Y)”Vx,zf”Lz([fl,O];Lz)’

where (3.41) was used in the last estimate. This finishes the proof. 0O

Sl

Denote v(x,z) = ¢(x, o(x,z)) : R? x [—1,0] — R where ¢ is the solution of
(3.2). Then v satisfies v|,—9 = f and

divy . (AV, v) =0, (3.42)
while, by the chain rule,
1+ |Viol?
G- () f = (%Bzv ~Vo- va> . (3.43)
2@ |z=0
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Expanding (3.42) yields

(02 + oAy + B - Vid, —yd v =0 inR? x [-1,0], (3.44)
where
(3.p)* 9.0V p 1,
a=—""  pg=—2 2L o (2p+alp+B-V,dp).
A e v R WA G S L)

(3.45)
Note that the restriction to z € [—1, 0] guarantees that o is smooth in z. We have
the following Sobolev estimates for the inhomogeneous version of (3.44):

Proposition 3.12. ([3, Proposition 3.16]) Letd > 1, s > 1 + $ and } < o < s.
Consider f € H"? (R?) andn € H*(RY) satisfying dist(n, T ™) = h > 0. Assume
that Fy € Y°~1([z1,00), z1 € (=1, 0) and v a solution of

02+ @Ay + B Ved, —yd v =Fy inR? x [1,0] (3.46)
with v|,—0 = f. If z0 € (21,0) and
Vizv € X2 ([20, 0D (3.47)
then Vy ;v € X Y([z0, 0]) and
“VX,ZU”XU—I([ZO’O]) = Fnlus)

(192t Ues 4 1Bolyo ey o + [ Vool )

for some F : Rt — RY depending only on (o, s, h, 20, 21).

Remark 3.13. In fact, Proposition 3.16 in [3] assumes f € H° (R?). This comes
from estimating v solving

v+ Tav=—w z€[z0,0], v|;=0=f

where w € X?([z0,0]) and A € '}, e € (0, max{], s — 1 — %}), is given by (3.61)
below. To obtain estimates involving only ||V, f|| go-1, it suffices to differentiate
this equation in x and apply Proposition C.6 to control Ty, 4v.

In the rest of this subsection, we fix s > 1 + % For v(x,z) = ¢(x,0(x,2)), ¢
solution of (3.2), Lemma 3.11 combined with (3.42) yields
”Vx,zU”X,%([_],OD = ]:(“77”H5)”Vx,zv”LZ([—I,O];LZ(R"))
< FUnllas) I Ve ybll 2

In conjunction with (3.17) and (3.21), this implies

< . . |
X“2-1.0) = Flimlla )”f”ﬁ (3.48)

Vi vl

This verifies condition (3.47) of Proposition 3.12 from which the estimate for
IV V| xo-1,0 € [%, s], follows. Using this and the product rule (C.12) one can
easily deduce the continuity of G~ () in higher Sobolev norms.
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Theorem 3.14. ([3, Theorem 3.12]) Letd = 1, s > 1 + % and % <o < s
Consider f € H? and n € H*(RY) with dist(n,T~) = h > 0. Then we have
G~ () f € H° Y RY), together with the estimate

IG™ D) fll g1 < F(Ilnllas) I £ 1| 5o (3.49)
for some F : Rt — RY depending only on (s, o, h).
Remark 3.15. Theorem 3.14 was proved in [3] for f € H® (R4). The two-phase
Muskat problem involves G~ (1) f~ where f~ is obtained from system (2.5). In
particular, f~ is only determined up to an additive constant.

3.2. Paralinearization with Tame Error Estimate

The principal symbol of the Dirichlet-Neumann operator is given by

1, §) = /(L + [VnP)IER — (Vi) - 2. (3.50)
Note that when d = 1, (3.50) reduces to A(x, &) = |&].
We first recall a paralinearization result from [3].
Theorem 3.16. ([3, Proposition 3.13]) Let r > 1+ 4 withd > 1, and let § € (0, 1]
satisfy 8 < r —1— 4. Leto e [L,r —8). Ifn € H'(RY) and f € HT with
dist(n, I'™) > h > 0O, then we have
G mf="0Tf+Ryf, (3.51)
IRy () fll o145 = FInla) N f 1l o (3.52)

for some F : Rt — RY depending only on (r, 5, 8, h).

Remark 3.17. In the statement of Proposition 3.1.3in[3],0 € [%, r— %]. However,
its proof (see page 116) allows for o € [%, r—>4§]J.

Our goal in this subsection is to prove the next theorem, which isolates the main
term in the Dirichlet-Neumann operator as an operator and which will be the key

ingredient for obtaining a priori estimates for the Muskat problem in any subcritical
Sobolev regularity.

Theorem 3.18. Lets > 1 + %’ withd 2 1, and let § € (0, %] satisfy § <s—1— ‘5’.

Foranyo € [%, sl ifn € Hs+%_5(Rd) and f € H° satisfies dist(n, ") > h > 0
then

G mf=n0(—-Tsn)—Tv-Vn+R (/. (3.53)
where Vo Vf 4G f
U +G (n
B = =Vf— BV 54
g A AR AL (3.54)
and the remainder R~ (n) f satisfies
IR= Aot < F(Imlas)(1+ ||7)||H.;+%_5)||f||ﬁg- (3.55)

for some F : Rt — RY depending only on (s, 0, 8, h). In fact, B = (3y¢)|y=n(x)
and V = (Vy@)|y=y(x) where ¢ is the solution of (3.2).
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Remark 3.19. For s > 1 + %, we can apply Theorem 3.16 withr = 5 + %, o=s
and § = % (the maximal value allowed) to have

IRG A1y S F (Il ey ) 1F s (3.56)

Both (3.56) and (3.55) provide a gain of % derivative for f. The improvement
of (3.55) is in that (1) there is a gain of § derivative for n; (2) the highest norm
(KAl - of n appears linearly. For the sake of a priori estimates, (1) gives room

to choose the time of existence T as a small parameter; (2) is required to gain %
derivative using the parabolicity when measured in L? in time.

We fixs > 1+ % in the rest of this subsection. Setting

Q=a§+an+,3.vxaz, (3.57)
we can rewrite (3.44) as
B
ov =2 0o. (3.58)
9:0

The coefficients of Q can easily be controlled using (3.45), (3.28) and Lemma 3.9:

llee — hz”xr—l([f],o]) + ||,3||xr—1([71,0]) + ||V||xr—2([71,0])
= Fdmlla)lnllar Vr=s (3.59)
since it follows from (3.28) that
I(Vxo, 90 — h)||xtkl([—1,0]) S Clnllar Vp eR. (3.60)
We start with a factorization of Q by paradifferential operators and a remainder:

Lemma 3.20. With the symbols

1
a 5(—iﬂ & —\JAalt)? = (B-£)?),

) 3.61)
A= (—iB-&+ \[dals? — (B-£)2).
we define Ro by
Rog = 0g — (0; — Ta)(3; — Ta)g. (3.62)
Let0 < § < 1satisfyd <s —1— %. If 0 satisfies
0<s5-8, O4+s5s>1+38, (3.63)

then, for any zo € (—1, 0) we have

IRo8l 2 000y < Fllnlla) (1410l o1y IVeeglxoqzpon:  (B:64)
On the other hand, if 0 satisfies
0<s, O+s>1+3, (3.65)

IRo& Yo zo.0n = FUnlas) I Vx,28 1l x5 (120.01)- (3.66)
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Proof. From (3.61) we have thata + A = —i8 - £, aA = —«/|£|?, and hence

02 + Ty Ay + Tp - Vi, = (0, — T)@: — Ta)g — (TuTa — TuBo)g + To,a8.
It follows that

Rog = (¢ = To)Axg + (B —Tp) - Vx0:8 — (TaTa — ToAx)g + To.a8, (3.67)
Proof of (3.64). Assuming (3.63), we claim that

(@ = Te)Axg + (B —Tp) - Vx0:8 12(120,01: HO)
< Finla) (1 + IInIIHH%,a)IIVx,zgllLocho,m;He)- (3.68)

Using (C.11), (3.59) and (3.63), we have

(T — BIVxo:gll 2o S MBI 25— 1Vx0:8 1l oo o1 S B2 s 11028 1l oo o

< Fllinllas) (1 + IIUIIHS+%,,;)II3zg||LooH€-
As for (@ — Ty) Ay g, we write
(@ = To)Axg = (@ — h* = T, ;) Axg + h*(ld — Ti) Ayg.

The first term can be estimated as above and in view of (C.2),Id—T; = Id— ¥ (D)
is a smoothing operator so that

ldd — T1)Axgll2po = ClIVxgllp2pe-

We thus obtain (3.68).
Next it is readily seen that A and a satisfy (see (C.1))

M} (@ [=1,01) + M} (4; [=1,0D) < F(lle) (3.69)
M} (a5 [=1.0D) + M} (As [=1.0D) £ Fnlla) (14 0l .y ) (B:70)
2 2 H "2

Consequently, by Theorem C.4 (ii), 7,74 — Ty Ay is of order % and

I(TTa = Targll 2o < Fllnls) (14101 s ) 1981, oy

2

where Remark C.5 has been used. Now in view of the seminorm bounds G0
1M @ l2gr.op < Fllnlls) (14 Il s)
Theorem C.4 (i) combined with Remark C.5 gives
ITs.a8l2m0 < Fnlae) (14 100 ys) Vgl oo (3.72)

From (3.68), (3.71) and (3.72), the proof of (3.64) is complete.
Proof of (3.66). Assume (3.65). Using (C.8), (C.9) and (3.59), we have
17v,0.¢ 'ﬂ”Lsz’*% S IIanngILooHe—l—aIIﬂIILzHS,%
= Fmlla)119:8 |l Lo gro—s
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and

IR(Vx0z8, B)llime SUBN , -y VD28, otos
S FUnlaozgl ;o) -s-

The term (T, — ) A, g can be treated similarly. Next using (3.69) and Theorem C.4
(i1) we find that 7,74 — T, Ay is of order 2 — § and

I(TaTa = Ta B8, o) < Fdnlla) Vgl (3.73)

2 H9+7 -5

As for Ty s g, we note that since

1@ = %, Bl oo r—1,0 -1y + 110, DBl Lo -1 01 15-2) = FCUmllzs)
and H'~2(R%) C C*_H"S(]Rd), we have
ML 5@:A) < FlInllas)-
By virtue of Proposition C.6, Tj_4 is of order 2 — § and
IToagl ooy < Fnla) 198l oy
This completes the proof of (3.66). O

We can now start analyzing (3.58). We fix o € [%, s] and apply Proposition 3.12
to have

Va2l xo-1(1z0.0p = FUnlla) 1 f 1 o (3.74)

forall zg € (—1,0).
Next we introduce
a;v
9;0
We note that b|,—¢ = (3y¢)(x, n(x)) = B given by (3.54), and u|,—o = f — Tg7.

The new variable u is known as the “good unknown” & la Alinhac. Fixing § € (0, %]
satisfying§ <s — 1 — %, forall o € [%, s] we have

o+s>2+6. (3.76)

Lemma 3.21. Let zg € (—1,0). Foro € [%, s] we have

61l oo (120,01 o -1y = FInlla) 1 fll o, (3.77)
5

['Vx.2bl o0k HO Yy = S Flnlla)I fllge ifo+s > 7 (3.78)

[V, szILOO(zoo .go-2) = Fnlla) I fllge ifo+s >3, (3.79)

1921l yo—1 29,0 < F Il o (3.80)
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Proof. (3.77) follows from (3.60), (3.74) and the product rule (C.12) with 5o =

sj=o0—landsy =s —lsinceoc —1+s5 — 1> 0in view of (3.76).

The estimate (3.78) for V, b can be proved similarly upon using (C.12) with
So =81 =0 — %,sz = s — 1 and noting that guarantees s; + s = o + 5 — % > 0.
As for 9;b we use (3.44) to have the formula for 8z2v, then apply (C.12) as in the

estimate for V,b.

The proof of (3.79) is similar to (3.78): we apply (C.12) withsg = 51 = 0 — 2,

sp = s — 1 and note that s; +s2 > 0ifo +5 > 3.
Let us prove (3.80). We first compute using (3.44) that

82 92v
0.6 = —dv—<0 4 =¥
(9;0) d;0
82
= oo~ LA P ovutanl
(9;0) d;0 9.0 d:0

For the first and last terms, we apply (3.34) with s9 = 0 — 1,51 = 0 — | and

§p =8 — 2, giving

2 2

0 970
180l xo1 S N80l ot

(0,02 SN 0,002

sz < Fnl )l f 1 o

Next for the second and third terms, applying (3.34) withsg =0 — 1,51 =5 — 1

and s = o — 2 yields

I ﬁ .
0;0
This finishes the proof of (3.80). O

We can now state our main technical estimate.
Lemma 3.22. For any zo € (—1,0) and o € [%, s], we have

(0: — T [0z — Ta)v — Tp(0; — Ta)o] = Fa,

F < s)(1 o .
1Pl omy o0 S F ) (0 g )1

B
Vﬁﬂﬂywl5HgEHWAHVﬁﬂwaz§]TWNHOHfMﬁ~
Z

(3.81)
(3.82)

Remark 3.23. The direct consideration of the good unknownu = v—Tp0 in[2,31]

consists in obtaining good estimates for

(0; — Ta)(0; — Ta)u.

. . .. _1 .

In our setting, even when o = s, estimating this in Y*~2 demands an estimate for
||8Z2b|| xs—3. However, in one space dimension, the low regularity s > % makes it
challenging to prove that Bzg’v € X*73, where Bgv appears when differentiating b

twice in z. Lemma 3.22 avoids this issue.
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Proof of Lemma 3.22. Using (3.58) and Lemma 3.20 with 6 = o — 1, we see that
(0; = Ta)(3; = Ta)v + Rov =T (9; — Ta)(9; — Ta)o
+ (bQ0 — Ty Qo) + T Rgo
which gives
Fy = [To, (0; = Ta)1(0; — Ta)e — Rgv + TeRgo + (bQ0 — T Qo).
It is readily checked that
IQell2ps-1-8 = Fmla)lnll, 15
which in conjunction with (C.11) and (3.77) yields

16Q0 — Tp Qoll2yo-1 S 16l e o1l Qell 2 prs-1-5
= Flinlalnll 3511l e

where we have used (3.76) in the first inequality.
In view of (3.76), (3.64) can be applied with & = o — 1, implying the control
of Rgv. As for Ty Rpo we apply (C.8), (3.64) with& = s — 1, and (3.77) to have

ITeRoellL2go-1 S bl go-1IRoeN L2 51
< Flnllas) (1 + ||77||Hs+%75)||f||ﬁg.

Regarding the commutator in F», we write
[To, (0: = T)1(0; — Ta)p = —T5,6(0; — Ta)p — [Te, Tal(3; — Ta)p.

For Ty, (3; — Ta)o we distinguish two cases.
Cases 1o € [s —8,s]. Then,o0 +s5 =225 — 8§ > % and (3.78) can be applied.
Noting in addition that o — 1 <5 — 1 <5 — 5 — §, (C.8) yields

1

17563z — Ta)ell 2ot S 1001, o3 1@z = Ta)e —hll oy
< Flnllas)(1 + ||77||Hs+%,a)||f||ﬁg.

Cases 20 € [%, s — 8]. In view of (3.80), applying (3.38) we obtain

175,60 = Tadell oy < 10:Bllyotll@: = Tade kil .y,
< Fnla) (L Il ey )1 i

To treat the commutator [T}, T,] we again distinguish two cases.

Case 1 0 € (s — §,s]. Then we have v := o0 4+ 6 — 5 € (0, %] since § < %
and o < s. In addition, ¢ — 1 — % >vands — 1 — % > v, implying that
b e H°~! ¢ W»*® and a € T uniformly in z. Consequently, by virtue of
Theorem C.4, [T,, Ty] is of order 1 — v and

T, Tal(3: = Ta)pll 2ot = Fnla) I fll g 100z = Ta)p — hll 2o



A Paradifferential Approach for Well-Posedness of the Muskat Problem

= FUnlla) N fllge 10z — Ta)p — hll 2 gs—s
< FAulas) (Ll g )1 e
where we have used (3.77) in the first inequality.

Case20 € [%, s —&]. In this case we do not use the structure of the commutator
but directly estimate using Theorem C.4 (i) and (C.8):

1TaTp (0; — Taell2po-1 = Fnllas)ITe (9; — Tadell 2o
= FUnlla) bl o go-1110; — Ta)e — hll L2 pg5-5
< Flnllas)(1 + IIUIIHS%,S)IIfllﬁg,
where in the second inequality we have used the fact that o < s — 8. The term

ToT,(9; — T4)o can be controlled similarly. This completes the proof of Lemma
322. O

Proof of Theorem 3.18. The proof proceeds in two steps.
Step 1 Let us fix —1 < zo < z1 < 0 and introduce a cut-off yx satisfying
x(z) = 1forz > z; and = 0 for z < zg. Set

w = x@[@; = Ta)v = Tp(3; — Ta)e].
It follows from (3.81) that
0 — THw = F3:= x @) F2 + x'(@[0; — Ta)v — Ty (3; — Ta)o].  (3.83)
By virtue of (3.82), (3.74), (3.77) and (3.69) we have

F < s o (1 . 3.84
I 3”Y"*%(lzo,01) < Fnllas) I f 1o (1+ IIUIIHH%,(;) (3.84)

Next we note that
1
Re(—a) 2 ————I&|.
Fnllas)
Since w(zg) = 0, applying Proposition C.12 to equation (3.83) with the aid of
(3.84) we obtain

w 1 S ]: s F 1
I ||X<7—7([10’0]) = Finlia)ll 3”Y"’?([ZO,O])

< Finla) 1 f 1l go (1+ IIHIIHS+%,5)- (3.85)

Step 2 Starting from (3.43) and using Bony’s decomposition, we find that

G (nf= Tl‘H'VXQ‘z (Tav — Ty Tao) — <TVXQVXU - TBZUTM VxQ)

3z0 9zo

— <Tvxv — Taszer> Vio
z0
1+ |Veol
+ {T{)Zv (—x + T|+\vxg\2 TbazQ - ZTBZUTM Vo
9z0 o %20

14 |Viol?
+ T\ v pw — R(Vyo, Viv) + R (—l i , azv> ,
dz0 BZQ
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where the right-hand side is evaluated at z = 0. We will see that this gives (3.53)
by estimating each term one by one.
Using Theorem C.4, (3.69), (3.70) and (3.74), we first observe that

R! = {THVXQZ (Tpv — Ty Tao) — (T, o Vv — TaZvTZxQ VXQ)}
dz0 z0
-T v—T
IH;ZQ\Z A—iEVyo ( bP)

=u

satisfies estimates as in (3.55). Using the formula (3.50) and (3.61), we see that

1+|Veol? .
A, s>a—gxg —iE - Vy0limo = A, (3.86)

Z

and this gives the first main term in (3.53). Similarly, we obtain that

9z0

R? = — (TVXU - TBZUTYxQ> Vi0 + Tv,v—bv,0 Vx0

9zo 0zo

= (TagvTVxQ - T?)zvvxg) VXQ

is acceptable, and since
Viv —bViole=o=Vf—-=BVn=1V,

we obtain the second main estimate in (3.53).
We claim that all the other terms are remainders. Next we paralinearize the

function F(m, n) = 1j'+";l‘2 —h~! wherem € R? and n € R. Clearly F(0,0) =0,

VnF = 2% and 9, F = —J:Z;z. Applying Theorem C.11 with u = 5 — 7 — §

and T = § yields

1+ Vo>
————— —hT = F(V:0,0:0 = h) = Tyveo - V0 — Tiypw,p2 (0:0 — 1)

90 9ze (020)?

+RF(Vyo, 30 —h™")

with
-1
IRF(Vyo,0:0 —h )IIHS,% < f(llnlle)llnllHH%,s-

Then by virtue of Theorem C.4 (ii) with p = § we obtain that

1+ |Veol>
RP=Ty, (M —h 1) —2T9.0Tve0 - V20 + Tiypvyop T;i (0.0 — h)
z0

x0
aZQ dze 0zo

is acceptable, as in (3.55). The next term follows from (3.85). Finally, by (3.74),
(C.9) we get
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< oo Ho—
IRV, Vi)l o) S IVxCll o1 s IVl oo o
S FUnlaf g il g s

2 1
and similarly, since " — L ¢ 120 fs=30 < 120C} it follows from (C.10)
that )

1+ |Veol?
||R<—" Vool
30 L®H

1+ |Vl 1 1
< - — - - V o0 o —
~ (” 9.0 h ”LOOHS_%_‘S + A I xv||L Ho-1

S Fmla)lf e (U4l s)-

The proof of Theorem 3.18 is complete. 0O

Bl—

3.3. Contraction Estimates

In order to obtain uniqueness and stability estimates for the Muskat problem,
we need contraction estimates for the Dirichlet—-Neumann operator associated to
two different surfaces 11 and 7,. Since we always assume in this subsection that
nj € Lio(Rd) and dist(n;, I'") > h > 0, Proposition 3.2 guarantees that the
spaces H2, defined by (3.22)-(3.23)-(3.24), are independent of 1;. We have the
following results:

Theorem 3.24. Let s > 1 + % withd > 1. Let § € (0, §] satisfy § <s — 1 — 4.
Consider f € H® and ny, my € H* (RY) with dist(n;,I'") > 4h > O for j =1,2.
Then for any o € [% + 8, s], we have

G ) f=G () f =T, ni—m)—Ty,-V(ni—n2)+R; (n1, m2) f (3.87)

where
IRy (1, m2) fll o1 < F (1, m2) e ) Im — m2ll go-s 11 £ 1l s (3.88)
for some F : Rt — RY depending only on (s, o, h, §).
Corollary 3.25. Lets > l—l—% withd 2 1. Consider f € H* and n, m € HS(RY)
with dist(nj, '") > 4h > 0 for j =1, 2. Then for all 0 € [%, s], we have
IG=) f = G~ m2) fllge—1 < F(Il s m2) las ) Im — mallme L fll s (3.89)
for some F : Rt — RY depending only on (s, o, h).

Remark 3.26. The following contraction estimate was obtained in Theorem 5.2 in

[3]:
IG= ) f =G fllgr— = F(I, n2) ) I — n2ll g LA -y (3:90)
where r > % + % (% derivative above scaling). It was also noted in [3] (see Remark

5.3 therein) that the authors were unable to obtain a similar estimate in higher
norms. Applying 3.89 with s =r — % gives such estimates.
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From now on, to simplify notation, we let

Ny = llmllas + lln2llas -

The rest of this section is devoted to the proof of Theorem 3.24. We follow similar
steps as to those in the previous section, the main novelty coming from the two
different domains. To define G(n;) f we call ¢; solution to (3.2) with surface
n; and Dirichlet data f. For the sake of contraction estimates, we shall use a
diffeomorphism different from the one defined by (3.26)—(3.27)—(3.28). Assume
dist(nj, ") > 4h > 0. There exists 1, : RY — R such that

3h
In« + 7||Hs+100 < CNq (3.91)

and
b (x) +2h < ny(x) <nj(x)—h (3.92)

when the depth is finite and 7. (x) < n;(x) —h when I'” = {J. One can take 7 to
be a mollification of min(#n(x), n2(x)) — % Then we divide Q]_ into

{sz;l ={(x,y) :x € R (x) <y < (), 393

Q) ={(x.y) €Q; 1y =)}
and set S/Z\: = Q) UQ, where

Q; =R’ x (~1,0),
o {Rd x (=00, —1] if T~ =,
{2 €RY x (=00, —1]: 24+ 1+ n.(x) > b~ (x)} ifb~ e Whee,
— — (3.94)
Note that €2, = 2, , and the sets 2| and €2, are independent of ;. Define

{Qj(x, 2) = (1+2)e"Pn;(x) — 2n.(x) for (x,2) € sz\1: (3.95)

0j(x,2) =z+ 14+ n.(x) for(x,z) € Q.

—_~

Inparticular, 01 = 021in 2, . For t > O sufficiently small, itis easy to check that the
mappings (x,z) € Q7 = (x,0;(x,2)) € Q; and (x,z) € Q| — (x,0j(x,2)) €

QJ_ | are Lipschitz diffeomorphisms, where the latter is smooth in z. Letting also
0s = 01 — 02, we observe as in (3.60) that

h
min(d.01, 9;02) = min (1, 5) :

3h 3.96
l (vxaj, d.0; — 7) lxetqerop S Imllas + Inallas, (3.96)

llosllxo (—cc.0n S lm — n2llae

if T > 0 is chosen small enough (depending on |77 ]| 51 | + lIm2ll g1 1).
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Asin (3.44),
vj(x,2) == ¢jx,0;(x,2)
solves
Ljvj = (3z2 +ajAy+ B -Vid; —yjd)v; =0 in R? x [-1,0], (3.97)
with (a;, B, v;) defined in terms of o; as in (3.45) and satisfies!
IV zvjllxs-1q-1.0p S FWNOI Sl s - (3.98)
The difference
vV=1v] — v
then solves
Liv=F:=—(a1 —a2)Ayv2 — (1 — B2) - Vx;02
+ (1 — )00 inRY x [—1,0]. (3.99)
As before, we start with an estimate for v in the low norm X -1 ([—1,0].

Lemma 3.27.

< — s . .
”VX’ZUHX’%([A‘O]) = F(Nolm —m2ll, 11 f s (3.100)

Proof. We first recall the variational characterization (3.20)

| Verti Vespdray =0 Vo e (@) = (0 € H'@)) : plx, =0
! (3.101)

In the fixed domain 8,2\1, this becomes

~ AjVi ) Vi fdrdy =0 Y0 € Hy (@)
={p e H'(Q7) : pl.—0 = 0},
where
A 9z0j - 1d _Vij2
1= [—(Vxejﬂ 7 } '

Consequently,

LA priori, Proposition 3.12 would only give a bound in X* ~1([z0, 0]) for some zg > —1.
However, one can first apply this with o; replaced by g; . which is equal to g for —1 <
z < 0 and smooth for —2 < z < 0 to obtain a bound on [—1, 0].
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A1V v Vi 0dxdy
o

= f~(A2 — ADVe 02 - Ve 0dxdy Y0 € H),(Q). (3.102)
o

Since v|,—0 = 0, we have v € H(},*(SFZ\:). Inserting 6 = v into (3.102) yields
_A1Vyv -V vdxedy =
o

(A2 — AV zv2 - Vi vdxdy
o

/ (Ax — -Al)vx,zv2 - Vi 7V dxdy,
R x(~1,0)

—_—~

(3.103)
where we used the fact that Ay = A; in Q,, which in turn comes from the fact
that o1 = @2 in ;. In view of (3.96) and (3.98),

AL = A2l 1.0 = FG 1) gy Dl =mll

IV, 202l oo e (1,00 = FWN)IS N s

(3.104)
and since (see (3.96))
1
(A1Vy v - Vi v) zmin<a gl,—> IVeov]? 2 ———— |V, o)
e o) T T Flimllg )
pointwise in 5/2\:, we obtain that
IVacvlla@m) < FODlIm =l 4 Fll - (3.105)
Since RY x (—1,0) C Q2 this yields
||Vx,zv||L2((_1,o);L2(Rd)) = F(Ny)lm — 7)2||H% ”f”ﬁj (3.106)
According to Theorem A.6,
”va||X7%([—l,O]) S ”vx,zU”Lz((—l,O);Lz)' (3.107)
As for ||[0;v]| _1
X 2([-1,0D

it remains to estimate ||, v|| _1 . Setting
C(—1,0;H”2)
- 1+ V.02
aj(x,z)z— ij'vaj+ it Bzvj,
asz
it follows from the equation div, ;(A;V, ;v;) = 0 that

8ZEj = —diVx(aszvaj — ijazvj).
Hence E = E| — &> is a divergence

0,8 = —divy(3;05 Vxv1 + 0;02VV — V050,01 — V020;V),
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and using (3.96) and (3.98), we obtain the bounds

1EllL22 = F(NlIm — mll o s
||8ZE||L%H*1 < 10205 Vav1 + 3:02Viv — Vy050;01 — VxQ2azU||L%L2, (3.108)
= F(Ns)lm — mall L W s -

Theorem A.6 then yields

B S N, — s .
l ||C<[_LO];H_%) = F(N) e —m2ll I 1l s

Finally, by writting

d 1+ |Vio1?
3,0 = 202 2{E+VXQ2~VXU+( + | le|)8Z
I+ |Vyo2l 0,010;02
d;,v1V +
+(va1 A Qz))Van}
d:01

we deduce that

< — s .
001 gyt 7O =l 10

This completes the proof of Lemma 3.27. O

This low-regularity bound can easily be upgraded to a bound with no loss of
regularity in 11 — np with the aid of the next lemma. We shall use frequently the
fact that fors > 1 + %,0 € [%,s] andd <s—1— %,Wehave

o+s>2+46. (3.109)

Lemma 3.28. For any o € [%, s], we have

lar — aallxo-1—1,0 + 1181 — B2l xo-1—1,01
= Flmlla)ln — n2llae, (3.110)
Iyt = vallyo—1q—1.0p = Fnllas)ln — n2llue. (3.111)

Proof. From the definition of & and 8 we see that they are nonlinear functions
of V, .0 which is bounded in LZ° H$~1. By the product rule (C.12), we have that
multiplication with H°~! is a continuous linear operator from H" to H" for any
v € [—3, 5]. Thus, (3.110) follows easily.

For y; — y», let us consider the typical term %A x01 — %A +02 Which in
turns contains the following typical terms

o] — o2
El =

Ayo1, Ep =

A 0s.
BZQI azQZ *
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In view of (3.109), using (3.34) withsgo =0 — 1,51 =0 — land s, =5 — 2 we
obtain

o] — 02

IEillyo—1 S I lxo-1l1Axe1llxs—2 = FInllas)ne — n2ll e

z€1

On the other hand, applying (3.34) withso = o — 1,51 =s — land s, = 0 — 2,
we bound E» as

2
IE2llyo—1 S I 5 lxs-1llAxesllixo—2 = Fnlla)lm — n2llge -

0
The other terms can be treated similarly; this finishes the proof of (3.111). O

0

o
Z

Lemma 3.29. For any o € [%, s], we have

19020 o1 ag.on < F NI = mallae 1L 1 s (3.112)
Proof. We claim that for z; € (—1, 0), and F as in (3.99), there exists F such that
IFllyo-1z.0p = F(No)llm — mallae | f 1l s - (3.113)

We first apply (3.36) withsg =0 — 1,51 =0 —land s, =s — 1:
It = y2)8zv2llyot S Iyt = vallyo-t 1802l g1 = F(Ns)llm = mallme I f Ul gs

where we have used (3.111) in the second inequality. As for (o] — a2)Axvy we
apply (3.34) withspo =0 — 1,51 =0 —land sp =5 — 2:

(@1 — a2) Axvallyo1 Sllar — a2 ll o1 1 Axv2ll xs—2 SF(Ns) I — m2llme | £l s -

Proceeding similarly for (81 — B>) - V,0;v2, we obtain (3.113). Since v|,—o = 0,
Proposition 3.12 gives that

[ V20l o1 o0 S FANDIFllyo1z,.0p + [ Vazv] ) (3.114)

X"2(-1,0)
for —1 < z1 < zg < 0. Combining this with (3.113), Lemma 3.27 and the condition
o= %, we finish the proof. O

Proof of Corollary 3.25. Corollary 3.25 can be deduced from Theorem 3.89, The-
orem C.4 (i) and the fact that B, and V; are in L{°. Here we give a short proof using
Lemma 3.29. In view of (3.43), we find that typical termsin G~ (n1) f — G~ (m2) f
are V(01 —02) - Vyvilz=0 and Vy02 - Vi (v1 — v2)|;=0. Using (C.12) and (3.109),
we have at z = 0 that

V(o1 — 02) - Vavillgo—1 S IVx(o1 — 02) | go-1 | Vavi |l s
S F(No)llm — 2l 11l s »

IVxo2 - Vi(vi — vl go-1 S IVxo2ll gs—1 11 Vavll o1
S F(N)lm = mallwe 1 f 1 s »

where we have applied Lemma 3.29 in the last inequality. This finishes the proof
of Corollary 3.25. O
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Let us turn to the proof of Theorem 3.24. Fixing o € [% + 8, 5], we have
o—26¢€ [%, s — 8], and hence Lemma 3.29 yields the contraction estimate

V20| o105 gzg.0p = F(Ns)lm = mall go—s ] f 1l s - (3.115)
We first prove a technical analog of Lemma 3.22.

Lemma 3.30. With notation similar to Lemma 3.20, letting by = g—g we have

(3 — Tup) [3: — Ta)v — To, (3, — Ta,)os] = Ry,

1 (3.1106)
[R5 ”Y"*l([zo,()]) < F(Ny)lim — 772||1-10*5||f||ﬁ5
forany zp € (—1,0).

Proof. Applying (3.77), (3.78) and (3.79) with 0 = s (note that s + s > 3) we
obtain that b, satisfies

||bz||L0<>([ZO,()];HSfl) + ||Vx,z[32||xsf2( [z0,0]) = f(Ns)||f||HS~ (3.117)
We also recall from (3.98) that
Vi 20l xs- L([=1,0D) ~ S F(Ns )||f||HS-

Set Q; = 83 +oajAy + B - Vid;. Using (C.12), (3.96) and (3.109) we obtain the
bounds

3 3
I (Vxo1, Vxo2) llxs—1 + |l <3z91 - Ehv 0;02 — gh) Il xs-1

+ (@101, yD) I xs—2 = F(Ny),
Vi 05l xo-1-5 + (a1 — a2, B1 — B2) I xo-1-5 = F(Ns)lIn1 — n2ll go-s.

On the other hand, we claim that
Q10sllyo-1-5 = F(Ns)lImt — n2ll go—s- (3.118)
Indeed, from the definition of o5 we have
182051l , o35 = FNOInt = mall yo-s:
on the other hand, by (3.34),
lt Axgsllyo-1-5 < (loer — h*[lxs-1 + DI Axosllxo-2-s < F(N i — mall gro-s

and similarly for 8; - V,0d;0s.
Step 1 From (3.97) and the definition (3.45) of y we have

Qv — (y1 — y2)0;v2 = Y10;v — (Q1 — 02)v2,

1 Q101
= (Q1— 0202+ —7—3;
0:02 002 ! ¢ 0;010;02 :

71 Qs-
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It follows that
Qiv —b20105 = R, (3.119)

Ry = y10;v — (Q1 — Q2)v2 + b2(Q1 — 02)02

205 (3.120)

We claim that
IR yo—1(tz0.0n = F NI — m2ll go-s I £l s - (3.121)
We first apply (3.34) withsg =0 — 1,51 =5 — 2,50 =0 — 1 — §, giving
Iv10zvllye—1 S Ivillxs—2 0100l xo-1-5 = F(N)lmi — n2ll go-sll fll s - (3.122)

By the same argument we can control (Q1 — Q2)02 and (Q1 — Q2)v2 in Yo~ For
example, when distributing derivatives in the term (o1 —a2) Ay vz in (Q1 — Q2)v2,
we see that o] —ap and A, v respectively play the role of 9, v and y; in the product
y10;v.

For products we note that (3.36) gives

labllyo-1 S llallxs-1llbllyo-1.

Applying this for (a, b) = (ba, (Q1 — 02)02) we Obtain the control of b>(Q1 —
07)0>. As for the last term in Ra’ we take a = T 91 and b = Q1010;05 Where
applying (3.34) again yields

1Q1010:05llyo-1 S N1Q101lxs-2119:05l xo-1-5 = F(N)lIm — m2llgo-s 1 f 1 s -

We thus conclude the proof of (3.121).
Step 2 Using (3.62), we factorize Qv and Qs in (3.119). Then we obtain
the first equation in (3.116) with

R§ = (3; — Tay) [(3; — Ta)v — To, (3 — Ta,)os]
= Ry + Tg,0,02 + R(b2, Q105) — Ro,v + To, R0, 05
+ [szs 0, — Tm](az - TA])Q8~
In view of (3.109), applying (3.39) and (3.118) gives
IR(b2, Q10 1o S 1Q10sllyo-1-s11b2llxs—1 = F(No)lIn1 — n2ll go—s [1f 1l gis -
On the other hand, by (3.38) and (3.118),
1T0,0s02llyo-1 S Q105 llyo-1-s 1621l oo grs—1 = F(NIm — m2ll go—s || f 1l s -
Next we compute
[To,, 0; — Ta 100; — Ta)os = —To.0,(0; — Ta)0s — [Toys Tay1(8; — Tay)0s.
In view of (3.117) for ||3,b2|| xs—2, we have
175,06, (3; — Ta)osll 123 3 S 119:b2l L3 100; — Ta)osl oo ppo—1-s
< F(N)m = mallgo-s £ | gis -
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On the other hand, the commutator [Ty,, T4, 1(9; — Ta,)@s can be controlled in
L*Ho 3 upon using Theorem C.4 (ii).

It remains to control terms involving R, . Using (3.109) we see that 6 = o — 1
and § satisfy (3.63). Consequently, the estimate (3.66) in Lemma 3.20 can be
applied, giving

IRogllyo-1 = FUInlas) Ve, 8l xo-1-5.

Applying this with ¢ = v and taking into account (3.115) we deduce that Rg, v is
controllable. Finally, with g = s and with the aid of (3.37), we have

[T, Ro,05llyo-1 S b2l oo -1 1R, @5l yo—1 = F (N Im — mll s Lf |l s -
The proof of (3.116) is complete. O

Proof of Theorem 3.24. As in the proof of Theorem 3.18, let us fix —1 < z9 <
z1 < 0 and introduce a cut-off yx satisfying x(z) = 1 for z > z; and x (z) = O for
z < zo. It follows from Lemma 3.30 that

ws := X (@)[(@: = Ta))v — To, (3: — Ta,)os]
satisfies
(0; — Ta)ws = R} := x @R} + x'@[@; — Ta))v — T, (3 — Ta)e].
Applying Theorem C.4 (i) and (3.115) we have

(8 = Tapvll | b3
L ([zo,O];H 2)

< F(N)|I Vi vl b3
Lz([zo,O];H 7)

< F(N) || Vvl ool_s
L2<[zo,0];H 2 )

< F(N) I = nall gra-s 1 £l s -

In addition, (C.8) together with (3.117) implies
ITos e = Tanesll oo o3
S 1621l oo izg,01; 251y 1192 — TAl)QSHLz(
< F(Ns)If 1l ggs I Vx 206 ”LZ([ZO,O];H“*%)

< F(No)llm — m2ll gro-s 1 f Nl s -

3
[20.01: H" "2 )

Thus, Rg satisfies similar estimates as R; in (3.116). Since w;(z9) = 0, applying
Proposition C.12 yields

||w8||xfr—1([20,0]) = f(Ns)”’)l — M2l go-s ||f||ﬁ§- (3.123)
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In the rest of this proof, functions of (x, z) are evaluated at z = 0. Besides, we
write g1 =~ g» to signify that g1 and g, agree up to acceptable errors,
g1 — &2llgo-1 S F(N)lImi — m2ll go-sll 1l gis -
Set
1+ |Veoi? 00/

J = az Q] - Olj

j=12

so that, by (3.96),
[Pl gs—1 + P2l gs—1 + I Vazo1llgs—1 + [ Vx z02ll gs—1 = F(Ny)
p1 = P2l go-1-5 + [ Vx 205l go-1-5 = F(Ny)lInt — m2ll go-s-
Using (3.43) and the fact that v|,—9 = 0, we write
G (mDf =G (m)f =(p1— p2)d;v2+ p19;v — Vy0s - Viv2
= (p1 — p2)0;v2 — V05 - Va2 (3.125)
+ p1[Ta, v + To,(3; — Ta,)os| + prws,

where T4, v = 0 (at z = 0). Using this, (3.98), (3.123), (3.124) with Theorem C.4
i), (C.8), (C.11), we find that

G ) f =G (m)f = Tu(p1 — p2) — Tv,0, Vx0s + Tp, T, (0; — Ta,)o0s,
where by virtue of Theorem C.4 (ii),

Tp1 sz (81 - TA[)Q(S =~ szTpl(az - TAI)QS-

Next applying Theorem C.11 we find that

(3.124)

Ty,0,(p1 — P2) = T2,v,0, - Vx05 — Tpy6,0:05-

We thus arrive at
G ) f =G m)f = —To,(Tpa, — 19,0, Vx)05 + T6,V,0,—V, v, V05
+ Tp, Tp,—p,0:0s-

By (3.86), we have

P1A1 — p2Ay = A — Ay — if - V05 = A - Vs,

M{(V.0s) + M; (A) S F(Ny).
Theorem C.4 (i) and (C.8) yield that

1Tp)—p, 005l o1 S 0zl gs—1lp1 — p2ll go-1-5
S FWN)lIm = mllgo-s,

ITpa1-pras@sll o1 = F(Nll@sl go-s + 1 Tv,05 Tx0s | o1
S F(Npllesllgo-s.

We conclude that
G () f =G ) f = —=Tu,(m —m)+Tv, - Vi —n2)
which finishes the proof of Theorem 3.24. 0O
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For future reference, let us end this subsection by providing a variant of Corol-
lary 3.25.

Proposition 3.31. Let s > 1 + % with d > 1. Consider n1, 1o € H*(R?) with
dist(n;,I'") > 4h > Ofor j = 1,2. Forallo € [%, s], there exists F : Rt — R*
depending only on (s, o, h) such that

IG~ ) f =G~ ) fllgo—1 = F(IGr, m) s ) im — m2lls | fll o - (3.126)

Proof. We shall use the notation in the proof of Theorem 3.24. In our setting, we
can strengthen (3.96) to

loslixs < e — m2llas, (3.127)
butas f € H°,in place of (3.98) we have
Vel xo-1q—1,0n S FWNOIfllgos  Ns =11, m2) s (3.128)

Recall that v = v1 — v; solves (3.99). Upon using the product rule (C.12) and pro-
ceeding as in the proof of Corollary 3.25, (3.126) follows easily from the following
estimate for v

Ve, 2vllxo-1(1z.0p = F(N I = mallasll fll o, 20 € (=1,0).  (3.129)

To prove (3.129), we apply Proposition 3.12 to have
I VX’ZU”XU’I([Z(),O]) S F(Ns) <||F”Y"1([z1,0]) +| Vx’zv”xi([—m])) )

where —1 < z; < zp < 0. Let us estimate each term on the right-hand side. We
claim that

\Y% SfN — s o .
1Vecvl oy o S FODIm = mlalf i

This follows along the same lines as the proof of Lemma 3.27, except that for the
right-hand side of (3.103), in place of (3.104) we estimate
A — A2||L00(]Rd><(_1,0)) S A = A2||L0<>((_1,0);HH) S F(Ng I — m2llas,

||Vx,zU2||L2(RdX(,1,())) S, ”vx’zvz”LZ((—I,O);H”_%) 5 f(Ng)”f”ﬁ(l

It remains to estimate || F ”y
(3.34) as

o3 . The first term in F can be bounded using
2 ([z1,0D)

(1 — a2) Axvallyo—1 S oy — eallxs-1 | Axvzllxo—2
S Fnlas)lin —m2llas 1 f 1l g -

Applying (3.34) again gives

It = v2)0zv2llye—1 S 1 — v2llxs—2110zv2 ]l xo-1
S Flinltas)ln —m2llas 1 1l g -

The proof is complete. O
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4. Proof of the Main Theorems

4.1. Proof of Theorem 2.3

Letus fixs > 1+ % and consider either '™ = Jorb™ € W10 (R). This
section is organized as follows. First, we assume that n is a solution of (2.3) on
[0, T'] such that

neC(0,T]: H) N L? ([o, T): H-*+%) , 4.1)
distn(t), T7) = h Vi € [0, T, (4.2)
inf (1~ BGxr.0) Za >0 Vi e[0.7] (4.3)
X€e

where B is given by (3.54) with f = 5. Under these assumptions, a priori estimates
are derived in Sections4.1.1, 4.1.2, 4.1.3 and 4.1.4. These estimates will be used
for solutions of (4.32) which is similar to (2.3) with 9; — 9; — € A. This modifi-
cation only improves the equation and for simplicity, we perform the analysis on
solutions of the simpler equation (2.3). Finally, the proof of Theorem 2.3 is given
in Section 4.1.5.

4.1.1. Paradifferential reduction We first apply Theorem 3.18 with f = n and
o = s to have

on=—«kTn(n—Tgn) +«Ty -Vn—kR™(nn (4.4)
where R~ (n7)n obeys the estimate (3.55) witho = s

IR=Gonll, -y = Fmla) Il (1 + IIUIIHH%,S) (4.5)

7 =

where § € (0, %] satisfies § < s — 1 — %. Recall that V and B can be expressed in
terms of 7 by virtue of the formulas (3.54) with f = 5. Note that

M5 < Fnllas). 1Bllwse < ClIBllgs—1 < F(lInllas). (4.6)
Owing to Theorem C.4 (ii), 7, Tp — T, p is of order 1 — § and

I Ts = Topnll -y = Fnllalinll - 4.7

2
Combining (4.4), (4.5) and (4.7) we arrive at the following paradifferential reduction
for the one-phase Muskat problem (2.3).

Proposition 4.1. For$ € (0, %] satisfying § < s—l—%, there exists F : RT — R™
depending only on (s, 8, h, k) such that

on—«Ty -Vn+«Tya-pn=f (4.8)
with f satisfying

LAy = Fnla)lnlles (1 + IIHIIHH%,a). (4.9)

2
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4.1.2. Parabolicity Inequation (4.8), Ty - V1 is an advection term. We now prove
that T, (1— p) is an elliptic operator, showing that (4.8) is a first-order drift-diffusion
equation.

Lemma 4.2. Forany t € [0, T] we have

sup B(x,t) < 1. (4.10)

xeRd

In view of the formula (3.54) for B, Lemma 4.2 is a direct consequence of the
following surprising upper bound.

Proposition 4.3. Assume that either T~ = @ or b~ € W RY). If f € HS(RY)
withs > 1+ %, d = 1, then there exists co > 0 such that

G (f)f(x) <1—cy VxeR (4.11)

Proof. Let 2~ denote the fluid domain with the top boundary ¥ = {y = f(x)}
and the bottom I'™.
1. Finite depth According to Proposition 3.4, there exists a unique solution

¢ € HI(Q_) to the problem
Ay y¢=0 in Q,
p=1f on X, (4.12)
Zi;’b_ =0 on I'”

in the sense of (3.20)
/ Viy® Viypdrdy =0 Vo € Hy (7). (4.13)
o

Inserting ¢ = min{¢ —infrs f, 0} € Hol,* (27) into (4.13) we obtain the minimum
principle
inf ¢ = inf f. (4.14)
Q- R4

Consequently,
¥ (x, ) :=¢(x,y)—y§iﬂgdff—y>0 (4.15)

for (x, y) € Q™ with y < k := (infra f) — 1. We claim that v is also nonnegative
elsewhere:

Y(x,y) 20 in Qp:={(x,y) € RY xR : E(x) <y < fx)}, (4.16)

where Z(x) = max{b~ (x), k} is a Lipschitz and bounded function, be whoo(R9).
Let x : RY - Rt bea compactly function that equals 1 in B(0, 1) and vanishes
outside B(0, 2). Then consider the test functions ¢, = ¥~ (x, ¥) x () < 0 where

¥~ =min{y, 0} and n = 1. By (4.15), supp ¥ ~ C Qj and thus

supp ¢, C Q5 ,, 25, 1= Q5 N {lx] < 2n}
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which gives ¢, € H(i*(Q_). Replacing ¢ with ¢ + y and ¢ with ¢, in (4.13) gives

f Vel - Veygndrdy = — / 3,0 dx dy
Q- QpN{|x|<2n}

fx)
—— [ [ ety
{lx|<2n} Jb(x)
=/ on(x, b(x)) dx 0.
{Ix|<2n}
On the other hand,
X
/ Viy¥ - Vx.,yﬁpndXdy = / |Vx,y1//|2X (_) dx dy
Q- Uy, n
1 X
[ Ve a0 () dedy,
n Up n
where U, = {(x,y) € Qg,n Y (x,y) < 0}. Thus,

[ vt (5) drav= S [ wvi oo () deay vz

n
4.17)
Since

£
V(x,y) = —f Ay (x, y)dy + f(x) —y
y

and f(x) —y 2 0, we deduce that if ¥ (x, y) < 0 then

1V (x, y)| = —1f ) =yl

f) .
/ 3y¢>(x, y)dy
y

1 fx) 1
<[ mewonrey)
y

where L = || f — ZHLOO(R,;) < 00. In particular, for (x, y) € U, C €, we have

Fo)
/U ¥, P dedy S L / |0y (x, y)I? dy’ dx dy
n y

Q5

<1 / 8y (x, )P dx dy.

Q50

This combined with the fact that V,y = V¢ yields

‘%/U Y- (Ve () dxdy‘

LIVl e
S RV 2y, 160 20;,

Vv 1720

LIV x|l poo (ra)
n
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which tends to 0 as n — oo. Then applying the monotone convergence theorem to
(4.17), we arrive that

/ Ve w2 dedy <0
{(x,»)€Q:9 (x,y) <0}

which proves that ¢ = 0 in Q5 as claimed in (4.16). Combining (4.15) and (4.16)
we conclude that ¥ = 0in Q™.
Now by virtue of Proposition 3.12, ¢ € Cll (£2,) where

Q, ={x, ) eR xR:n(x) —h <y <nw)

for some & > 0. Consequently, ¥ € Cg (,), ¥ = 0 everywhere in 2, and
Y|y = 0. The infimum of i over Q_; is thus 0 and is attained at any points of X;
moreover, ¥ < 0in €, thanks to the strong maximum principle. On one hand, it
follows from Theorem 3.14 that G~ (f) f € H*~'(R?) with s — 1 > 4, implying
that G(f) f(x) < % for all |x| = M for M sufficiently large. On the other hand,
letting V = ;" N {|x| < 2M}, we can apply Hopf’s lemma (see [58]) to the che
boundary ¥ N {|x| < 2M} of V to have % < 0 for |x| £ M, where n is the
upward-pointing normal to ¥. Hence,

3¢ oy 1

< _,—
on on /1+ |V f|?

whichyieldsG™(f) f(x) =1+ |Vf|2% < Iforall x| £ M.By the continuity
of G (f) f on{|x| £ M}, we conclude that G~ (f) f (x) < 1 —cg for some ¢y > 0
and for all x € RY.

2. Infinite depth The proof for this case is in fact simpler. We first let ¢ €
H'(27) be the solution in the sense of Proposition 3.6 to the problem

Ay =0 in Q7,
p=1r on X, (4.18)
Viy$p — 0 as y — —o0;

that is, (4.13) holds. The minimum principle (4.14) remains valid, implying (4.15).
Then we can proceed as in the previous case upon replacing Q5 with {(x,y) €
RIxR:nx)—k <y<nkx)} O

Remark 4.4. The proof of Proposition 4.3 is simpler for the periodic case x € T,
Indeed, when x € T¢ we have ¥~ € H'($27) and thus localization in x by X(;—‘)
is not needed.

Remark 4.5. The one-phase problem (2.3) dissipates the energy E(¢) = % In %2
since

1 1 to
IO = SInO)17, = —K/O (G~ (). ) p2zay dr £ 0.
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By virtue of the upper bound (4.11), if n(¢) remains nonnegative on [0, 7] then the
energy dissipation over [0, 7] is bounded by the L' norm of #:

T T
K/o (G~ (mn. M) p2ra) dr EK/O )l L1 gy dr.

Note that this bound is linear, while the energy is quadratic. In the case of constant
viscosity, the same bound was proved in [20] without the sign condition on 7.

4.1.3. A priori estimates for » Denote (D) = (1+ |Dx|2)% and setng = (Dy)".
Conjugating the paradifferential equation (4.8) with (Dy) gives
oms =«Ty - Vg —kTha—pyns + f1 (4.19)
where
fi =«kl[(Dx)*, Ty - VIn — «[{Dx)*, Tha—pyIn + (D)’ f.

As in (4.6) we have || V|lys.0c < F(|In| gs). This combined with (4.9), (4.6) and
Theorem C.4 (iii) implies that [(Dy)*, Ty - V] and [(Dy)*, Ty1—p)ln are of order
s + 1 —§, and that

LAl -y = Fnllas) s (1 + IIUIIHﬁ%,S)- (4.20)

2
Taking the L? inner product of (4.19) with n, gives
zallnslle =k(Tv - Vns,ns)p2 — k(Tha-pyns, ns) g2 + (f1. ) 2. (4.21)
We have
K *
€(Ty - Vngno)pe = 5 ((Tv -V + @y V) )nems)
where by virtue of Theorem C.4 (iii), Ty - V + (Ty - V)* is of order 1 — § and

I((Tv - V)" + Ty - V)m-IIH,%H < Flinla)linsl g -

[S]

Consequently,
k|(Ty - Vs, )2l = Fllnlla)lnsll, ylinsl 1o (4.22)
Next we write
(Th.a-Byns, Ms) 2 = (T\/am, T\/;)ns>L2 + (T\/gns, (T = T«/E)’“)Lz
+ ((Ta) - T\/Z)T«/E)ns, 77s>Lz

(4.23)
where @ = A(1 — B). In view of (3.50) and (4.3) we have w = al&|, hence

1 1
Mg (Jw) £ F (II??IIHA', E) :
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According to Theorem C.4 (ii) and (iii), (T@)* — Tﬂ and T, — T\/ET\/E are of
order % — § and 1 — § respectively. Thus
(Tyane (T @ = T@)ns) sl 1 (T /)™ = T ) ms s

s f(llnllm —)Ilnsll 1slnsll,

4.24)
and

(o =TT a)ne. ),

(To = TyaTy)nsll, 1 oslnsl oy

1
< F(lImllas. sl y sl g

In addition, Theorem C.4 (iii) gives that T Ve

(4.25)
T Vo Id is of order —§ and that

2 2

1
Incll,,y 0T 1 Tansll, g +f<||n||m —) Insll,
(nnnm —) (1 anelzz + ||ns||H%,5),

whence

1
IT sl 2 ———IIn || — sl . (4.26)
VORI = F (s, 1) Tt

Combining (4.23), (4.20), (4.24), (4.25), and (4.26) leads to

1
—k(To(1—B)Nss M) 2 = —nmu2
F (Inllgs, 1y
F ! 4.27
Illess — ) sl gl 1 4.27)
Putting together (4.21), (4.22), and (4.27) we obtain
L ! I || + F(Inlge. 2
Nsllys = —————lIns ! (nm—)
2dr F(Inlae. §) “
(CAEY l,5+||m||H%||m||Lz). (4.28)

We assume without loss of generality that § < 5. The gain of § derivative gives
room to interpolate

1+
sl 1 Mgl Cllnsll “Ilnsll

Y=
for some p € (0, 1). Applying Young’s 1nequa11ty yields

1d

Sl < -

1 1
Fi Il + F (unum, —) Insl2.
F (Inlls. 1) a

where F depends only on (s, &, k). Finally, using Gronwall’s lemma we obtain the
following a priori estimate for n:
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Proposition 4.6. Let s > 1 + % Assume that 1 is a solution of (2.3) on [0, T]
with the properties (4.1), (4.2) and (4.3). Then there exists an increasing function
F :RT x Rt — R depending only on (s, h, k) such that

||77||L90([0,T];HS) + "n”Lz([O,T];HH%)

< F(InO s + TF(Inleqorymsya”)a™t). @29
In order to close (4.29), we prove a priori estimates for a and £ in the next subsection.

4.1.4. A priori estimates for the parabolicity and the depth Using (2.3) (or
the approximate equation (4.32) below) and Theorem 3.14 (with 0 = %) we first
observe that

t
In@ —nO _1 é/ orm(OIl _1dt
H 0 H™ 2

2

< tF (ImllLoe o,e3; 115)) Il S tF Il Lo go,0; 1))
(Imllzoeo.11:%)) (1053 L. H?)

Hence, by interpolation, for s~ = s — % > 14+ % + %,
In(®) =)l - S U@ llas + IOl ) = I (6) — n(O)IIZI_%, 0€(0,1)

and similarly, by virtue of Theorem 3.14 and Corollary 3.25 (note that s~ > s —
1

1_%)

2 B

G @) = nON ] =1 = FInllzom)In@) — )l -,
G (@) = GmONNO) =1 = F Il ) IO s In (@) = n(O) 5y

Thus, there exists & > 0 such that

IG (n(®)n(t) — G@O)O)[I L + [ Van(r) — Vin(0)| 1o
+1In(®) = nO) I < 1 FUnlle o, #e)-

Recalling the definition in (3.54), we deduce that

inf (1—-B(x,1) = inf (1—B(x,0) =T Fi(Inllzqo,r); 1)) (4.30)
(x,1)eR4 x[0,T] xeRd

and that

Jnt_dist((1), ") 2 dist(mo. T7) T° 71 (Inll s qo.r1:15)) 431)

where 6 € (0, 1) and 7| : RT™ — R™ depends only on (s, &, k).
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4.1.5. Proof of Theorem 2.3 Having the a priori estimates (4.29), (4.30) and
(4.31) in hand, we turn to prove the existence of H® solutions of (2.3). By a
contraction mapping argument, we can prove that for each ¢ € (0, 1) the parabolic
approximation

0ne = —kGMe)Ne + €ANe,  Neli=0 = No, (4.32)

has a unique solution 7, in the complete metric space

En(T.) = {v € C([0, To]; H®) N L*([0, T.]; H**1Y : dist(v(), T ™)
>h Vitel0, ]} (4.33)

provided that T is sufficiently small and that dist(ng, I'~) = 2k > 0. Let us note
that the dissipation term € A7, in (4.32) has higher order than the term —x G (1)1,
so that the parabolicity coming from —« G (1¢)1, is not needed in the definition of
Ey.

On the other hand, since 79 € H*(RY) with s > 1 + %, applying the upper
bound in Proposition 4.3 with f = 5y we obtain that

inf (1 — Bg(x,0)) = 2a (4.34)
xeR4

for some constant a > 0 independent of ¢. It then follows from the a priori estimates
(4.29), (4.30), (4.31) and a continuity argument that there exists a positive time T
such that T < T, for all ¢ € (0, 1). Moreover, on [0, T], we have the uniform
bounds

inf (1 —Be(x,1)) = a, (4.35)
(x,1)eRIx[0,T]
dist(ne(T),I'") = h, (4.36)
(0.7 Hs < s,a”! .
Inell Lo 0,71 H5) + ”%”LZ([O,T];H”%) < F(InO) s, at), (4.37)

where F depends only on (s, &, «). In addition, the L? norm of 1e 1S nonincreasing
in time since

(G(Me)Ines Ua)LZ(Rd) 20, (Ane, ﬂs)LZ(Rd) = —||Vns||iz(Rd) =0.

Next we show that for any sequence ¢, — 0, the solution sequence 1, = 7, is
Cauchy in the space

7NT) = L™ ([0, T]: HH) nL> ([0, T1: HS’%) .

Fix § € (0, %] satisfying§ < s —1— %. We introduce the difference ns = 7, —
and claim that it satisfies a nice equation:

dns = —k(Typns — Tv - Vans) + Ri + Ra, (4.38)

where

1 1
L= E(An(l — By) +An(1 = By)), V= E(V” + V).
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and the remainder terms satisfy

IR1ON -3 = Flmalizens + lmmllea) s O 1,

IR2ON o3 = o+ ) (I Oy + IOy

Indeed, taking the difference in (4.32), we obtain

o5 = = (G005 +1G™0h) = G~ ()i ) + & Ay = £0 A1,

and we can directly set R := &, An,, — €, Any. For the remaining terms, we apply
Theorem 3.16 (with o = 5 — § — 6) and Theorem 3.24 (with o = s — 1) to get

G~ Mwns + G~ () — G~ M) = Th,,ns — Ti, B, Ms — Tv, - Vins
+ Ry (Mm)ns + Ry (s Ma) -

Note that the remainder R, and R, lead to acceptable terms as in R, but we also
have

G mns + G~ () — G~ ) Im = Th,ms — T, 8,,m8 — Tv,, - Vins
+ Ry (n)ns + Ry (Mus ) 1n-

Thus, by taking the average of the above two identities, we arrive at (4.38).
Now, H'~! energy estimates using (4.38) give that

1d 2 53 1
S Im O == (1D~ Twns, (D))" 2ms) |
1 (a2 Ty - Vi, (D02 |
+ (D) IR (D) 2ms)
+ (D) I R2 (D) 205
=L+ L+ 151+ 14

2

We can now estimate each term one by one. First, it follows from the above estimates
for R and R, that

Iy| <
sl = IR2M -3 limsl s

2 2 2
g(sm+en>(nnmn oy Il Ly sl )
H "2 H "2 H 2
<
IS IRy lnsl

S Fllnlieens + Mnmlien) sl 1 slnsll oy

1-6

1+6
sl 2,

H“*%
L+ Ce Fllmllems + 1l o 1) 18 1131

S Flimallzee s + lnm Lo ms)lins |

2
< exllnsl
H

s
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where ¢, > 0 is arbitrary. Proceeding as in (4.22), we see that
L] = FlnnllLeons + mmllLeoms) lIns IIHH% |Ins||H,v_%+5
2 2
= &IInallHk% + Ce, Flnaliems + Inmlizeems) sl 5o

and finally, as in (4.27),

I

A

1
- lmsl?
FlImllzmns, L) #2

1
o+ F(Innlls. — )imsll .y Insl oy

n

1
< —( — e )Insll®
H

FnnllLons, —) 2
1 2
+ Ce, FlImnllLoons, — Ynslizpe-
iy
Adding all the above estimates yields
S ImOI0 < ~( 1 —3e, = e — ) IO
T A FUmalleons, 42) n i

+ Ce, Flmall o rrs + il oo o) 13 (-
+em+ e (I @I Ly +1m @I ).
H™ "2 H "2

Bt virtue of the uniform bounds for 7,,, there exists ¢, > 0 such that

1

1 Zcx VneN.
F(”’M”LOO([O,T];HS), a_n)

Choosing ¢, = f—’() and taking m and n sufficiently large so that ¢, &, < f—’(), we
obtain

1d
2dtllrls()llﬁs . IInaII I+C||n5”Hsl

2 (4.39)

+ (&m + &n) (nnmu2 w1l ) :
H "2 H "2

Ignoring the first term on the right-hand side, then integrating in time we obtain

Ins )12, < € /nna(r)um ldr+c<am+sn><||nm|| o Il )

||2
L2([0.71:H*F

In view of (4.37), the sequence ||7;, "l is bounded, whence Gronwall’s
2)

lemma implies

1517 s qo.79: 1151y = € (6m + 1) exp(C'T) (4.40)
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We then integrate (4.39) in time and use (4.40) to get the dissipation estimate

llns 1% 1 S C"(em +en) exp(C'T). (4.41)
L2([0.T]:H'"2)

It follows from (4.40) and (4.41) that n, is a Cauchy sequence in Z* —1(T"). There-
fore, there exists n € Z*(T) such that n, — 5 in Z*~!(T). By virtue of The-
orem 3.14 and Corollary 3.25, G~ (n,)n, — G~ (n)n in H*~! and thus nis a
solution of (2.3) in Z5(T).

Repeating the above proof of the fact that 7, is a Cauchy sequence in Z*~1(T),
we obtain the following stability estimate.

Proposition 4.7. Let iy and ny be two solutions of (2.3) in Z° (T') defined by (2.10)
withs > 1+ % and

dist(n;(1),I'") 2 h Vt €[0,T],
xienugd(l —Bj(x,1))2a>0 Vre[0,T].
Then,
I — m2llzs-1ry < F(I01. m) e qo.r1:89) 1010 — n2)li=oll grs—1 - (4.42)
for some F : Rt — R depending only on (s, h, a, «).
Finally, uniqueness and continuous dependence on initial data for the solution

n € Z*~1(T) constructed above follow at once from Proposition 4.7.

4.2. Proof of Theorem 2.4

We now consider the two-phase problem (2.4)—(2.5). We assume throughout
that either 't = @ or b* € W1 °(RY).

4.2.1. Well-posedness of the elliptic problem (2.5)
Proposition 4.8. Lern € W1 RHNH > (RY). Then there exists a unique solution
~1
ffeHj, R,
00 ifrt =9,

OL(x) = T —bE(x)) e eed
2011l oo s 10 oo () b= e WHe(R),

to the system (2.5). Moreover, f* satisfy

+
Wl

A2 (RY)

04
= CO A+ Il o) (1 +1Van, Vab ™) ewap Lol y
(4.43)

where the constant C depends only on (u™, h).
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Proof. Observe that f* = g*|x where g% solve the two-phase elliptic problem

Aqi =0 in Qi,

- + —
gt —q" =—[pln, 2 -2 =0 on %, (4.44)
9,4gT =0 on I'E.

Here the Neumann boundary conditions need to be modified as in (3.3) when '™ or
'™ is empty. Thus, it remains to prove the unique solvability of (4.44). To remove
the jump of ¢ at the interface, let us fix a cut-off x € C*(R) satisfying x(z) = 1
for |z] < %, x(z) = 0for|z| > 1, and set

[p

0(x,2) = —THx(z)e—'Z‘wm(x), (x.2) eR* xR
and
y —n(x) d
0x,y)=20 A (x,y) e R x R.
Then 6 (x, n(x)) = —@n(x) and 0 vanishes near I'=. Moreover, we have

1011112 = CLAIA + lInllwrelinll 1, 2= QfuQr. (4.45)

We then need to prove that there exists a unique solution 7 € H'(£2) to the problem

—Ar = £A60 in QF,

nr _ M — L L

e Y = 5,9 (M+ + M,) on X, (4.46)
d,xr =0 on ',

The pair g& := r|q+ =& 6 is the unique solution of (4.44). For a smooth solution
r and for any smooth test function ¢ : 2 — R we have after integrating by parts
that

/ Vr~V¢dx+/ Bnrd)dS:—/ ve-v¢dx—/ 3,00 dS
Qt ) Qt )

and

/ Vr - V¢dx —/ opr¢pdS = / VO - V¢ dx —/ 0,09 dS.

- ) - >

Multiplying the first equation by M% and the second one by M% then adding and
using the jump conditions in (4.46) we obtain

1 1
— Vr-V¢dx + — Vr - Ve¢dx
wr Jot nJo- (4.47)

1 1
=—— | V0.-Vpdx+— [ VO Vodr.
nt Jar nw Ja-
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Conversely, if r is a sufficiently smooth function that verifies (4.47), then upon
integrating by parts we can show that r solves (4.46). Therefore, r € H! (Q)isa
variational solution of (4.46) if the weak formulation (4.47) is satisfied for all test
functions ¢ € HY(Q). By virtue of the estimate (4.45) and Proposition 3.3, the
Lax—Milgram theorem guarantees the existence of a unique variational solution r;
moreover, the variational bound

IVriirz@ = Cle]d + Inlfwree) il 4

holds for some constant C depending only on (u*, ). This combined with (4.45)
implies that g% = r|g+ % 6 satisfy the same bound

14 114 < CLO)L + il linlly
Finally, (4.43) follows from this and the trace inequalities (A.2) and (A.5). O

Sinceitis always possibletofinda € (0, 1) suchthat ©4 (x) > Fa(n™ (x)—b*(x)),
~1

we have f* € H}.

Remark 4.9. (1) In fact, the proof of Proposition 4.8 shows that for € W1 (R%)

1 . . . . ~1
andg € H2 (R%)Y, there exists a unique variational solution f * ¢ Héi (R9) to the
system

f+ - fﬁ =8,
1 G+ + 1 — - _ (4-48)
G = =6 =0.
In addition, there exists a constant C depending only on (u™*, &) such that
+ < +
I/ ”ﬁi@% < O+ Il roe ) A+ 1CTen, bl mn)lgl g
(4.49)

Q) If '™ = '™ = @, then it suffices to assume 7 € Wl’oo(Rd) and g € H%(Rd)
since localization away from I'* is not needed and one can choose

1
0(x,2) =S¢ ¥IPlg(), (x,2) eRI xR.
Then, 6(x, y) := 6(x, y — n(x)) satisfies
19110 = 1011ty € CAU+ IVemllowqra) gl 1

Consequently,

17024 gy S COFIVanl o) Nel 1 (4.50)
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4.2.2. A priori higher regularity estimate for f* The weak regularity bound
can then be bootstrapped to regularity of the surface 7.

Proposition 4.10. Let f* be the solution of (2.5) as given by Proposition 4.8. If
ne H®RY withs > 1 + % then for any r € [%, s], we have

IIfiIIﬁ; < Fnlla) Il ar- (4.51)

Proof. Fix § € (0, min(s — 1 — %, l)). We first claim that whenever f tc Ho
with o € [4,s — 8] we have f* € H°*® and

1f = goss < FAlnlla) (1F 51 go + Il goes). (4.52)
Indeed, applying Theorem 3.16 we have

G f* =Ff* + Ry,
IRG () f* N g1 < FClnll )= g -

Plugging this into the second equation in (2.5) we obtain

< Fnla) I F 1 g
Ho—1+6

1 _ 1 4
—TL.f +=0f
5 n
However, f* = f~ — [p], from the first equation in (2.5), hence
IT5f Npgosss < Fnlles) (15 g +nlgoss) . @453)
On the other hand, by virtue of Theorem C.4 (ii) we have

W (D)glur = 1Tigllur = FUnllas) gl -1 + gl giv-s) Vv eR.

Combining this with the inequality

| =

2
+

lgllgy < IIgIIﬁl + ¥ (D)gllar Vv =

yields

(S

lgllgy S Ilgllﬁ% + FUml ) Ul g1 + gl g1v-s) Vv =
+

Applying thiswith g = f~andv =0 +6 = % + 8 we deduce in view of (4.53)
and (4.43) that

I~ s = Fnlla) (151 g + Inll o)

forall o € [%, s — 8]. Clearly, this implies (4.52).
Then, because (4.51) holds for r = % an induction argument using (4.52)
shows that (4.51) holds for any r € [%, s]. 0O
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4.2.3. Paradifferential reduction

Proposition 4.11. Lets > 1+% andlet§ € (0,s—1—%)and$ < 1.Ifn € H*(RY)
and fjE € H3 solve the system (2.4)—(2.5), then we have

1
om=——G (mf"~
"w

(4.54)
S — ([[p]]n - T n) + oy, Vi + R(n)
wt e (8] wt+ vl
where [B] = B~ — BY, [V] = V™ — V*, BE and V* are given by
Vn-V + G:I: +
pt= Y1 VIt 2(")f , VE=vst_ Bty (4.55)
L+ 1V
and R(n) obeys the bound
||R(77)||Hs—% < Fmllas) il as (1+ nl YJrj_(g) (4.56)

for some F : RY — R depending only on (s, u*, [p], h).

Proof. We first apply the paralinearization in Theorem 3.18 to G (i) f* with
o = s, to have

G mf =0(f =Tg-n)—Ty--Vn+R () f",
Gr St =—T(f* = Tgen) + Ty+ - Vi + RT () f 7,
where, using Proposition 4.10,

IRESEN oy < FAnlao il (Ul ). (458)

4.57)

In view of the second equation in (2.5), (4.57) yields

f+ f- 1 + +
28 n- nt ¥

1
——R (S (4.59)
"

Since fT = f~ — [p]n, (4.59) implies

—_ _lpln” 1
T f~ = o T Tpg
oS Pl eyt LA
1
+ —M+ T o TM+V*+#*V+ . VT]

W(M_R+(U)f+ —uR™ () f7).

Plugging this into the first equation in (4.57), we arrive at (4.54) with

! Al S
R =———(R*(f _;T—R mf).

w4+
In view of (4.58), this finishes the proof. O
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When the top fluid is vacuum, equation (4.54) reduces to equation (4.8) previously
obtained for the one-phase problem. Remarkably, (4.54) together with the fact that

T, ([[p]]n - T[[B]]n) ~ o] -[BD"

shows that the two-phase Muskat problem is parabolic so long as the Rayleigh—
Taylor condition RT = /1 + |Vn|2([p] —[B]) > 0holds. In addition, for constant
viscosity, [4] = 0, by using (2.8) and (2.9) we find that the parabolic term becomes
explicit

L(lol-18D) = Tulola+19an=1 1 (4.60)

4.2.4. Proof of Theorem 2.4 'We observe that the paradifferential equation (4.54)
has the same form as equation (4.8) for the one-phase problem. In particular, an
H?® energy estimate on [0, 7] can be obtained as in Section4.1.3 provided that
RT(x, 1) > Oforall (x, 1) € R? x [0, T]. This stability condition can be propagated
asin Section4.1.4 if it is assumed to hold at initial time. In the rest of this subsection,
we only sketch the approximation scheme that preserves the aforementioned a priori
estimates.
For each ¢ € (0, 1), consider the approximate problem

| _
at’)s:_ﬂ__G (Me) fe +€Ane, (4.61)

where fejE solves (2.5):

fe+ - fs_ = (IO+ - ,0_)7757

4.62
LGt £~ G £ =0, o2

Proposition 4.12. Let s > 1 + % with d > 1. For each ng € H®(RY) with
dist(no, ') > 2h > 0, there exist T. = T.(|nollgs, h, s, u™, [p]) > 0 and a
unique solution 1 to (4.61)—(4.62) on [0, T;] such that n¢|;=0 = no,

ne € C([0, To1; H*(RY) N L2 ([0, T.1; H* T (RY)),
and
dist(ne (1), TF) = h Vi €0, T,].

Proof. The unique existence of 1, can be obtained via a contraction mapping
argument in the space

Ej(T,) = {v e L™([0, Tc]; H*) N L*([0, T.]; H*™") : dist(v(r), ['F)
= h almost everywhere ¢ € [0, T.]} (4.63)

provided that T} is sufficiently small. Note the similarity between E;, and Ej, defined
by (4.33). O
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Appendix A. Traces for Homogeneous Sobolev Spaces
A.l. Infinite Strip-Like Domains

Let 11 and 1, be two Lipchitz functions on R4, nj € Wl’oo(Rd ), such that ny > n;.
Set

n1(x) — n2(x)

L=Vnlre + IVnallze, Ox) =
IVailiLe + IVl (x) 7L

Consider the infinite strip-like domain
U={(x,y) e R im(x) < y < m). (A1)
We record in this Appendix the trace theory in [49] (see also [60]) for H'(U) where

H'WU)={uell (U):VueL*U)}/R.

Theorem A.1. ([49, Theorem 5.1]) There exists a unique linear operator
Tr: H'(U) - L, (R?)
such that the following hold:

(1) Tr(u) = ulyy forallu € HY(U) N C(D). '
(2) There exists a positive constant C = C(d) such that for all u € H'(U), the
1

Sunctions g = Tr(u)(-, n;(-)) are in ﬁé (Rd) and satisfy
) < .
”g]”ﬁé(Rd) = C(l +L)||u“H1(U)’ (A.2)

/ lg1(x) — g2(x)I?
]Rd

dx < C | |0yu(x,y)?dxdy. A3
n(x) — na(x) r= /;}'ﬂ‘(x y)|“dx dy (A.3)

~L
Recall that the space H (R?) is defined by (3.5).

~1
Theorem A.2. ([49, Theorem 5.4]) Suppose that g\ and g, are in Haz(mfm)(Rd)
for some a € (0, 1) such that

/ lg1(x) — g2(x)]?
]Rd

dx < oo.
n1(x) — n2(x)



A Paradifferential Approach for Well-Posedness of the Muskat Problem

Then there exists u € H' (U) such that Tr(u)(-, n;(-)) = g, and

2

HI(W) R N1(x) — N2 (x)
2 2 2
+CA+L) | llgll” + g2l 1 (A4)
Hiy1 ) BD H _ (Rd)
a(ny—m) a(ny—m)

where C = C(d).

A.2. Lipschitz Half Spaces
For a Lipschitz function 7 on R¢ we consider the associated half-space

U={(xy)eR":y<nx)

Theorem A.3. There exists a unique linear operator
Tr: H'(U) - L},.(RY)
such that the following hold:

(1) Tr(u) = ulyy forallu € HY(U) N C(0). '
(2) There exists a positive constant C = C(d) such that for all u € H'(U), the

~L
Sfunction g = Tr(u)(-, n(+)) is in H& (Rd) and satisfies

gl 1 = CA+IVnllpo@a)lull g1w)- (A.5)
g A2 @) Lo (RY) H\(U)

~L .
Theorem A4. For each ¢ € HZ(R?), there exists u € H'(U) such that
Tr(u)(-, n(-)) = g and

Il < CO+ IVl _y (A.6)

(RY)

where C = C(d).

A.3. Trace of Normalized Normal Derivative
We consider the infinite strip-like domain
Up={(x.») €eRT xR n(x) —h <y < n(x))
of width / underneath the graph of n
¥ = {(x,n(x)): x € R}

Note that n = (=Vn, 1) is the upward pointing unit normal to X.

1
V1+V|
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Our goal is to show that for any function u in the homogeneous maximal domain
of the Laplace operator A

EUp) ={u € H'(Up) : Ay yu € L*(Up)},

the trace
0
I+ Ianza—le = dyu(x, n(x)) — (Vxu)(x, n(x)) - Vi(x)

makes sense in H -3 (RY).

Theorem A.5. Assume that n € W (R?). There exists a unique linear operator
1
N : E(Up) — H™2(RY) such that the following hold:

(D) N@) =1+ V235 ifu e H' (U N CHTU).

(2) There exists an absolute constant C > 0 such that

_1
IIN(M)IIH_ ) S Ch 2L+ IValleo) Ve yull 2wy,

%(]Rd
_1
+ Cl’l 2 ”AX,}/MHLZ(U;,)
forallu € E(Up).

Proof. SetS = R? x (—1, 0) and introduce 0 (x, z) = n(x)+zh for (x, z) € S.1Itis
clear that (x,~z) — (x, 0(x, 7)) isadiffeomorphism from S onto Uj,. If f : U, — R
we denote f(x,z) = f(x,6(x, z)). It follows that

1. ~
@y f)(x, 0(x, 2)) = 20/ (x, 2),

\Y% ~ ~
(Vxf)(x,0(x,2)) = <Vx - 77731) fx,2) =Af.

For u € E(U) we have that f = Au satisfies

f= diVx,z(AVx,zg) (A7)
with
1d — 1
A= ' 14V (A.8)
h h?

Equivalently, we have

Vn

- JURES N | v/ L N
divy Au + 0, (_TVXM + ME)zu>

2 = f. (A.9)
Let us consider the quantity
@yu)(x, 0(x, 2)) = (Vyu)(x, 6(x, 2)) - Vin(x)
1. Vi, \~
= 5, 0c1(x. 2) = Vn(x,2) - | Vo — =0 | U(x. 2)

Vin(x)

~ 14 |Vn(x, 2)|?

h2

az;i(X, Z)

= B(x, 2).
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Using the first expression we deduce easily that

_1
||E||L2((_1,0);L2(Rd)) Sh2(l+ ||V77||L°°)||Vx,yu||L2(Uh)- (A.10)

Moreover, (A.9) implies

— divy A7 (A.11)

N@
m
Il

Y]

Note that if u € C1(U) then

dyu(x, n(x)) — (Viu)(x, n(x)) - Vn(x) = E(x, 0).

We shall appeal to Theorem A.6 below to prove that the trace E|,—¢ is well-defined
in H_% (RY) for u € H'(Uy). To this end, we use (A.11) to have

102 Bl L2~ 1.0y 1Ry = NFIL2((=1.00: -1 Ry F AL L2((~1,0:22(RY))

where
IAUN 21,00 2R = h IVaull2wy)-
On the other hand,
1 larona 1@y S 1712 S 072 1F 2w,
hence

—1
||3zE||L2((71,0);H—1(Rd)) Sh2 (||f||L2(Uh) + ||qu||L2(Uh))' (A.12)

Combining (A.10) and (A.12) we conclude by virtue of Theorem A.6 that 2 €
C([—1,0]; L*(R?)) and

_1 _1
||E||c([71,0];L2(Rd)) § Ch 2(1+ ||V’I”LOC)”Vx,yM”LZ(Uh) +Ch™2 ||f||L2(U,,)
(A.13)
for some absolute constant C > 0. O

Theorem A.6. ([48, Theorem 3.1]) Let s € R and I be a closed (bounded
or unbounded) interval in R. Let u € L%(I, HH%(Rd)) such that d,u €

Lg(l, H? (R%)). Then u € BC(I, H*(R?)) and there exists an absolute con-
stant C > 0 such that

sup [|u(z, )l s ey = C + [19zull

u .
el (” 2t o+ oy L2<1,HS5<RU’>>)
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A.4. Proof of Proposition 3.2

Assuming (3.14), let us prove (3.15). By comparing o1 with min{oy, o2} + M it
suffices to prove the following claim. If ¢ = 2h > 0 for some & > 0, then for any
M > 0, there exists C = C(d, h, M) such that

Ay =CIfI - (A.14)
HU+M Hy
By iteration, (A.14) will follow from the same estimate with M replaced by § = 1h_0'
To prove this, we first note that
nﬂﬁl=wmi+f /
HZ H? xeRd Jio () S|k Lo (x)+8)
fG+h) = fP? 2
s dkdx = ||f||~a%+J.
Letting 0(x) =1 — %(x), we have 6 € [%, 1] and
h
[y0(x)| = o(x) — 1 when [y| = o(x) + 4. (A.15)

Then, for |u| < h/4, we decompose J < 2J; + 2J, where

k) — 0k 2
J1:/ / [ f(x + k) fd(i]+ +u)l dk dx
xeRd J o ()< k<o (0)+8) Ld

0k — 2
J2=/ / |f(x + +du3 SO i dr.
xeRe Jio ()< kIS0 (0)+8) |k|4+

We can easily dispense with J, by changing variable k — z = 6k + u and using
(A.15):

If(x+2) = f0)I?
st/ / - dxdz = | 7
xeRd J{|z|<o (x)) |z] g

uniformly in |u| £ h/4. To estimate J;, we average over |u| < h/4:

CEL N |
ueB(0,h/4) JxeRd J{ox)S|k|So(x)+6}

| f(x+k) — f(x+k+ O — Dk +uwl?
|k|d+1

dk dx du.
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Since [(® — 1)k + u| < h, by the changes of variables u + (6 — 1)k + u and then
k — k + x, we get

s h_d/ f
ueBO0,h) Jx,keRd

[f(x4+k)— fx+k~+u)?
|k|d+l

< h“’/ / 1f@) — fz+uw)?
zeRd ueB(0,h)

1
{/xeRd 7 [T o Sli—x S0 (+) dx} du dz

B 2
Sh/ / | f(2) J;EFZI-F u)| du dz
2eR JueB(0,h) |ue]

2
ShlIfIE 1,
H2

o (o)< k<o (v)+8) Ik dx du

which finishes the proof.

Appendix B. Proof of (2.8) and (2.9)
Since pT (x, n(x)) = p~(x, n(x)) we have
Vept = VipT = @0yp” —dyp")Vn on T = {y =n(x)}.
Then
VI+IVIPRT = —(Vipt = Vap s - V4 @yp" = 0yp7)lx
= @ypT —dyp )l +|VnP).
Finally, using the fact that
dypEly = dygT|x — p* = BE — p*,
we obtain

RT = /14 |Vy2[(0p~ —p")— (B~ = Bh)],

which proves (2.8). As for (2.9), we use the Darcy law (1.5) and the continuity (1.7)
of u - n to have

_1
pwrun 4 Vpt=—0,0%) n=—p=(1 + V)1,
yielding

1
RT = (VpT —Vp)-n=w —uDu-n+(p —pHp*d +|Vn*H 2.
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Appendix C. Paradifferential Calculus

This section is devoted to a review of basic features of Bony’s paradifferential
calculus (see for example [3,12,45,52]).

Definition C.1. 1. (Symbols) Given p € [0, 00) and m € R, FZ1 (R9) denotes the

space of locally bounded functions a(x, £) on R? x (R?\0), which are C* with
respect to & for & # 0 and such that, for all & € N and all £ # 0, the function
X = 8? a(x, &) belongs to WP-*°(R?) and there exists a constant C, such that

1 _
VIEIZ 2, 19FaC, ©)llwsqea) S Ca(l+[ED" .
Leta € Fg(Rd), we define the semi-norm

M@= sup  sup [[(1+[EDIT"0¢al, E)llwocogay.  (C.D)
| S2(d+2)+p 5|21

2. (Paradifferential operators) Given a symbol a, we define the paradifferential
operator 7, by
Tu(€) = )™ / X (& —n.maeE —n, m¥mun) dn, (C.2)

where a(0, §) = f e g (x, &) dx is the Fourier transform of a with respect to
the first variable; x and W are two fixed C* functions such that

1 1
W(n =0 fornl = 3 V() =1 fornl 2 T (C3)

and x (0, n) satisfies, for 0 < &1 < g, small enough,
x©@,m=1if 0] <eilnl, x@n =0 if [0] = elnl,
and such that
VO, ), 1050L x (O, )| < Cap(1+ Inh 71711

Remark C.2. The cut-off x can be appropriately chosen so that when a = a(x),
the paradifferential operator T,u becomes the usual paraproduct.

Definition C.3. Let m € R. An operator 7T is said to be of order m if, for all u € R,
it is bounded from H* to H* ™.

Symbolic calculus for paradifferential operators is summarized in the following
theorem:

Theorem C.4. (Symbolic calculus) Let m € R and p € [0, 1).

() Ifa e Ty (RY), then T, is of order m. Moreover, for all 1 € R there exists a
constant K such that
1Tl g i < K MG @). (C.4)
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(i) Ifa € FZ’ RN, b e FZ‘/(R‘I) then T, Ty, — T,y is of order m +m’ — p. Moreover;
forall u € R there exists a constant K such that

1TaTs = Tanll s ppuemnive < KMI @M () + MG @M (1))
(C.5)
(iii) Let a € FZI (RY). Denote by (T,)* the adjoint operator of T, and by @ the
complex conjugate of a. Then (T,)* — Tz is of order m — p where Moreover,
for all p there exists a constant K such that

”(Ta)* - TE”H“—)H“*W!H’ § KM;n(a) (C6)

Remark C.5. In the definition (C.2) of paradifferential operators, the cut-off W
removes the low frequency part of u. In particular, when a € I'jj’ we have

I Taull e < CMG (@) | Vil grovm-1.

To handle symbols of negative Zygmund regularity, we shall appeal to the following.

I"roposition C.6. ([3, Proposition 2.12]) Let m € R and p < 0. We denote by
F:)” (Rd) the class of symbols a(x, &) that are homogeneous of order m in &, smooth

in & € RY\{0} and such that

Mp@ = sup  sup [IE[*T"OFaC, ©)llepgay < 00
lo|S2(d+2)+p |g]21

Ifa € I then the operator T, defined by (C.2) is of order m — p.
0

Notation C.7. If a and u depend on a parameter z € J C R we denote

(Tou)(2) = Tayu(z), My'(a;J) = sup M (a(2)).
z€e

IfMZ’(a; J) is finite we write a € F:,"(Rd x J).

Definition C.8. Given two functions @, u« defined on R? the Bony’s remainder is
defined by

R(a,u) =au — T,u — Tya.
We gather here several useful product and paraproduct rules.

Theorem C.9. Let sq, s1 and s> be real numbers.

(1) Forany s € R,
| Taullys = CllallLoe|lull g (C.7

2) Ifso < spand sg < s1 + 52 — %, then

1 Taull so = Cllall gor lluell prs2 - (C.8)
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3) If s1 + s2 > 0 then

IR, < Cllall gsi ey lull g2 ey (C9)

1427 (Rd)
IR(a, W)l gsi+s2way S Cllall ot gay 1l o2 may- (C.10)
@) If sy + 52 > 0,50 sy and sg < s + 52 — % then
lau — Taullgso = Cllall gsi llull g2 - (C.11)
BYIf sy + 52 >0, 50 < 51,50 < 52 and s < s + 52 — % then
luruzllgso = Cllurll st lluzll s - (C.12)

Theorem C.10. Consider F € C*®(CN) such that F(0) = 0.
(i) Fors > %, there exists a non-decreasing function F : Ry — Ry such that, for
any U € H*(RY)N,
IFW)las < FIU L)1 U ]l s (C.13)

(ii) For s > 0, there exists an increasing function F: Ry — Ry such that, for
any U € Ci(Rd)N,

IF@)ley £ F>IU =) U - (C.14)

Theorem C.11. ([10, Theorem 2.92] and [52, Theorem 5.2.4]) (Paralinearization
for nonlinear functions) Let i, T be positive real numbers and let F € C o (CN) be
a scalar function satisfying F(0) = 0. IfU = (uj)ﬁ.v:] withu; € H! (Rd)ﬂC: (RY)
then we have

FWU) = E}V:lTajp(U)uj—l—RF(U) (C.15)

with
IRE(U) I gu+e = FAU L) NU ez NU || e

Recall the definitions (3.32). The next proposition provides parabolic estimates for
elliptic paradifferential operators.

Proposition C.12. ([3, Proposition 2.18]) Letr e R, 0 € (0, 1), J = [z0,z1] C R
and let p € Fé (R? x J) satisfying

Re p(z:x, &) = cl€],

for some positive constant c. Then for any f € Y"(J) and wy € H" (R?), there
exists w € X" (J) solution of the parabolic evolution equation

w+Thw=f, wl=, = wo, (C.16)
satisfying
1
lwlixroy = F (Mz,(p), E) (lwollmr + 11 £ lyr ()

for some increasing function F depending only on r and o. Furthermore, this
solution is unique in X°*(J) for any s € R.
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Appendix D. Proof of Lemma 3.10

(1) Assuming (3.33), we prove (3.34). We decompose ujuy = Ty uz + Ty,u; +
R(uy, up). Since so < s + L and 51 + 52 > 59 + § — 1, (C.8) gives

ITwuall -t S Matllzeemlluall g1 S il lluzlxes

The paraproduct 7,,u; can be estimated similarly. As for R(u1, up) we use (C.9)
and the conditions s; + s> + 1 > O and s; + 520 > 50 + % —1:

IRy, u)llpipso S llul S Mo llxsn fluzllxsz -

Y (721
(2) Assuming (3.35), we prove (3.36). Again, we decompose ujuy = T, uz +
Tyyu1 + R(ui, u2). uy = a +bwitha € L'H* and b € L2H* ™2 then

uuy = Tauz + Tpuz + Ty,a + T,,b + R(a, uz) + R(b, uz).
Using the conditions so < s and 51 + 52 > 59 + %, we can apply (C.8) to get

ITauzllprgso S Nallprgs luzllpoe sz,

L S 2l

1 Touzll , o4

L2 l2lliems.

Next from the conditions so < sy and 51 + 52 > s + %, (C.8) yields

ITwallpiso S lluzllzoe s llallppgs s

< s
1Tbll gy S lu2lizem Bl , oy
Finally, under the conditions s; + 52 > 0 and s1 + s2 > 50 + %, using (C.9) we
obtain

IR(a, u2)ll 1 gso ,S lall 1 gsi lluallpooprsa s

IR, u)ligrpso S PN, -y luall L

L2H L2H2T2

We have proved that
S| < s 5
luruzllyso S Clalliga + 161, - Plluzllxs

for any decomposition | = a + b. Therefore, (3.36) follows. We have also proved
(3.37), (3.38) and (3.39).
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