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Abstract

We introduce a type A crystal structure on decreasing factorizations of fully-
commutative elements in the 0-Hecke monoid which we call ?-crystal. This crystal
is a K-theoretic generalization of the crystal on decreasing factorizations in the sym-
metric group of the first and last author. We prove that under the residue map the
?-crystal intertwines with the crystal on set-valued tableaux recently introduced by
Monical, Pechenik and Scrimshaw. We also define a new insertion from decreasing
factorization to pairs of semistandard Young tableaux and prove several properties,
such as its relation to the Hecke insertion and the uncrowding algorithm. The new
insertion also intertwines with the crystal operators.

Mathematics Subject Classifications: 05E05, 05E10, 14N15, 20G42

1 Introduction

Grothendieck polynomials were introduced by Lascoux and Schützenberger [LS82, LS83]
as representatives for the Schubert classes in the K-theory of the flag manifold. Their

⇤Supported by NSF grant DMS–1833333.
†Supported by NSF grants DMS–1760329 and DMS–1764153.
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stabilizations were studied by Fomin and Kirillov [FK94]. The stable Grothendieck poly-
nomials, labeled by permutations w 2 S

n

, are defined as

G
w

(x1, . . . , xm

; �) =
X
(k,h)

�

`(h)�`(w)
x

k
, (1)

where the sum is over decreasing factorizations [k,h]t of w in the 0-Hecke algebra. When
� = 0, G

w

specializes to the Stanley symmetric function F

w

[Sta84].
A robust combinatorial picture has been developed for the special case of Grothendieck

polynomials indexed by Grassmannian permutations. Buch [Buc02] showed that the
Grassmannian Grothendieck polynomials can be realized as the generating functions of
semistandard set-valued tableaux:

G
�

(x1, . . . , xm

; �) =
X

T2SVTm(�)

�

ex(T )
x

wt(T )
, (2)

where SVT

m(�) is the set of semistandard set-valued tableaux of shape � in the alpha-
bet [m] := {1, 2, . . . ,m} and ex(T ) is the excess of T . Recently, Monical, Pechenik and
Scrimshaw [MPS18] provided a type A

m�1-crystal structure on SVT

m(�) which, in par-
ticular, implies that

G
�

(x1, . . . , xm

; �) =
X
µ

�

|µ|�|�|
M

µ

�

s

µ

(x1, . . . , xm

),

where M

µ

�

is the number of highest-weight set-valued tableaux of weight µ in the crys-
tal SVT

m(�). Their approach recovers a Schur expansion formula for Grassmannian
Grothendieck polynomials given by Lenart [Len00, Theorem 2.2] in terms of flagged in-
creasing tableaux.

In this paper, we define a type A crystal structure on decreasing factorizations of w
in the 0-Hecke algebra of (1), when w is fully-commutative [Ste96] (or equivalently 321-
avoiding). A permutation w is fully-commutative if its reduced expressions do not contain
any braids. The number of fully-commutative elements of S

n

is the n-th Catalan number.
The residue map (see Section 2.4) shows that fully-commutative permutations correspond
to skew shapes. We call our crystal ?-crystal. It is local in the sense that the crystal oper-
ators f?

i

and e

?

i

only act on the i-th and (i+ 1)-th factors of the decreasing factorization.
It generalizes the crystal of Morse and Schilling [MS16] for Stanley symmetric functions
(or equivalently reduced decreasing factorizations of w) in the fully-commutative case.
We show that the ?-crystal and the crystal on set-valued tableaux intertwine under the
residue map (see Theorem 17). We also show that the residue map and the Hecke inser-
tion [BKS+08] are related (see Theorem 24), thereby resolving [MPS18, Open Problem
5.8] in the fully-commutative case. In addition, we provide a new insertion algorithm,
which we call ?-insertion, from decreasing factorizations on fully-commutative elements
in the 0-Hecke monoid to pairs of (transposes of) semistandard Young tableaux of the
same shape (see Definition 27 and Theorem 35), which intertwines with crystal operators
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(see Theorem 57). This recovers the Schur expansion of G
w

of Fomin and Greene [FG98]
when w is fully-commutative, stating that

G
w

=
X
µ

�

|µ|�`(w)
g

µ

w

s

µ

,

where
g

µ

w

= |{T 2 SSYT

n(µ0) | w
C

(T ) ⌘ w}|,
and w

C

(T ) is the column reading word of T (see Remark 58). We also show that the
composition of the residue map with the ?-insertion is related to the uncrowding algo-
rithm [Buc02] (see Theorem 64). Other insertion algorithms have recently been studied
in [CP19].

The paper is organized as follows. In Section 2, we introduce the ?-crystal on decreas-
ing factorizations in the 0-Hecke monoid and show that it intertwines with the crystal on
semistandard set-valued tableaux [MPS18] under the residue map. In Section 3, we dis-
cuss two insertion algorithms for decreasing factorizations. The first is the Hecke insertion
introduced by Buch et al. [BKS+08] and the second is the new ?-insertion. In Section 4,
properties of the ?-insertion are discussed. In particular, we prove that it intertwines with
the crystal operators and that it relates to the uncrowding algorithm. We conclude in
Section 5 with some discussions about the non-fully-commutative case.

2 The ?-crystal

In this section, we define the K-theoretic generalization of the crystal on decreasing fac-
torizations by Morse and Schilling [MS16] when the associated word is fully-commutative.
The underlying combinatorial objects are decreasing factorizations in the 0-Hecke monoid
introduced in Section 2.1. The ?-crystal on these decreasing factorizations is defined in
Section 2.2. We review the crystal structure on set-valued tableaux introduced by Moni-
cal, Pechenik and Scrimshaw [MPS18] in Section 2.3. The residue map and the proof that
it intertwines the ?-crystal and the crystal on set-valued tableaux is given in Section 2.4.

2.1 Decreasing factorizations in the 0-Hecke monoid

The symmetric group S
n

for n > 1 is generated by the simple transpositions s1, s2, . . . , sn�1
subject to the relations

s

i

s

j

= s

j

s

i

, if |i� j| > 1,

s

i

s

i+1si = s

i+1sisi+1, for 1 6 i < n� 1,

s

2
i

= 1, for 1 6 i 6 n� 1.

A reduced expression for an element w 2 S
n

is a word a1a2 . . . a` with a

i

2 [n � 1] :=
{1, 2, . . . , n� 1} such that

w = s

a1 · · · sa` (3)

and ` is minimal among all words satisfying (3). In this case, ` is called the length of w.
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Definition 1. The 0-Hecke monoid H0(n), where n > 1 is an integer, is the monoid of
finite words generated by positive integers in the alphabet [n� 1] subject to the relations

pq = qp if |p� q| > 1,

pqp = qpq for all p, q,

pp = p for all p.

(4)

We may form an equivalence relation ⌘H0 on all words in the alphabet [n� 1] based
on the relations (4). The equivalence classes are infinite since the last relation changes the
length of the word. We say that a word a = a1a2 . . . a` is reduced if ` > 0 is the smallest
among all words in H0(n) equivalent to a. In this case, ` is the length of a. Note that
H0(n) is in bijection with S

n

by identifying the reduced word a1a2 . . . a` in H0(n) with
s

a1sa2 · · · sa` 2 S
n

. We say w 2 H0(n) or Sn

is fully-commutative or 321-avoiding if none
of the reduced words equivalent to w contain a consecutive braid subword of the form
i i+ 1 i or i i� 1 i for any i 2 [n� 1].

Remark 2. Any (not necessarily reduced) word w 2 H0(0) containing a consecutive braid
subword is not fully-commutative.

Definition 3. A decreasing factorization of w 2 H0(n) into m factors is a product of the
form

h = h

m

. . . h

2
h

1
,

where the sequence in each factor

h

i = h

i

1h
i

2 . . . h
i

`i

is either empty (meaning `

i

= 0) or strictly decreasing (meaning h

i

1 > h

i

2 > · · · > h

i

`i
) for

each 1 6 i 6 m and h ⌘H0 w in H0(n).
The set of all possible decreasing factorizations into m factors is denoted by Hm or

Hm(n) if we want to indicate the value of n. We call ex(h) = len(h) � ` the excess of
h, where len(h) is the number of letters in h and ` is the length of w. We say h is
fully-commutative (or 321-avoiding) if w is fully-commutative.

2.2 The ?-crystal

Let Hm,? be the set of fully-commutative decreasing factorizations in Hm. We introduce
a type A

m�1 crystal structure on Hm,?, which we call the ?-crystal . This generalizes the
crystal for Stanley symmetric functions [MS16] (see also [Len04]).

Definition 4. For any h = h

m

. . . h

2
h

1 2 Hm,?, we define crystal operators e?
i

and f

?

i

for
i 2 [m�1] and a weight function wt(h). The weight function is determined by the length
of the factors

wt(h) = (len(h1), len(h2), . . . , len(hm)).

To define the crystal operators e

?

i

and f

?

i

, we first describe a pairing process:
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• Start with the largest letter b in h

i+1, pair it with the smallest a > b in h

i. If there
is no such a, then b is unpaired.

• The pairing proceeds in decreasing order on elements of hi+1 and with each iteration,
previously paired letters of hi are ignored.

If all letters in h

i are paired, then f

?

i

annihilates h. Otherwise, let x be the largest
unpaired letter in h

i. The crystal operator f ?

i

acts on h in either of the following ways:

1. If x+ 1 2 h

i \ h

i+1, then remove x+ 1 from h

i, add x to h

i+1.

2. Otherwise, remove x from h

i and add x to h

i+1.

If all letters in h

i+1 are paired, then e

?

i

annihilates h. Let y be the smallest unpaired letter
in h

i+1. The crystal operator e?
i

acts on h in either of the following ways:

1. If y � 1 2 h

i \ h

i+1, then remove y � 1 from h

i+1, add y to h

i.

2. Otherwise, remove y from h

i+1 and add y to h

i.

It is not hard to see that e?
i

and f

?

i

are partial inverses of each other.

Example 5. Let h = (7532)(621)(6), then

f

?

1 (h) = 0, e

?

1(h) = (7532)(62)(61),

f

?

2 (h) = (75321)(61)(6), e

?

2(h) = (753)(6321)(6).

Remark 6. Compared to [MS16], one pairs a letter b in h

i+1 with the smallest letter a > b

in h

i rather than a > b.

Proposition 7. Let h = h

m

. . . h

1 2 Hm,? such that f

?

i

(h) 6= 0. Then f

?

i

(h) 2 Hm,?,
f

?

i

(h) ⌘H0 h, and ex(f ?

i

(h)) = ex(h). Furthermore, the j-th factor in f

?

i

(h) and h agrees
for j /2 {i, i+ 1}. Analogous statements hold for e

?

i

.

Proof. Suppose h̃ := f

?

i

(h) 6= 0. Then by definition of f ?

i

, h̃ = h

m

. . . h

i+2
h̃

i+1
h̃

i

h

i�1
. . . h

1

and h

j is unchanged for j /2 {i, i+1}. In addition, the number of factors does not change.

To see h ⌘H0 h̃, it su�ces to show that h

i+1
h

i ⌘H0 h̃

i+1
h̃

i. Let x be the largest
unpaired letter in h

i. By the bracketing procedure this implies that x /2 h

i+1. We can
write h

i+1 as w1w2, where w1 is a word containing only letters greater than x, and w2

is a word containing only letters smaller than x. We can write h

i as w3xw4, where w3

contains only letters greater than x and w4 contains only letters smaller than x.
The pairing process will result in one of the two following cases:

1. If x+ 1 2 h

i \ h

i+1, then obtain h̃

i by removing x+ 1 from h

i, and h̃

i+1 by adding
x to h

i+1.

2. Otherwise, obtain h̃

i by removing x from h

i and obtain h̃

i+1 by adding x to h

i+1.

the electronic journal of combinatorics 27(2) (2020), #P2.29 5



We first argue that in either case we must have x�1 /2 w2. Assume x�1 2 w2 and let
k be the largest number such that the interval [x� k, x� 1] ✓ w2. By assumption k > 1.
In order for x to be the largest unpaired letter in h

i, [x� k, x� 1] must be contained in
w4. We can write w2 = (x � 1) . . . (x � k)w02 and w4 = (x � 1) . . . (x � k)w04, where all
letters in w

0
2 are smaller than x� k � 1. When k = 1, we have the following subword

(x� 1)w02w3x(x� 1) ⌘H0 w
0
2w3(x� 1)x(x� 1),

which contains a braid (x� 1)x(x� 1). When k > 1, we also have the following subword

(x�k)w02w3x(x�1) . . . (x�k+1)(x�k) ⌘H0 w
0
2w3(x�1) . . . (x�k+2)(x�k)(x�k+1)(x�k),

which also contains a braid.

Case (1): Let k be the largest letter such that [x+1, x+k] ✓ w3. Clearly k > 1. Suppose
k > 1, then we can write w3 = w

0
3(x+ k) . . . (x+1). Since x is the largest unpaired letter

in h

i, everything in [x + 1, x + k] ✓ w3 must be paired. The letter x + 1 in w3 is paired
with x+1 2 w1, which implies that x+ i in w3 is paired with x+ i 2 w1 for all 1 6 i 6 k.
This implies that [x+ 1, x+ k] ✓ w1. Then we have the following subword

(x+ 1)w2w
0
3(x+ k) . . . (x+ 2)(x+ 1) ⌘H0 w2w

0
3(x+ k) . . . (x+ 1)(x+ 2)(x+ 1)

which contains a braid. Thus, we must have k = 1, which implies that x+ 2 /2 w3. Write
w1 = w

0
1(x+ 1). Then by direct computation

h

i+1
h

i ⌘H0 w
0
1(x+ 1)w2w

0
3(x+ 1)xw4 ⌘H0 w

0
1(x+ 1)(x+ 1)w2w

0
3xw4

⌘H0 w
0
1(x+ 1)w2w

0
3xxw4 ⌘H0 (w

0
1(x+ 1)xw2) (w

0
3xw4) = h̃

i+1
h̃

i

.

Case (2): We claim that if x+ 1 /2 h

i+1, then x+ 1 /2 h

i. Otherwise the x+ 1 2 h

i must
be paired with some z 2 h

i+1, so we have z 6 x + 1. But x is unpaired, which implies
z > x, that gives us a contradiction. Hence x+1 /2 w3. Recall that x�1 /2 w2. Therefore,
by a straightforward computation

h

i+1
h

i = w1w2w3xw4 ⌘H0 (w1xw2) (w3w4) ⌘H0 h̃
i+1

h̃

i

.

The above arguments show that h

i+1
h

i ⌘H0 h̃

i+1
h̃

i, thus h ⌘H0 h̃, and the total length
of the decreasing factorization are unchanged under f ?

i

. Furthermore, the excess remains
unchanged under f ?

i

.
Similar arguments hold for e?

i

.

Remark 8. Here we summarize several results from the proof that will be needed later.
Namely, if x is the largest unpaired letter in h

i, then

• x� 1 /2 h

i+1.

• One and only one of the three statements hold: x+1 2 h

i+1 \ hi, x+1 /2 h

i+1 [ hi,
and x+ 1 2 h

i+1
, x+ 1 /2 h

i.

It will be shown in Section 2.4 that Hm,? is indeed a Stembridge crystal of type A
m�1

(for an introduction to crystal and terminology, see [BS17]).
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2.3 The crystal on set-valued tableaux

In this section, we review the type A crystal structure on set-valued tableaux introduced
in [MPS18]. In fact, in [MPS18] the authors only considered the crystal structure on
straight-shaped set-valued tableaux. Here we consider the crystal on skew shapes as well,
see Theorem 11.

We use French notation for partitions � = (�1,�2, . . . ) with �1 > �2 > · · · > 0, that
is, in the Ferrers diagram for �, the largest part �1 is at the bottom.

Definition 9 ([Buc02]). A semistandard set-valued tableau T is the filling of a skew shape
�/µ with nonempty subsets of positive integers such that:

• for all adjacent cells A, B in the same row with A to the left of B, we have max(A) 6
min(B),

• for all adjacent cells A, C in the same column with A below C, we have max(A) <
min(C).

The weight of T , denoted by wt(T ), is the integer vector whose i-th component counts
the number of i’s that occur in T . The excess of T is defined as ex(T ) = |wt(T )| � |�|.
We denote the set of all semistandard set-valued tableaux of shape �/µ by SVT(�/µ).
Similarly, if the maximum entry is restricted to m, the set is denoted by SVT

m(�/µ).

We now review the crystal structure on semistandard set-valued tableaux given
in [MPS18]. We state the definition on skew shapes rather than just straight shapes.

Definition 10. Let T 2 SVT

m(�/µ). We employ the following pairing rule for letters i
and i + 1. Assign � to every column of T containing an i but not an i + 1. Similarly,
assign + to every column of T containing an i + 1 but not an i. Then, successively pair
each + that is to the left of and adjacent to a �, removing all paired signs until nothing
can be paired.

The operator f

i

changes the i in the rightmost column with an unpaired � (if this
exists) to i + 1, except if the cell b containing that i has a cell to its right, denoted b

!,
that contains both i and i + 1. In that case, f

i

removes i from b

! and adds i + 1 to b.
Finally, if no unpaired � exists, then f

i

annihilates T .
Similarly, the operator e

i

changes the i+1 in the leftmost column with an unpaired +
(if this exists) to i, except if the cell b containing that i+ 1 has a cell to its left, denoted
b

 , that contains both i and i + 1. In that case, e
i

removes i + 1 from b

 and adds i to
b. Finally, if no unpaired + exists, then e

i

annihilates T .
Based on the pairing procedure above, '

i

(T ) is the number of unpaired � while "
i

(T )
is the number of unpaired +.

One can easily show that the crystal on SVT

m(�/µ) of Definition 10 defines a semi-
normal crystal (for definitions see [BS17]). It was proved in [MPS18, Theorem 3.9] that
the above described operators e

i

and f

i

define a type A

m�1 Stembridge crystal structure
on SVT

m(�). We claim that their proof goes through also for skew shapes.
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Theorem 11. The crystal SVTm(�/µ) of Definition 10 is a Stembridge crystal of type
A

m�1.

Proof. Since the proof is exactly the same as in [MPS18, Theorem 3.9], we just state the
outline and give a brief description. For details we refer to [MPS18].

First note that the signature rule given by column-reading is compatible with the
signature rule given by row-reading (top to bottom, left to right, and arrange the letters
in the same cell by descending order) by semistandardness. Hence we may consider the
crystal to live inside the tensor product of its rows. A single-row semistandard set-valued
tableaux of a fixed shape is isomorphic to a Stembridge crystal, as shown in [MPS18,
Proposition 3.5]:

�
s

: SVTm(s⇤1)!
mM
k=1

B((s� 1)⇤1 + ⇤k

),

where ⇤
k

are the fundamental weights of type A

m�1.
Let � = (�1, . . . ,�`

) and µ = (µ1, . . . , µ`

) (the last couple µ

i

could be zero) be two
partitions such that µ ✓ �. Construct the map below, which is a strict crystal embedding:

 : SVTm(�/µ)! SVT

m((�1 � µ1)⇤1)⌦ SVT

m((�2 � µ2)⇤1)⌦ · · ·⌦ SVT

m((�
`

� µ

`

)⇤1).

Thus, we have a strict crystal embedding:

(�
�1�µ1 � · · ·� �

�`�µ`
) � : SVTm(�/µ)!

`O
j=1

 
mM
k=1

B((�
j

� µ

j

)⇤1 + ⇤k

)

!
.

Since SVTm(�/µ) is a seminormal crystal, we can conclude that it is a Stembridge crystal.

2.4 The residue map

In this section, we define the residue map from set-valued tableaux of skew shape to
fully-commutative decreasing factorizations in the 0-Hecke monoid. We then show in
Theorem 17 that the residue map intertwines with the crystal operators, proving that
Hm,? is indeed a crystal of type A

m�1 (see Corollary 18).

Definition 12. Given T 2 SVT

m(�/µ), we define the residue map res : SVTm(�/µ)! Hm

as follows. Associate to each cell (i, j) in �/µ its content `(�) + j � i, where `(�) is the
number of parts in �. Produce a decreasing factorization h = h

m

h

m�1
. . . h

2
h

1 by declaring
h

k to be the (possibly empty) sequence formed by taking the contents of all cells in T

containing the entry k and then arranging the contents in decreasing order. This defines
res(T ) := h.

Example 13. Let T be the set-valued tableau of skew shape (2, 2)/(1)

T = 23 3

12
.
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The content of each cell in T is denoted by a subscript as follows:

231 32

123
.

To read o↵ the third factor, we search for all cells with an entry 3; these cells have contents
1 and 2, so we have 21 in the third factor. Altogether, we obtain res(T ) = (21)(31)(3) 2
H3.

The image of the residue map res is Hm,?, the set of fully-commutative decreasing
factorizations into m factors. In fact, res is a bijection from semistandard set-valued skew
tableaux on the alphabet [m] to Hm,? up to shifts in the skew shape.

For this purpose, let us describe the inverse of the residue map. Let h =
h

m

h

m�1
. . . h

2
h

1 2 Hm,?. Begin by filling the diagonals of content that appear in h

m

by the entry m. As the resulting T is supposed to be of skew shape, the cells containing
m along increasing diagonals need to go weakly down from left to right. If these diagonals
are consecutive, then the cells have to be in the same row of T since T is semistandard.
Continue the procedure above by putting entry i into the diagonals specified by h

i for
all i = m � 1,m � 2, . . . , 1, applying the condition that the resulting filling should be
semistandard.

Proposition 14. If h = h

m

h

m�1
. . . h

2
h

1 2 Hm,?, then the above algorithm is well-defined
up to shifts along diagonals. It produces a skew semistandard set-valued tableau T such
that res(T ) = h.

Proof. We shall show more generally that at any given stage in the algorithm for the
inverse of the residue map above, the tableau T produced is of skew shape if and only if
h is fully-commutative.

Assume that T is not of skew shape. Consider the earliest stage in the algorithm when
the produced tableau is not of skew shape. Then, either one of the following cases must
have occurred for the first time.

Case 1: There are adjacent cells with nonempty sets A and B (where max(A) 6 min(B))
in the same row on diagonals i and i+1 respectively with no cells appearing directly below
these cells, as illustrated on the left side of Figure 1. Moreover, by minimality, we have
an integer x with the following properties:

1. i+ 1 2 h

x and x < min(A),

2. there does not exist a y with x 6 y < min(B) and i+ 2 2 h

y.

By applying semistandardness, a cell containing x is created directly below the cell
containing the set A as in the right side of Figure 1. Furthermore, by (2), for all
x 6 y < min(B), we have that every letter in h

y is either at most i + 1 or at least
i + 3. It follows that, after possibly applying commutativity (i + 1 with letters at most
i� 1 or at least i+3) and the idempotent relation, hmin(B)

. . . h

x+1
h

x is equivalent to one
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A

i

B

i+1 �!
A

i

B

i+1

x

i+1

Figure 1: A forbidden case while inverting the residue map.

B

i

A

i+1

�!
B

i

x

i

A

i+1

Figure 2: Another forbidden case while inverting the residue map.

containing the braid subword i + 1 i i + 1. This implies that h is equivalent to a Hecke
word containing the same braid subword.

Case 2: There are adjacent cells with nonempty sets A and B in the same column on
diagonals i+1 and i respectively with no cells appearing directly to the left of these cells,
as illustrated on the left side of Figure 2. Moreover, by minimality, we have an integer x
with the following properties:

1. i 2 h

x and x 6 min(A),

2. there does not exist a y with x < y 6 min(B) and i� 1 2 h

y.

By applying semistandardness, a cell containing x is created directly to the left of the
cell containing the set A as in the right side of Figure 2. Furthermore, by (2), for all
x < y 6 min(B), we have that every letter in h

y is either at most i � 2 or at least i.
Similar to the argument in Case 1, hmin(B)

. . . h

x+1
h

x is equivalent to one containing the
braid subword i i + 1 i. This implies that h is equivalent to a word in H0(n) containing
the same braid subword.

The above arguments imply that the image of res is contained in Hm,?. Conversely, if
h is fully-commutative, then the algorithm for res�1 does not produce Case 1 or Case 2
above and hence the resulting tableau T is of skew shape which in turn implies that the
algorithm is well-defined (up to shifts along the diagonal if a gap of size at least 3 occurs
in the labels).

If the skew shape �/µ of the tableau T is known, then one may simplify the procedure
above noting that the filling of i specified by letters in h

i must occur along a horizontal
strip for all i = m,m� 1, . . . , 1. In this case, the recovered tableau T is unique and there
is no shift ambiguity if a gap of size at least 3 occurs in the labels.

Example 15. Let h = (61)(752)(75)(762) be a decreasing factorization of w = 651762.
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In the algorithm for the inverse of the residue map, the entry 4 is placed on diagonal
1 and 6, respectively. Due to semistandardness, the entry 3 in diagonal 2 must be placed
below the 4 in diagonal 1, while the 3’s in diagonals 5 and 7 are respectively to the
left and below the 4 in diagonal 6. Continuing with the remaining fillings, we have two
possibilities:

T1 =

41

132

235 46

16 1237

,

or

T2 =

41

132

235 46

16 1237

,

where T1 2 SVT

4((4, 4, 1, 1)/(2, 2)) and T2 2 SVT

4((3, 3, 1, 1, 1)/(1, 1, 1)). Note that they
indeed just di↵er by a shift along diagonals as stated in Proposition 14.

Example 16. Let h = (8431)(863)(8654)(941) be a decreasing factorization of w =
84396541. Suppose that h = res(T ), where T 2 SVT

4(�/µ) with

�/µ = (5, 5, 4, 2, 1)/(4, 4, 1, 1).

Then, we fill in 4 along the diagonals with labels 1, 3, 4, 8 respectively, noting that
the 4 in diagonal 4 is to the right of the 4 in diagonal 3 (due to the semistandardness of
T ). Continuing with the remaining fillings, we have

T =

141

343 44

124 25 236

2348

19

.
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Theorem 17. The crystal on set-valued tableaux SVTm(�/µ) and the crystal on decreasing
factorizations Hm,? intertwine under the residue map. That is, the following diagrams
commute:

SVT

m(�/µ) Hm,?

SVT

m(�/µ) Hm,?

fk

res

f

?
k

res

SVT

m(�/µ) Hm,?

SVT

m(�/µ) Hm,?

.

ek

res

e

?
k

res

Proof. Let T 2 SVT

m(�/µ), h = res(T ) and ` = `(�). We prove the following three
statements associated to f

k

(T ) and f

?

k

(h).

(1) We claim that if there is no unpaired k in T , then f

?

k

annihilates h. Furthermore, if
the rightmost unpaired k in cell b of T has content x, then x is also the largest unpaired
letter in h

k.

For the proof of (1) it su�ces to notice that the signature rule on tableaux is equivalent
to the pairing process for decreasing factorizations of H0(n). We rephrase the pairing
procedure for decreasing factorizations on tableaux:

• At the beginning, no letter is paired.

• Then start with the rightmost column and work westward.

• Successively, for each k+1, compute its content a, then pair it with the k of smallest
content weakly greater than a that is yet unpaired.

Next, we argue that the signature rule yields the same result on the rightmost unpaired
letter. Assume we are looking at cell b containing the current k + 1 with content a.

Case (a): Suppose there is no unpaired k with content a but at least one unpaired k

with strictly greater content(s). Then pair it with the current k + 1. This is the direct
signature rule.

Case (b): Suppose there is no unpaired k with content weakly greater than a, then this
k + 1 is unpaired. This is also the direct signature rule.

Case (c): Suppose there is an unpaired k with content a. Then it must be either in the
same cell b, or one row below and one column to the left of b on the diagonal labeled a.
If they are in the same cell, then the pairing is the direct signature rule.

Otherwise, there must be cells to the left and below b since the shape is skew. Suppose
cell b is in row r. Consider the rightmost entry in cell (r, j) in row r containing a k + 1,
and the leftmost entry in cell (r � 1, q) in row r � 1 containing a k. Considering this as
the first of a consecutive occurrence, cell b is cell (r, j), so we have ` + j � r = a. By
semistandardness and the condition that the shape is skew, we can partially fill out the
involved subtableau of T for rows r � 1, r from column q to j:

k + 1
`+q�r k + 1

`+q+1�r . . . k + 1
`+j�1�r k + 1 . . .

`+j�r
. . . k

`+q�r+1 k

`+q�r . . . k

`+j�r k

`+j�r+1
.
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All the cells (s, t) with q < t < j and s 2 {r, r � 1} and the cells (r, q) and (r � 1, j) are
single-valued by semistandardness as shown in the above figure.

From the k+1 in (r, j), we start the pairing process. First, we claim that the k in cell
(r� 1, j) must be unpaired at this point. Suppose that there is a k+ 1 to the east of cell
(r, j) with content smaller or equal to `+ j � r + 1, then it must be cell (r, j + 1), which
violates that (r, j) is the rightmost cell in row r containing a k+1. Then the pairing says
the k+1 in cell (r, t) pairs with the k in cell (r� 1, t� 1) for q < t 6 j. Lastly, the k+1
in cell (r, q) has to pair with the previously unpaired k in cell (r� 1, j) since there are no
unpaired k with label greater or equal to `+ q � r and smaller than `+ j � r + 1.

Although the pairing is di↵erent than the usual signature rule pairing, which pairs
k + 1, k in the same column, the 2(j � q + 1) letters end up being paired. Since it will
not influence which one will be the rightmost unpaired letter, it is still equivalent to the
signature rule.

So in any case, the pairing is equivalent to the signature rule. Thus, the rightmost
unpaired k in T corresponds to the largest unpaired letter in h

k.

(2) We claim that if f
k

changes the rightmost unpaired k in T to a k + 1 (with content
x) without moving it, then f

?

k

moves a letter x from h

k to h

k+1.
Since f

k

does not need to move any letter, it means the cell to the right of b, denoted
by b

!, does not contain a k. It is the only cell with content x+ 1 that could contain a k.
This implies that x+ 1 /2 h

k. By Definition 4, f ?

k

moves x from h

k to h

k+1.

(3) We claim the following. If f
k

changes a k from b

! into a k + 1 and moves to cell
b, then f

?

k

removes an x+ 1 from h

k and changes it to an x in h

k+1.
That f

k

needs to move a number means that k and k+1 are in b

!, which implies that
x+ 1 2 h

k \ h

k+1. By Definition 4, f ?

k

removes the x+ 1 from h

k and adds an x to h

k+1.
We have proved the three statements and they complete the proof that f

k

and f

?

k

intertwine under the residue map. The proof is similar for e
k

and e

?

k

.

Corollary 18. The set Hm,?, together with crystal operators e

?

i

and f

?

i

for 1 6 i < m

and weight function wt defined in Definition 4, is a Stembridge crystal.

Proof. By Theorem 17 and the fact that the residue map preserves the weight and is
invertible, this follows from the fact that SVT

m(�/µ) is a Stembridge crystal proven
in [MPS18, Theorem 3.9] (see also Theorem 11).

Example 19. Consider the tableau T (with labels in red) given by

T =
31

12 1233

,

with res(T ) = (31)(3)(32).
For the crystal operators on set-valued tableaux we obtain

f1(T ) =
31

122 233

,
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with res (f1(T )) = (31)(32)(2). Then it can be easily checked that the following diagram
commutes:

T =
31

12 1233
(31)(3)(32)

f1(T ) =
31

122 233
(31)(32)(2).

res

res

f1 f

?

1

3 Insertion algorithms

In this section, we discuss two insertion algorithms for decreasing factorizations in Hm

(resp. Hm,?). The first is the Hecke insertion introduced by Buch et al. [BKS+08],
which we review in Section 3.1. We prove a relationship between Hecke insertion and
the residue map (see Theorem 24). In particular, this proves [MPS18, Open Problem
5.8] for fully-commutative permutations. The second insertion is a new insertion, which
we call ?-insertion, introduced in Section 3.2. It goes from fully-commutative decreasing
factorizations in the 0-Hecke monoid to pairs of (transposes of) semistandard tableaux of
the same shape and is well-behaved with respect to the crystal operators.

3.1 Hecke insertion

Hecke insertion was first introduced in [BKS+08] as column insertion. Here we state the
row insertion version as in [PP16]. In this section, we represent a decreasing factorization
h = h

m

h

m�1 · · ·h1, where h

i = h

i

1h
i

2 . . . h
i

`i
, by a decreasing Hecke biword

k
h

�
=


m . . . m . . . 1 . . . 1
h

m

1 . . . h

m

`m
. . . h

1
1 . . . h

1
`1

�
.

In addition, we say that [k,h]t is fully-commutative if h is fully-commutative.

Example 20. Consider the decreasing factorization h = (1)(2)(31)( )(32). Then the
corresponding biword [k,h]t is 

k
h

�
=


5 4 3 3 1 1
1 2 3 1 3 2

�
.

Definition 21. Starting with a decreasing Hecke biword [k,h]t, we define Hecke row
insertion from the right. The insertion sequence is read from right to left. Suppose there
are n columns in [k,h]t.
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Start the insertion with (P0, Q0) being both empty tableaux. We recursively construct
(P

i+1, Qi+1) from (P
i

, Q

i

). Suppose the (n� i)-th column in [k,h]t is [y, x]t.
We describe how to insert x into P

i

, denoted P

i

 x, by describing how to insert x

into a row R. The insertion may modify the row and may produce an output integer,
which will be inserted into the next row. First, we insert x into the first row R of P

i

following the rules below:

1. If x > z for all z 2 R, the insertion terminates in either of the following ways:

(a) If we can append x to the right of R and obtain an increasing tableau, the
result P

i+1 is obtained by doing so; form Q

i+1 by adding a box with y in the
same position where x is added to P

i

.

(b) Otherwise row R remains unchanged. Form Q

i+1 by adding y to the existing
corner of Q

i

whose column contains the rightmost box of row R.

2. Otherwise, there exists a smallest z in R such that z > x.

(a) If replacing z with x results in an increasing tableau, then do so. Let z be the
output integer to be inserted into the next row.

(b) Otherwise, row R remains unchanged. Let z be the output integer to be in-
serted into the next row.

The entire Hecke insertion terminates at (P
n

, Q

n

) after we have inserted every letter from
the Hecke biword. The resulting insertion tableau P

n

is an increasing tableau, meaning
that both rows and columns of P

n

are strictly increasing. If k = (n, n � 1, . . . , 1), the
recording tableau Q

n

is a standard set-valued tableau.

Example 22. Take [k,h]t from Example 20. Following the Hecke row insertion, we
compute its insertion tableau and recording tableau:

; !
2
!

2 3
! 2

1 3
! 2

1 3
! 2 3

1 2
! 3

2 3

1 2

= P,

; !
1
!

1 1
! 3

1 1
! 3

1 13
! 3 4

1 13
! 5

3 4

1 13

= Q.

Example 23. Note that the recording tableau for the Hecke insertion of Definition 21 is
not always a semistandard set-valued tableau. For example, for h = (21)(41) we have

k
h

�
=


2 2 1 1
2 1 4 1

�
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and

P = 4

1 2
and Q = 22

1 1
.

However, in Theorem 24 below we will see that in certain cases it is.

Theorem 24. Let T 2 SVT(�) and [k,h]t = res(T ). Apply Hecke row insertion from the
right on [k,h]t to obtain the pair of tableaux (P,Q). Then Q = T .

Remark 25. Combining Theorems 24 and 17 shows that Hecke insertion from right to
left (as opposed to left to right in [PP16]) intertwines the crystal on set-valued tableaux
and the ?-crystal, even though in general it is not always well-defined (see Example 23).
This resolves [MPS18, Open Problem 5.8] when the decreasing factorizations are fully-
commutative. Even when h is fully-commutative, but does not correspond to a straight-
shaped tableau under res�1 as in Example 23, one can fill the skew part with small enough
numbers and apply the Hecke insertion on this tableau. In the above example

k
h

�
=


2 2 1 1 0 0
2 1 4 1 3 2

�
with Q = T = 12 2

0 0 1
.

Note, however, that unlike in [MPS18] we use row Hecke insertion from right to left
rather than column insertion from left to right (in analogy to [MS16] for Edelman–Greene
insertion).

Since k 2 T (i, j) if and only if ` + j � i 2 h

k under the residue map, where ` = `(�)
and h

k is the k-th factor of h, the statement of Theorem 24 is equivalent to applying
Hecke insertion on the entries of T sorted first by ascending order of entries, followed by
ascending diagonal content.

Example 26. Let T be the semistandard set-valued tableau

T = 21 42

12 233
.

The insertion sequence by entry is listed in the table below:

Cell (1,1) (2,1) (1,2) (1,2) (2,2)
Content 2 1 3 3 2
Entry 1 2 2 3 4

We will prove Theorem 24 by induction by considering all subtableaux of T , obtained
by adding the entries in T one by one in the order above:

; !
12
! 21

12
! 21

12 23
! 21

12 233
! 21 42

12 233
= T.
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In addition, the corresponding sequence of insertion tableaux and recording tableaux is
listed here:

; !
2
! 2

1
! 2

1 3
! 2

1 3
! 2 3

1 2
= P.

; !
1
! 2

1
! 2

1 2
! 2

1 23
! 2 4

1 23
= Q.

Proof of Theorem 24. We prove the theorem by proving the following more specific state-
ment.

For a given step in the insertion process, suppose that the entries of T that are involved
so far form a nonempty subtableau T

0 of T with shape µ containing cell (1, 1), and the
insertion tableau and recording tableau at the corresponding step are P (T 0) and Q(T 0).
Then, they both have shape µ, and the entry of cell (i, j) of P (T 0) is ` + j � µ

0
j

+ i � 1,
and Q(T 0) = T

0, where µ

0 is the transpose of the partition µ and ` := �

0
1 = `(�).

We prove this by induction on subtableaux of T .

Base step: Suppose T

0 only contains a single cell (1, 1) and T

0(1, 1) = S, where S is
a subset of T (1, 1) with cardinality d. Then P (T 0) is obtained by inserting d times the

number `. So we have P (T 0) = ` and Q(T 0) = T

0. Here µ = (1), so for (i, j) = (1, 1),
we have `+ j � µ

0
j

+ i� 1 = `.

Inductive step: Suppose that the statements hold for some subtableau T

0 of shape µ.
Assume the next insertion step involves adding the entry k in cell (p, q) of T to T

0 to
obtain T

00. There are two cases: (1) the cell (p, q) is already in T

0, or (2) the cell (p, q) is
not in T

0.
Case (1): We must have (p, q) to be an inner corner of T 0 (no cell is to its right or above
it), so p = µ

0
q

and p > µ

0
q+1. In this case, k is recorded in Q(T 0). Then by the induction

on T

0, every cell (i, j) of P (T 0) has value ` + j � µ

0
j

+ i � 1. To determine the insertion
path of P (T 0) `+ q � p, we compute the columns q and q + 1 of P (T 0) as follows:

row number q-th column (q + 1)-st column
p `+ q � 1

...
µ

0
q+1 < p `+ q � p+ µ

0
q+1 � 1 `+ q

...
...

2 `+ q � p+ 1 `+ q + 2� µ

0
q+1

1 `+ q � p `+ q + 1� µ

0
q+1

Following Case 2(b) of Hecke insertion, the insertion path is vertically up column q+1.
At the top of the column, `+ q is inserted into row µ

0
q+1+1. Furthermore, `+ q is greater

than ` + q � p + µ

0
q+1 in cell (µ0

q+1 + 1, q) because p > µ

0
q+1. By Hecke insertion Case

1(b), the insertion ends in row µ

0
q+1 + 1. Also P (T 0) is unchanged, and k is recorded in

cell (p, q) of Q(T 0) since it is the corner whose column contains the rightmost box of row
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µ

0
q+1 + 1. In this case, we get Q(T 00) = T

00. Since the shape µ is unchanged, we have that
P (T 00) = P (T 0) also satisfies the statement.

Case (2): If cell (p, q) is not in T

0, then it must be an outer corner of T 0, so µ

0
q

= p� 1
and µ

0
q�1 > p � 1. Specifically, two cases can happen: (a) p = 1 and (1, q � 1) 2 T

0, (b)
both (p� 1, q), (p, q � 1) 2 T

0, or q = 1 and (p� 1, 1) 2 T .

Case 2(a): The first row of P (T 0) is ` + 1 � µ

0
1, . . . , ` + j � µ

0
j

, . . . , ` + (q � 1) � µ

0
q�1.

Since ` + q � p = ` + q � 1 > ` + (q � 1) � µ

0
q�1, it is appended to the end of the first

row which is the cell (1, q). The letter k is recorded in the same new cell of Q(T 0). In
this case, the only entry in P that is changed is (1, q), and its entry `+ q� 1 satisfies the
statement. Also Q(T 00) equals T 00.

Case 2(b): Since entry (i, q � 1) of P (T 0) is ` + q � 1� µ

0
q�1 + i� 1 and entry (i, q) of

P (T 0) is `+ q�µ

0
q

+ i� 1, the number q� p+ ` is in-between the two when i = 1. So the
insertion starts by bumping (1, q). To get the insertion path, we compute columns q � 1
and q as follows:

row number (q � 1)-st column q-th column
µ

0
q�1 `+ q � 2

...
p� 1 `+ q + p� µ

0
q�1 � 3 `+ q � 1

... ...
2 `+ q � µ

0
q�1 `+ q � p+ 2

1 `+ q � 1� µ

0
q�1 `+ q � p+ 1

By Hecke insertion Case 2(a), `+ q� p is placed in cell (1, q) and the original column
q is shifted one position higher. By Hecke insertion Case 1(a), the insertion terminates
at row p and the original entry in cell (p� 1, q) is appended at the rightmost box of row
p. Thus, µ0

q

increases by 1. The updated entries in column q still satisfy the statement.
Since the entries in other columns of P (T 0) are unchanged and µ

0
j

is unchanged for j 6= q,
they also satisfy the statement. So we have P (T 00) satisfies the statement. The letter k is
inserted into the new cell (p, q) of Q(T 0), which makes Q(T 00) = T

00.
Thus, the statement holds, proving the theorem.

3.2 The ?-insertion

We define a new insertion algorithm, which we call ?-insertion, from fully-commutative
decreasing Hecke biwords [k,h]t to pairs of tableaux P and Q, denoted by ?([k,h]t) =
(P,Q), as follows.

Definition 27. Fix a fully-commutative decreasing Hecke biword [k,h]t. The insertion
is done by reading the columns of this biword from right to left.

Begin with (P0, Q0) being a pair of empty tableaux. For every integer i > 0, we
recursively construct (P

i+1, Qi+1) from (P
i

, Q

i

) as follows. Let [q, x]t be the i-th column
(from the right) of [k,h]t. Suppose that we are inserting x into row R of P

i

.
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Case 1 If R is empty or x > max(R), then form P

i+1 by appending x to row R and
form Q

i+1 by adding q in the corresponding position to Q

i

. Terminate and return
(P

i+1, Qi+1).

Case 2 Otherwise, if x /2 R, locate the smallest y in R with y > x. Bump y with x and
insert y into the next row of P

i

.

Case 3 Otherwise, if x 2 R, locate the smallest y in R with y 6 x and interval [y, x]
contained in R. Row R remains unchanged and y is to be inserted into the next
row of P

i

.

Denote (P,Q) = (P
`

, Q

`

) if [k,h]t has length `. We define the ?-insertion by ?([k,h]t) =
(P,Q).

Furthermore, denote by P  x the tableau obtained by inserting x into P . The
collection of all cells in P  x, where insertion or bumping has occurred is called the
insertion path for P  x. In particular, in Case 1 the newly added cell is in the insertion
path, in Case 2 the cell containing the bumped letter y is in the insertion path, and in
Case 3 the cell containing the same entry as the inserted letter is in the insertion path.

Example 28. Let 
k
h

�
=


4 4 2 2 1 1
4 2 4 2 3 1

�
.

The corresponding sequence of insertion tableaux and recording tableaux under the
?-insertion is listed here:

; !
1
!

1 3
! 3

1 2
! 3

1 2 4
! 3

1

1 2 4

! 3

1 4

1 2 4

= P.

; !
1
!

1 1
! 2

1 1
! 2

1 1 2
! 4

2

1 1 2

! 4

2 4

1 1 2

= Q.

Then we have ?([k,h]t) = (P,Q), and the cells in the insertion paths at each step are
highlighted in yellow.

Lemma 29. Let [k,h]t be a fully-commutative decreasing Hecke biword. Suppose that
?([k,h]t) = (P,Q). Then, the following statements hold:

1. P

t is semistandard and Q has the same shape as P .

2. Let x be an integer such that x ·h is fully-commutative. Then the insertion path for
P  x goes weakly to the left.
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Proof. We will prove (1) by induction on the number of cells of P . Statement (2) will
follow by some results in the proof of statement (1).

Consider the leftmost column [q, x]t of [k,h]t and let [k0,h0]t be the Hecke biword
formed by taking the remaining columns in the same order. If the ?-insertion of [k0,h0]t

yields (P 0, Q0), note that we have P = P

0  x. For all integers j > 1, denote by R

j

the
(possibly empty) j-th row of P 0. Denote by u the entry to be inserted into R

j

and B

j

as
the cell in the insertion path at R

j

, where 1 6 j 6 k. Additionally, if bumping occurs at
R

j

, denote the entry bumped out as y.

(1) We will prove that if (P 0)t is semistandard, then the transpose of the updated tableau
is semistandard.

Case (a) Suppose that the insertion terminates at R1. Then Case 1 of the ?-insertion has
occurred, with a cell containing x appended at the end of the row. If R1 is nonempty,
then x > max(R1). Additionally, as (P 0)t is semistandard, integers strictly increase
along R1 but weakly increase along the column containing B1. Hence, the transpose
of the resulting tableau P is semistandard.

Case (b) Suppose that insertion terminates at R
k

, where k > 1. We will show that for
all 1 6 j 6 k, the changes introduced at row R

j

of P 0 maintain the property that
the transpose of the updated tableau is semistandard.

Case (b)(i) Suppose that j = k. In this case, a new cell containing u is appended at
the end of R

k

and u > max(R
k

) if the row is nonempty, proving that the integers
increase strictly along R

k

.

If Case 2 occurs at R
k�1, then u is the entry bumped out of R

k�1 with the property
that when u

0 is inserted into R

k�1, u 2 R

k�1 is the smallest entry with u > u

0. Let
z be the entry below cell B

k

. We claim that z 6 u. If we assume instead that
z > u, then the cell containing z is strictly to the right of B

k�1. However, the cell
above B

k�1 has value greater than u since (P 0)t is semistandard and u /2 R

k

. This
contradicts the minimality of u0, as u0 is greater than this value, hence proving the
claim.

If Case 3 occurs at R
k�1, then u is bumped out of R

k�1 with the property that when
u

0 is inserted into R

k�1, u 2 R

k�1 is the smallest entry with [u, u0] ✓ R

k�1. Let z
be the entry below cell B

k

. Then, similar to the argument immediately before,
z 6 u

0. Hence, we have established that the integers weakly increase along the
column containing B

k

after u is appended at the end of R
k

.

Case (b)(ii) Suppose that 1 6 j < k and Case 2 occurs at R

j

. Then y is the entry
bumped out of R

j

with the property that when u is inserted into R

j

, y 2 R

j

is the
smallest entry with y > u. Thus, as u /2 R

j

, for all entries z and z

0 respectively to
the left and to the right of B

j

, we have z < u < y < z

0.

If Case 2 occurs at R
j�1, then u is bumped out of R

j�1 with the property that when
u

0 is inserted into R

j�1, u 2 R

j�1 is the smallest entry with u > u

0. Let z be the
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entry below cell B
j

. Then by repeating the same argument as in the first subcase
of in Case (b)(i), we obtain z 6 u.

If Case 3 occurs at R

j�1, then u was bumped out of R
j�1 with the property that

when u

0 is inserted into R

j�1, u 2 R

j�1 is the smallest entry with [u, u0] ✓ R

j�1.
Let z be the entry below cell B

j

. Then by repeating the same argument as in the
second subcase of in Case (b)(i), we obtain z 6 u

0.

Hence, we have established that integers increase weakly along the column contain-
ing B

j

but increase strictly along R

j

after u bumps out y.

Case (b)(iii) Suppose that 1 6 j < k and Case 3 occurs at R
j

. In this case, there are no
changes to row R

j

after inserting u and bumping y. Hence, it is trivial that integers
increase weakly along the column containing B

j

but increase strictly along R

j

after
u bumps out y.

In all cases, we have shown that if (P 0)t is semistandard, then the transpose of the updated
tableau remains semistandard. Therefore, by induction on the number of added cells, we
have proved that the insertion tableau P under ?-insertion satisfies the property that P t

is semistandard.
Finally, note that the shape of the recording tableau is modified only when Case 1 of

the ?-insertion has occurred. In this case, a cell is added to form Q at the same position
as the cell added to form P . Since we always begin with a pair of empty tableaux, by
inducting on the number of added cells, the shapes of P and Q are the same.

(2) Suppose that the insertion terminates at R
k

, where k > 1. We shall prove that B
j

is
weakly to the left of B

j�1 for all 1 < j 6 k by revisiting the cases explored in the proof
of part (1) (note that P should replace the role of P 0).

If Case 2 occurs at R
j�1, then u is the entry bumped out of R

j�1 with the property
that when u

0 is inserted into R

j�1, u 2 R

j�1 is the smallest entry with u > u

0. As in the
proof of the first subcase of Case (b)(i) in part (1), we conclude that the entry z of the
cell below B

k

satisfies z 6 u, showing that B
j

is weakly to the left of B
j�1.

If Case 3 occurs at R
j�1, then u was bumped out of R

j�1 with the property that when
u

0 is inserted into R

j�1, u 2 R

j�1 is the smallest entry with [u, u0] ✓ R

j�1. As in the proof
of the second subcase of Case (b)(i) in part (1), we conclude that the entry z of the cell
below B

j

satisfies z 6 u

0, B
j

is weakly to the left of B
j�1.

This completes the proof.

For the following results, given a tableau P with positive integer entries, row(P ) de-
notes its row reading word, obtained by reading these entries row-by-row starting from
the top row (in French notation), reading from left to right. We will consider row(P ) as
an element in a fixed 0-Hecke monoid.

Lemma 30. Let P be a tableau such that P t is semistandard and row(P ) is fully-com-
mutative. Let x be an integer such that row(P ) · x is fully-commutative. Then,

row(P  x) ⌘H0 row(P ) · x. (5)
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Proof. To prove (5), let us first prove the following statements for all row tableaux P :

• With the assumptions in lemma, if insertion terminates at row P while computing
P  x, then

row(P  x) ⌘H0 row(P ) · x.
• With the assumptions in lemma, if y is bumped from row P and P changes to P

0

while computing P  x, then

row(P  x) ⌘H0 y · row(P 0).

Assume that insertion terminates at row P while computing P  x. Then, Case 1 must
have occurred and P changes to P 0, where P 0 is P appended by a cell containing x. Hence,
we have

row(P  x) ⌘H0 row(P
0) ⌘H0 row(P ) · x.

Assume that y is bumped from row P and P changes to P

0 while computing P  x.
Then, either Case 2 or Case 3 must have occurred.

If Case 2 occurs at P , then x 62 P and there is a y 2 P with y > x; furthermore,
y is the smallest value with such property. Write P as AyB, where A and B are the
row subtableaux of P formed by entries to the left and to the right of y, respectively.
Then, P  x is the tableau with row Axb followed by row y. As x /2 P , we have
max(A) < x < y < min(B). Hence by commutativity relations, for all z 2 B, we have
z · x ⌘H0 x · z and for all z 2 A, we have z · y ⌘H0 y · z, so that regarding A and B as
words in H0(n), we obtain

A · y ⌘H0 y · A, B · x ⌘H0 x · B.

It follows that

row(P ) · x ⌘H0 row(AyB) · x ⌘H0 A · y · B · x
⌘H0 y · A · x · B ⌘H0 y · row(AxB) ⌘H0 row(P  x).

If Case 3 occurs at P , then x, y 2 P with y being the smallest value such that
[y, x] ✓ P . Write P as ABC, where B = [y, x], A and C are respectively the row
subtableaux of P formed by entries to the left and to the right of B. Then, P  x is
the tableau with row ABC followed by row y. As row(P ) · x was assumed to be fully-
commutative, x + 1 /2 P . Furthermore, by minimality of y, y > max(A) + 1. Hence, by
commutativity relations, for all z 2 A, we have z · y ⌘H0 y · z and for all z 2 C, we have
x · z ⌘H0 z · x, so that

A · y ⌘H0 y · A, C · x ⌘H0 x · C.
Moreover, by using the relations p� 1 p p = p� 1 p� 1 p, we have y ·B ⌘H0 B · x. It

follows that

row(P ) · x ⌘H0 row(ABC) · x ⌘H0 A · B · C · x
⌘H0 A · y · B · C ⌘H0 y · row(ABC) ⌘H0 row(P  x).
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Hence, the two statements above hold for all row tableaux P .
We are now ready to prove (5) in full generality. The result follows once we prove

by induction on the number of rows of P , with the given setup above, that the following
statements hold:

• If the insertion terminates within tableau P while computing P  x, then

row(P  x) ⌘H0 row(P ) · x.

• If y is bumped from tableau P and P changes to P

0 while computing P  x, then

row(P  x) ⌘H0 y · row(P 0).

Indeed, if P is a (possibly empty) row tableau, then we are done by the two previous
statements that have been proved. Let k > 1 be an arbitrary integer. Assume that both
statements mentioned above hold for all such tableaux P with k rows.

Let P be a tableau with k + 1 rows with the setup as above. Then, we may consider
the subtableau P

⇤ formed from its first k rows and denote the final row as R. Note that
row(P ) = row(R) · row(P ⇤) and row(R) is fully-commutative.

Assume that the changes from P to P  x involve at most the first k rows of P . Then
P  x is the same tableau as P

⇤  x with an extra row R, so that by the inductive
hypothesis,

row(P  x) ⌘H0 row(R) · row(P ⇤  x) ⌘H0 row(R) · row(P ⇤) · x ⌘H0 row(P ) · x.

Now assume that the changes from P to P  x involves all k + 1 rows of P . Let
P

0 be the resulting tableau after performing these changes on P

⇤ and let y be the entry
bumped from the final row of P ⇤. Then, P  x is the tableau obtained by concatenating
tableau R y after P 0.

If the insertion terminates at row R, then by the previous statements for all row
tableaux and the inductive hypothesis, we obtain

row(P  x) ⌘H0 row(R y) · row(P 0) ⌘H0 row(R) · y · row(P 0)
⌘H0 row(R) · row(P ⇤  x) ⌘H0 row(R) · row(P ⇤) · x ⌘H0 row(P ) · x.

Otherwise, if the insertion bumps z from R and R changes to R

0 while computing
R y, then it holds that the insertion bumps z from P while computing P  x. In this
case, if we denote P

00 as the tableau P

0 concatenated by row R

0, then

row(P ) · x ⌘H0 row(R y) · row(P 0) ⌘H0 z · row(R0) · row(P 0)
⌘H0 z · row(P 00) ⌘H0 row(P  x).

This completes the induction.
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Remark 31. Observe that the assumption that row(P ) is fully-commutative implies that
row(R) is fully-commutative for each row R of P . Moreover, in the proof of Lemma 30,
if x is to be inserted into row R of P when computing P  y and x 2 R, then the extra
assumption that row(P ) · x is fully-commutative implies that R does not contain x+ 1.

Lemma 32. Let P be a tableau such that P t is semistandard and row(P ) is fully-commu-
tative. Let x, x0 be integers such that row(P ) · x and row(P ) · xx0 are fully-commutative.

Denote the insertion paths of P  x and (P  x) x

0 as ⇡ and ⇡

0 respectively. Also,
suppose that P  x and (P  x)  x

0 introduce boxes B and B

0 respectively. Then the
following statements about ?-insertion are true:

1. If x < x

0, then ⇡

0 is strictly to the right of ⇡. Moreover, B0 is strictly to the right of
and weakly below B.

2. If x > x

0, then ⇡

0 is weakly to the left of ⇡. Moreover, B0 is weakly to the left of and
strictly above B.

Proof. Similar to Fulton’s proof [Ful96] of the Row Bumping Lemma, we will keep track of
the entries as they are bumped from a row. Consider a row R of tableau P and suppose
that u and u

0 are to be inserted into R when computing P  x and (P  x)  x

0

respectively, where u < u

0. Denote by C (similarly C

0) the box in ⇡ (similarly ⇡

0) that is
also in R.

Case 1: x < x

0. We will prove that the following assertions hold for R:

(a) If the insertion terminates at R while computing P  x, then the insertion termi-
nates at R while computing (P  x) x

0.

(b) C

0 is strictly to the right of C.

Note that the insertion terminates at R when computing P  x precisely when Case
1 of the ?-insertion occurs at R. Box C containing u is appended at the end of R. As
u

0
> u, Case 1 occurs again at R with box C

0 containing u

0 appended to the right of C,
so bumping does not occur at R when computing (P  x)  x

0. This proves (a) and
simultaneously, (b) for this case.

Let us assume that bumping occurs at R with y bumped out when computing P  x.

Case A If y is bumped from R because Case 2 occurs, the insertion at row R introduced
to box C

0 occurs strictly to the right of C (containing u) because:

(i) If u0 > max(R), then box C

0 containing u

0 is appended to the end of R by Case
1. In particular, C 0 appears strictly to the right of C.

(ii) Otherwise, since u

0
> u, the letter u

0 is inserted into a box C

0 strictly to the
right of C with y

0 bumped out. If u0 /2 R, Case 2 occurs and y

0
> y because

C

0 and C originally contained y

0 and y respectively. Else, u0 2 R and Case
3 occurs. Suppose that [y0, u0] is the longest interval of consecutive integers
contained in R. Since box C that originally contained y is strictly to the left of
C

0, we have u < y < u

0. Therefore, [u, u0] cannot be contained in R, so y < y

0.
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Case B Otherwise, y is bumped from R because Case 3 occurs when computing P  x

and [y, u] is the longest interval of consecutive integers contained in R by Remark 31.
The insertion at row R introduced to box C

0 occurs strictly to the right of C (con-
taining u) because:

(i) If either u0 > max(R) or u0 /2 R, then by similar arguments as in Case A(i) and
Case A(ii), C 0 appears to the right of C. Furthermore, in the latter situation,
by a similar argument in Case A(ii), we have y < y

0.

(ii) Otherwise, u0 2 R and Case 3 occurs. As u

0
> u, u0 is inserted into box C

0

strictly to the right of C with y

0 bumped out. In addition, [y0, u0] is the longest
interval of consecutive integers contained in R. As row(R) is fully-commutative
before computing P  x, u + 1 /2 R. Hence [u, u0] cannot be contained in R.
It follows that y 6 u < u+ 1 < y

0.

Note that in the arguments above, we have also shown that if y and y

0 are bumped from
R when computing P  x and (P  x) x

0 respectively, then y < y

0. It follows that we
may apply similar arguments in the rows following R. Since assertion (b) now holds for
all rows, we conclude that ⇡0 is strictly to the right of ⇡. In addition, ⇡0 cannot continue
after ⇡ ends because of assertion (a). Considering that ⇡0 goes weakly left by Lemma 29,
we conclude that box B

0 is strictly to the right of and weakly below B.

Case 2: x > x

0. We will prove that the following assertions hold for R:

1. If the insertion terminates at R while computing P  x, then bumping occurs at
R while computing (P  x) x

0.

2. C

0 is weakly to the left of C.

If the insertion terminates at row R when computing P  x, then Case 1 occurs and
box C containing u is appended at the end of R. If u0 2 R, Case 3 occurs at R with
y

0 6 u

0 6 u bumped out. Furthermore, box C

0 containing u

0 is weakly to the left of C.
If u0 /2 R, Case 2 occurs at R with y

0
> u

0 bumped out and u

0
< u. We have y

0 6 u

by minimality of y0, so that box C

0 is weakly to the left of C. In either of the subcases,
bumping occurs at R when computing (P  x) x

0. This proves (a) and simultaneously,
(b) for this case.

Let us assume that bumping occurs at R with y bumped out when computing P  x.

Case A If y is bumped from R because Case 2 occurs when computing P  x, the
insertion at row R introduced to box C

0 occurs weakly to the left of C (containing
u) because:

(i) If u0 /2 R, then u

0 is inserted into box C

0 containing y0 by Case 2, while bumping
out this y0. As u0 < u, we have y

0 6 u < y and that C 0 appears weakly to the
left of C.
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(ii) Otherwise, u0 2 R and Case 3 occurs. The letter u

0 is inserted into box C

0

weakly to the left of C as u0 6 u. In addition, if [y0, u0] is the longest interval of
consecutive integers in R, then y

0 is bumped out. Furthermore, we have y0 < y

as C, which originally contained y before computing P  x, is to the right of
the box containing y

0.

Case B Otherwise, y is bumped from R because Case 3 occurs when computing P  x.
Let [y, u] be the longest interval of consecutive integers that is contained in R. The
insertion at row R introduced to box C

0 occurs weakly to the left of C (containing
u) because:

(i) If u0 /2 R, then u

0
< u, u0 is inserted into box C

0 containing y

0 and y

0 is bumped
out by Case 2. As row(P ) ·x is fully-commutative, in particular row(R) is fully-
commutative. Hence u

0
< y, so that C 0 is weakly to the left of box containing

y (hence also weakly to the left of C). Furthermore, we have y

0 6 y by the
minimality of y0.

(ii) If u0 2 R, then either u

0 = u or u < u

0. The former case is easy as Case 3
occurs again with u

0 inserted into C

0 = C and y

0 = y is bumped out. If u < u

0,
then as row(P ) · x is fully-commutative, row(R) is fully-commutative, so that
u

0
< y � 1. It follows that C 0 is strictly to the left of box containing y (hence

also strictly to the left of C). Furthermore, we have y

0 6 u

0
< y � 1 < y.

Note that in the arguments above, we have also shown that if y and y

0 are bumped
from R when computing P  x and (P  x)  x

0 respectively, then y > y

0. It follows
that we may apply similar arguments in the rows following R. Since assertion (b) now
holds for all rows, we conclude that ⇡

0 is weakly to the left of ⇡. In addition, ⇡0 must
continue after ⇡ ends because of assertion (a). Considering that ⇡

0 goes weakly left by
Lemma 29, we conclude that box B

0 is weakly to the left of and strictly above B.

Let U be a tableau such that U t is semistandard and row(U) is fully-commutative. We
describe the reverse row bumping for ?-insertion of U as follows. Locate an inner corner
of U and remove entry y from that row. Perform the following operations until an entry is
bumped out of the bottommost row. Suppose that we are reverse bumping y into a row R.
If y /2 R, find the largest x 2 R with x < y; insert y and bump out x. Otherwise, y 2 R,
so find the largest x 2 R such that [y, x] is the longest interval of consecutive integers. In
this case, row R remains unchanged but x is bumped out. Then reverse bump x into the
next row below unless there is no further row below. In this case, terminate and return
the resulting tableau as T along with the bumped entry x. It is straightforward to see
that reverse row bumping specified above reverses the bumping process specified by the
?-insertion.
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Example 33. Let U be the tableau

U =

5

2

2 5

2 3 5

1 2 4
.

By performing reverse row bumping on the topmost 5 in U , we obtain

T =

5

2 5

2 3 5

1 3 4

and entry 2. It is also straightforward to check that U = T  2.

Corollary 34. Let T be a tableau of shape � such that T t is semistandard and row(T ) is
fully-commutative. Let k be a positive integer.

Let x1 < x2 < · · · < x

k

(similarly x

k

6 · · · 6 x2 6 x1) be integers such that row(T ) ·
x1x2 . . . xi

is fully-commutative for all 1 6 i 6 k. Then, the collection of boxes added to
T to form the tableau

U = ((T  x1) x2) · · · x

k

has the property that no two boxes are in the same column (similarly row).
Conversely, if U is a tableau of shape µ such that � ✓ µ and µ/� consists of k boxes

with no two boxes in the same column, i.e, a horizontal strip of size k (similarly row, i.e.,
a vertical strip of size k), then there is a unique tableau T of shape � and unique integers
x1 < x2 < · · · < x

k

(similarly x

k

6 · · · 6 x2 6 x1) such that

U = ((T  x1) x2) · · · x

k

.

In particular, if (P,Q) = ?([k,h]t), where [k,h]t is a fully-commutative decreasing Hecke
biword, then Q is semistandard.

Proof. Assume that x1 < x2 < · · · < x

k

. By statement (1) of Lemma 32, the sequence of
added boxes in U = ((T  x1)  x2) · · ·  x

k

moves weakly below and strictly to the
right when computing U . In particular, no two of the added boxes can be in the same
column.

To recover the required tableau T and integers x1 < x2 < · · · < x

k

, perform reverse
row bumping on the boxes specified by the shape µ/� within U starting from the rightmost
box, working from right to left. The tableau T and the integers x1, x2, . . . , xk

are uniquely
determined by the operations. Moreover, by Lemma 32, the integers x

k

, x

k�1, . . . , x1

obtained in the given order of operations satisfy x1 < x2 < · · · < x

k

.
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Now assume x

k

6 · · · 6 x2 6 x1. By statement (2) of Lemma 32, the sequence
of added boxes moves strictly above and weakly to the right when computing U . In
particular, no two of the added boxes can be in the same row.

Similarly, one may perform reverse row bumping on the boxes specified by the shape
µ/� within U starting from the topmost box, working from top to bottom. Again, the
operations uniquely determine the tableau T and the integers x1, x2, . . . , xk

. Moreover, by
Lemma 32, the integers x

k

, x

k�1, . . . , x1 obtained in the given order of operations satisfy
x

k

6 · · · 6 x2 6 x1.
Finally, note that in a decreasing Hecke biword [k,h]t, where h = h

m

. . . h

2
h

1, entries
within a fixed a

i are inserted in increasing order. It follows that the collection of all boxes
with label i form a horizontal strip within the tableau Q. Collecting all these horizontal
strips with values i from m to i in order by using the converse recovers Q, implying that
Q is semistandard.

Theorem 35. The ?-insertion is a bijection from the set of all fully-commutative decreas-
ing Hecke biwords to the set of all pairs of tableaux (P,Q) of the same shape, where both
P

t and Q are semistandard and row(P ) is fully-commutative.

Proof. By successive applications of Lemma 30, if (P,Q) = ?([k,h]t), then as h is fully-
commutative, row(P ) is also fully-commutative. Hence, using Lemma 29 and Corollary
34, ?-insertion is a well-defined map from the set of all fully-commutative decreasing
Hecke biwords to the set of all pairs of tableaux (P,Q) of the same shape with both P

t

, Q

semistandard and row(P ) being fully-commutative.
It remains to show that the ?-insertion is an invertible map. Assume that P and Q

are tableaux of the same shape with both P

t

, Q semistandard and row(P ) being fully-
commutative. Since Q is semistandard, the collection of boxes with the same entry form
a horizontal strip. Starting with the largest such entry m, perform reverse row bumping
with the boxes in the strip from right to left. By Lemma 32, this recovers the entries in h

m

in decreasing order. Repeating this procedure in decreasing order of entries recovers h =
h

m

. . . h

2
h

1, which automatically yields a decreasing Hecke biword [k,h]t. Furthermore,
by repeated applications of Lemma 30, since row(P ) was fully-commutative, then the
reverse word of h is fully-commutative, so that h is fully-commutative too. Finally, by
repeated applications of the converse stated in Corollary 34, the recovered decreasing
Hecke biword [k,h]t is unique.

4 Properties of the ?-insertion

In this section, we show that the ?-insertion intertwines with the crystal operators. More
precisely, the insertion tableau remains invariant on connected crystal components under
the ?-insertion as shown in Section 4.1 by introducing certain micro-moves. In Section 4.2,
it is shown that the ?-crystal on Hm,? intertwines with the usual crystal operators on
semistandard tableaux on the recording tableaux under the ?-insertion. In Section 4.3,
we relate the ?-insertion to the uncrowding operation.
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4.1 Micro-moves and invariance of the insertion tableaux

In this section, we introduce certain equivalence relations of the ?-insertion in order to
establish its relation with the ?-crystal. From now on we are focusing on the sequence in
the insertion order. Since each decreasing factorization h is inserted from right to left, we
look at h read from right to left.

Definition 36. We define an equivalence relation through micro-moves on fully-commu-
tative words in H0(n).

1. Knuth moves , for x < z < y:

(I1) xyz ⇠ yxz

(I2) zxy ⇠ zyx

2. Weak Knuth moves , for y > x+ 1:

(II1) xyy ⇠ yxy

(II2) xxy ⇠ xyx

3. Hecke move, for y = x+ 1:
(III) xxy ⇠ xyy

Note that the micro-moves preserve the relation ⌘H0 .

Similar relations have appeared in [FG98, Eq. (1.2)].

Example 37. The 13242 2 H0(5) is equivalent to 31242, 13422, 13224, 31224, and itself.

Next, we use the following notation on ?-insertion tableaux. For a single-row increasing
tableau R, let Rx denote the first row of the tableau R x and let R(x) denote the output
of the ?-insertion from the first row. If the ?-insertion outputs a letter, then denote it by
R(x); if x is appended to the end of the row R, then the output R(x) is 0, which can be
ignored. We always have x · 0 ⇠ x ⇠ 0 · x.

Example 38. Let R = 1 3 4 6 7 8 , then the first row of R 7 is

R

7 = 1 3 4 6 7 8

and R(7) = 6. Furthermore, the first row of R7  9 is R7,9 = 1 3 4 6 7 8 9

and R

8(9) = 0.

Lemma 39. Let R be a single-row increasing tableau, and x, y, z be letters such that
row(R) · x · y · z is fully-commutative. Let x

0
, y

0
, z

0 be letters such that xyz ⇠ x

0
y

0
z

0.
Following the above notation, we have

R

xyz = R

x

0
y

0
z

0
and R(x)Rx(y)Rxy(z) ⇠ R(x0)Rx

0
(y0)Rx

0
y

0
(z0).
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Proof. Let R be a single-row increasing tableau and M be the largest letter in R. First
note that if a 2 R and row(R) ·a is fully-commutative, then a+1 /2 R, see also Remark 31.

There are five types of equivalence triples, so we discuss them in 3 groups.

1. Cases (I1) and (II1): We have x < z < y, or x < z = y and y > x + 1. In both
cases x0 = y, y

0 = x, z

0 = z.

Case (1A): M < x < z 6 y. In this case, the first resulting tableau is Rxyz = R x z

and the outputs are R(x) = R

x(y) = 0 and R

xy(z) = y. The second resulting tableau is

R

yxz = R x z and the outputs are R(y) = 0 = R

yx(z) and R

y(x) = y. So we have
R

xyz = R

yxz and also 0 · 0 · y ⇠ 0 · y · 0.
Case (1B): x 6 M < z 6 y. In this case, we have R

xy = R

yx and R(x) = R

y(x) since
y is just appended to the end of R and does not influence how x is inserted. This gives
R

xyz = R

yxz. The related outputs are R

x(y) = R(y) = 0, Rxy(z) = R

yx(z) = y. Thus,
R(x) · 0 · y ⇠ 0 ·R(x) · y.
Case (1C): x < z 6 M < y. In this case, we also have that Rxy = R

yx and R(x) = R

y(x),
for the same reason as case (1B). Thus, we have Rxyz = R

yxz and R

xy(z) = R

yx(z). Since
we have R

x(y) = R(y) = 0, R(x) · 0 ·Rxy(z) ⇠ 0 ·Ry(x) ·Ryx(z).

Case (1D): x < z 6 y 6 M . If x is the maximal letter in R

x, then it follows as case
(1B). Otherwise, this case needs further separation into subcases.

Case 1D-(i): x, y /2 R. Then x < R(x), y < R(y) and R(x) 6= y.
(1) If R(x) < y, then R

x(y) = R(y) and R

y(x) = R(x), which implies R

xy = R

yx,
thus R

xyz = R

yxz and R

xy(z) = R

yx(z). Hence R(x)Rx(y)Rxy(z) = R

y(x)R(y)Ryx(z).
Since R(x) < R

xy(z) 6 y < R(y), we have R(y) > R

y(x) + 1 and for the outputs
R(x)Rx(y)Rxy(z) = R

y(x)R(y)Ryx(z) ⇠ R(y)Ry(x)R(y)Ryx(z) by move type (I1) or (II1).
(2) If R(x) > y, let the letter to the right of R(x) in R be R(x)!. Then both R

xyz

and R

yxz are obtained by replacing R(x) with x and R(x)! with z. For the output,
we have R(x) = R(y), R

x(y) > R(y), R

y(x) = y, R

yx(z) = R

x(y) and R

xy(z) = y.
Since y < R(x) < R

x(y), we have that R

x(y) = R(x)! > y + 1. Hence the outputs
R(x)Rx(y)Rxy(z) = R(x)R(x)!y ⇠ R(x)yR(x)! = R(y)Ry(x)Ryx(z) by move of type
(I2).

Case 1D-(ii): x 2 R, y /2 R. Then R(x) 6 x,R(y) > y and x + 1 /2 R. In this case, we
have Rx(y) = R(y) and R

y(x) = R(x), thus Rxy = R

yx, Rxy(z) = R

yx(z) and R

xyz = R

yxz.
Since x + 1 /2 R, we have R

xy(z) > x + 1. This implies R(x) 6 x < R

xy(z) 6 y < R(y),
thus R(x)Rx(y)Rxy(z) ⇠ R(y)Ry(x)Ryx(z) as it is a type (I1) move.

Case 1D-(iii): x /2 R, y 2 R. Then x < R(x), y > R(y), y + 1 /2 R, R(x) � 1 /2 R,
R(x) 6 y, R(y) 6 R

x(y) and R

y = R.
(1) If R(x) = y, denote the box to the right of y in y as y

!. Note that y

!
> y + 1.

Then R

x(y) = y

!, Rxy(z) = y, Ry(x) = y and R

yx(z) = y

!. Note y � 1 /2 R, otherwise
R(x) 6 y � 1. Thus, R(y) = y. Both R

xyz and R

yxz are obtained by replacing y 2 R

with x and y

! with z, so R

xyz = R

yxz. The outputs R(x)Rx(y)Rxy(z) = yy

!
y ⇠ yyy

! =
R(y)Ry(x)Ryx(z) as it is a type (II2) move.

the electronic journal of combinatorics 27(2) (2020), #P2.29 30



(2) Suppose R(x) < y and R(x) = R(y). Then [R(x), y] ⇢ R and R

x(y) = R(x) + 1.
Since R

y = R and R

xy = R

x, we have that both R

xy and R

yx equal Rx and furthermore
R

y(x) = R(x). Note that z can either be equal to y or z < R

x(y), otherwise z 2 R

xy and
z+1 2 R

xy, which will give us a braid from row(Rxy)·z. Thus, we have Rxy(z) = R

yx(z) =
R(x)+1. In either case, the outputs are R(x)Rx(y)Rxy(z) = R(x)(R(x)+1)(R(x)+1) ⇠
R(x)R(x)(R(x) + 1) = R(y)Ry(x)Ryx(z) as they are type (III) moves.
(3) Suppose R(x) < y and R(x) < R(y). Then R(y) > R(x) + 1 and R

x(y) = R(y).
Similar to the previous case, both R

xy and R

yx are equal to R

x, and z is either y or
z < R(y). In either case, Rxy(z) 6 R(y).

Then the outputs are R(x)Rx(y)Rxy(z) = R(x)R(y)Rx(z) ⇠ R(y)R(x)Rx(z) =
R(y)Ry(x)Ryx(z) as they are type (I1) or (II1) moves.

Case 1D-(iv): x, y 2 R. In this case x > R(x), y > R(y), x + 1 /2 R and y + 1 /2 R.
Since x+ 1 /2 R, [x, y] is not contained in R and hence R(y) > x+ 1 > x > R(x).

Then R

x(y) = R(y), Ry(x) = R(x) and R

xy = R

yx = R. Since z > x and x + 1 /2 R,
we have R(z) > x + 1 > R(x) + 1. By similar reasons to the previous two subcases
of Case 1D-(iii), z can either be y or z < R(y) in order to avoid a braid in row(Rxy)z.
So, we have R

xy(z) 6 R(y). Then the outputs are R(x)Rx(y)Rxy(z) = R(x)R(y)R(z) ⇠
R(y)R(x)R(z) = R(y)Ry(x)Ryx(z) as they are type (I1) moves.

2. Cases (I2) and (II2): We have z < x < y, or z = x < y and y > z + 1. In both
cases x0 = x, y

0 = z, z

0 = y. By definition, x 2 R

x.

Case (2A): M < x < y, then R(x) = R

x(y) = 0. R

xy = R x y is obtained by
appending x and y to the end of R. Since x 2 R

x and z 6 x < y, we have Rxy(z) = R

x(z).
Moreover, Rxzy is obtained by appending y to the end of Rxz and hence R

xyz = R

xzy.
The outputs are R(x)Rx(y)Rxy(z) = 00Rx(z) ⇠ 0Rx(z)0 = R(x)Rx(z)Rxz(y).

Case (2B): z 6 x 6 M < y, then R

x(y) = R

xz(y) = 0. Since R

xy = R

x

y , x 2
R

x and z 6 x, we have R

xy(z) = R

x(z), thus R

xyz = R

xz

y = R

xzy. The output
R(x)Rx(y)Rxy(z) = R(x)0Rx(z) ⇠ R(x)Rx(z)0 = R(x)Rx(z)Rxz(y).

Case (2C): z 6 x < y 6 M , then we have Rx(z) 6 x. We discuss the following subcases.

Case 2C-(i): x, y /2 R, then we have R(x) > x and R

x(y) > y. Since y > x and x

replaces R(x) in R, we have R

x(y) > R(x) from row strictness. Since R

x(y) > R(x) and
R

x(z) 6 x, we have R

xy(z) = R

x(z) and R

xz(y) = R

x(y). Furthermore, Rxyz = R

xzy.
Moreover, we have R

x(z) 6 x < R(x) < R

x(y), which implies Rx(y) > R

x(z) + 1. Hence
R(x)Rx(y)Rxy(z) = R(x)Rx(y)Rx(z) ⇠ R(x)Rx(z)Rx(y) = R(x)Rx(z)Rxz(y) by type (I2)
moves.

Case 2C-(ii): x 2 R, y /2 R. Then R

x = R, R(x) 6 x,R

x(y) > y. Since z 6 x and
[R(x), x] ⇢ R

x, we have that R

x(z) 6 R(x). Since R

x(y) > y > x and R

x(z) 6 R(x),
we have that R

xy(z) = R

x(z) and R

xz(y) = R

x(y), thus R

xyz = R

xzy. Since R

x(z) 6
R(x) 6 x < y < R

x(y), we have Rx(y) > R

x(z) + 1. The outputs are R(x)Rx(y)Rxy(z) =
R(x)Rx(y)Rx(z) ⇠ R(x)Rx(z)Rx(y) = R(x)Rx(z)Rxz(y) by type (I2) or (II2) moves.

Case 2C-(iii): x /2 R, y 2 R. Then R

xy = R

x, R(x) > x and R

x(y) 6 y. Let the
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letter to the right of R(x) in R be R(x)!. Then R(x)! > R(x) > x implies R(x)! >

x + 1. This also shows that x + 1 /2 R

x and thus R

x(y) > R(x). Since R

xy = R

x and
R

xzy = R

xz, we have R

xyz = R

xz = R

xzy. Since R

x(z) 6 x < R(x) < R

x(y), we have
R

x(y) > R

x(z)+1. Since z 6 x, we also have that Rx(y) = R

xz(y). Thus, the outputs are
R(x)Rx(y)Rxy(z) = R(x)Rx(y)Rx(z) ⇠ R(x)Rx(z)Rx(y) = R(x)Rx(z)Rxz(y) by a type
(I2) move.

Case 2C-(iv): x 2 R, y 2 R. Then R

x = R, Rxy = R, R(x) 6 x, Rx(y) 6 y, x + 1 /2 R

and y + 1 /2 R. Thus, Rx(y) > x + 1. Since z 6 x and [R(x), x] ⇢ R

x, we have that
R

x(z) 6 R(x). Since R

xy = R, Rxyz = R

z. Since R

x(z) 6 x, Rxz(y) = R

z(y) = R(y) and
thus R

xzy = R

z. This implies R

xyz = R

xzy. Now we have R(z) 6 R(x) 6 x < x + 1 <

R(y). Therefore, the outputs are R(x)Rx(y)Rxy(z) = R(x)R(y)R(z) ⇠ R(x)R(z)R(y) =
R(x)Rx(z)Rxz(y) by type (I2) or (II2) moves.

3. Case (III): We have y = x, z = x+ 1 and hence x

0 = x, y0 = x+ 1 and z

0 = x+ 1.

Case (3A): x > M . Then R

x is obtained by appending x to the end of R and R(x) = 0.
Also R

xx = R

x with output R

x(x). Note R

x,x+1(x + 1) = R

x(x). Both R

xx,x+1 and
R

x,x+1,x+1 are obtained by appending x+1 to the end of Rx, thus they are the same. The
outputs are R(x)Rx(x)Rxx(x+ 1) = 0Rx(x)0 ⇠ 00Rx(x) = R(x)Rx(x+ 1)Rx,x+1(x+ 1).

Case (3B): x 6 M,x+ 1 > M . Both R

xx,x+1 and R

x,x+1,x+1 are obtained by appending
x+ 1 to the end of Rx, so they are equal. Since x 2 R

x, we have R

x,x+1(x+ 1) = R

x(x).
Thus, the outputs are R(x)Rx(x)Rxx(x+ 1) = R(x)Rx(x)0 ⇠ R(x)0Rx,x+1(x+ 1).

Case (3C): x + 1 6 M . It is clear that x 2 R

x. If x is the maximal letter in R

x, then
the rest follows as case (3B).

Otherwise, let x! be the letter to the right of x in R

x. Since x 2 R

x, we must have
x+1 /2 R

x, thus x! > x+1. Moreover, we have Rxx = R

x, Rx(x+1) = R

xx(x+1) = x

!.
Since Rx,x+1 is obtained from R

x by replacing x! with x+1 and x, x+1 2 R

x,x+1, we have
R

x,x+1(x+1) = R

x(x). Both R

xx,x+1 and R

x,x+1,x+1 are obtained from R

x by replacing x

!

with x+1, thus they are the same. Furthermore, since Rx(x) 6 x and x

!
> x+1, we have

that R(x)Rx(x)Rxx(x+1) = R(x)Rx(x)x! ⇠ R(x)x!Rx(x) = R(x)Rx(x+1)Rx,x+1(x+1)
by a type (I2) or (II2) move.

Proposition 40. If two words in H0(n) have the property that their reverse words are
equivalent according to Definition 36, then they have the same insertion tableau under
?-insertion (inserted from right to left).

Proof. Let P be a ?-insertion tableau. By Lemma 29, P

t is a semistandard tableau.
Let the rows of P be R1, . . . , R`

. Then each row is strictly increasing. The row R

j

is
considered to be empty for j > `.

Let x1, y1, z1 and x

0
1, y
0
1, z
0
1 be letters such that x1y1z1 ⇠ x

0
1y
0
1z
0
1 and row(P ) · x1 · y1 · z1

is fully-commutative. Let the output of the ?-insertion algorithm of P  x1  y1 ! z1

(resp. P  x

0
1  y

0
1  z

0
1) from the row i be x

i+1, yi+1, zi+1 (resp. x0
i+1, y

0
i+1, z

0
i+1). That

is:

• R

xiyizi
i

is the first row of [(R
i

 x

i

)  y

i

]  z

i

and the outputs in order are
x

i+1, yi+1, zi+1.
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• R

x

0
iy

0
iz

0
i

i

is the first row of [(R
i

 x

0
i

)  y

0
i

]  z

0
i

and outputs in order are
x

0
i+1, y

0
i+1, z

0
i+1.

By Lemma 39, we have that R

xiyizi
i

= R

x

0
iy

0
iz

0
i

i

and x

i+1yi+1zi+1 ⇠ x

0
i+1y

0
i+1z

0
i+1 for all i

(possibly some extra rows exceeding `). Thus, we have the desired result.

Example 41. The four words in H0(5) of Example 37 all have the same ?-insertion
tableau:

3

1

1 2 4 .

In the next couple of lemmas, we prove that the crystal operators f ?

k

act by a compo-
sition of micro-moves as given in Definition 36. More precisely, for a fully-commutative
decreasing factorization h, we have hrev ⇠ f

?

k

(h)rev as long as f ?

k

(h) 6= 0, where hrev is the
reverse of h.

Remark 42. By Definition 4 and Remark 8, there are two cases for the k-th and (k+1)-st
factors under the crystal operator f

?

k

, where x is the largest unpaired letter in the k-th
factor, w

i

, v

i

> x and u

i

, b

i

< x:

1. (w1 . . . wp

u1 . . . uq

)(v1 . . . vsxb1 . . . bt)
f

?
k�! (w1 . . . wp

xu1 . . . uq

)(v1 . . . vsb1 . . . bt),
where v

s

6= x+ 1.

2. (w1 . . . wp

u1 . . . uq

)(v1 . . . vsxb1 . . . bt)
f

?
k�! (w1 . . . wp

xu1 . . . uq

)(v1 . . . vs�1xb1 . . . bt),
where v

s

= w

p

= x+ 1.

In both cases, u
i

< x � 1 since if u1 = x � 1 then b1 = x � 1 due to the fact that x is
unbracketed; but this would mean that the word is not fully-commutative. We also notice
that since all u

i

are paired with some b

j

, we have that t > q and b

i

> u

i

. Similarly, all
v

i

are paired with some w

j

, so we have that p > s and v

i

> w

p�s+i

. Let u denote the
sequence u1 . . . uq

and let b denote the sequence b1 . . . bt.

Lemma 43.

1. For 2 6 i 6 q, b
i�1 > u

i

+ 1.

2. For 1 6 i < s, v
i

> w

p�s+i+1 + 1.

Proof. (1): When b

i�1 > b

i

+ 1 or u
i

< b

i

, the result follows directly.
Consider the case that u

i

= b

i

= a and b

i�1 = b

i

+ 1 = a + 1 for some letter a. Since
a = u

i

< u

i�1 6 b

i�1 = a+ 1, we must have u

i�1 = a+ 1. Let c be the largest letter such
that [a, c] ✓ b. Then c > a + 1 and c + 1 /2 b. Moreover, since all u

i

are paired, u
i

6 b

i

and u

j�1 > u

j

, it is not hard to see that [a, c] ✓ u and c, c � 1 2 u. Since c + 1 /2 b, we
can use commutativity to move c 2 b to the left and obtain a subword c(c � 1)c, which
contradicts that the original word is fully-commutative.
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(2): The proof is almost identical to the first part. When w

p�s+i

> w

p�s+i+1 + 1 or
v

i

> w

p�s+i

, the result follows.
Consider the case w

p�s+i

= w

p�s+i+1 + 1 = a + 1 and v

i

= w

p�s+i

= a + 1 for some
letter a. Since a = w

p�s+i+1 6 v

i+1 < v

i

= a + 1, we must that v

i+1 = a. Let c be the
smallest letter such that [c, a + 1] ✓ w. Then c 6 a and c � 1 /2 w. Moreover, since all
v

i

are paired, v
j

> w

p�s+j

and v

j+1 < v

j

, we can see that [c, a + 1] ✓ v and c, c + 1 2 v.
Since c�1 /2 w, we can use commutativity to move c 2 w to the right and form a subword
c(c+ 1)c, which contradicts that the original word is fully-commutative.

We now summarize several observations that will be used later.

Remark 44. For both types of actions of f

?

k

as in Remark 42, we have the following
equivalence relations:

1. For 1 6 i 6 q, 1 6 j 6 s� 1, v
j+1vjui

⇠ v

j+1ui

v

j

, since u

i

< v

j+1 < v

j

.

2. For 1 6 i 6 q, xv

s

u

i

⇠ xu

i

v

s

, since u

i

< x < v

s

.

3. For 1 6 i 6 q, b1xui

⇠ b1ui

x, since u

i

6 u1 6 b1 < x, and u

i

< x� 1.

4. For 1 6 j < i� 1, 1 6 i 6 q, b

j+1bjui

⇠ b

j+1ui

b

j

, since u

i

6 b

i

< b

j+1 < b

j

.

5. For 2 6 i 6 q, b

i

b

i�1ui

⇠ b

i

u

i

b

i�1, since u
i

6 b

i

< b

i�1 and b

i�1 > u

i

+1 by Lemma
43.

6. For 1 6 i 6 s, p� s+ i� 1 6 j 6 p� 1, w
j+1viwj

⇠ v

i

w

j+1wj

, since w

j+1 < w

j

<

w

p�s+i

6 v

i

.

7. For 1 6 i 6 s�1, w
p�s+i+1viwp�s+i

⇠ v

i

w

p�s+i+1wp�s+i

, since w
p�s+i+1 < w

p�s+i

6
v

i

and v

i

> w

p�s+i+1 + 1 by Lemma 43.

8. For all 1 6 j 6 s� 1, 1 6 i 6 q, v

j+1ui

v

j

⇠ v

j+1vjui

, since u

i

< v

j+1 < v

j

.

9. For 1 < i 6 q, b1ui

v

s

⇠ b1vsui

, since u

i

< u1 6 b1 < v

s

.

10. For 1 6 i 6 q, 1 6 j 6 s, xu
i

v

j

⇠ xv

j

u

i

, since u

i

< x < v

j

.

11. For 1 6 j 6 s� 1, xv
j

w

p

⇠ v

j

xw

p

, since x < w

p

6 v

s

< v

j

.

Remark 45. When v

s

6= x+ 1, we have the following equivalence relations:

1. 1 6 i 6 s, xv

i

w

p

⇠ v

i

xw

p

, since x < w

p

6 v

s

and v

s

> x+ 1.

2. b1u1vs ⇠ b1vsu1, since u1 6 b1 < v

s

and v

s

> x+ 1 > u1 + 1.

Lemma 46. We have that b

q

. . . b1xvs . . . v1uq

. . . u1 is equivalent to b

q

u

q

. . . b2u2b1u1x

v

s

. . . v1.
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Proof. With the equivalence relations from Remark 44 (1)-(5), we can make the sequences
of equivalence moves as follows:

b

q

. . . b1xvs . . . v2v1uq

u

q�1 . . . u1 ⇠ b

q

. . . b1xvs . . . v2uq

v1uq�1 . . . u1 ⇠
b

q

. . . b1xvsuq

. . . v2v1uq�1 . . . u1 ⇠ b

q

. . . b1xuq

v

s

. . . v2v1uq�1 . . . u1 ⇠
b

q

. . . b1uq

xv

s

. . . v2v1uq�1 . . . u1 ⇠ b

q

u

q

. . . b1xvs . . . v2v1uq�1 . . . u1 ⇠
b

q

u

q

b

q�1uq�1 . . . b1u1xvs . . . v2v1.

Lemma 47. We have that v

s

. . . v1wp

. . . w

p�s+1 is equivalent to v

s

w

p

v

s�1wp�1 . . . v1
w

p�s+1.

Proof. With the equivalence relations from Remark 44 (6)-(7), we can make the following
equivalence moves:

v

s

. . . v2v1wp

w

p�1 . . . wp�s+1 ⇠ v

s

. . . v2wp

w

p�1 . . . wp�s+2v1wp�s+1 ⇠
v

s

. . . v3wp

w

p�1 . . . v2wp�s+2v1wp�s+1 ⇠ v

s

w

p

. . . v1wp�s+1.

Lemma 48. We have

xw

p

v

s�1wp�1 . . . v2wp�s+2v1wp�s+1 ⇠ v

s�1 . . . v1xwp

. . . w

p�s+1.

Proof. With the equivalence relations from Remark 44 (6),(7) and (11), we can make the
following equivalent moves:

xw

p

v

s�1wp�1 . . . v2wp�s+2v1wp�s+1 ⇠ xv

s�1wp

w

p�1 . . . v2wp�s+2v1wp�s+1 ⇠
v

s�1xwp

w

p�1 . . . v2wp�s+2v1wp�s+1 ⇠ v

s�1 . . . v1xwp

w

p�1 . . . wp�s+2wp�s+1.

Lemma 49. When v

s

6= x+ 1, we have

xv

s

w

p

v

s�1wp�1 . . . v1wp�s+1 ⇠ v

s

. . . v1xwp

. . . w

p�s+1.

Proof. With the equivalence relations from Remark 44 (6)-(7) and Remark 45 (1), we can
make the following equivalence moves:

xv

s

w

p

v

s�1wp�1vs�2 . . . v1wp�s+1 ⇠ v

s

xw

p

v

s�1wp�1vs�2 . . . v1wp�s+1 ⇠
v

s

xv

s�1wp

w

p�1vs�2 . . . v1wp�s+1 ⇠ v

s

v

s�1xwp

w

p�1vs�2 . . . v1wp�s+1 ⇠
v

s

v

s�1vs�2 . . . v1xwp

w

p�1 . . . wp�s+1.

Lemma 50. When v

s

6= x+1, we have b
q

u

q

. . . b1u1vs . . . v1 is equivalent to b

q

. . . b1vs . . . v1

u

q

. . . u1.

Proof. With the equivalence relations from Remark 44 (4), (5), (8)-(9) and Remark 45
(2), we can make the following equivalence moves:

b

q

u

q

. . . b1u1vs . . . v1 ⇠ b

q

u

q

. . . b1vsu1 . . . v1 ⇠
b

q

u

q

. . . b1vs . . . v1u1 ⇠ b

q

. . . b1vs . . . v1uq

. . . u1.
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Lemma 51. We have b

q

u

q

. . . b1u1xvs�1 . . . v1 is equivalent to b

q

. . . b1xvs�1 . . . v1uq

. . . u1.

Proof. With the equivalence relations from Remark 44 (1), (3), (5) and (10) we have the
following equivalence moves:

b

q

u

q

. . . b1u1xvs�1 . . . v1 ⇠ b

q

u

q

. . . b1xu1vs�1 . . . v1 ⇠
b

q

u

q

. . . b1xvs�1 . . . v1u1 ⇠ b

q

. . . b1xvs�1 . . . v1uq

. . . u1.

Proposition 52. Suppose h is a fully-commutative decreasing factorization such that
f

?

k

(h) 6= 0 (resp. e

?

k

(h) 6= 0). Then f

?

k

(h)rev ⇠ hrev (resp. e

?

k

(h)rev ⇠ hrev) for the
equivalence relation ⇠ of Definition 36.

Proof. We prove the statement for f ?

k

. Since e?
k

is a partial inverse of f ?

k

, the result follows.

Let h = h

m

. . . h

1 2 Hm,? and define eh = f

?

k

(h) = h

m

. . . h̃

k+1
h̃

k

h

k�1
. . . h

1. Specif-
ically, h

k+1 = (w1 . . . wp

u1 . . . uq

) and h

k = (v1 . . . vsxb1 . . . bt), where x is the largest
unpaired letter in h

k. Then by Lemmas 46 and 47, we have the following sequence of
equivalence moves:

(b
q

. . . b1xvs . . . v1uq

. . . u1)wp

. . . w

p�s+1 ⇠ (b
q

u

q

. . . b1u1xvs . . . v1)wp

. . . w

p�s+1

b

q

u

q

. . . b1u1x(vs . . . v1wp

. . . w

p�s+1) ⇠ b

q

u

q

. . . b1u1x(vswp

. . . v1wp�s+1).

Case (1): When v

s

6= x + 1, h̃k+1 = (w1 . . . wp

xu1 . . . uq

), h̃k = (v1 . . . vsb1 . . . bt). By
Lemmas 49 and 50, we have

b

q

u

q

. . . b1u1(xvswp

. . . v1wp�s+1) ⇠ b

q

u

q

. . . b1u1(vs . . . v1xwp

. . . w

p�s+1)

(b
q

u

q

. . . b1u1vs . . . v1)xwp

. . . w

p�s+1 ⇠ (b
q

. . . b1vs . . . v1uq

. . . u1)xwp

. . . w

p�s+1.

Thus, we have that

b

t

. . . b1xvs . . . v1uq

. . . u1wp

. . . w1 ⇠ b

t

. . . b1xvs . . . v1uq

. . . u1xwp

. . . w1.

Case (2): When v

s

= w

p

= x+1, h̃k+1 = (w1 . . . wp

xu1 . . . uq

), h̃k = (v1 . . . vs�1xb1 . . . bt).
Then by Lemmas 48 and 51, we have

b

q

u

q

. . . b1u1(xvswp

)v
s�1wp�1 . . . v1wp�s+1 ⇠ b

q

u

q

. . . b1u1(xxwp

)v
s�1wp�1 . . . v1wp�s+1

b

q

u

q

. . . b1u1x(xwp

v

s�1wp�1 . . . v1wp�s+1) ⇠ b

q

u

q

. . . b1u1x(vs�1 . . . v1xwp

. . . w

p�s+1)

(b
q

u

q

. . . b1u1xvs�1 . . . v1)xwp

. . . w

p�s+1 ⇠ (b
q

. . . b1xvs�1 . . . v1uq

. . . u1)xwp

. . . w

p�s+1.

Thus, we have that

b

t

. . . b1xvs . . . v1uq

. . . u1wp

. . . w1 ⇠ b

t

. . . b1xvs�1 . . . v1uq

. . . u1xwp

. . . w1.

Therefore, we have shown that in both cases, f ?

k

(h)rev ⇠ hrev.

Proposition 53. For h 2 Hm,? such that f ?

k

(h) 6= 0 for some 1 6 k < m, the ?-insertion
tableau for h equals the ?-insertion tableau for f

?

k

(h).
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Proof. By Proposition 52, the reverse words for h and f

?

k

(h) are ⇠-equivalent. By Propo-
sition 40, the corresponding insertion tableaux are equal.

Proposition 54. Let h 2 Hm,? be a lowest weight element under Definition 4 of weight
�. Then there exists r > 1 where �

i

= 0 for i < r and �

i+1 > �

i

for 1 6 i 6 m.
Suppose h = h

m · · ·hr = (hm

�m
. . . h

m

1 )(h
m�1
�m�1

· · ·hm�1
1 ) . . . (hr

�r
. . . h

r

1), then the i-th row of

the ?-insertion tableau equals h

m+1�i
1 , h

m+1�i
2 , . . . , h

m+1�i
�m+1�i

, that is,

P

?(h) =

h

r

1 . . . h

r

�r

. . . . . . . . . . . .

h

m�1
1 h

m�1
2 . . . . . . h

m�1
�m�1

h

m

1 h

m

2 . . . . . . . . . h

m

�m

. (6)

Proof. Without loss of generality, we may assume that r = 1. We prove the statement by
induction on m. The case m = 1 is trivial.

Let m > 1 be arbitrary and suppose that the statement holds for this m. We prove
the statement for m + 1. We need to insert P

?(h)  h

m+1
1  h

m+1
2  · · ·  h

m+1
�m+1

,

where P

?(h) is as in (6) with r = 1. Note that hm+1
i

6 h

m

i

for 1 6 i 6 �

m

. Specifically,
h

m+1
1 6 h

m

1 , so its insertion path is vertical along the first column and we obtain

P

?(h) h

m+1
1 =

h

1
1

h

2
1 . . . h

r

�r

. . . . . . . . . . . .

h

m

1 h

m�1
2 . . . . . . h

m�1
�m�1

h

m+1
1 h

m

2 . . . . . . . . . h

m

�m

.

Since hm+1
1 < h

m+1
2 6 h

m

2 , the insertion path of hm+1
2 is strictly to the right of the insertion

path of hm+1
1 and weakly left of the second column by Lemma 32, so it is vertical along the

second column. Similar arguments show that the insertion path for hm+1
i

is just vertical
along the i-th column. Thus, the result holds for m+ 1.

Remark 55. For a lowest weight element h 2 Hm,? of weight a, the corresponding insertion
tableau must have shape µ = sort(a), which is the partition obtained by reordering a.

Proposition 56. Let T 2 SSYT(�) and (P,Q) = ? � res(T ). Then Q = T .
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Proof. The proof is done by induction on subtableaux of T similarly to the proof of
Theorem 24.

For a given step in the insertion process, suppose that the entries of T that are in-
volved so far form a nonempty subtableau T

0 of T with shape µ containing cell (1, 1).
Furthermore, assume that the insertion and recording tableau at the corresponding step
are P (T 0) and Q(T 0). Then they both have shape µ, and the entry of cell (i, j) of P (T 0)
is `+ j � µ

0
j

+ i� 1. In addition, Q(T 0) = T

0, where µ0 is the conjugate of the partition µ

and ` := �

0
1 = `(�).

Note that we do not encounter Case (1) in the proof of Theorem 24. All other ar-
guments still hold since for every insertion the letter is not contained in the row it is
inserted into, that is, the insertion always bumps the smallest letter that is greater than
itself. Thus, we omit the detail of the proof.

4.2 The ?-insertion and crystal operators

In this section, we prove that the ?-insertion and the crystal operators on fully-commu-
tative decreasing factorizations and semistandard Young tableaux intertwine.

Theorem 57. Let h 2 Hm,?. Let (P ?(h), Q?(h)) = ?(h) be the insertion and recording
tableaux under the ?-insertion of Definition 27. Then

1. f

?

i

(h) is defined if and only if f
i

(Q?(h)) is defined.

2. If f ?

i

(h) is defined, then Q

?(f ?

i

(h)) = f

i

Q

?(h).

In other words, the following diagram commutes:

Hm,?

SSYT

m

Hm,?

SSYT

m

.

Q

?

f

?
i fi

Q

?

Proof. The crystal operator f ?

i

acts only on factors hi+1 and h

i. Hence it su�ces to prove
the statement for h = h

i+1
h

i

. . . h

1 with i+ 1 factors.
Suppose f

?

i

(h) 6= 0. By Proposition 53, P

?(h) = P

?(f ?

i

(h)). Furthermore, by
Lemma 29 P

?(h) and Q

?(h) have the same shape. Hence in particular, Q

?(h) and
Q

?(f ?

i

(h)) have the same shape and therefore the letters i and i+1 in Q

?(h) and Q

?(f ?

i

(h))
occupy the same skew shape.

Recall from Definition 4 that f

?

i

removes precisely one letter from factor h

i = (hi

`

h

i

`�1 . . . h
i

1), say h

i

k

. By Lemma 32, the insertion paths of hi

1, . . . , h
i

`

into P

?(hi�1 · · ·h1)
move strictly to the right and the newly added cells form a horizontal strip. In addition,
the letters h

i

1, . . . , h
i

`

appear in the first row of P ?(hi · · ·h1). Now compare this to the

insertion paths for hi

1, . . . ,
b
h

i

k

, . . . , h

i

`

into P

?(hi�1
. . . h

1), where h

i

k

is missing. Up to the
insertion of hi

k�1, everything agrees. Suppose that hi

k

bumps the letter x in the first row
and h

i

k+1 bumps the letter y > x in the first row by Lemma 32. Then when h

i

k+1 gets
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inserted without prior insertion of hi

k

, the letter hi

k+1 either still bumps y or hi

k+1 bumps
x (in which case x and y are adjacent in the first row in P

?(hi�1 · · ·h1)). There are no
other choices, since if there are letters between x and y in the first row and h

i

k+1 bumps
one of these, it would have already bumped a letter to the left of y in P

?(hi · · ·h1). If hi

k+1

bumps x without prior insertion of hi

k

, then its insertion path is the same as the insertion
path of hi

k

previously. If hi

k+1 bumps y, then the letter inserted into the second row by
similar arguments either bumps the same letter as in the previous insertion path of hi

k+1

or hi

k

and so on. The last cell added is hence the same cell added in the previous insertion
path of either h

i

k

or h

i

k+1. Repeating these arguments, exactly one cell containing i in

Q

?(hi · · ·h1) is missing in Q

?((hi

`

. . .

b
h

i

k

. . . h

i

1)h
i�1 · · ·h1) and all other cells containing i

are the same. Hence, Q?(f ?

i

(h)) is obtained from Q

?(h) by changing exactly one letter i
to i+ 1.

It remains to prove that f ?

i

(h) 6= 0 if and only if f
i

(Q?(h)) 6= 0 and, if f ?

i

(h) 6= 0, then
the letter i that is changed to i+1 from Q

?(h) to Q

?(f ?

i

(h)) is the rightmost unbracketed
i in Q

?(h). First assume that under the bracketing rule for f

?

i

, all letters in the factor
h

i are bracketed, so that f

?

i

(h) = 0. This means that each letter in h

i is paired with a
weakly smaller letter in h

i+1. Then by similar arguments as in Lemma 32 (2), for each
insertion path for the letters in h

i, there is an insertion path for the letters in h

i+1 that
is weakly to the left and the resulting new cell is weakly to the left and strictly above of
the corresponding new cell for the letter in h

i. This means that each i in Q

?(h) is paired
with an i+ 1 and hence f

i

(Q?(h)) = 0.
Now assume that f ?

i

(h) 6= 0. Let us use the same notation as in Remark 42 (with k

replaced by i). Since all letters u
q

, . . . , u1 < x are paired with some letters b
j

< x, their
insertion paths (again by similar arguments as in Lemma 32) lie strictly to the left of
the insertion path for x. First assume that v

s

6= x + 1. Recall that by Proposition 53,
P

?(h) = P

?(f ?

i

(h)). Also, by the above arguments, moving letter x to factor hi+1 under
f

?

i

, changes one i to i+1 (precisely the i that is missing when removing x from h

i). Now
the letters w

p

, . . . , w1 > x are inserted after the letter x in the (i + 1)-th factor in f

?

i

(h)
and by Lemma 32 their insertion paths are strictly to the right of the insertion path of
x in f

?

i

(h). But this means that the corresponding i + 1 in Q

?(h) cannot bracket with
the i that changes to i+ 1 under f ?

i

. This proves that f
i

(Q?(h)) 6= 0. Furthermore, each
v

s

, . . . , v1 is paired with some w

j

and hence the insertion path of this w

j

is weakly to
the left of the insertion path of the corresponding v

h

. Hence all i to the right of the i

that changes to an i+ 1 under f ?

i

are bracketed. This proves that this i is the rightmost
unbracketed i, proving the claim. The case v

s

= x+ 1 is similar.

Remark 58. Proposition 54 and Theorem 57 provide another proof via ?-insertion, in
the case where w is fully-commutative, of the Schur positivity of G

w

of Fomin and
Greene [FG98]

G
w

=
X
µ

�

|µ|�`(w)
g

µ

w

s

µ

,

where g

µ

w

= |{T 2 SSYT

n(µ0) | w
C

(T ) ⌘ w}|.
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4.3 Uncrowding set-valued skew tableaux

Buch [Buc02] introduced a bijection from a set-valued tableau of straight shape to a pair
(P,Q), where P is a semistandard tableau and Q is a flagged increasing tableau. The map
involves the use of a dilation operation [BM12, RTY18] which can be defined equally to
act on set-valued skew tableaux. Chan and Pflueger [CP19] recently studied the operation
in this more general context. We review here the results needed for our purposes.

Let �, µ be partitions such that � ✓ µ and �1 = µ1. A flagged increasing tableau
(introduced in [Len00] and called elegant fillings by various authors [Len00, LP07, BM12,
Pat16]) is a row and column strict filling of the skew shape µ/� such that the positive
integers entries in the i-th row of the tableau are at most i � 1 for all 1 6 i 6 `(µ). In
particular, the bottom row is empty. Denote the set of all flagged increasing tableaux of
shape µ/� by F

µ/�

.
We use multicell to refer to a cell in a set-valued tableau with more than one letter.

Definition 59. For a skew shape �/µ, the uncrowding operation is defined on T 2
SVT(�/µ) as follows: identify the topmost row r in T containing a multicell. Let x be
the largest letter in row r which lies in a multicell; delete this x and perform RSK row
bumping with x into the rows above. The resulting tableau is the output of this operation.
Note that its shape di↵ers from �/µ by the addition of one cell.

The uncrowding map, denoted uncrowd, is defined as follows. Let T 2 SVT(�/µ) with
ex(T ) = `.

• Start with eP0 = T and eQ0 = F , where F is the unique flagged increasing tableau of
shape �/�.

• For each 1 6 i 6 `, eP
i

is obtained from e
P

i�1 by successively applying the uncrowding
operation until no multicells remain. Each operation involves the addition of cell C
to form e

P

i

by first deleting an entry in cell B of eP
i�1; this is recorded by adding a

cell with entry k to eQ
i�1 at the same position as C, where k is the di↵erence in the

row indices of cells B and C.

• Terminate and return ( eP ,

e
Q) = ( eP

`

,

e
Q

`

).

Example 60. Let T be the semistandard set-valued tableau

T =

5

4 4 5

2 23 3

1 1 1 12 234 5
.
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Perform an uncrowding operation to obtain

T

0 =

5

4

3 4 5

2 2 3

1 1 1 12 234 5

.

Proceeding with uncrowding the remaining multicells and recording the changes, we have
uncrowd(T ) = ( eP ,

e
Q), where

e
P =

5 5

4 4

3 3 4

2 2 2 3

1 1 1 1 2 5

and e
Q =

3 4

3

1
.

Lemma 61. For skew shape �/µ, the crystal operators on SVT

m(�/µ) intertwine with
those on SSYT

m(⌫/µ), for � ✓ ⌫, under uncrowd.

Proof. Chan and Pflueger [CP19] proved that the image of T 2 SVT(�/µ) under the
uncrowding map is a pair (P,Q), where P is a semistandard tableau of shape ⌫/µ and Q

is a flagged increasing tableau of shape ⌫/�. Monical, Pechenik and Scrimshaw in [MPS18,
Theorem 3.12] proved that the crystal operators on SVT

m(�) intertwine with those on
SSYT

m(⌫) under uncrowd. Since uncrowd is defined equally on skew shapes, the result
follows.

4.4 Compatibility of ?-insertion with uncrowding

For a partition µ, let T
µ

be the unique tableau of shape µ with µ

i

letters i in each row i.
Note that uncrowd(T

µ

) = (T
µ

, ;) since ex(T
µ

) = 0.

Lemma 62. For T 2 SVT

m(�/µ), if (P,Q) = ?(hh0) where h = res(T ) and h0 = res(T
µ

),
then T

µ

is contained in Q.

Proof. For T 2 SVT

m(�/µ), let T⇤ be the set-valued tableau of shape � obtained from T

by adding `(µ) to each entry and filling in the cells of µ with T

µ

. By Proposition 56, we
have

? �res(T
µ

) = (P
µ

, T

µ

) , (7)

where P
µ

is the semistandard tableau specified in the proof of Proposition 56. The claim
follows by noting that res(T⇤) = res(T )res(T

µ

).
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Definition 63. A modification of ?-insertion is defined on H⇤,m as follows: for h 2 H⇤,m,
let �/µ be the shape of res�1(h) (which is well-defined up to a shift by Proposition 14).
For h0 = res(T

µ

), let (P⇤, Q⇤) = ?(hh0). Define ?̃(h) = (P,Q) where P is obtained from
P⇤ by deleting all entries in cells of µ and Q is defined from Q⇤ by deleting T

µ

from it
and decreasing all other letters by `(µ).

Note that this is well-defined by Lemma 62 and the fact that each h 2 H⇤,m can be
associated to a skew shape �/µ which is the shape of res�1(h) by Proposition 14. Also
note that ?̃(h) = ?(h) if µ = ;.
Theorem 64. Let T 2 SVT

m(�/µ), (P̃ , Q̃) = uncrowd(T ), and (P,Q) = ?̃ � res(T ). Then
Q = P̃ .

Proof. We start by addressing the straight-shape case; for T⇤ 2 SVT

m(�), consider the
following compositions of maps:

(P̃ , Q̃) T⇤ h (P,Q)

(f
k

(P̃ ), Q̃) f

k

(T⇤) f

?

k

(h) (P, f
k

(Q)).

fk

res

fk

uncrowd

?

f

?
k fk

uncrowd

res ?

By Lemma 61, the left square commutes. By Theorem 17 the center square commutes.
By Proposition 53 and Theorem 57 the right square commutes. Hence it su�ces to prove
that Q = P̃ when T⇤ is a lowest weight element in the crystal.

Suppose T⇤ 2 SVT

m(�) is of lowest weight with wt(T⇤) = a and ex(T⇤) = `. Then
the decreasing factorization h 2 Hm,? is lowest weight by Theorem 17. By Remark 55,
P and hence Q has to be of shape ⌫ = sort(a). By Theorem 57, Q is the unique lowest
weight element in SSYT

m of shape ⌫.
Consider the uncrowding operator on T⇤ and record each tableau during the process

of uncrowding as in Definition 59 by a sequence of set-valued tableaux T⇤ = P̃0 ! P̃1 !
· · · ! P̃

`

= P̃ . Since T⇤ is of lowest weight, so are all the P̃

i

. Furthermore, all P̃
i

have
the same weight a. Let (P

i

, Q

i

) = ? � res(P̃
i

). For all 0 6 i 6 `, Q
i

is the unique lowest
weight element in SSYT

m of shape ⌫. Hence in particular Q
i

= Q for all 0 6 i 6 `. By
Proposition 56, Q = Q

`

= P̃ , proving the claim for straight shapes.
Now take T 2 SVT

m(�/µ) and construct T⇤ from T by adding `(µ) to each entry and
filling in the cells of µ with T

µ

. Note that T⇤ is a set-valued tableaux of shape �. Let
(P,Q) = ? � res(T⇤) and (P⇤, Q⇤) = ?̃ � res(T ). Since res(T⇤) = res(T )res(T

µ

), Lemma 62
implies that Q⇤ = Q/T

µ

. On the other hand, since T⇤ has straight shape, the preceding
paragraph gives that uncrowd(T⇤) = (Q, Q̃) for some Q̃. We then note that uncrowd(T )
and uncrowd(T⇤) are identical on cells of �/µ up to a shift of the entries by `(µ); in
particular, applying uncrowd to T⇤ does not involve any cell of µ since none of these are
multicells and their entries are the smallest `(µ) letters.
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5 Results on the non-fully-commutative case

In this section, we discuss some aspects when we generalize to the non-fully-commutative
case. In Section 5.1, we describe a local crystal on Hm(3). In Section 5.2, we show that
under very mild assumptions it is not possible to expect a local crystal for n > 3.

5.1 The case n = 3

We provide a description of a type A

m�1 crystal structure on Hm(3).

Definition 65. Let h = h

m

h

m�1
. . . h

2
h

1 2 Hm(3). Fix 1 6 k < m. Define the pairing
process of h and the number of pairs in h

k�1
. . . h

j+1
h

j, denoted p([j, k � 1]), recursively
as follows:

1. The empty factorization, denoted ;, has no pairs and p(;) = 0.

2. If p([1, j� 1]) is defined for all 1 6 j 6 k, then we have p([j, k� 1]) = p([1, k� 1])�
p([1, j � 1]).

3. If hk = ( ), then set p([1, k]) = p([1, k � 1]).

4. Otherwise, if hk = (21), pair the 2 with the 1 in h

k and set p([1, k]) = p([1, k�1])+1.

5. Otherwise, if hk = (2) and p([1, k�1]) is even, ignoring all previously paired letters,
locate the leftmost unpaired letter in h

k�1
. . . h

2
h

1.

(a) If this letter is in h

j = (1) and p([j + 1, k � 1]) is even, then pair the 2 in h

k

with the 1 in h

j and set p([1, k]) = p([1, k � 1]) + 1.

(b) If this letter is in h

j = (2) and p([j + 1, k � 1]) is odd, then pair the 2 in h

k

with the 2 in h

j and set p([1, k]) = p([1, k � 1]) + 1.

(c) Else, set p([1, k]) = p([1, k � 1]).

6. Otherwise, if hk = (1) and p([1, k� 1]) is odd, ignoring all previously paired letters,
locate the leftmost unpaired letter in h

k�1
. . . h

2
h

1.

(a) If this letter is in h

j = (2) and p([j + 1, k � 1]) is even, then pair the 1 in h

k

with the 2 in h

j and set p([1, k]) = p([1, k � 1]) + 1.

(b) If this letter is in h

j = (1) and p([j + 1, k � 1]) is odd, then pair the 1 in h

k

with the 1 in h

j and set p([1, k]) = p([1, k � 1]) + 1.

(c) Else, set p([1, k]) = p([1, k � 1]).

7. Else, set p([1, k]) = p([1, k � 1]).

Example 66. Let m = 8 and consider h = ( )(2)( )(21)(1)(1)(2)(21) 2 H8(3). The
pairing process results in ( )(2)( )(21)(1)(1)(2)(21), where the paired letters are indicated
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with braces. Hence, we have the following values of p([1, k]) for 1 6 k 6 8: 0, 1, 1, 2, 2,
3, 3, 3. Note that the letters in the fourth and seventh factors are left unpaired.

Similarly, if we take h = ( )(2)(2)(21)(2)(1)(21)(21) 2 H8(3), we obtain

( )(2)(2)(21)(2)(1)(21)(21).

Thus, we have the following values of p([1, k]) for 1 6 k 6 8: 0, 1, 2, 2, 2, 3, 4, 5. In this
case all the letters in h are paired.

Definition 67. Let h = h

m

. . . h

2
h

1 2 Hm(3). The crystal operator f
i

for 1 6 i < m on h
is defined as follows. The operator f

i

only depends on h

i+1
h

i and the parity of p([1, i�1])
of Definition 65. In the following cases, we indicate only the changes in h

i+1
h

i under f
i

as the remainder of h remains invariant:

1. (21)(x)
i�! 0, where (x) 2 {( ), (1), (2), (21)},

2. (x)( )
i�! 0, where (x) 2 {( ), (1), (2), (21)},

3. (x)(x)
i�! 0, where (x) 2 {( ), (1), (2)},

4. (1)(21)
i�! (21)(2),

5. (2)(21)
i�! (21)(1),

6. ( )(x)
i�! (x)( ), where (x) 2 {(1), (2)},

7. ( )(21)
i�! (2)(1)

i�! (21)( ), if p([1, i� 1]) is even,

8. ( )(21)
i�! (1)(2)

i�! (21)( ), if p([1, i� 1]) is odd.

The operator e
i

is defined similarly. One reverses the changes introduced in cases (4) to
(8) and annihilates h when the following occurs at hi+1

h

i:

(1)’ (x)(21)
i�! 0, where (x) 2 {( ), (1), (2), (21)},

(2)’ ( )(x)
i�! 0, where (x) 2 {( ), (1), (2), (21)},

(3)’ (x)(x)
i�! 0, where (x) 2 {( ), (1), (2)}.

Similar to Definition 4, the weight map is defined as

wt(h) = (len(h1), len(h2), . . . , len(hm)).

Meanwhile, '
i

(h) (resp. "

i

(h)) is defined to be the largest nonnegative integer k such
that fk

i

(h) 6= 0 (resp. ek
i

(h) 6= 0).

the electronic journal of combinatorics 27(2) (2020), #P2.29 44



(2) (21) (2)

(21) ( ) (21) (21) (1) (2)

(2) (1) (21)

(2, 1) (21) ( )

(1) (1) (21)

(1) (2) (21) (1) (21) (2)

(21) (2) (2)

(21) (2) (1)

( ) (21) (21)

(1) (21) (1)

1

1

22 2

1

2 1

2

1

Figure 3: The crystal graph for H3(3) restricted to decreasing factorizations with four
letters.

It is not di�cult to check that the operators f

i

and e

i

defined above preserve the
relation ⌘H0 on Hm(3) whenever they do not annihilate the decreasing factorizations.
Furthermore, the structure above defines an abstract, seminormal A

m�1 crystal on Hm(3).
We note that one may also verify that the crystal is a Stembridge crystal by checking

that the axioms formulated in [Ste03] are satisfied. Figure 3 displays the crystal graph
on H3(3) restricted to decreasing factorizations that use exactly 4 letters.

5.2 Nonlocality

In this subsection, we show that it is impossible to construct a crystal on Hm with the
following properties for f

i

:

1. f

i

only changes the i-th and (i+ 1)-th decreasing factors;

2. f

i

is determined by the first (i+ 1) factors;

3. f

i

(h) ⌘H0 h and ex[f
i

(h)] = ex(h), for all h 2 Hm with f

i

(h) 6= 0.

Let h1 = h

m

1 . . . h

2
1h

1
1 2 Hm and suppose that f

i

(h1) 6= 0. If we write f
i

(h1) = h

m

2 . . . h

2
2h

1
2,

then the above assumptions imply that h

i+1
1 h

i

1 . . . h
1
1 ⌘H0 h

i+1
2 h

i

2 . . . h
1
2. Obviously the

crystal on Hm(3) defined in Section 5.1 satisfies these assumptions.
Suppose that a crystal structure with the above assumptions exists onH4(4). Consider

the Schur expansion of the stable Grothendieck polynomial in 4 variables for w = 12132:

G12132(x1, x2, x3, x4; �) = s221 + �(2s222 + 3s2211) + �

2(6s2221 + 6s22111) + · · · .
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(21)( )(32)(32)

(21)( )( )(32)

(2)( )(2)(32)

(21)( )(32)(3)

(2)( )(32)(3)

(2)(1)(32)(32)

(21)( )(32)( )

(21)( )(3)(2)

( )(21)(32)(32)

(21)( )( )(32)

3

2

1

3

3

2

1

1

21

2

3

Figure 4: Partial filling of the connected component of H4(3) containing highest weight
element ( )(21)(32)(32).

(Note that s22111 is zero in four variables and hence could be omitted). The linear term
in � implies that there are two connected components with highest weight (2, 2, 2, 0)
(lowest weight (0, 2, 2, 2)) for the crystal H4(4) with excess 1. All decreasing factorizations
mentioned below are those of w = 12132 with 4 factors and excess 1.

There are two decreasing factorizations of weight (2, 2, 2, 0): ( )(21)(21)(32) and
( )(21)(32)(32). Focus on the connected component with highest weight ( )(21)(32)(32)
and try to complete the crystal graph from top to bottom. Since the only decreasing
factorization of weight (2, 2, 1, 1) with the first and second factors both being (32) is
(2)(1)(32)(32), we can compute the action of f3 on this highest weight element. By some
similar arguments we can fill in part of the crystal graph as indicated in Figure 4 with
the above assumptions. The dashed spaces are undetermined.

Yet note that the red f2 highlighted in the graph changed the first factor from (3) to
(2). Hence, Condition (1) is violated, providing a counterexample that crystals with the
above conditions always exist on Hm(n) for n > 3.
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