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ABSTRACT

In automated assisted living where a robot assists a human

to interact with physical objects, an important challenge is

for a robot to understand where humans are likely to grasp

objects, so that the robot can present the object to a user in

the most tenable configuration. In this paper, we present an

approach that uses encoder-decoder convolutional neural net-

works (CNNs) to predict human grasp location on cup han-

dles. The primary challenge addressed by our work is that

object occlusion induced by the human hand prevents direct

imaging of grasp location. Our approach uses the insight that

once the object is released, the hand leaves a heat signature

on the object surface due to the temperature differences be-

tween the human body and the ambient environment. Our

CNNs learn a mapping between images obtained from tra-

ditional depth sensors as input and heat signatures of grasp

locations imaged using a thermal camera as output. Given

the depth image of a novel cup, our approach uses the trained

network to predict the grasp probability distribution over the

cup. Using a leave-one-cup-out approach, we obtain a mean

absolute pixel-wise prediction error of 5.67 on 17 cups im-

aged from 7 orientations.

Index Terms— human grasp, thermal maps, depth,

encoder-decoder, neural network, grasp prediction

1. INTRODUCTION

Historically, robots have been viewed as independently oper-

ating tele-supervised or automated entities. However, with the

spread of robotic technologies into healthcare for the purpose

of automated assisted living and robotic quality of life im-

provement, it is becoming increasingly important to provide

robotic systems that co-operate with human beings to enable

successful accomplishment of human goals. One of the chal-

lenges involved in facilitating seamless human-robot interac-

tion is to provide a fluid physical interface between a human

and a robot when manipulating everyday objects. A large

body of work in robotics research focuses on predicting the

optimal approach for a robot hand to grasp an object by using

human demonstrators [1–3], by generating stereo data [4–6],

or by predicting grasp affordances [7–9]. However, these ap-
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Fig. 1. Object occlusion by hand prevents detection of grasp

location on object in color and depth images. On release,

while the color and depth images show no information, the

thermal image shows a heat signature at the grasp location.

Our work uses the heat signature from thermal data to pro-

vide ground truth for training encoder-decoder networks to

perform grasp location prediction from input depth data.

proaches perform grasp prediction for a robot operating inde-

pendently. They do not address the task of predicting where

a human would hold the object such that the robot can hand

the object to a human in the most tenable configuration for

human grasp. For instance, while a simulation may suggest

that the ideal grasp of a hot cup for a two-fingered robot is by

the handle, in a real-world environment it would be dangerous

if a robot were to hand a human a hot cup by the handle, as

the human would suffer injury by holding the cup around the

main body. To provide optimal human grasp, the robot must

recognize that the most likely location for a human to grasp

the cup is by the handle.

In this work, we address the problem of automatically pre-

dicting human grasp location on objects such as cups using

depth data from a single viewpoint, such as may be captured

by a depth sensor installed on a robotic arm. The main chal-

lenge in predicting human grasp lies in obtaining data on the

location of human grasps on objects. When the interaction of

a human hand with an object such as a cup is captured by a

traditional sensor such as an RGB or depth camera, the object

is significantly occluded by the hand due to the articulations

of the finger, thereby preventing direct imaging of the grasp

locations on the object as shown in the color and depth im-

ages of Figure 1. Our insight is that due to the temperature

difference between the human body and ambient objects, hu-
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man contact with objects leaves behind a thermal signature

which can be used to identify grasp locations. For instance,

as shown in the thermal image of Figure 1, once a person

lifts a cup exposed to the ambient environment by the handle

and lets it go, the cup handle shows a region of high inten-

sity at the location of the grasp. Our approach uses a thermal

camera to image the heat variation over the surface of a cup

induced by differences in the ambient environment and the

human body temperature. In our experiments, the cups are

placed at room temperature of 70◦ F, which is lower than hu-

man body temperature. This enables the thermal intensities

to be interpreted as a probability distribution with higher val-

ues representing more likely grasp locations. Contact-based

thermal data has been used to provide natural interactions on

planar [10–12] and non-planar [13] surfaces. Our work is the

first to use contact-based thermal data for grasp prediction.

Our work approaches grasp prediction as an image syn-

thesis problem. We use a deep convolutional neural network

(CNN) with encoder-decoder architecture to use the depth im-

age of a cup as input and predict the thermal intensities depict-

ing human grasp locations on the handle as output. We use a

set of 17 cups of a variety of shapes and sizes, and image them

from 7 viewpoints using a Microsoft Kinect v2 depth sensor

and a Sierra-Olympic Viento-G thermal camera after a user

has grasped and released each cup by the handle. Given each

depth and thermal image, we use a leave-one-out approach to

train encoder-decoder CNNs from sets of 16 cups and test on

the left out cup. To perform grasp prediction as the synthesis

of thermal intensities from depth images, our work draws in-

spiration from approaches that perform image-to-image trans-

lation [14–16]. To obtain high resolution decoded output, our

approach uses the architecture proposed in [16] with trans-

fer networks between the encoder and decoder layers. How-

ever, unlike [16] which uses the Rectified Linear Unit (ReLU)

as the activation, our approach uses the Parametric Rectified

Linear Unit (PReLU) [17] which provides higher average ac-

curacy with respect to ground truth since the negative arm of

PReLU avoids the dying neuron problem of ReLU.

Our contributions are summarized as follows: 1) To the

best of our knowledge, we present the first approach that uses

thermal cameras to address the hand occlusion problem from

traditional cameras, and 2) we provide an encoder-decoder

neural network with PReLU activation to accurately predict

the human grasp locations on thermal images.

2. RELATED WORK

There exist a number of approaches in robotics to perform

grasp understanding. Several approaches predict optimal

grasp locations by searching for cylindrical shells that rep-

resent handle-like regions [18], or by learning from a se-

quence of grasp-and-drop actions [7]. Other learning-based

techniques for grasp prediction include the use of support

vector machines from pre-defined features describing the ob-

ject and grasp [19], partially observable Markov decision pro-

cesses [20], deep CNNs on segmented graspable objects [21],

trial-and-error self-supervised CNN for grasp prediction with-

out human labeling [8], and deep learning for successful grasp

learned from the spatial relationship of a gripper and an ob-

ject [9]. Unlike our work, these approaches estimate grasp for

robot manipulators operating in independent environments, as

opposed to considering environments where a robot may col-

laborate with a human.

In the area of collaborative human-robot grasp, ap-

proaches focus largely on manipulation as opposed to under-

standing of grasp for optimal human-robot interaction. For

independent object handling, where a robot and a human

interact with an object without simultaneous human-robot

contact, a number of approaches focus on ensuring that hu-

man and robot trajectories do not collide [22–25]. In the

area of handover of objects from robot to human and vice

versa, a number of approaches have examined the influence

of parameters such as object pose and orientation [26], tim-

ing [27,28], spatial coordination [28], intent of human and/or

robot [27, 28], preservation of distance, visibility and com-

fort constraints [29], and influence of secondary tasks per-

formed by receivers on the primary handover task [30]. Some

approaches use manual input to obtain priors on optimal

robot pose for robot-to-human handover, e.g., using a set of

manually defined rules derived from observation of human

grasp [31], or by having users manually pose the 3D model of

a robot arm holding an object via a GUI [26]. However, none

of these approaches perform automated grasp understanding

for collaborative interaction.

There exist many approaches that train robot grasp using

human intervention. Detry et al. [32] hand objects to a robot

to teach it to grasp. However, unlike our work, their aim is

not to learn where a human would optimally grasp the object.

Rather, the human may hold the object sub-optimally while

the robot learns to hold the object. Kang et al. [1] provide a

rule-based approach to deconstruct human finger configura-

tions in a grasp around an object. Their method is tailored

to simple objects such as cylinders and spheres, but does not

readily generalize to objects of complex shapes. Takahashi et

al. [2] propose a method to teach the robot performing tasks

under human directions in virtual reality. Aleotti et al. [33]

use motion tracking with a digital glove to track human grasp

while subjects interact with objects in virtual reality environ-

ments. The use of digital gloves, the absence of tactile feed-

back, and incomplete physical and photo-realism hinder nat-

ural human motion in virtual reality environments. Our work

uses non-invasive sensing and real-world objects to enable un-

derstanding of free-form human-object interactions.

3. DATA COLLECTION

Our experimental setup consists of a Microsoft Kinect v2 sen-

sor of depth resolution 512×424 and a Viento-G thermal cam-
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Fig. 2. Depth images from a Microsoft Kinect v2 sensor (first

and third rows) and thermal images from a Viento-G ther-

mal camera (second and fourth rows) captured from various

viewpoints for cups of a range of shapes and sizes held and

released by a user. For each cup, the corresponding thermal

image shows the high intensities on the handle that arise due

to heat transfer from the user’s hand. The first depth and ther-

mal image show the points marked manually on the largest

cup (cup 2) for cropping all cup images.

era of resolution 640×480 placed at a distance of 5 cm from

each other and 0.5 m from a tabletop. We use the sensors to

capture the depth and thermal data for 17 cups of a variety of

shapes and sizes. In our experiments, a single user lifts each

cup by the handle outside the view of both sensors, holds the

cup for 30 seconds to ensure stabilization of heat transfer, and

places the cup in 7 different viewpoints on the tabletop. We

immediately capture a thermal image using the Viento-G af-

ter the user has set down the cup in a particular viewpoint to

prevent heat die-out, and we then capture a depth image using

the Kinect. With 17 cups each in 7 orientations, we obtain

119 pairs of depth and thermal images. Figure 2 shows the

depth and thermal images from a variety of viewpoints.

To obtain one-to-one pixel mapping from depth to thermal

images for training the encoder-decoder CNN, we need to en-

sure that the depth and thermal images are aligned. While the

accurate approach to perform the alignment is using stereo

camera calibration, in this work, we obtain high accuracy of

prediction with a simpler technique. We select two points on

the largest cup at the locations shown in the first depth and

thermal image of Figure 2. Given the two points, we esti-

mate a 2D scale and translation to match the thermal image to

the depth image. We use the scale to resize each thermal im-

age to nearly the same resolution as the depth image, and the

translation to align the cup in the two images to be at nearly

the same location. We extract image crops of size 162× 162
from the aligned depth and thermal images. Training depth

and thermal images form the input and output respectively

for our CNNs. To minimize overfitting, we perform data aug-

mentation using random translations and scalings.

4. ENCODER-DECODER NEURAL NETWORK

Our neural network architecture, shown in Figure 3 is simi-

lar to the one in [16], with the exception that we use a shal-
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Fig. 3. Network Architecture. From left to right, each stack of

rectangles represents: Input image, Conv-1, Conv-2, Conv-3,

Conv-4, Conv-5, FC, Tconv-5, Tconv-4, Tconv-3, Tconv-2,

Tconv-1, Output image. The green and red rectangles repre-

sent feature maps generated by Conv and Tconv blocks re-

spectively.

low network with transposed convolution (Tconv) instead of

the maxpool-unmaxpool framework of [16], fewer kernels per

layer, and the Parametric Rectified Linear Unit (PReLU) [17]

as the activation function instead of ReLU. The architecture

consists of four parts: 5 convolution blocks (Conv), 1 fully

connected layer (FC), 5 transfer networks (Tnets) [16], and 5

transposed convolution blocks (Tconv). The notations Conv-

n, Tnet-n, and Tconv-n represent the nth convolution block,

the nth Tnet and the nth transposed convolution block. The

Conv-n block is similar to that of VGG [34]. Each Conv-n
block consists of a collection of two 3×3 layers that perform

convolution, batch normalization (BN) [35], and PReLU ac-

tivation, followed by a 2×2 max pooling layer.

Given a depth image of size n × n, Conv-1 generates 32

feature maps with size of n/2 × n/2. In Conv-2, we double

the number of feature maps to compensate for the reduced

complexity by max pooling from the previous block, i.e., we

generate 64 feature maps with size of n/4 × n/4. We re-

peat the process for Conv-3. However, we do not increase the

number of feature maps from Conv-4 to Conv-5 to minimize

overfitting. The output feature map size of Conv-5 is 32 times

smaller than that of the input image. After Conv-5, we gen-

erate an FC layer using an additional 5×5 convolution-BN-

PReLU layer. We adopt the Tnet cross-connection to facilitate

the gradient flow from input to deeper layers and to convert

the information from input to output domain. The Tnet is sim-

ilar to [16] except that the activation functions are changed to

PReLU. Tconv-1 to Tconv-4 each consist of a 2×2 transposed

convolution with a 2×2 stride, BN and PReLU. Tconv-5 uses

5×5 transposed convolution with 1×1 stride for recovering

the feature map size from Conv-5. Tnet-5 generates feature

maps from Conv-5. We concatenate feature maps generated

by Tnet-5 with those from Tconv-5, and feed them to Tconv-

4. The remaining Tconv blocks repeat the process, yielding

Tconv-n outputs with the same size as Conv-n. Finally, we

use an extra Tconv block to generate output images with the

same size as the input images.

Instead of using pre-trained networks, we train our

neural networks from scratch. We define the loss
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function as the mean absolute error (MAE), given as

(
∑m

j=1

∑n
i=1

∣
∣
∣p

j
i − lji

∣
∣
∣)/mn, where pji and lji denote the ith

pixel intensity of the jth prediction and label samples respec-

tively. We use stochastic gradient descent (SGD) where we

set the learning rate to start from 1.0 and to be divided by

10 when the error plateaus, with a momentum of 0.9 and a

weight decay of 0.0001. We train our neural networks for 100

epochs and select the model with lowest validation loss for

testing, using 20% of training samples selected at random for

validation. We perform testing using leave-one-cup-out cross

validation, i.e., given n cups, we train with n−1 cups and test

with the left out cup. Our neural networks are trained on four

computers each containing an Intel Core i7-4790K 4.0GHz

processor, 32 GB of RAM, and one NVIDIA GTX 1080 Ti

GPU. Training time for each leave-one-out round is around 7

hours and testing time for each image is 3.7 milliseconds.

5. RESULTS

To verify the effectiveness of our neural networks using

PReLU activation function, termed ’N-PReLU’, we compare

testing performance with a reference neural network which

uses ReLU, termed ’N-ReLU’. The reference network is sim-

ilar to that of [16]. In Table 1, we show the mean absolute

error for N-PReLU and N-ReLU, averaged over all 7 orienta-

tions for each cup. Overall, we achieve 5.67 and 6.34 pixel-

wise mean absolute error (MAE) for N-PReLU and N-ReLU

respectively averaged over all cups. We define the pixel-wise

mean range error (MRE) as MAEj/(maxi(l
j
i )−mini(l

j
i )),

where lij denotes the ith pixel for the jth ground truth image.

The MRE provides an interpretation of network performance

as a percentage of the range of ground truth intensity values.

We achieve an MRE of 0.033 and 0.037 for N-PReLU and

N-ReLU respectively. Figure 5 shows grasp likelihood pre-

diction using N-PReLU for cups 5, 7, and 9 in our dataset in

all seven orientations. In Figure 6, we show the results from

various testing samples and viewpoints using N-PReLU.

In Figure 7, we compare the testing results of N-ReLU

and N-PReLU. Although the numerical results of the two

networks seem similar, N-ReLU occasionally predicts over-

heated temperature. As stated in [36], ReLU suffers from

dying neurons, i.e., if the neurons are not initially activated,

they are always in the off state as zero gradient flows through

them. In our case, the predicted heat maps would be unde-

sirable if neurons for the cup handle are never activated as

shown in Figure 4. Specifically, the N-ReLU model predicts

high intensities for cups 6 to 8 and cups 12 to 15 since its

training process is negatively affected by dying neurons as

shown in Figure 7. While the mean absolute error in Ta-

ble 1 for some cups is higher with PReLU, e.g., for cups 4

and 7, the increase in error is due to the contribution from

background pixels that are uninformative of grasp location.

As shown in Figure 7, cups 4 and 7 show an intensity dis-

ReLU

PReLU

Fig. 4. Examples of intermediate feature maps after ran-

dom weight initialization using ReLU (top row) and PReLU

(bottom row). For ReLU feature maps, negative inputs exist

around the handle (the left and right side of the first and sec-

ond feature map respectively), which leads to dying neurons

in those spots. The PReLU function avoids dying neurons

enabling the gradients to propagate to the output.

Cu
p-
5

Cu
p-
7

Cu
p-
9

Fig. 5. PReLU results with all viewpoints of cups 5,7, and 9.

tribution more representative of high grasp likelihood at the

handle for PReLU, whereas for ReLU, due to dying neurons

the entire cup receives similar intensity information.

6. DISCUSSION

In this work, we estimate human grasp locations on cup han-

dles by predicting heat maps from depth data using deep

encoder-decoder neural networks. The advantage of using

thermal information is that it enables imaging of grasp lo-

cations as heat signatures in comparison to traditional imag-

ing techniques which prove ineffective due to hand occlusions

during grasp. We validate the effectiveness of our approach

by testing on novel cups. Our results demonstrate that our

approach achieves small pixel-wise error for novel cups.

One issue with our work is that the prediction is inaccurate

when the region corresponding to high grasp likelihood is not

visible in the depth image but slightly visible in the ground

truth thermal image as in the last column of Figure 3. This

issue may be resolved by including training examples where

the grasp region is completely occluded in both the depth and

thermal images. Another limitation is that prediction depends

upon the object being cooler than the human body, and will

not work for hotter objects. One method of resolving this

issue is to model human body temperature distribution and

filter out thermal intensities that lie outside the distribution.

28

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 31,2020 at 17:32:51 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. Mean absolute pixel-wise errors of 17 cups using PReLU (top row) and ReLU (bottom row).
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Mean

PReLU 12.74 11.78 5.72 6.25 4.08 5.49 4.19 3.76 3.28 3.88 4.30 5.53 4.57 6.23 3.95 6.77 3.84 5.67

ReLU 12.59 12.89 4.90 4.78 7.78 5.71 3.31 3.31 3.59 6.62 4.20 8.16 4.07 6.65 6.23 7.87 5.01 6.34
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Fig. 6. N-PReLU testing results from various samples from different viewpoints. ’Ground Truth’ represents the ground truth

heat map. ’Predict’ represents the testing results generated by networks using PReLU activation function. The last column

shows the limitation of the neural network when the cup handle is occluded.

However, object and environment temperatures drive human-

object interaction. For instance, a user may lift a cold cup

in summer by holding the cup body, and a hot mug by the

handle. On the other hand, in winter, a user may choose to

hold the hot mug by the cup body to increase hand warmth.

In future work, we will perform large-scale studies on the in-

fluence of object, the human body, and environment tempera-

tures on human-object interaction.

Our future work also includes performing single-person

and multi-person grasp predictions for left, right, and both

hands on a variety of objects with a range of shapes, sizes,

and weights. While everyday objects show instance-specific

diversity, they can be clustered into categories based on hu-

man use. E.g., bottles, cans, jars, and small plant pots may be

held similarly by a hand curl; pans, pots, spoons, and tooth-

brushes may be held by a a four finger grip on a long handle;

and cartons and boxes may be held by a rectilinear grip. In

future work, we will use a large object dataset to learn use-

based object categorization, and perform grasp detection on

novel objects through the categorization.
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