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Abstract— Today’s globalized supply chain for electronics
design, fabrication, and distribution has resulted in a prolif-
eration of counterfeit chips. Recycled and remarked chips are
the most common counterfeit types in the market, and prior
work has shown that physical inspection is the best approach to
detect them. However, it can be time-consuming, expensive, and
destructive while relying on the use of subject matter experts.
This paper proposes a low-cost, automated detection technique
that examines surface variations within and between chips to
identify defective chips. Further, it can estimate the location of
the defects for additional analysis. The proposed method only
requires a cheap IR camera-based setup to capture images of
the chip package surface and is completely unsupervised and
non-destructive. Experimental results on 25 chips in our lab
demonstrate 100% detection accuracy.

I. INTRODUCTION

Counterfeit integrated circuits (ICs) are a serious threat to
critical systems. There are several categories of counterfeit
ICs, among which recycled and remarked ICs are the most
prevalent found in the market [1]. Recycled and remarked
ICs are removed from scrapped printed circuit boards (PCBs)
and sold as new, often after their packages are sanded,
recoated, and/or remarked. These recycled ICs are prone to
failure and thus decrease system reliability and lifetime. If
they are incorporated in safety and mission-critical systems
like aircrafts, submarines, etc. they may cause catastrophic
hazards and loss of lives. Therefore, identification of such
ICs before they are integrated into systems is dire.

Fortunately, various defects commonly found on the pack-
age surface of counterfeit ICs [2], [3], [4], can be determined,
including scratches, differences in indent size and position,
sanding/ grinding marks, ghost markings, burned markings,
mold variation, package damage, corrosion/ contamination,
and extraneous markings. Currently, most of these defects are
detected manually by highly skilled subject matter experts,
making the process both costly and time-consuming.

In this paper, we propose an automated, non-destructive
counterfeit-IC detection approach that leverages the texture
information from known authentic chips to achieve high
accuracy in identifying such defects. A stand-out feature
of our proposed technique compared to the state-of-the-art
techniques is the use of infrared (IR) images in place of
optical images. The main advantage of IR images is that they
minimize the reflections which often result in false positives.
Besides, it has the ability to highlight features generally
invisible to the human eye, e.g., remarked surface, scratches,
ghost marking, etc. Moreover, while prior work employed
image texture analysis on optical images using Local Binary
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Pattern (LBP)-type features to detect counterfeit ICs [5],
[7], they depend heavily on the availability of texture infor-
mation of known authentic (i.e., “golden”) ICs. Some of our
approaches only require prior knowledge of a golden texture
which can come from any chip. Further, another shortcoming
of methods proposed before in the literature is that LBP is
sensitive to noise and sometimes wrongly estimates near-flat
regions.

To tackle this, in this paper, we propose a block-wise two-
fold feature extraction method. For this, firstly, each image
is divided into multiple non-overlapping blocks. Afterward,
from each of these blocks, Local Gabor Directional Pattern
(LGDiP) features are extracted. LGDiP is known to be much
more effective than LBP as it extracts features in two phases.
LBP extracts only the fine details while LGDiP focuses on
the appearance information over a broader range of scale as
well as minute details for each of that scale. It also uses
Local Directional Pattern (LDP) in the second phase instead
of LBP, which is more advanced and does not suffer from the
shortcomings of LBP [6]. After feature extraction, another
set of inter- and intra-chip distance features are computed
using the extracted features. This step helps in examining
whether the patterns are uniform among two different sets
of chips. While the inter-distance helps in quantifying the
non-uniformity among the same blocks between the ICs,
intra-chip distance helps in quantifying that within the same
chip. A combined distance vector is then used as a feature
vector to observe the sudden spike in values. The position of
the sudden spike is then referred to as the defective block,
and the IC with that block is probably a counterfeit IC. We
demonstrate the efficacy of our approaches using 25 chips
of four different types, with two genuine classes and two
defective classes. In a nutshell, the main contribution of
our paper is that our approach is capable of automatically
detecting and identifying the location of the defects with
high accuracy.

The rest of this paper is organized as follows. In Section II,
the necessary background on image texture analysis and the
LGDiP algorithm is provided. In Section III, the proposed
methodology for counterfeit IC detection is described in
detail, along with the relevant automated analysis flow. The
experimental setup, results, and discussions are presented in
Section IV. This paper is concluded with directions for future
research in Section V.

II. BACKGROUND

A texture can be defined as the spatial arrangement of the
intensity values in an image. State-of-the-art texture analysis
techniques can be classified into three broad categories [6]:

• Convolutional Neural Network-based: In recent years,
CNN based techniques for texture recognition have
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been growing in popularity. However, they require a
relatively large labeled dataset. Building such a dataset
for counterfeit IC detection is challenging since it is
difficult to obtain known counterfeit ICs, and there are
many different types of defects.

• Attribute-based: The main aim of this relatively new
technique is to provide a comprehensive understanding
of textures for objects that are characterized by patterns.
It matches the pattern present on an object, e.g., striped
or banded, with a known pattern set. To this end, there is
a need for universal texture attribute vocabulary, which
contains all types of such pattern sets. Unfortunately,
for ICs, this has not been accomplished yet.

• Bag of Words: In this technique, an image is converted
into a texture image, where each location is referred to
as a “texel”. Each texel contains a set of local features
extracted by analyzing the local pixel neighborhood.
Thus, the texture image formed through this has a pool
of local features. These features are then combined into
a global representation like histograms. We adopt this
technique since it works well for smaller datasets and
does not require any universal feature vocabulary.

More concretely, our feature extraction method, i.e., LGDiP,
combines Gabor filter and LDP image processing techniques,
as described below.

A. Gabor Filter
The Gabor filter is a linear filter used to detect the presence

of certain frequencies in an image. A two-dimensional (2D)
Gabor filter is a sinusoidal wave modulated by a Gaussian
model [12]. When working with Gabor filters, it is com-
mon to work with the magnitude response of each filter,
sometimes referred to as “Gabor Energy”. A bag of Gabor
wavelets are generated by varying the orientation and scaling
factors present in the Gabor function [13]:
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1
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2σ2
y

)]
exp( j2πω), (1)

where φ(x,y) is the Gabor function, σx and σy represent
the standard deviations of the Gaussian model along x and y
dimensions, respectively, and ω is the radial center frequency
of the filter in the frequency domain. A sample bag of filters
computed using φ(x,y) for different scales and orientations
is shown in Figure 1.

B. Local Directional Pattern (LDP)
Local Directional Pattern (LDP) computes the edge re-

sponse values in different directions and uses that to create
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a texture image [14]. Each edge detector algorithm employs
a set of masks for different directions. Using any such set of
masks mi the directional responses surrounding a particular
pixel is computed. The responses are represented as ri.
Then based on these responses and Eqn. 2, a bit pattern is
generated.

LDPk =
7

∑
i=0

bi(ri − rk) ·2i, (2)

with bi(·) defined as follows.

bi(a) =
{

1 a ≥ 0,
0 a < 0

(3)

For instance, suppose that there are eight masks in an edge
detector for eight directions. Applying these masks on the
neighborhood of the pixel p, eight different responses are
obtained, as shown in Figure 2. Then, the top k values or
any value greater than certain threshold a are assigned 1 and
rest 0. These bits are represented as bi in Figure 2.

Following Eqns. 2 and 3 and taking a definite direction
for the entire image into account, an eight bit LDP pattern
is obtained [14]. The decimal value for each of these bit
patterns represents the texel value for the corresponding pixel
location.

C. Local Gabor Directional Pattern (LGDiP)

Gabor filters encode appearance information over a
broader range of scales while LDP captures small and fine
details. Hence, the combination of these two gives a much
more accurate representation of the texture [15], [16]. ICs
with and without defects have similar texture, so the feature
extraction algorithm should be accurate and should not be
sensitive to noise. LGDiP addresses both requirements and
unlike CNN-based methods, can be implemented on a small
dataset.

For LGDiP, an image is first divided into multiple non-
overlapping blocks. For each block, the following steps are
performed:

1) Gabor filter at R orientations and S scales is applied.
This results in S×R images.

2) LDP is applied on each S × R image to form his-
tograms.

3) All histograms are then concatenated together to form
a single histogram having d features (texel values).

In our work, for the entire image, all d feature histograms for
each of the blocks are concatenated together in row-major
order to obtain a single feature vector representing each IC
image.
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Fig. 3. Flowchart of defect detection methodology.

III. METHODOLOGY

The overall methodology is shown in Figure 3. It performs
a two-fold feature extraction. In the first step, it follows the
LGDiP technique discussed in Section II. In our technique,
each IC image is divided into N×N blocks. For each block,
d LGDiP features are extracted. Therefore, each image has
d×N×N features. In our second step, it computes two more
sets of features from the LGDiP features extracted in the first
step. They are inter-chip and intra-chip distances.

Our approach is most effective under the following as-
sumptions:

• Authentic ICs belonging to the same lot are similar and
their texture is to a high extent uniform.

• Defects are not identical in terms of size, location,
and/or degree on all counterfeit ICs.

• For inter-chip distance, the relative number of the
golden IC samples should be equal or greater than
the counterfeit ICs. Alternatively, test data should be
compared with a fewer number of known golden IC
data in batches, such that the ratio is maintained.

A. Inter-Chip Distance Calculation
The inter-chip distance for each block captures the vari-

ability among blocks belonging to the same location in all
the ICs. This variability measurement is not specific to any
particular type of chip and thus helps in finding a common
feature that can describe patterns in any type of IC. This
follows from the assumption that all chips, especially those
from the same lot, should have similar texture in the same
areas of the chip package.

To compute the inter-chip distance, first, the mean of all
the blocks at the same position is computed. That is, all
the N ×N blocks are numbered in a row-major order such
that for each chip, there are N2 block numbers as shown in
Figure 4. The mean Mi of the features of each block i of all
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Fig. 4. Inter-chip mean vector calculation for block 9 (M9) for N = 3 and
K = 5. The Euclidean distance between this mean and block 9 of ICk is the
inter-chip distance of block 9 for ICk .
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Fig. 5. Intra-chip mean vector (mk) calculation for ICk where N = 3. For
each IC, there is one intra-chip mean. Intra-chip distance of block n is the
Euclidean distance between mk and LGDiP feature vector of block n.

the ICs are computed. Following this technique, N2 numbers
of mean vectors (one per block) are obtained. For each IC,
the inter-chip distance for every block is computed as the
Euclidean distance between the block and its corresponding
mean vector. For instance, for K ICs, a distance matrix of
size K×N2 is obtained, where each row corresponds to inter-
chip distance features for one IC.

B. Intra-Chip Distance Calculation

Unlike inter-chip distance, the intra-chip distance calcu-
lates the variability within a single chip. As stated in the
list of our assumptions, it is assumed that the texture within
an authentic chip is more uniform than in a counterfeit chip.
This is often the case since sanding, recoating, and remarking
are only performed on a portion of the package surface.

Here, the mean vector mk is the average of the feature
vectors of all the blocks belonging to the kth IC. Thus, in
intra-chip distance calculation, the Euclidean distance of the
LGDiP feature vectors of each block of an IC is calculated
from the same mean for a particular IC. For K ICs, there are
K mean vectors. The scheme to calculate the mean has been
diagrammatically depicted in Figure 5.

C. Analysis of Distances to Localize Defects

1) Variance: For golden ICs, it is assumed that variation
among all the inter- and intra-distance values should be
lower than counterfeits. This is because, for a golden IC,
the texture pattern should be virtually similar over the entire
surface of the IC. Therefore, the intra- and inter differences
with the mean should be almost the same. So the maximum
variance observed among any given golden sample set can
be considered as the threshold.



TABLE I
SAMPLE OPTICAL AND IR IMAGES OF EACH CHIP TYPE IN OUR DATASET.

IC Type Optical Image IR Image Dimension

G1

Real Size:
13.48 mmx10.11 mm

Actual IR image
Pixel Dimension:

233X233

G2

Real Size:
5.32 mmx3.99 mm

Actual IR image
Pixel Dimension:

509X230

D1
Real Size:

Actual IR image
Pixel Dimension:

1800X500

D2

Real Size:
34.61 mmx25.96 mm

Actual IR image
Pixel Dimension:

1580X1580
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Fig. 6. Sample surf plot showing inter-chip distance variability with and
without marking for ICs of type G1, G2, D1 and D2 (N = 10). A sample
red bounding box, indicating location of defect, is also shown.
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Fig. 7. Sample surface plot showing intra-chip distance variability with and
without marking for ICs of type G1, G2, D1 and D2 (N = 10). A sample
red bounding box, indicating location of defect, is also shown.

2) Dimensionality Reduction and Outlier Detection: For
golden ICs, the feature vectors should be densely positioned,
whereas ICs with defects should behave like outliers. In our
method, the inter- and intra-distance vectors of each chip are
concatenated to form a feature vector of size 2N2. This is

TABLE II
VARIANCE COMPUTED AMONG THE INTER-CHIP DISTANCES FOR EACH

TYPE OF ICS (10^-8)

IC Type w/ Marking
N=5

w/out Marking
N=5

w/ Marking
N=10

G1 2.54 3.90 1.06
G2 3.90 4.34 2.77
D1 11.6 15.6 4.63
D2 20.5 13.3 12.13

IC Type w/out Marking
N=10

w/ Marking
N=23

w/out Marking
N=23

G1 1.26 0.10 0.10
G2 2.67 0.13 0.13
D1 5.32 0.24 0.30
D2 13.15 0.55 0.45

done to find the outliers based on both within and between
chip variability. Since the number of chips available to test
is often small, it is difficult to detect outliers directly from
these 2N2 dimension feature vector. For this reason, Principal
Component Analysis (PCA) is applied on the combined
dataset, and the principal components having a total of 90%
variability,which gave the best result, is taken for outlier
detection. The measure that is used for outlier detection is
the local outlier factor (LOF) [17]. This factor is a measure
that computes the local deviation of a given data point with
respect to its neighbors. The greater the LOF, the more likely
the IC under test is an outlier. So a threshold is chosen by
selecting the maximum LOF observed among a given set of
golden ICs.

If an IC fails in both of these analyses (i.e., variance and
outlier detection) then there is high probability that, it is a
counterfeit IC.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

All the aforementioned algorithms are implemented using
MATLAB (v. 2018a). The code for LGDiP feature extraction
was obtained from [19]. We took images of four different
types of IC sets, two genuine and two defective. We label
the two genuine IC sets as G1 and G2 while the two
defective IC sets are D1 and D2. IR images are acquired
using PHEMOS-1000 Emission microscope (C11222-16) for
G1, G2, and D1 while Nikon D850 with external IR/NIR
lens (62 mm diameter, pass spectrum above 720 nm) was
used for D2 due to better field of view. The laser setting
used for PHEMOS is high power IR-LD module with 1.3µm
wavelength and lens in OBRICH mode with 5X resolution.
Optical images were acquired using Leica DVM6 digital
optical microscope. Experiments are done for N = 5,10,23
and direct intensity values of images. For LGDiP feature
extraction, the parameter values used are R = 8 and S = 5.
Hence, the number of features obtained for each block (d)
is 280.

A. Dataset

Our dataset contains four types of ICs, as shown in
Figure I. The golden ICs, referred to as G1 and G2 type,
are ICs bought directly from the manufacturers and are
therefore authentic. Among the defective ICs, D1 has the
most defects. Since many of the D1 category ICs contain
ghost markings, they can be declared as counterfeit ICs.
D2 is another category of defective ICs having less surface
texture defects than D1. Our dataset contains 5 ICs of each



TABLE III
LOCAL OUTLIER FACTOR (LOF) SCORES

IC Type N=5 N=10 N=23 Image
Intensity

G1

0.9885 0.9976 0.9977 1.0110
0.9898 0.9982 0.9991 0.9693
1.0016 0.9945 0.9968 0.9867
0.9872 0.9892 0.9947 0.9898
0.9866 0.9915 0.9993 0.9693

G2

1.0011 1.0072 1.0000 1.4107
1.0237 1.0087 0.9997 1.5020
0.9964 1.0067 0.9972 1.4782
0.9919 0.9892 0.9995 1.4399
1.0651 1.0178 1.0050 1.5871

D1

0.9959 1.4217 1.0063 1.6700
1.6377 1.5644 0.9947 1.6743
1.0184 1.3187 1.0020 0.9980
1.0047 1.3512 1.0035 1.2630
0.9965 1.4466 1.0048 1.0393

D2

1.6626 1.2948 1.1456 1.1823
1.7297 1.1842 1.2093 1.1305
1.6213 1.2722 1.1729 1.1878
1.6501 1.2329 1.2199 1.1733
1.6561 1.2743 1.1235 1.1853

Threshold 1.0651 1.0178 1.0050 1.5871
Accuracy 80% 100% 80% 40%

Fig. 8. Block-wise Intra-chip Distance Variability.

for G1, G2, and D2 type and 10 ICs for D1 type. All the
ICs are reduced to a similar dimension of 230×230 pixels.
This resulted in some information loss, but the effect of
scratches and defects is still noticeable. Pre-processing is
done to remove markings1 from the chips. Results are shown
for both with and without markings.

B. Inter-Chip and Intra-Chip Distance Measurement Results

The results for inter- and intra-chip distances are repre-
sented using surface (surf) plots. For each IC, two N×N grid
surf plots are obtained in which each of the blocks of the grid
corresponds to the same block in the original image. Samples
of inter and intra surf plots, with and without markings,
for each of G1, G2, D1 and D2 are shown in the first two
columns of Figure 6 and Figure 7 respectively. The same
distances calculated using the intensity values as features,
instead of LGDiP, are also given in the intensity columns
of the figures for comparison. The result shows, for G1 and
G2 type ICs all the surf plots are mostly of the same color
(blue and light blue). However, the surf plots of D1 and D2
types show more variation. They have different color shades,
representing variability in the inter and intra chip distances
among the blocks. Further, the green and yellow colors
indicate high variance in associated blocks. The defects
found on D1 type ICs are mainly texture inconsistency while
the defects found on D2 are mainly scratches and resurfacing
observed along the chip periphery.

1Markings are writings found on the surface of the chips containing
company name, batch number, etc.

C. Variance

Table II and Figure 8 shows the variances calculated
among all the inter-chip distances and block-wise intra-chip
distances respectively. Results are tabulated for inter-chip
variability with 100 blocks and the intra-chip variability is
shown for 25 and 100 blocks in Figure 8, where first four
types represents ICs with markings and next four represents
same ICs without markings. Since similar location blocks are
compared, no effect of markings is observed on the results.
In fact, automated removal of markings may result in some
information loss because of pre-processing. The result shows
that variances in D1 and D2 are higher than the genuine ICs.
This is because the texture pattern between the same blocks
varies more with the presence of defects.

D. Outlier Detection

LOF values for each of the ICs are shown in Table III for
N=5, 10, and 23. We have also performed outlier detection
by directly taking pixel intensity of the images as input to
show that our proposed use of IR gave superior results.
Unlike SMEs, machines are not as capable of detecting
counterfeit ICs just by looking at the images. The major
drawbacks of directly working with the pixel intensity values
are the presence of unwanted noise and reflection and the
difficulty in removing them. The threshold boundary, for
our technique, is chosen by taking the maximum LOF score
observed among the golden ICs only, that is, type G1 and
G2. It is observed that our approach gave 100% accuracy for
N = 10 and less accuracy for N = 5 and 23. This is because
the texture is best described as a local feature. If N is large
then the local feature information will be lost, and it will be
more of a global feature. Also, if N is substantially small, the
texture features will be dominated by noise, which for our
dataset, where the difference between two textures is very
low, may increase the number of false positives. Hence, the
results show it is important to choose the optimal number of
blocks as well as threshold.

V. CONCLUSION

We have developed a two-fold feature extraction technique
capable of detecting multiple defects present on the package
of ICs. To summarize, the benefits for our approach are:

• The proposed technique is capable of detecting a wide
variety of surface defects like scratches, texture differ-
ences, difference in indent position, sanding/grinding
marks, ghost markings, burned markings, mold vari-
ation, package damage, corrosion/contamination, and
extraneous markings.

• It is fully automated, non-destructive, and does not
require any complex image acquisition infrastructure.

• It does not require prior knowledge of the golden IC,
only golden textures which can be obtained from any
authentic IC.

• It is capable of estimating the location of one or more
defects at once.

• To the best of our knowledge, this paper, for the first
time, uses IR imaging for counterfeit IC detection.

If the number of blocks N and the threshold are chosen
appropriately, it is capable of producing 100% accuracy. This
selection can be easily made at the initial tuning phase of
the algorithm.
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