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Abstract. We are concerned with the suitability of the main models of compressible
fluid dynamics for the Lighthill problem for shock diffraction by a convex corned wedge,
by studying the regularity of solutions of the problem, which can be formulated as a
free boundary problem. In this paper, we prove that there is no regular solution that is
subsonic up to the wedge corner for potential flow. This indicates that, if the solution
is subsonic at the wedge corner, at least a characteristic discontinuity (vortex sheet or
entropy wave) is expected to be generated, which is consistent with the experimental
and computational results. Therefore, the potential flow equation is not suitable for the
Lighthill problem so that the compressible Euler system must be considered. In order to
achieve the non-existence result, a weak maximum principle for the solution is established,
and several other mathematical techniques are developed. The methods and techniques
developed here are also useful to the other problems with similar difficulties.

1. Introduction

We are concerned with the regularity of solutions of the Lighthill problem for shock
diffraction by a two-dimensional convex cornered wedge, which is not only a longstand-
ing open problem in fluid mechanics but also fundamental in the mathematical theory of
multidimensional conservation laws, since the shock diffraction configurations are funda-
mental for the local structure of general entropy solutions. The Lighthill problem can be
formulated as a free boundary problem.

The main objective of this paper is to address the fundamental issue: which of the main
models of compressible fluid dynamics is suitable for the shock diffraction problem. There
are two main models: the compressible Euler system and the potential flow equation. We
prove that there is no regular solution of the shock diffraction problem in the framework of
potential flow. In fact, our results show the limitation of the potential flow equation, since
solutions of this equation have a high regularity, so that it is too rigid for the Lighthill
problem. This shows that the Euler system may be more stable as it allows nonregular
solutions.
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Figure 1.1. The Lighthill problem for shock diffraction

The Euler equations for polytropic potential flow consist of

∂tρ+ divx(ρ∇xΦ) = 0 (1.1)

with Bernoulli’s law:

∂tΦ +
1

2
|∇xΦ|2 + i(ρ) = B0, (1.2)

where x = (x1, x2) ∈ R2, ρ is the density, Φ is the velocity potential such that ∇xΦ =:
(u, v) = v is the flow velocity, and B0 is the Bernoulli constant determined by the incoming
flow and/or boundary conditions. For a polytropic gas, by scaling,

c2(ρ) = ργ−1, i(ρ) =
ργ−1 − 1

γ − 1
, γ > 1,

where c(ρ) is the sound speed. For the isothermal case, γ = 1,

p(ρ) = ρ, c2(ρ) = 1, i(ρ) = lnρ

as the limiting case when γ → 1. In this paper, we focus mainly on the case γ > 1, since a
similar argument works when γ = 1.

As shown in Fig. 1.1, we consider two piecewise constant Riemann data with the left
state, State (1): (ρ1, u1, 0), u1 > 0, and the right state, State (0): (ρ0, 0, 0), separated by a
vertical shock S0 and above the wedge with the corner angle θw = π− σ, where σ ∈ (0, π).
As this incident shock passes through the wedge, the incident shock interacts with the
sonic circle and becomes a transonic shock. On the other hand, physical observation and
numerical analysis [26, 27] indicate that, when a shock is diffracted by a convex cornered
wedge, at least a characteristic discontinuity (vortex sheet or entropy wave) should be gen-
erated. Mathematically, to confirm this phenomenon, one needs to show the nonexistence
of regular solutions of the Lighthill problem. Therefore, we are interested in the question
of whether any solution of the Lighthill problem, governed by the potential flow equation,
is irregular at the wedge corner; that is, a regular solution, which is Lipschitz at the corner,
does not exist, where the exact notion of regular solutions will be given in §2.3.

In this paper, we prove the nonexistence of regular solutions to this Riemann data
when the initial left state (ρ1, u1, 0) is subsonic, i.e., u1 < c1. Then the pseudo-velocity



LOSS OF REGULARITY OF SOLUTIONS OF THE LIGHTHILL PROBLEM 3

(U, V ) = (u1, 0) at the origin is pseudosubsonic, and the degenerate boundary is the sonic
circle centered at (u1, 0) with radius c1. One of the main ingredients in our analysis is
to develop a weak maximum principle at the wedge corner for the velocity in a special
direction by the integration method. It is well known that, if a regular solution is assumed
to have a C1-velocity at the wedge corner, then we can directly apply Hopf’s maximum
principle to the directional derivative of the potential function to reach a contradiction.
However, it does not apply directly to the solution that is not C2-continuous. Therefore,
it is the key point in §3 to develop the weak maximum principle without the C2-continuity
of the solution.

The mathematical study of the shock diffraction problem dates back to the 1950s by
the work of Lighthill [21, 22] via asymptotic analysis, which is now called the Lighthill
problem; also see Bargman [2], Fletcher, Weimer, and Bleakney [17], and Fletcher, Taub,
and Bleakney [16] via experimental analysis, as well as Courant, and Friedrichs [12] and
Whitham [28]. To date, all efforts for rigorous mathematical analysis of the Lighthill
problem have focused on some simplified models. For one of these models, the nonlinear
wave system, Kim [19] first studied this problem for the right wedge angle with an additional
physical assumption that the transonic shock does not collide with the sonic circle of the
right state. More recently, in Chen, Deng, and Xiang [7], this assumption was removed, and
the existence and optimal regularity of shock diffraction configurations were established for
all angles of the convex wedge via a different approach.

A closely related problem, shock reflection-diffraction by concave cornered wedges, has
been systematically analyzed in Chen, and Feldman [8, 9], Bae, Chen, and Feldman [3]
and Chen, Feldman, and Xiang [10, 11], where the existence and uniqueness of regular
shock reflection-diffraction configurations has been established up to the detachment wedge
angle. For the nonsymmetric case, the non-existence of regular solutions has been shown in
Feldman, and Hu [15] when the wedge angle is sufficiently close to π. The Prandtl-Meyer
reflection for supersonic potential flow impinging onto a solid wedge has also been analyzed
first in Elling, and Liu [13] and, most recently, in Bae, Chen, and Feldman [4, 5] for the
general case. For other related references, we refer the reader to Serre [25] for Chaplygin
gas, Canic, Keyfitz, and Kim [6] for the nonlinear wave system, and Zheng [29] for the
pressure-gradient system. See also [14, 24] for steady flow passing through a wedge.

The organization of this paper is as follows: In §2, we formulate the Lighthill problem as
a free boundary problem for a nonlinear equation of mixed elliptic-hyperbolic type, prove
the important fact that the speed of incident shock is subsonic and the incident shock hits
the sonic circle in the first quadrant, and then introduce the notion of regular solutions of
the free boundary problem and state the main theorem. In §3, we prove the monotonicity
property of regular solutions with respect to a special direction. This means that, if
the regular solution exists, the speed along some direction cannot achieve the negative
minimum anywhere in Ω. Then we reach a contradiction in §3 from the monotonicity
property, actually via a weak version of Hopf’s maximum principle. In Appendix A, we
prove that a solution of some type of linear elliptic equations, which is only assumed to be
L∞ at the wedge corner, is actually continuous.
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2. Mathematical formulation of the Lighthill problem

In this section, we first formulate the Lighthill problem as an initial-boundary value
problem (Problem 2.1) for the potential flow equation, then reduce it to a boundary value
problem (Problem 2.2) and further to a free boundary problem (Problem 2.3) for a nonlinear
equation of mixed elliptic-hyperbolic type, prove that the speed of incident shock is subsonic
and the incident shock hits the sonic circle in the first quadrant, and finally introduce the
notion of regular solutions of the free boundary problem and state the main theorem.

2.1. The Lighthill problem. When a plane shock in the (t,x)-coordinates, x = (x1, x2) ∈
R2, with left state (ρ, u, v) = (ρ1, u1, 0) and right state (ρ0, 0, 0) satisfying u1 > 0 and
ρ0 < ρ1, passes a wedge

W := {(x1, x2) : x2 < 0, x1 < x2 cot θw}

stepping down, the shock diffraction phenomenon occurs. Mathematically, this problem
can be formulated as the following initial-boundary value problem.

Figure 2.1. Initial-boundary value problem

Problem 2.1 (initial-boundary value problem) (see Fig. 2.1). Seek a solution of system
(1.1)–(1.2) with the initial condition at t = 0,

(ρ,Φ)|t=0 =

{
(ρ1, u1x1) in {x1 < 0, x2 > 0},
(ρ0, 0) in R2 \ (W ∪ {x1 ≤ 0, x2 ≥ 0}),

(2.1)

and the slip boundary condition along the wedge boundary ∂W :

∇Φ · ν = 0, (2.2)

where ν is the exterior unit normal to ∂W .

The initial-boundary value problem (1.1)–(1.2) and (2.1)–(2.2) is invariant under the
self-similar scaling

(t,x)→ (αt, αx), (ρ,Φ)→ (ρ,
Φ

α
) for α 6= 0.



LOSS OF REGULARITY OF SOLUTIONS OF THE LIGHTHILL PROBLEM 5

Thus, we seek self-similar solutions with the form

ρ(t,x) = ρ(ξ, η), Φ(t,x) = tφ(ξ, η) for (ξ, η) =
x

t
, (2.3)

where ϕ := φ− ξ2+η2

2 is called a pseudovelocity potential with (ϕξ, ϕη) = (u− ξ, v − η) =
(U, V ) as the corresponding pseudovelocity. In the self-similar plane, the domain outside
the wedge is

Λ := R2 \W. (2.4)

Then the pseudovelocity potential function ϕ satisfies the following equation for self-
similar solutions:

div(ρDϕ) + 2ρ = 0 (2.5)

with
1

2
|Dϕ|2 + ϕ+

c2

γ − 1
=

c2
0

γ − 1
, (2.6)

where the divergence div and gradient D are with respect to the self-similar variables
(ξ, η) and c0 = c(ρ0). Therefore, the potential function ϕ is governed by the following
second-order potential flow equation:

div(ρ(Dϕ,ϕ)Dϕ) + 2ρ(Dϕ,ϕ) = 0 (2.7)

with

ρ(Dϕ,ϕ) =

(
c2

0 − (γ − 1)

(
ϕ+

1

2
|Dϕ|2

)) 1
γ−1

. (2.8)

Equation (2.7) is of mixed hyperbolic-elliptic type: It is elliptic if and only if |Dϕ| <
c(Dϕ,ϕ) := ρ(Dϕ,ϕ)

γ−1
2 , which is equivalent to

|Dϕ| < c?(ϕ, γ) :=

√
2

γ + 1

(
c2

0 − (γ − 1)ϕ
)
. (2.9)

Since the problem involves shock waves, the solutions of (2.7)–(2.8) have to be under-
stood as weak solutions in distributional sense. Based on the argument in §2.1 in [8], for a

piecewise C1 solution ϕ separated by a shock S, if ϕ ∈W 1,∞
loc (Λ), it is easy to verify that ϕ

satisfies (2.7)–(2.8) in the distributional sense if and only if it is a classic solution of (2.7)–
(2.8) in each smooth subregion and satisfies the following Rankine–Hugoniot conditions
across S:

[ρ(Dϕ,ϕ)Dϕ · ν]S = 0, (2.10)

[ϕ]S = 0, (2.11)

where [w]S denote the difference between the right and left traces of quantity w along S.
In fact, a discontinuity of Dϕ satisfying the Rankine–Hugoniot conditions (2.10)–(2.11)

is called a shock if it satisfies the following physical entropy condition: The density function
ρ increases across a shock in the pseudoflow direction.
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2.2. Location of the incident shock and the boundary value problem in the
self-similar coordinates. Consider the left state (1): (ρ, u, v) = (ρ1, u1, 0) with ρ1 > 0
and u1 > 0, and the right state (0): (ρ, u, v) = (ρ0, 0, 0) with ρ1 > ρ0 > 0 such that the
entropy condition and the Rankine–Hugoniot conditions are satisfied on the incident shock
separating these two states.

We note that, from (2.6), the potentials of states (1) and (0) are

ϕ1 = −ξ
2 + η2

2
+ u1ξ +

c2
0 − c2

1

γ − 1
− 1

2
u2

1, ϕ0 = −ξ
2 + η2

2
. (2.12)

From (2.11), [Dϕ]S is the normal direction to the shock. Then we have the following
two equations as the Rankine-Hugoniot conditions along the flat shock L separating state
(0) from a constant state (u, v, ρ) with potential ϕ:

u
(
ρ(u− ξ) + ρ0ξ

)
+ v
(
ρ(v − η) + ρ0η

)
= 0 (2.13)

and

ϕ = ϕ0. (2.14)

Thus, on the incident shock separating states (1) and (2), equations (2.13)–(2.14) hold
with (ρ, u, v) = (ρ1, u1, 0) and ϕ = ϕ1. From (2.14), we find that the incident shock is line

{ξ = ξ1} for ξ1 = 1
2u1 −

c20−c21
u1(γ−1) . From (2.13) with (ρ, u, v, ξ) = (ρ1, u1, 0, ξ1), we have

0 < u1 =
ρ1 − ρ0

ρ1
ξ1 < ξ1. (2.15)

Then (2.13)–(2.14) imply

ξ1 =

√
2ρ2

1(c2
1 − c2

0)

(γ − 1)(ρ2
1 − ρ2

0)
> 0. (2.16)

We now show that the incident shock interacts with the sonic circle of the left state (1)
through the following relation:

0 < ξ1 − u1 < c1. (2.17)

In fact, the positivity follows directly from (2.15). From (2.15)–(2.16), we have

c2
1 − (ξ1 − u1)2 = c2

1 −
2ρ2

0(c2
1 − c2

0)

(γ − 1)(ρ2
1 − ρ2

0)
=

(γ − 1)c2
1ρ

2
1 − (γ + 1)ρ2

0c
2
1 + 2ρ2

0c
2
0

(γ − 1)(ρ2
1 − ρ2

0)
.

Since c2 = ργ−1, it suffices for the second inequality in (2.17) to prove that

f(s) := 2sγ+1 − (γ + 1)s2 + (γ − 1) > 0 for s = ρ0
ρ1
∈ (0, 1).

This can be seen by the fact that f ′(s) < 0 and f(1) = 0. Then we have the following
lemma.

Lemma 2.1. Consider the left state (ρ1, u1, 0) and right state (ρ0, 0, 0) with ρ1 > ρ0 > 0
and u1 > 0. Then the location of the incident shock ξ1 satisfies (2.17), and angle θ1

determined by tan θ1 = η1
ξ1−u1 for P1 = (ξ1, η1) must be in the interval (0, π2 ).
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Therefore, the incident shock interacts with the pseudosonic circle of state (1) to become
a transonic shock. Moreover, initial-boundary value problem (1.1)–(1.2) and (2.1)–(2.2) in
the (t,x)-coordinates can be formulated as the following boundary value problem in the
self-similar coordinates (ξ, η).

Problem 2.2 (boundary value problem). Seek a regular solution ϕ (see Definition 2.1
below) of (2.7) in the self-similar domain Λ with the slip boundary condition on the wedge
boundary ∂Λ,

Dϕ · ν|∂Λ = 0, (2.18)

and the asymptotic boundary condition at infinity:

(ρ, ϕ)→ (ρ̄, ϕ̄) =

{
(ρ1, ϕ1) in {ξ < ξ1, η ≥ 0},
(ρ0, ϕ0) in {ξ > ξ1, η ≥ 0} ∪ ({η < 0} ∩ Λ),

when ξ2 + η2 →∞ in the sense that

lim
R→∞

‖ϕ− ϕ̄‖C1(Λ\BR(0)) = 0.

The solution of Problem 2.2 can be shown to be the solution of Problem 2.1. Therefore, if
the nonexistence of the regular solution of Problem 2.2 can be shown, then the nonexistence
of the regular self-similar solution of Problem 2.1 follows.

2.3. Regular solutions. Since ϕ does not satisfy the slip boundary condition for ξ ≥ 0,
the solution must differ from state (1) in {ξ < ξ1} ∩Λ near the wedge corner, which forces
the shock to be diffracted by the wedge. Inspired by the “no diffraction” solution when the
wedge is flat (σ = 0) and based on Lemma 2.1, in an open domain Ω bounded by shock
Γshock, the pseudosonic circle Γsonic of the left state (1) with center (u1, 0) and radius c1 > 0,
and the cornered wedge Γwedge, the regular solution is expected to be pseudosubsonic and
smooth, to satisfy the slip boundary condition along the wedge, and to be C1,1-continuous
across the pseudosonic circle to become pseudosupersonic.

Let C be the corner of the wedge. Let φ := ϕ + 1
2(ξ2 + η2). Note that φ0 ≡ 0. To

show the nonexistence of regular solutions of Problem 2.2, we will show the nonexistence
of regular solutions of the following free boundary problem.

Problem 2.3 (free boundary value problem) (see Fig. 2.2). Seek a function φ ∈
Lip(Ω) ∩ C1(Ω\C) ∩ C3(Ω\(Γshock ∪ Γsonic ∪ C)) that satisfies(

c2 − (φξ − ξ)2
)
φξξ − 2(φξ − ξ)(φη − η)φξη +

(
c2 − (φη − η)2

)
φηη = 0 in Ω, (2.19)

with the following boundary conditions.

(i) Boundary conditions on the shock:

φ = 0 on Γshock; (2.20)

ρ(Dϕ,ϕ)Dϕ · ν = ρ0Dϕ0 · ν on Γshock, (2.21)

where ϕ := ϕ− 1
2(ξ2 + η2).
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Figure 2.2. Free boundary value problem

(ii) The sonic circle is a weak discontinuity:

φ = φ1, Dφ = Dφ1 = (u1, 0) on Γsonic.

(iii) Slip boundary condition along the wedge:

Dφ · ν = 0 on Γwedge\C. (2.22)

Moreover, the function φ is subsonic in Ω ∪ Γ0
wedge, i.e.,

c2 − |Dϕ|2 > 0 in Ω ∪ Γ0
wedge, (2.23)

where Γ0
wedge is the relative interior of Γwedge.

Since the sonic circle is a weak discontinuity, any solution of Problem 2.3 is a solution
of Problem 2.2, provided that

ϕ =

{
ϕ1 in {ξ < ξ1, (ξ − u1)2 + η2 ≥ c2

1},
ϕ0 in Λ\({ξ < ξ1, (ξ − u1)2 + η2 ≥ c2

1} ∪ Ω).

Now we define the notion of regular solutions of the Lighthill problem. We use the
notation σ = π − θw.

Definition 2.1. A function φ is called a regular solution of the Lighthill problem if φ is
a solution of Problem 2.3 with the following additional condition: There exists σ̃ ∈ (σ, π)
such that vector γ := (sin σ̃, cos σ̃) is not tangential to Γshock at any point on Γshock.

Remark 2.1. Note that, by the C1-regularity of φ in Ω\C, (2.20), and the condition of
Definition 2.1, it follows that Γshock is a C1-curve up to its ends. Also, in the proof of the
main result of this paper, Theorem 2.1, the boundary condition (2.21) is not used, i.e. we
use only (2.20) on Γshock.

For the condition of Definition 2.1, we have the following remarks.
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Remark 2.2. When the shock is convex as observed in the experimental results, the addi-
tional condition in Definition 2.1 follows directly.

Remark 2.3. When the wedge is flat (σ = 0), there is “no diffraction” solution, i.e., ϕ
consists of only two uniform states ϕ0 and ϕ1 separated by the incident shock. Then, when
the wedge is almost flat (i.e., σ is very small), one expects that ϕ should be close to ϕ1

in the sense of C1(Ω). In this case, from the Dirichlet condition (2.20), the curved shock
Γshock is a C1-perturbation of the incident shock. This implies the condition of Definition
2.1.

Remark 2.4. If Γshock is a graph of a C1-function of η and the wedge angle is obtuse (i.e.,
σ < π

2 ), then the additional condition in Definition 2.1 holds, since we can choose σ̃ = π
2 .

Now we can present our main theorem.

Theorem 2.1 (main theorem). The Lighthill problem does not permit a regular solution
in the sense of Definition 2.1.

With the estimates and properties developed in §3 and Appendix A, the main theorem
(Theorem 2.1) will be proved in §3.

Based on Remark 2.3, one can obtain the following corollary from Theorem 2.1.

Corollary 2.2. The “no diffraction” solution is not stable in the sense of C1(Ω) with
respect to the wedge angle as σ → 0.

3. Proof of the main theorem — Theorem 2.1

In order to prove the main theorem, we need to derive several estimates on the deriva-
tives of regular solutions in the sense of Definition 2.1, based on Lemma A.1. Let r0 :=
1
2dist(C,Γshock ∪ Γsonic).

Lemma 3.1. Let φ be a regular solution in the sense of Definition 2.1. Assume that, for
any r ∈ (0, r0),

‖Dφ‖C(Br(C)∩Ω) ≤ ω(r),

where ω(r) is a nondecreasing continuous function of r on [0, r0]. Then, for any r ∈ (0, r0),

|D2φ| ≤ Cω(2r)

r
on ∂Br ∩ Ω,

where C depends only on the elliptic ratio λ and bound ‖Dφ‖0;Br0 (C)∩Ω.

Proof. For any fixed r ∈ (0, r0), we scale Br(C) to B2(C) by the change of coordinates as
follows:

(x, y) :=
2

r
(ξ, η), ψ(x, y) = φ(ξ, η).

In the (x, y)-coordinates, ψ satisfies

2∑
i,j=1

ãijψij = 0 in B2(C)\(B1(C) ∪W ), (3.1)
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where ãij(x, y) = aij(
r
2x,

r
2y). Equation (3.1) is uniformly elliptic in B2(C)\(B1(C) ∪W ).

Then we can apply Nirenberg’s estimate (cf. Chapter 12 of [18] or Nirenberg [23]) to obtain

‖Dψ‖Cα(B7/4(C)\(B5/4(C)∪W )) ≤ C‖Dψ‖L∞(B2(C)) ≤ C
r

2
‖Dφ‖C(Br(C)∩Ω) ≤

C

2
rω(r), (3.2)

where C depends only on the elliptic ratio of (3.1). In the (x, y)-coordinates, (3.1) can be
rewritten as(
c2 −

(
ψx
r
− rx

)2
)
ψxx − 2

(
ψx
r
− rx

)(
ψy
r
− ry

)
ψxy +

(
c2 −

(
ψy
r
− ry

)2
)
ψyy = 0,

(3.3)
where the sonic speed c can be represented as

c2 = c2
0 − (γ − 1)

(
ψ − ψxx− ψyy +

ψ2
x + ψ2

y

2r2

)
. (3.4)

With (3.2)–(3.4), we obtain the estimate of the Hölder norm of ãij as

‖ãij‖Cα(B7/4(C)\(B5/4(C)∪W )) ≤ C(λ,
1

r
‖Dψ‖Cα(B7/4(C)\(B5/4(C)∪W )))

≤ C(λ, ‖Dφ‖C(Br0 (C)∩Ω)),

where C(λ, ‖Dφ‖C(Br0 (C)∩Ω)) depends only on the elliptic ratio λ and on the bound ‖Dφ‖C(Br0 (C)∩Ω).

Then we can apply the Schauder estimate to (3.1) to obtain

‖D2ψ‖C(B13/8(C)\(B11/8(C)∪W )) ≤ C‖Dψ‖C(B2(C)\(B1(C)∪W )) ≤ Cω(r)r,

where C is a universal constant that depends only on the elliptic ratio λ and bound
‖Dφ‖0;Br0 (C)∩Ω and may be different at each occurrence. Scaling back to the (ξ, η)-
coordinates, we have

‖D2φ‖C(∂B3r/4) ≤ C
ω(r)

r
.

This completes the proof. �

Based on Lemma 3.1 and Lemma A.1, we have the following lemma.

Lemma 3.2. If φ is a regular solution in the sense of Definition 2.1, then

φ ∈ C1(Br0(C) ∩ Λ).

Proof. Let v1 = φη and v2 = sinσφξ + cosσφη. Similar to (3.9)–(3.12), we can derive the
equation and the boundary conditions of v1 and v2, respectively, near the wedge corner.
The only difference is that v1 = 0 on Γwedge ∩ {η = 0} and v2 = 0 on Γwedge ∩ {η < 0}.

Without loss of the generality, let us only consider the case for w := v1 = φη, since the
argument for v2 is similar. Then, in order to apply Lemma A.1, we must show

|bi| ≤
C

r
, (3.5)
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where r is the distance to the wedge corner. It suffices to show

|D2φ| ≤ C

r
,

which can be achieved by Lemma 3.1 and (2.23). More precisely, for any r ∈ (0, r0),

|D2φ| ≤
M(‖Dφ‖C0(Ω))

r
on ∂Br(C) ∩ Ω.

By a straightforward calculation, we have

0 =

(
φξξ +

2a12

a11
φξη +

a22

a11
φηη

)
η

= wξξ +
2a12

a11
wξη +

a22

a11
wηη +

(
2a12

a11

)
η

wξ +

(
a22

a11

)
η

wη,

where a11 = c2−(φξ−ξ)2, a12 = −(φξ−ξ)(φη−η), a22 = c2−(φη−η)2, and |(2a12
a11

, a22a11
)η| ≤

C|D2φ|. Therefore, w satisfies the equation of form

2∑
i,j=1

aijwij +
2∑
i=1

biwi = 0

with the estimate that |bi(ξ, η)| ≤ C
r . This completes the proof. �

Lemma 3.3. If φ is a regular solution in the sense of Definition 2.1, then Dφ = (0, 0) at
the wedge corner.

This lemma follows from Lemma 3.2, the boundary condition φν on Γwedge\C, and the
fact that the unit normal on Γwedge∩{η = 0} is different from the one on Γwedge∩{η < 0}.

By Lemmas 3.2–3.3, there exists f(r) that is a nondecreasing continuous function on
[0, 1] with f(r)→ 0 as r → 0 such that, for any r ∈ (0, r0),

‖Dφ‖C(Br(C)∩Ω) ≤ f(r). (3.6)

Then, by Lemma 3.1, we have the following lemma.

Lemma 3.4. If φ is a regular solution in the sense of Definition 2.1, then, for any r ∈
(0, r0),

|D2φ| ≤M(‖Dφ‖C(Br0 (C)∩Ω))
f(2r)

r
on ∂Br(C) ∩ Ω, (3.7)

where f(r) is a nondecreasing continuous function on [0, r0) with f(r)→ 0 as r → 0.

We now prove the following key estimate for the sign of a special directional velocity,
which is the weak maximum principle for the directional velocity.

Lemma 3.5. Let φ ∈ C3(Ω\(Γsonic ∪Γshock ∪C))∩C1(Ω) be a nonconstant solution of the
elliptic equation

a11φξξ + 2a12φξη + a22φηη = 0 in Ω, (3.8)
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where aij ∈ C1(Ω\(Γsonic ∪ Γshock ∪ C)), i, j = 1, 2. Assume that (3.8) is uniformly elliptic
near the wedge corner and strictly elliptic in Ω ∪ Γ0

wedge, and φν := Dφ · ν = 0 on Γwedge.

Let γ := (sin σ̃, cos σ̃) for σ̃ ∈ (σ, π). If

φγ := Dφ · γ ≥ 0 on Γshock ∪ Γsonic,

then
φγ > 0 in (Ω ∪ Γwedge)\C.

Proof. We divide the proof into three steps.

1. Let w := φγ . For any ε > 0, by assumption, we can see that w ≥ −ε in a neighborhood

of Γshock ∪ Γsonic, since φ ∈ C1(Ω\C). This ε can be arbitrarily small if the neighborhood
is chosen to be very small.

Note that aij ∈ C1(Ω\(Γsonic ∪ Γshock ∪ C)). We can differentiate (3.8) to obtain

0 =
(a11

a22
φξξ +

2a12

a22
φξη + φηη

)
γ

=
a11

a22
wξξ +

2a12

a22
wξη + wηη +

(a11

a22

)
γ
φξξ +

(2a12

a22

)
γ
φξη. (3.9)

Then, using again (3.8), we can write φξη and φξξ as a linear combination of wξ and wη.
More precisely, we have(

φξξ
φξη

)
= J−1

(
sin σ̃ − 2a12

a22
cos σ̃ − cos σ̃

a11
a22

cos σ̃ sin σ̃

)(
wξ
wη

)
, (3.10)

where J = sin2 σ̃ − a12
a22

sin(2σ̃) + a11
a22

cos2 σ̃ > 0 in Ω\(Γsonic ∪ Γshock ∪ C), thanks to the

ellipticity of (3.8).
Plugging (3.10) into (3.9), by a straightforward calculation, we find that w satisfies a

linear strictly elliptic equation with coefficients locally bounded in Ω and without zeroth
order term. Thus, w cannot achieve the local minimum anywhere in Ω by the maximum
principle.

2. Now we show that w cannot achieve the local minimum on Γwedge.

First, φν = φη = 0 on Γ+
wedge := Γwedge∩{η = 0}. Taking the tangential derivative along

the wedge boundary, we have

φξη = 0 on Γ+
wedge.

Plugging it into (3.10) yields

wβ+
= 0 on Γ+

wedge, (3.11)

where β+ := (a11 cos σ̃, a22 sin σ̃). Notice that σ̃ ∈ (σ, π) so that

β+ · ν = a22 sin σ̃ 6= 0.

Next, on Γ−wedge := Γwedge ∩ {η < 0}, the argument is similar. We rotate coordinates

by angle σ clockwise so that, in the new coordinates, the boundary part Γ−wedge lies on the

positive ξ-axis, i.e. ν = (0, 1) on Γ−wedge. Equation (3.8) in the rotated coordinates has the
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similar form with the new coefficients âij , satisfying the ellipticity condition with the same
constants. Vector γ in the rotated coordinates is γ := (sin(σ̃ − σ), cos(σ̃ − σ)). Now we
can repeat the previous calculation working the rotated coordinates and obtain

wβ− = 0 on Γ−wedge, (3.12)

where β− := (â11 cos(σ̃−σ), â22 sin(σ̃−σ)) in these coordinates. Noting that σ̃−σ ∈ (0, π),
we have

β− · ν = â22 sin(σ̃ − σ) 6= 0 on Γ−wedge.

Therefore, the boundary conditions (3.11)–(3.12) are oblique. Then, by Hopf’s lemma, we
conclude that w cannot achieve its minimum on Γwedge, except C.

3. By the C1(Ω)-regularity of φ, we see that Dφ = 0 at C. This means that w = 0 at C.
Thus, we finally obtain

w ≥ −ε in Ω. (3.13)

Let ε→ 0. Then we have
w ≥ 0 in Ω.

Therefore, by the strong maximum principle, if φ is not a constant, then w > 0 in (Ω ∪
Γwedge)\C. This completes the proof. �

Based on Lemma 3.5, we have the following corollary for the regular solutions defined
in Definition 2.1.

Corollary 3.6. Let γ be as in Definition 2.1 for regular solutions. Then

φγ > 0 in (Ω ∪ Γwedge)\C. (3.14)

Proof. Equation (3.8) is strictly elliptic in Ω ∪ Γ0
wedge due to (2.23). We also note that

Hopf’s lemma can be applied at every point of Γwedge including the corner point C because
the interior angle at C is π+ σ > π, i.e., the interior ball condition holds at C, and φ is C1

up to C by Lemma 3.3. Thus, by the strong maximum principle and Hopf’s lemma,

sup
Ω
φ = sup

∂Ω\Γwedge

φ = sup
Γsonic∪Γshock

φ.

On Γsonic, we have φ = φ1 by condition (ii) of Problem 2.3. Note that Ω ⊂ {ξ < ξ1}
as discussed at the beginning of §2.3, and thus Γsonic ⊂ {ξ < ξ1}. Also, φ1 < φ0 = 0 in
{ξ < ξ1}. Thus φ < 0 on Γsonic.

By the boundary condition (2.20), φ = 0 on Γshock.
This shows that maxΩ φ = 0, and the maximum value φ = 0 is attained at every point

of Γshock. From this,

Dφ = −φνν and φν ≤ 0 on Γshock. (3.15)

Also, recall that Γshock is C1 up to its endpoints by Remark 2.1, and φ ∈ C1(Ω) by
conditions of Problem 2.3 and Lemma 3.2. Then, at the point A of intersection of Γshock

with Γsonic, we have Dφ = Dφ1 by condition (ii) of Problem 2.3, which shows that the

interior (for Ω) unit normal to Γshock at A is ν(A) = D(φ0−φ1)
|D(φ0−φ1)| = (−1, 0), where we used



14 GUI-QIANG CHEN, MIKHAIL FELDMAN, JINGCHEN HU, AND WEI XIANG

rotate 
and reflect

Figure 3.1. The potential function φ cannot be monotonic in the γ direction

(2.12) in the last equality. Thus ν(A) ·γ = − sin σ̃ < 0, where we have used that σ̃ ∈ (0, π).
Since Γshock is not tangential to γ at any point on Γshock and φ ∈ C1(Ω\C), we have

ν · γ < 0 on Γshock.

Combining this with (3.15), we obtain

w := φγ ≥ 0 on Γshock.

On Γsonic, w = (u1, 0) · γ = u1 sin σ̃ > 0.
Finally, since φ ∈ C3(Ω\(Γsonic ∪ Γshock ∪ C)), aij ∈ C1(Ω\(Γsonic ∪ Γshock ∪ C)). Then

Lemma 3.5 applies. �

Based on these lemmas, we are now going to establish the main theorem, Theorem 2.1.

Proof of the main theorem — Theorem 2.1. We prove the main theorem by deriving
a direct contradiction to (3.14).

Since the Euler equations are invariant with respect to the Galilean transformation, we
rotate and reflect the coordinates such that γ in the new coordinates is the horizontal
direction pointing to the left, i.e., R∗γ = −∂ξ, where R is the corresponding rotation and
reflection operator. After this transformation, φ still satisfies a uniform elliptic equation of
second order in (Br(C)∩Ω)\C for any r ∈ (0, r0). For notational simplicity, we still use (ξ, η)
as the coordinates after this transformation. Furthermore, we use notation (u, v) = (φξ, φη).

As before, let w := φγ . Then, as shown in Fig. 3.1, w defined on the left-hand side of
Fig. 3.1 is transformed into −u = −φξ corresponding to that on the right-hand side of Fig.
3.1. Moreover, the result from (3.14) in the old coordinates that w ≥ δ on ∂Br(C) ∩ Ω is
transformed into

u ≤ −δ on ∂Br(C) ∩ Ω

in the new coordinates.
As shown in Fig. 3.1, the dashed line is defined to pass corner C and to be perpendicular

to γ. The angles between the dashed line and the two sides of Γwedge are σ1 and σ2, where
both σ1 and σ2 belong to (0, π− σ). In fact, σ̃ in Definition 2.1 equals to σ+ σ1 = π− σ2.
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Now we start to work in the new coordinates and derive a contradiction from an integral
estimate of u.

Define
h = (u+ δ)+.

Since u < −δ on ∂Br(C) ∩ Ω, we have

h = 0 on ∂Br(C) ∩ Ω.

Moreover, it is direct to see that

h ≤ δ + ‖Dφ‖C(Ω) in Br(C) ∩ Ω.

For any ε ∈ (0, r2), define domain E as

E := (Br(C)\Bε(C)) ∩ Ω

with vertices

Q1 = ∂Bε(C) ∩ Γwedge ∩ {ξ < 0}, Q2 = ∂Bε(C) ∩ Γwedge ∩ {ξ > 0},
P1 = ∂Br(C) ∩ Γwedge ∩ {ξ < 0}, P2 = ∂Br(C) ∩ Γwedge ∩ {ξ > 0}.

Then define I as follows:

I =

∫
{u>−δ}∩E

(a11

a22
u2
ξ +

2a12

a22
uξuη + u2

η

)
dξdη. (3.16)

By a straightforward calculation, we have

I =

∫
E

(a11

a22
uξhξ +

2a12

a22
uηhξ + uηhη

)
dξdη

=

∫
E

(
∇ ·
(a11

a22
uξh+

2a12

a22
uηh, uηh

)
−∇ ·

(a11

a22
uξ +

2a12

a22
uη, uη

)
h
)
dξdη

= −
∫
E
∇ ·
(
vηh,−vξh

)
dξdη

= −
∫
∂E
vτh ds

= −
∫
∂Bε(C)∩Ω

vτh ds−
∫
P1Q1

vτh ds−
∫
Q2P2

vτh ds,

where τ is the unit tangential vector of ∂E, with the direction illustrated in Fig. 3.1, and
the line integral is respect to the arc length s. Here, for the third identity, we have used
the equation that a11

a22
uξ + 2a12

a22
uη = −vη, while, for the fifth identity, we have used the fact

that h = 0 on ∂Br(C) ∩ Ω.
Using the slip boundary condition (2.22) on Γwedge, we have

v =
u

tanσ1
on P1Q1

and

v = − u

tanσ2
on P2Q2.
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Applying the relations above, we have

−
∫
P1Q1

vτh ds−
∫
Q2P2

vτh ds

= −
∫
P1Q1

hτh

tanσ1
ds+

∫
Q2P2

hτh

tanσ2
ds

= −
∫
P1Q1

(h2)τ
2 tanσ1

ds+

∫
Q2P2

(h2)τ
2 tanσ2

ds

= − h
2(Q1)

2 tanσ1
+

h2(P1)

2 tanσ1
− h2(Q2)

2 tanσ2
+

h2(P2)

2 tanσ2
.

By Lemma 3.2, φ is C1 at the wedge corner and then, using Lemma 3.3, Dφ = 0 at the
wedge corner. Thus, h(Q1) and h(Q2) converge to δ as ε converges to zero. Therefore, as
ε→ 0,

−
∫
P1Q1

vτh ds−
∫
Q2P2

vτh ds→ −
δ2

2

(
1

tanσ1
+

1

tanσ2

)
= − δ

2 sin(π − σ)

2 sinσ1 sinσ2
. (3.17)

By Lemma 3.4, we conclude that there exists a function f(ε) with the properties that
f(ε) is a nondecreasing continuous function of ε ∈ [0, r0), and f(ε)→ 0 as ε→ 0, such that

|D2φ| ≤ C f(2ε)

ε
on ∂Bε(C) ∩ Ω.

Then, as ε→ 0,∫
∂Bε(C)∩Ω

vτh ds ≤
(
δ + ‖Dφ‖C(Ω)

) ∫
∂Bε(C)∩Ω

|D2φ| ds ≤ 2πε C
f(2ε)

ε
→ 0. (3.18)

Estimates (3.17)–(3.18) together imply that, as ε→ 0,

I → − δ
2 sin(π − σ)

2 sinσ1 sinσ2
< 0.

On the other hand, I is nonnegative from (3.16) and the ellipticity. This is a contradic-
tion, so that the regular solution defined in Definition 2.1 does not exist indeed. �

Appendix A. Continuity estimate at the corner

In this appendix, we show that a solution of some type of linear elliptic equations, which
is only assumed to be L∞ at the wedge corner C, is actually continuous.

Lemma A.1. Let v ∈ L∞(B1 ∩ Λ) ∩ C2(B1 ∩ Λ \ C) for the wedge corner C satisfy

2∑
i,j=1

aijvij +

2∑
i=1

bivi = 0 in B1 ∩ Λ,

v = 0 on ∂Λ ∩B1 ∩ {ξ > 0},
vβ = 0 on ∂Λ ∩B1 ∩ {ξ < 0},
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where
∑2

i,j=1 aijyiyj ≥ λ|y|2 for each y = (y1, y2) ∈ R2, |aij | ≤ λ−1, |bi| ≤ CE
r , |β·ν| > 1

CE
,

and |β| = 1 for some positive constants λ and CE, and r =
√
ξ2 + η2 denotes the distance

to the wedge corner. Then v is continuous in B := B1 ∩ Λ. Moreover,

|v(ξ, η)| ≤ Crα‖v‖L∞(B) in B,
where C > 0 and α ∈ (0, 1) depend only on λ and CE.

Remark A.1. The proof of this lemma follows the methods in Lieberman [20] and the
references therein, more specifically, their versions in [9, 13].

Proof. We use the comparison function considered in step 3 of the proof of Theorem 4.3.16
in [9].

We use the polar coordinates (r, θ) centered at the origin and choose the orientation of
θ and the direction of ray θ = 0 so that

B = {|θ| ≤ θ̂} ∩B1,

∂Λ ∩B1 ∩ {ξ > 0} = ∂B ∩ {θ = −θ̂},

∂Λ ∩B1 ∩ {ξ < 0} = ∂B ∩ {θ = θ̂},

where θ̂ := 1
2(2π − θw) ∈ (0, π). We show the existence of w ∈ C∞(Ω \ {0}) such that

2∑
i,j=1

aijDijw +

2∑
i=1

biDiw < 0 in B, (A.1)

wβ < 0 on ∂B ∩ {θ = θ̂}. (A.2)

Then we consider the function

w(r, θ) = rαh̄(θ) in B with h̄(θ) = 1− µe−Lθ, (A.3)

where the constants α ∈ (−1, 1), µ ≥ 0, and L ≥ 1 will be fixed below.
For each L ≥ 1, we choose µ = 1

2e
−πL so that h̄(θ) ≥ 1

2 for all θ ∈ [−π, π]. We use such
a constant µ = µ(L) from now on.

Now we show that w is a supersolution of the equation after a certain choice of L, α.
Fix a point (ξ, η) ∈ B, and rotate the Cartesian coordinates in R2 to become the radial and
tangential coordinates at (ξ, η). We denote by arr, arθ, etc., the coefficients of the equation
in these rotated coordinates. Below, C is a universal constant that may be different at
each occurrence, depending only on λ and CE . We use that α ∈ (−1, 1) and 1

2 ≤ h(θ) ≤ 1
to compute at (ξ, η)

2∑
i,j=1

aijDijw = arrwrr + 2arθ(r
−1wrθ − r−2wθ) + aθθ(r

−2wθθ + r−1wr)

=
(
µLe−Lθ

(
− aθθL+ 2arθ(α− 1)

)
+ α

(
(α− 1)arr + aθθ

)
h̄(θ)

)
rα−2

≤
(
µLe−Lθ

(
− L

C
+ C

)
+ C|α|

)
rα−2.
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Then, for any L ≥ 10C2, using that µ = 1
2e
−πL > 0, we can choose α̂ > 0 small so that,

for any |α| ≤ α̂,

2∑
i,j=1

aijDijw ≤ −µ
L2

2C
e−Lθrα−2.

Then we have
2∑

i,j=1

aijDijw +
2∑
i=1

biDiw ≤ −µ
L2

2C
e−Lθrα−2 +

C

r
|Dw|

≤
(
− µ L

2

2C
e−Lθ + C(α+ µLe−Lθ)

)
rα−2

=
(
µLe−Lθ(− L

2C
+ C) + Cα

)
rα−2.

We first choose L large so that − L
2C + C ≤ − L

4C , i.e., L ≥ 4C2. Then, for such L, using

that µ = 1
2e
−πL > 0 and θ ∈ [−π, π], we can choose α(L) small so that the last expression

is negative, i.e., that (A.1) holds.

To show (A.2), let ν be the interior unit normal on ∂B ∩{θ = θ̂} with respect to B, and
let τ be the unit tangent vector pointing away from the corner. Then

wβ = −β · ν
r

wθ + β · τ wr

≤
(
− (β · ν)µLe−Lθ + C|α|

)
rα−1

≤
(
− µL

CE
e−Lθ + C|α|

)
rα−1.

Therefore, for any L ≥ 1, using that µ = 1
2e
−πL > 0, we can choose α̂ > 0 small such

that, for any |α| ≤ α̂, the last expression is negative for any θ = θ̂ ∈ [0, π]. Then (A.2)
holds.

Now we fix L sufficiently large to satisfy all the conditions stated above. This also fixes
(µ, α̂).

Let w± = r±α̂h̄(θ), where h̄(θ) is from (A.3). Then, using that h̄(θ) ≥ 1
2 ,

w+ ≥ 1

2
on ∂B ∩ ∂B1,

w− ≥ 1

2
r−α̂ on B ∩ ∂Br.

(A.4)

For ε ∈ (0, 1), let

Vε = 2‖v‖L∞(B)w
+ + εw−.

Then Vε satisfies (A.1)–(A.2). Also, by (A.4) and since w± > 0 in B, for each ε ∈ (0, 1),
there exists Rε ∈ (0, 1) so that, for each R ∈ (0, Rε],

Vε ≥ ‖v‖L∞(B) on (∂B ∩ ∂B1) ∪ (B ∩ ∂BR).
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Then, by the comparison principle, for each R ∈ (0, Rε],

v ≤ Vε in B \BR.

By a similar argument,

v ≥ −Vε in B \BR.

Combining these two estimates together, sending R → 0+ for each ε, and then sending
ε→ 0+, we obtain

|v| ≤ w+ in B.
Then, using that 1

2 ≤ h̄(θ) ≤ 1, we have

|v(r, θ)| ≤ 2‖v‖L∞(B)r
α̂ in B.

This completes the proof. �
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