2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)

Combining Pairwise Feature Matches from Device Trajectories for
Biometric Authentication in Virtual Reality Environments

Ashwin Ajit, Natasha Kholgade Banerjee, and Sean Banerjee
Clarkson University, Potsdam, NY
{ajita,nbanerje,sbanerje } @clarkson.edu

Abstract—In this paper we provide an approach to perform
seamless continual biometric authentication of users in virtual
reality (VR) environments by combining position and orientation
features from the headset, right hand controller, and left hand
controller of a VR system. The rapid growth of VR in mission
critical applications in military training, flight simulation, ther-
apy, manufacturing, and education necessitates authentication of
users based on their actions within the VR space as opposed to
traditional PIN and password based approaches. To mimic goal-
oriented interactions as they may occur in VR environments,
we capture a VR dataset of trajectories from 33 users throwing
a ball at a virtual target with 10 samples per user captured
on a training day, and 10 samples on a test day. Due to the
sparseness in the number of training samples per user, typical
of realistic interactions, we perform authentication by using
pairwise relationships between trajectories. Our approach uses
a perceptron classifier to learn weights on the matches between
position and orientation features on two trajectories from the
headset and the hand controllers, such that a low classifier score
is obtained for trajectories belonging to the same user, and a high
score is obtained otherwise. We also perform extensive evaluation
on the choice of position and orientation features, combination
of devices, and choice of match metrics and trajectory alignment
method on the accuracy, and demonstrate a maximum accuracy
of 93.03% for matching 10 test actions per user by using
orientation from the right hand controller and headset.

Index Terms—yvirtual reality, VR, biometrics, seamless, contin-
ual authentication

I. INTRODUCTION

The behavior of a person has been used as a mechanism
for biometric authentication in desktop environments using
keyboard [17], [30], [31] and mouse movements [1], [10],
in smart devices [21], [32], [26], [27], and more recently
in virtual reality (VR) systems [11], [23], [18]. VR systems
today are no longer solely used as recreational devices, and
are rapidly gaining acceptance in applications such as military
training [4], [22], [29], flight simulations [20], [6], ther-
apy [14], [19], [7], manufacturing [2], [5], and education [8],
[15]. Malicious users in mission critical applications can cause
irreparable harm, and it is necessary to continually authenticate
the user without the user needing to stop their activities. VR
authentication techniques that use PIN and pattern matching
methods [9], [34] are infeasible as once a PIN or password
is compromised, a malicious user has complete access to the
system. A periodic PIN or password entry system also intrudes
on the usability of the VR system. For example, a pilot teleop-
erating a drone using a VR headset cannot pause the drone in
the real world when the system needs to re-authenticate them.
Behavior-based approaches for authenticating users in virtual

environments have used head motions and blink patterns [24],
head movements to music [12], and bone conduction of sounds
through the skull [25] using Google Glass. These approaches
do not capture the broad range of actions that users may
perform in virtual environments.

We provide an approach that enables seamless biometric
authentication of users in virtual environments by combining
position and orientation features obtained by tracking the
trajectories of the VR headset, left hand controller, and right
hand controller as a person performs VR interactions. The
work of Mustafa et al. [18] performs authentication by using
head motion data generated by a user following a ball using
Google Cardboard without using hand controllers, which does
not represent the full range of interactions that users are likely
to perform in VR. Pfeuffer et al. [23] use classifiers such
as random forests and SVMs with higher-level aggregated
features such as the maximum, minimum, standard deviation,
and mean obtained from low-level features such as device
motion, orientation, velocity, distance in virtual space, and
view direction. They provide authentication for motions such
as pointing, grabbing, walking, and typing with the highest
accuracy being 44.4%. In this work, we perform authentication
while emulating a real-world VR scenario where a large
quantity of annotated training data is unlikely to be obtainable
for a range of users. We record the right hand controller, left
hand controller, and headset for 33 subjects picking a ball in
VR and throwing it at a target, where each subject provides a
sparse set of 10 trajectories on a training day, and a set of 10
trajectories on a test day. We keep the days separate in order
to prevent priming or muscle memory from repetitive throws
from influencing authentication. Due to the sparseness of the
training set, classification approaches that treat each sample
independently, e.g., a supervised classifier that takes features
from the sample as input and provides user identity as output
as in Pfeuffer et al. [23], are unlikely to provide high accuracy,
as low-level features such as position and orientation over time
are likely to cause overfitting, while aggregated features may
not capture enough fine-scale detail to represent inter-class
uniqueness and intra-class consistency.

Rather than treat samples independently, our approach uses
pairwise relationships between trajectories obtained using sim-
ilarity matches that provide a low value when the trajectories
belong to the same user and a high value when they are
different. While the pairwise matches between trajectories
for a single feature, i.e., the position of the right hand
controller, have been used in Kupin et al. [11], our contribution
is to enable the use of pairwise matches between multiple
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features such as position and orientation of the right hand
controller, left hand controller, and headset in authentication.
Our approach estimates weights of a linear combination of
the feature matches by training a perceptron classifier to learn
that matches from two trajectories belonging to the same user
should yield a low classifier score near 0, while matches
from trajectories belonging to different users should yield a
high score. We provide extensive analysis on the effect of
using just position, just orientation, and both position and
orientation, the influence of using various combinations of
the left hand controller, right hand controller, and headset
trajectories, and the contributions of various match metrics and
trajectory alignment methods on the accuracy. In contrast to
the approach of Kupin et al. [11], which provides an accuracy
of 83.64% on our dataset of 33 subjects, we obtain a maximum
accuracy of 93.03% for 10 test actions per user. This accuracy
is attained when orientation alone for the right hand controller
and headset are combined and matched using the distance
between the nearest neighbors across both trajectories aligned
by subtracting out their bounding box center.

II. RELATED WORK

Early approaches for authenticating users in virtual envi-
ronments adopted approaches from mobile authentication by
using PIN and 2D/3D pattern based methods [9], [34]. These
approaches do not enable seamless continual user authenti-
cation as the user would need to stop their activity to enter
their credentials using a PIN or password, nod to a question,
observe changing images, or move to an external stimulus
such as music. In the case of VR-based teleoperation [13],
it is infeasible and can be catastrophic to pause the real world
object being controlled to authenticate the user. To seamlessly
authenticate the user such that the task of authentication does
take impede the user’s actions we must use the user’s inherent
behavior within the VR application to perform authentication.

In Rogers et al. [24], infrared, gyroscope, and accelerometer
data from a Google Glass was used to authenticate users based
on blink and head movement patterns as a series of rapidly
changing images were displayed to the subject. Head move-
ment patterns as users are stimulated by external audio has
also been investigated as a method for VR authentication [12].
User head movements as responses to specific questions have
also been investigated as an authentication scheme for Google
Glass [33]. Work by Mustafa et al. [18] uses head movements
to identify Google Cardboard users by having subjects follow
virtual balls as they appear on the screen. A dataset of 23
subjects was collected with each subject following 25 balls
during each session with a total of 15 sessions per user. The
authors report an overall equal error rate of 7% using logistic
regression. These approaches do not incorporate data from
hand controllers, which play an essential role in realistic VR
interactions such as teleoperating a robot [13].

Work by Pfeuffer et al. [23] uses tasks such as point-
ing, grabbing, walking, and typing from the head and hand
controllers of an HTC Vive along with eye tracking data
from a Pupil Labs eye tracker to identify users. A dataset
of 22 subjects was collected with 260 trials per session per
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Fig. 1. Trajectories from the right hand controller, left hand controller, and
headset on the first day (dark) and the second day (light) demonstrating
variations between users, and consistency within user, for 5 of the 33 users
in our dataset. Trajectories also show translational misalignments, which are
best corrected in our work by subtracting the bounding box center.

subject for pointing, 260 for grabbing, 40 for walking, and
15 sentences with an average of 25.8 letters per sentence for
typing. The authors exclude the 3 left handed subjects and
report an overall accuracy of 44.44% by evaluating random
forest and support vector machine classifiers using higher-
level features of mean, maximum, minimum, and standard
deviation computed from low-level features such as device
motion, orientation, position, and velocity in the virtual space.
To obtain higher accuracies from sparser training data of 10
samples per user in our work, we use pairwise matching
techniques to express relationships between trajectories.

Work by Kupin et al. [11] uses a ball throwing task to
authenticate users in virtual environments by using positional
information of the dominant, i.e., right, hand controller and a
nearest neighbor matching technique. They obtain an accuracy
of 92.86% by comparing 10 throws for 14 subjects each on
a test day to 10 throws on a training day. While we use the
same task and experimental setup as Kupin et al. [11], we
combine matches from position and orientation features from
the headset and both hand controllers. The number of subjects
in our dataset at 33 exceeds prior VR biometric datasets.

III. DATA COLLECTION

We utilize the ball throwing application developed by Kupin
et al. [11] to collect data from 33 right-handed subjects using
an HTC Vive system. We collect both 3D position and 3D
orientation data for 135 time samples at 45 fps from the
headset, left hand controller, and right hand controller. To
prevent priming, we collect data in two sessions separated by
a minimum of 24 hours with 10 throws collected during each
session. Prior to the VR activity, we record the gender, prior
experience in VR, and prior experience in throwing sports for
each subject as part of our demographic data. As shown in
Table I, we obtain an equal proportion of subjects with and
without throwing sports experience and with no/limited and
moderate/high VR experience. To reduce variability caused
by subject motion, we asked each subject to stand on a white
‘X’ marked in the virtual space. We instructed them to lift a
ball from a virtual pedestal and attempt to hit a virtual target
marked on the wall in front of them. Figure 1 shows right
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hand controller, left hand controller, and headset trajectories
from 5 subjects in our dataset.

TABLE I
SUMMARY OF DEMOGRAPHICS FOR OUR DATASET. OUR DATASET
CONTAINS AN EVEN SPLIT OF USERS WITH AND WITHOUT (NO/LIMITED)
VR EXPERIENCE AS WELL AS EXPERIENCE IN THROWING SPORTS.

[ Number of subjects [33]
Number of female subjects 7
Number of male subjects 26
Number of subjects with no VR experience 9
Number of subjects with limited VR experience 8
Number of subjects with moderate/high VR experience | 16
Subjects with no throwing sports experience 17
Subjects with throwing sports experience 16

IV. TRANSLATIONAL ALIGNMENT OF TRAJECTORIES

While all trajectories start near a common spatial point, i.e.,
the location of the ball on the pedestal, differences in the ex-
tension of the arm of the user may induce translational offsets
in the trajectories. We align each trajectory by subtracting out
a center point computed from the trajectory. In Section VII, we
compare the results of performing no subtraction, subtracting
the mean of the points, i.e., the centroid, subtracting the
center of the bounding box, and subtracting the centroid
and bounding box center computed only for the = and z
coordinates to preserve height differences in the y direction.

V. MATCH METRICS USED TO EVALUATE PROXIMITY
BETWEEN TRAJECTORIES

Due to differences in wait times, corresponding points
across the two trajectories do not yield a close match, as shown
in Kupin et al. [11]. We use three types of distance metrics,
discussed in Subsections V-A to V-C, to evaluate the proximity
between two trajectories aligned to each other using one of the
methods in Section IV. In Subsections V-A to V-C, 7., refers
to a trajectory, p. refers to a time series of 3D point positions
for 7., while q, refers to a time series of 3D point orientations
for T, expressed as unit quaternions. Here * may be 1 for the
first trajectory or 2 for the second trajectory. The i point on
P« Or g, is referred to using time series notation as p.[i] or
q.[i] respectively, where p.[i] € R® and q.[i] € SO®.

A. Match Between Nearest Trajectory Points

For the it point on the first trajectory 77, we estimate the
nearest point on the second trajectory 75 by computing the
sum-squared Euclidean distance between the i point position
p1[i) on 77 and the j" point position p»[j] on T3 as

d(pa[i], p21j]) = Ipali] — p2j]II%, M
and obtaining the index of the nearest point j; on 7Tz as
Ji = argmind(p1[i], p2[J])- ?2)

J
To maintain symmetricity, we similarly compute the index of
the nearest point [;, on 73 to the k™ point on 73 as

l, = argmind(p2[k], p1[l]), where 3)
1

d(p2[k], p1[l]) = [Ip2[k] — P1[”H2~

The nearest-neighbor distance dg“(pl, p2) between 77 and 7T
in terms of point positions is obtained by adding individual
nearest-neighbor distances for both trajectories over /N points
per trajectory as

A (p1, p2) = i d(p1[i], palsil)
+ N d(palk), pi[lx])- )

Equation (4) is the same metric used for trajectory matching
in Kupin et al. [11]. We obtain the nearest-neighbor match
di"(p1, p2) between 7 and 73 in terms of orientations as

d(p1,p2) = iy (1= (auli), qali))?)
YN (= (@l alk)?) . 6

In Equation (5), the notation (-, -) refers to the cosine of the
angle between the quaternions, which for close quaternions is
high, i.e., near 1. The notation 1 — (-, ->2 enables a lower value
to represent higher proximity.

B. Match Between Trajectory Points and Nearest Projections

While the distance between the nearest neighbors on both
trajectories provides a good approximation of distance be-
tween the trajectories, the closest position on 73 to a point
on 77 corresponds to a projection onto a line segment joining
two points, rather than a particular point. For the ™ point on
71 with position p;[i], we obtain the position of its projection
pi; onto the line segment between point positions p»[j] and
p2[j+1] on T3 as

Pij = a;ijpalj] + (1 — aij)pali + 1]. (6)
The value of the interpolation coefficient o;; is given as
- (P2[i+1]=p1 [{DT (P2 [i+1]~p2[j])
iy = clamp (PR Gall=re il 0,1) 7

where the ‘clamp’ function truncates the value of «;; to 0 if
a;; < 0andto 1if o5 > 1 50 as to restrict the projection from
lying outside the line segment joining p2[j] and p2[j+1]. The
index j7 of the point on 7y that starts the line segment with
the nearest projection to p1[i] is given as

®)

j; = argmin |py[i] — py |,
J

where the term under the minimization represents the distance
between p1[i] and its projection p;;. The best interpolation
coefficient «; and nearest projection p;”j are obtained by
replacing j; with j* in Equations (6) to (7). To maintain
symmetricity, we obtain the best coefficient aj; and best
projection pj;, on 77 for the k™ point position ps[k] on T>
by interchanging 1 and 2, and substituting & for ¢, and [ for
j in Equations (6) to (8). We obtain the nearest-projection
distance in point positions dy’ (p1, p2) between the trajectories
by summing individual Euclidean distances from the position
of each point on one trajectory to the nearest projection on
the other trajectory as

d;P(Pupz) = Zf\il HPl[Z] - Pfj”z

+ 30 Ipalk] = Pyl )
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Data: Matrix D of running distances.

Result: Set 7 of 2-tuples, where the first element in each
2-tuple is an index to a matched point in p; and
the second element is an index to a matched
point in ps.

Z<+—{N,N},i<— N,j<+— N.

while i >0 & 7 > 0 do

(i*,57) +— argmin D[z, j], where

()
if i >0 & j > 0 then
| IT+—Zu{@" i)} ieitj 5"
end
end

Algorithm 1: Algorithm to generate indices for matched
pairs using dynamic time warping.

To obtain the nearest-projection distance do’ (q1,q2) between
the orientations q; and qo of the trajectories 77 and 73, we
first obtain the orientation qu at the nearest projection on 73
for the i point on 77 as
aj;

)

q; = Q2[4 (qelif] ™ el + 1) (10)

and the the orientation qj; at the nearest projection on 7; for
the k™ point on 73 as

iy = anli] (] anlly + 1) (1D
In Equations (10) and (11), the right hand side represents a
spherical linear interpolation [28] between the best adjacent
orientations qs[j7] and qz[j} +1] in g2, and q; [{}] and q1 [I}+
1] in q;. We then express do’ (qi, q2) as

d?(d1, d2) = Zf\il (1= [z’],qu)2)

N (1= (@Kl ay)?) . (2

C. Match Using Dynamic Time Warping (DTW)

DTW [3] uses dynamic programming to match trajectories
with varying speeds while preserving index order. DTW main-
tains a matrix D € RV*Y where the element D[i, ] of the
matrix represents the running sum of the distance between the
trajectories up to the position of the 7™ point p;[i] in 77 and
the 5 point py[j] in T3, and is given by

D[, j] :1(1}1})1D[i, Jj], where (13)

The matrix is initialized to O prior to start, and filled by
iterating over ¢ € [2,N] and j € [2, N]. The DTW distance
dgtw(pl7 p2) between positions of the trajectories is given by
the last element in the matrix, i.e., dgtw(pl7 p2) = D[N, N].
To obtain the DTW match d¥¥(q;,qs) between orientations
of the trajectories, we obtain a set Z of matched index pairs
between p; and po, generated according to Algorithm 1 [3].
We express di"(qi,qs) as the sum of the matches between
orientations related through the matched pairs in Z, i.e., as

da™(qu, q2) = 2 Gg)eT (1= (auli], a2[41)?) - (14)

VI. PERCEPTRON-BASED LEARNING OF OPTIMAL
WEIGHTS ON MATCHES

To match an action for a user comprised of trajectories for
the right hand, left hand, and head to actions in a library,
we learn a set of weights on combining the position and
orientation feature distances from trajectory matches for the
three body parts. We perform learning using a training set of
trajectories on the first day for every user, and we perform
weighted matching and user authentication using the a test set
of trajectories from the second day.

During the training phase, given n training right hand,
left hand, and head trajectories per user for P = 33 users,
we align each trajectory using one of the five alignment
methods discussed in Section IV, and we match each body
part trajectory to every trajectory for the same body part using
one of the three matching approaches discussed in Section V.
The matching provides a set of (Pn)? matches for right hand
position dj ., right hand orientation dg,, left hand position
d;f_l, left hand orientation d,, head position d;‘_h, and head
orientation d7,, where * may be ‘nn’ for nearest neighbors,
‘np’ for nearest projection, or ‘dtw’ for DTW. We learn
weights wy and bias b for a perceptron classifier,

y:a(zfefwfd;w),

where the set F represents a combination of the position and
orientation feature matches from the three body parts, and o (-)
represents the perceptron activation function. In this work, we
analyze the following combinations for F: (1) position (p) and
orientation (o) of all body parts, i.e., right (r), left (1), and head
(h), where F = {p-1,0-1,p-1, 0-1, p-h, 0-h}, (2) position only
of all body parts, i.e., F = {p-r, p-1, p-h}, (3) orientation only
of all body parts, i.e., F = {o-r, 0-1,0-h}, (4) position and ori-
entation of sets of two body parts, i.e., F = {p-r, o-r, p-1, 0-1},
{p-1, 0-1, p-h, 0-h}, or {p-1,0-1,p-h, 0-h}, (5) position only of
sets of two body parts, i.e., F = {p-,p-1}, {p-r,p-h}, or
{p-1, p-h}, (6) orientation only of sets of two body parts, i.e.,
F = {o-r,0-1}, {o-1,0-h}, or {o-1,0-h}, and (7) position and
orientation of one body part, i.e., F = {p-r,o-r}, {p-1,0-1}, or
{p-h, 0-h}. Summing together all choices for Ffrom (1) to (6)
gives us 15 feature sets. We use the hyperbolic tangent sigmoid
as the activation function o(-) in this work. The target for the
output y is O when the trajectories matched are from the same
user, and 1 when the trajectories are from different users. We
use scaled conjugate gradients implemented in MATLAB to
train the perceptron.

During the test phase, given m right hand, left hand, and
head trajectories per user for the P users, we align each tra-
jectory using the same alignment method used during training,
and we match each body part trajectory in the test set to all Pn
trajectories for the same body part in the training set using the
training match metric to obtain P?mn matches for the right
hand position, right hand orientation, left hand position, left
hand orientation, head position, and head orientation. For each
test user action, we apply the perceptron classifier trained for
a feature set from the list above to the match values of all Pn
training user actions matched to the test action. We obtain the
best matching user as the user for the training action with

(15)
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the lowest value of the output in Equation (15), since the
likelihood of a user for a test action being the same as that of
a training action is high for a match close to 0.

VII. RESULTS

To understand how soon authentication can be performed
during a user action, we obtain identification results by varying
the number of trajectory points N. To evaluate the quantity of
training data needed to reliably authenticate a user, we perform
our accuracy computations by varying the number of training
actions per user n between 1 and 10, while keeping the number
of test actions m at 10 actions per user. We also evaluate how
many actions are needed to reliably authenticate a user at test
time by varying the number of test actions per user m from
1 to 10 while keeping the number of training actions, n at
5. We compute accuracies, i.e., percentage of total Pm user
actions that are correctly identified, for authenticating users
from their second day session actions using the 5 alignment
methods from Section IV, the 3 matching approaches from
Section V, and the 15 feature sets used to train the perceptron
in Section VI, together with the choices of N, n, and m. We
augment our feature sets with matching using position only,
and orientation only for a single body part, where a weighted
combination of features is not necessary, and the closest user
is represented by the user corresponding to an action with the
lowest match value. This provides a total of 21 feature sets.

We show the best results of our accuracy computations for
each of the 5 alignment methods and 3 matching approaches
as subplots in Figures 2 and 3. Figure 2 provides match results
when n is varied between 1 and 10 along the horizontal axis
of each bar chart, and m is 10, while Figure 3 provides match
results when n is kept at 5, while m is varied between 1 and
10 along the horizontal axis. The text in each bar represents
the best feature choice, i.e., position (p), orientation (0), or
both (po), the best combination of right hand controller (r),
left hand controller (1) and headset (h) trajectories, the best
choice of number of trajectory points /N, and the best value
of the accuracy as a percentage. Figure 2 demonstrates that
using the bounding box center provides highest performance
for all three matching methods. As demonstrated in Figure 1,
without alignment, the trajectories are too far apart for a match.
The mean in the second column tends to yield lower results as
the mean may be weighted near higher density point concen-
trations, e.g., the start of the trajectory, and differences in wait
times influence the displacement of the mean. Alignment in
the X7 plane alone lowers accuracy, indicating that subjects
may show intra-user variations in the Y direction, which are
corrected by a full bounding box center alignment. Among the
matching metrics, the nearest neighbor match performs best,
while the nearest projection follows closely. DTW performs
worst indicating that misalignments during match detection in
DTW may propagate throughout the trajectories.

For all methods, the highest accuracies are generally ob-
tained when the right hand is combined with the head, likely
since the left hand may be involved in non-goal-oriented
motions during a ball-throwing activity. Additionally, highest
accuracies are obtained largely using orientation alone, fol-
lowed by using position and orientation together, indicating

that orientation is a stronger user signature than position during
ball-throwing, especially for the right hand and head. The
highest accuracy of 93.03% is obtained by using 9 training
trajectories with nearest neighbors, bounding box center align-
ment, 100 trajectory points, and orientation alone for the right
hand and head. We notice that even with 6 training trajectories
and higher we obtain accuracies of 89.70% and above, and
with 1 and 2 trajectories we show 61.82% and 72.12%
accuracy where chance is 3.03%. Figure 4 shows an extended
analysis with nearest neighbors and bounding box center for
all 21 feature sets, where N, the number of trajectory points
is varied along the horizontal axis of each graph, and each
plot line corresponds to one value of n. While the graphs
for the right hand and head demonstrate high accuracies for
using orientation or both position and orientation, we notice
that high accuracies may also be obtained if position alone
of the right hand is combined with the left hand, indicating
that users may swing their left hand in a unique fashion,
however they may shake it around in a random fashion which
influences orientation. We can authenticate users with around
80% accuracy and above starting at 60 trajectory points (i.e.,
within 1.33 seconds) and 6 or more training trajectories using
right + left position, right + head orientation, or right + head
and both position and orientation, all (right, left, and head)
orientation, or all and both position and orientation. The top-
left graph represents the approach of Kupin et al. [11], and
only attains a maximum accuracy of 83.64%.

Figure 6(a) shows the confusion matrix at the 93.03%
accuracy point discussed earlier. For all but 5 users, accuracies
are 90% and above. Of the 5 users, users 13 and 23 show
accuracies of 80%, user 8 shows 70%, user 14 60%, and user
27 shows the worst accuracy of 30%. As shown in Figure 6(d),
the head for user 27 on the second day does not follow their
head on the first day. As such, as shown in Figures 6(b)
and 6(d), user 27 tends to match with user 5 whose right
hand and head (red day 1 trajectory) are close to the day 2
trajectories of user 27. Figure 3 demonstrates similar trends
as Figure 2 when the number of test trajectories is varied,
with the exception that as more test trajectories are added, the
accuracy drops, with the drop generally being highest from 1
to 2 test trajectories. This may be attributed to users on the
second day developing a habituation to the VR system earlier
than on the first day. In future, we are interested in analyzing
the effect of habituation in VR systems, similar to the work of
Syed et al. [30] in smart devices. We observe higher accuracies
when the nearest projection is used, however, the performance
is comparable to nearest neighbors. The nearest projection and
bounding box center accuracy of 96.97% by using just the first
test day trajectory indicates that our approach can be used to
immediately authenticate users using a VR system for the first
time after providing an initial set of 5 training data samples.
Figure 5 reflects the trends in feature sets of Figure 4, with
orientation again showing dominance in distinguishing users.

VIII. DISCUSSION

We provide an approach to combine position and orientation
features from VR headsets and hand controllers to perform
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Fig. 4. Results for using position, orientation, and both from various combinations of body parts using nearest neighbor matching and bounding box center

alignment when 10 test day trajectories are matched to 1 through 10 training day trajectories.
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Fig. 5. Results for using position, orientation, and both from various combinations of body parts using nearest projection matching and bounding box center
alignment when 1 through 10 test day trajectories are matched to 5 training day trajectories.

task based seamless continual authentication in virtual envi-
ronments. Our approach demonstrates a maximum accuracy of
93.03% for matching 10 test actions from 33 users by using
the orientation information from the the headset and right hand
controller, subtracting the bounding box center to align the
trajectories and using nearest neighbor matching. While we
demonstrate results using the HTC Vive, we expect similar

results from an Oculus Rift, Samsung Gear VR, or other VR
devices consisting of both a headset and hand controllers.
We provide results for both position and orientation and
demonstrate that using orientation by itself provides the best
results. However, there may be occasions when obtaining
orientation information may be impossible, for instance, if a
VR system does not contain a gyroscope. In this case, we
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Fig. 6. (a) Confusion matrix for highest accuracy when 10 test day trajectories
are compared to 9 training day trajectories using nearest neighbors. (b) Right
hand, (c), left hand, and (d) head trajectories for user 27 (blue day 2 and
green day 1) and their confounding user 5 (red day 1).

show that using position alone also provides acceptable results,
enabling our approach to be generalized to any VR device that
provides either position or orientation. Our work specifically
looks at the case where an impostor is likely to precisely
mimic the motions of a genuine user. In future research, we
will explore how attempts to make precise mimicry in more
complex actions, such as virtual drone flying or driving, which
may have higher intra-user variability will affect accuracy.
Intra-user variability may reduce accuracy when larger number
of users are added. Future work will investigate the role
of goal-orientedness in authentication accuracy, and examine
approaches to match trajectory segments to improve accuracy
for larger user sets. While we do not show it in this work,
the output of the neural network can be compared against a
threshold to detect impostors external to the training set as
shown in our companion demonstration paper [16].
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