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Abstract
We study Zariski cancellation problem for noncommutative algebras that are not necessarily
domains.
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Introduction

This paper can be considered as a sequel to [5], where Bell–Zhang studied Zariski Can-
cellation Problem for noncommutative domains (in particular, for several families of
Artin–Schelter regular algebras [2]). Many mathematicians have been making signifi-
cant contributions to this research direction and related topics, see Brown–Yakimov [8],
Ceken–Palmieri–Wang–Zhang [9,10], Chan–Young–Zhang [11,12], Gaddis [17], Gaddis–
Kirkman–Moore [18], Gaddis–Won–Yee [19], Levitt–Yakimov [25], Lü–Mao–Zhang [27],
Nguyen–Trampel–Yakimov [32], Tang [37,38] and others.

Throughout let k be a base commutative domain and everything is over k. If k is a field,
and then it is denoted by k instead. For example we assume that k is a field k in Theorems
0.4 and 0.6. Recall that an algebra A is called cancellative if for any algebra B, an algebra
isomorphism A[t] ∼= B[s] implies that A ∼= B. Here t and s are independent central variables.
In the commutative case, the famous Zariski Cancellation Problem (abbreviated as ZCP) asks
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if the commutative polynomial ring k[x1, . . . , xn] is cancellative for all n ≥ 1. It is well-
known thatk[x1] is cancellative by a result of Abhyankar–Eakin–Heinzer [1], whilek[x1, x2]
is cancellative by Fujita [16] and Miyanishi–Sugie [30] in characteristic zero and by Russell
[34] in positive characteristic. The original ZCP (for n ≥ 3) was open for many years. In
2014 Gupta [20,21] settled the ZCP negatively in positive characteristic for n ≥ 3. The ZCP
in characteristic zero remains open for n ≥ 3.

The ZCP is related to the Automorphism Problem, Characterization Problem, Lineariza-
tion Problem, Embedding Problem, and Jacobian Conjecture, see a discussion in [5,23].
In the noncommutative setting, the recent research suggests that it is closely related to the
Automorphism Problem of noncommutative algebras, but it is unclear how to formulate the
noncommutative version of the Characterization Problem, Linearization Problem, Embed-
ding Problem and so on.

Some general methods were introduced in [5,27] to attack the ZCP for noncommutative
domains. One effective method is to use the discriminant to control the cancellation property
[5]. To extend the results in [5], it is natural to ask if the idea of the discriminant can be
applied to non-domain noncommutative algebras.

The first aim of this paper is to introduce several new concepts and new methods to
handle the ZCP for noncommutative algebras that are not domain. We study retractable and
detectable properties of algebras and relate these properties to the discriminant computation.
Then we generalize some results in [5] to the non-domain case. Results concerning the
retractable and the detectable properties (and the rigidity introduced in [5]) can be summarized
in the following diagram

LND-rigid −−−−→ LNDZ -rigid
⏐
⏐
�

⏐
⏐
�

retractable −−−−→ Z -retractable
⏐
⏐
�

detectable
⏐
⏐
�

cancellative.
The second aim of this paper is to further understand which classes of noncommutative

algebras are cancellative. A proposition in [5, Proposition 1.3] states that, if the center of an
algebra A is the base field k, then A is cancellative. This suggests

Question 0.1 If the center of A is finite dimensional over k, is A cancellative?

We partially answer the above question.

Theorem 0.2 Suppose A is strongly Hopfian (Definition 3.4) and the center of A is artinian.
Then A is cancellative.

Question 0.1 is still open for non-Hopfian algebras. Note that left (or right) noetherian
algebras and locally finite N-graded algebras are strongly Hopfian (Lemma 3.5). So Theo-
rem 0.2 covers a large class of algebras. An immediate consequence of this theorem is the
following corollary.

Corollary 0.3 If A is left (or right) artinian, then A is cancellative. For example, every finite
dimensional algebra over a base field k is cancellative.

123
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For non-artinian (and non-noetherian) algebras we have the following.

Theorem 0.4 For every finite quiver Q, the path algebra kQ is cancellative.

We refer to [24] for the definition and basic properties of the Gelfand–Kirillov dimension
(or GKdimension for short). In this paper an affine algebra means that it is finitely generated
over the base ring as an algebra. It is proved in [5, Theorem 0.5] that, if A is an affine
domain of GKdimension two over an algebraically closed field of characteristic zero and if
A is not commutative, then A is cancellative. In contrast, noncommutative affine prime (non-
domain) algebras of GKdimension two need not be cancellative [Example 1.3(5)]. Further
there are affine commutative domains of GKdimension two that are not cancellative, see
[14] or Example 1.3(2). By a result of Abhyankar–Eakin–Heinzer [1, Theorem 3.3], every
affine commutative domain of GKdimension one is cancellative. These results suggest the
following question.

Question 0.5 Is every affine prime k-algebra of GKdimension one cancellative?

We answer this question in the following case.

Theorem 0.6 Let k be algebraically closed. Then every affine prime k-algebra of GKdimen-
sion one is cancellative.

Our third aim is to introduce some basic questions. For example, Theorem 0.6 leads
naturally to the following two questions.

Question 0.7 Letk be algebraically closed of characteristic zero and let A be an affine prime
k-algebra of GKdimension one. What can we say about the (outer) automorphism group of
A?

Question 0.8 Let A be an algebra of global dimension one (respectively, Krull dimension
one). Is then A is cancellative?

A few other questions are listed in Sect. 5.
The paper is organized as follows. Section 1 contains definitions, known examples and

preliminaries. In Sects. 2 and 3, we introduce retractable and detectable properties. In Sect. 4,
we prove the Theorems 0.2, 0.4 and 0.6. In Sect. 5, some comments and questions are given.

1 Definitions and preliminaries

We recall some definitions, known examples and basic properties. First we copy the definition
in [5, Definition 1.1].

Definition 1.1 Let A be an algebra.

(1) We call A cancellative if any algebra isomorphism φ : A[t] ∼= B[s] for an algebra B
implies that A ∼= B.

(2) We call A strongly cancellative if, for each n ≥ 1, any algebra isomorphism

A[t1, . . . , tn] ∼= B[s1, . . . , sn]
for an algebra B implies that A ∼= B.
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In [1, p. 311], the strongly cancellative property is called the invariant property. In this
paper we will study various versions of the cancellative property.

Definition 1.2 Let A be an algebra and let LND(A) be the collection of locally nilpotent
k-derivations of A.

(1) [28] The Makar–Limanov invariant of A is defined to be

ML(A) =
⋂

δ∈LND(A)

ker(δ).

(2) [5] A is called LND-rigid if ML(A) = A, or equivalently, LND(A) = {0}.
(3) [5] A is called strongly LND-rigid if ML(A[t1, . . . , tn]) = A for all n ≥ 1.
(4) TheMakar–Limanov center of A is defined to be

MLZ (A) = ML(A) ∩ Z(A)

where Z(A) denotes the center of A.
(5) We say that A is LNDZ -rigid if MLZ (A[t]) = Z(A), and strongly LNDZ -rigid if

MLZ (A[t1, . . . , tn]) = Z(A) for all n ≥ 1.

Note that we use A[t] (instead of A) in the definition of LNDZ -rigidity [Definition 1.2(5)]
which is slightly different from the LND-rigidity in Definition 1.2(2). Next we give some
known examples. Recall that if an affine domain (containing Q) of finite GKdimension is
LND-rigid, then it is cancellative [5, Theorem 0.4].

Example 1.3 Let k be an algebraically closed field of characteristic zero.

(1) Let A be an affine commutative domain of GKdimension one. If A is not isomorphic to
k[x], then A is LND-rigid [13, Lemma 2.3]. In fact, it follows from [13, Main Theorem,
p.6] that A is strongly LND-rigid. An earlier result of [1, Theorem 3.3 and Corollary 3.4]
states that every affine commutative domain of GKdimension one is cancellative.

(2) Not every affine commutative domain ofGKdimension two is cancellative. The following
example is due to Danielewski [14]. Let n ≥ 1 and let Bn be the coordinate ring of the
surface xn y = z2 − 1 over k := C. Then Bi � Bj if i �= j , but Bi [t] ∼= Bj [s] for all
i, j ≥ 1, see [15,39] for more details.

(3) The famousZariski cancellation problem (ZCP) asks ifk[x1, . . . , xn] is cancellative. This
is still open for any n ≥ 3 when char k = 0. Also see Example 1.6 when char k > 0.

(4) Here is an easy way of producing noncommutative algebras that are not cancellative.
Starting with algebras Bi in part (2). Let A be a noncommutative algebra. If we can
verify that B1 ⊗ A � B2 ⊗ A (this is the case when the center of A is C), then B1 ⊗ A is
not cancellative. For example, if A is the nth Weyl algebra, B1 ⊗ A is not cancellative.

(5) As a consequence of part (4), by taking A to be the matrix algebra Mn(C) for some
n > 1, Mn(B1) is a noncommutative affine prime C-algebra of GKdimension two that
is not cancellative. See Theorem 0.6 for a related result.

One focus of this paper is to show that some classes of noncommutative algebras are
cancellative. The following two lemmas contain elementary facts.

Lemma 1.4 Let n be a positive integer. Let A and B be two algebras such that A[t1, . . . , tn] ∼=
B[s1, . . . , sn]. Then the following hold.

(1) A is commutative if and only if B is.

123



Zariski cancellation problem for non-domain noncommutative algebras 1273

(2) A is left (or right) noetherian if and only if B is.
(3) Assume that A is left noetherian. Then,

KdimA = KdimB.

Here Kdim denotes the left Krull dimension.
(4) A is left (or right) artinian if and only if B is.
(5) GKdim A = GKdim B.
(6) A is a field if and only if B is.
(7) A is a division ring if and only if B is.
(8) A is a finite direct sum of fields if and only if B is.
(9) A is a finite direct sum of division rings if and only if B is.

(10) A is local left (or right) artinian if and only if B is.

For any algebra A, let C I (A) denote the set of central idempotents of A. There are two
trivial central idempotents 0, 1 ∈ C I (A). We say A is indecomposable if A is not isomorphic
to A1 ⊕ A2. It is clear that A is indecomposable if and only if C I (A) = {0, 1}. The next
lemma is clear.

Lemma 1.5 Let A be an algebra and let Z(A) be the center of A.

(1) C I (A) = C I (Z(A)).
(2) The following are equivalent.

(a) C I (A) is finite.
(b) |C I (A)| = 2n for some integer n.
(c) A = A1 ⊕ A2 ⊕ · · · ⊕ An where each Ai is an indecomposable algebra.

(3) If A is N-graded, then C I (A) = C I (A0).
(4) C I (A[t1, . . . , tn]) = C I (A).

To use the method of reduction modulo p, we need consider the case when the base field
has positive characteristic. We start with the following example.

Example 1.6 [20,21] Let k be a base field of positive characteristic. Then k[x1, . . . , xn] is not
cancellative for every n ≥ 3. This is a counterexample to the ZCP in positive characteristic.

Similar to Example 1.3(4), one can construct noncommutative algebras over a field of
positive characteristic that are not cancellative.

When char k > 0, the derivations in Definition 1.2 need to be replaced by higher deriva-
tions, which we now recall.

Definition 1.7 Let A be an algebra.

(1) [22] A higher derivation (or Hasse–Schmidt derivation) on A is a sequence of k-linear
endomorphisms ∂ := {∂i }∞i=0 such that:

∂0 = idA, and ∂n(ab) =
n

∑

i=0

∂i (a)∂n−i (b)

for all a, b ∈ A and all n ≥ 0. The collection of higher derivations is denoted byDerH (A).
(2) A higher derivation is called locally nilpotent if

(a) given every a ∈ A there exists n ≥ 1 such that ∂i (a) = 0 for all i ≥ n,
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(b) the map

G∂,t : A[t] → A[t]
defined by

a �→
∞
∑

i=0

∂i (a)t i , t �→ t, for all a ∈ A,

is an algebra automorphism of A[t].
(3) The collection of locally nilpotent higher derivations is denoted by LNDH (A).
(4) For every ∂ ∈ DerH (A), the kernel of ∂ is defined to be

ker ∂ =
⋂

i≥1

ker ∂i .

Definition 1.8 Let A be an algebra.

(1) [5,28] TheMakar–LimanovH invariant of A is defined to be

MLH (A) =
⋂

δ∈LNDH (A)

ker(δ). (E1.8.1)

(2) [5] We say that A is LNDH -rigid if MLH (A) = A, or LNDH (A) = {0}.
(3) [5] A is called strongly LNDH -rigid if MLH (A[t1, . . . , tn]) = A, for all n ≥ 0.
(4) TheMakar–LimanovH center of A is defined to be

MLH
Z (A) = MLH (A) ∩ Z(A).

(5) A is called strongly LNDH
Z -rigid if MLH

Z (A[t1, . . . , tn]) = Z(A), for all n ≥ 0.

In [5, Theorem 3.3], the strong LND-rigidity (LNDH -rigidity) is the key to proving that
several classes of algebras are cancellative. However, if A is not a domain (which is the case
we are considering in the present paper), A is rarely LND-rigid (respectively, LNDH -rigid).

Lemma 1.9 Let A be an algebra.

(1) If A has a non-central nilpotent element, then A is not LND-rigid.
(2) If A is a prime algebra that is not a domain, then every nilpotent element is not central.

As a consequence, A is not LND-rigid.
(3) Let A be prime. If A is LND-rigid, then A is a domain.

Proof (1) Let x be a non-central nilpotent element. Then adx : a �→ xa − ax is a nonzero
LND. So A is not LND-rigid.

(2) Since A is prime, Z(A) is a domain. So every nilpotent element is not in Z(A).
Since A is not a domain, there are 0 �= x, y ∈ A such that xy = 0. Since A is prime,
yAx �= 0. Let f = yax �= 0 for some a ∈ A. Then f 2 = 0. By part (1) and the assertion
we just proved, A is not LND-rigid.

(3) This follows from part (2).
�


By Lemma 1.9, all prime algebras that are not domains are not LND-rigid. However, in
the next section, we will show that many non-domain prime algebras are LNDZ -rigid.
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2 LNDZ -rigidity controls retractability

In this and the next sections we study two properties that are closely related to the cancellative
property. Retractable property, see the next definition, was studied in a paper of Abhyankar–
Eakin–Heinzer [1]. In [1, p. 311] it was called strongly invariant property. But we changed the
term invariant to strongly cancellative, see Definition 1.1(2), and the term strongly invariant
to strongly retractable, see the next.

Definition 2.1 Let A be an algebra.

(1) A is called retractable if, for any algebra B, any algebra isomorphism φ : A[t] ∼= B[s]
implies that φ(A) = B.

(2) [1, p. 311] A is called strongly retractable if, for any algebra B and integer n ≥ 1, any
algebra isomorphism φ : A[t1, . . . , tn] ∼= B[s1, . . . , sn] implies that φ(A) = B.

Example 2.2 Let A be an affine commutative domain of GKdimension one over a field k.
By a result of [1, Theorem 3.3 and Corollary 3.4], if A is not k′[x] for some field extension
k′ ⊇ k, then it is strongly retractable; if A = k′[x] for some field extension k′ ⊇ k, then it
is strongly cancellative (but not retractable).

If A is retractable, then every algebra automorphism φ : A[t] → A[t] restricts to an
automorphism φ |A: A → A. This implies that there is a retraction of the natural embedding

Aut(A) → Aut(A[t]).
Asa consequence,Aut(A[t]) is a semidirect product ofAut(A)�N for somenormal subgroup
N ⊆ Aut(A[t]).

Every strongly retractable algebra is retractable, and hence obviously, cancellative. For
every fixed integer n ≥ 1, A[t1, . . . , tn] may be abbreviated as A[t] and B[s1, . . . , sn] as
B[s].
Lemma 2.3 If A is a finite direct sum of division rings, then A is strongly retractable.

Proof Suppose that φ : A[t] → B[s] is an algebra isomorphism. Similar to Lemma 1.4(9),
B is a direct sum of division algebras. Let A× denote the set of invertible elements in A. In
this case, one can show that (A[t])× = A× (the same is true for B). Let A = D1 ⊕ · · · ⊕ Dr

for some r ≥ 1, where each Di is a division ring. For every a ∈ A, write

a = (d1, . . . , dr ) = (d1, 1, . . . , 1)(1, 0, . . . , 0) + · · · + (1, . . . , 1, dr )(0, . . . , 0, 1),

with di ∈ Di , 1 ≤ i ≤ r . Observe that (1, . . . 1, di , 1, . . . , 1) is either invertible or idempo-
tent, and (0, . . . , 0, 1, 0, . . . , 0) is idempotent, hence A is generated by (A[t])× andC I (A[t]).
The same properties hold for B. Since φ maps (A[t])× to (B[s])× andC I (A[t]) toC I (B[s]),
we have φ(A) ⊆ B. By symmetry, φ(A) = B. �


By [5] theMakar–Limanov invariants and LND-rigidity control cancellation, actually they
control retractable property. The following result is basically [5, Theorem 3.3].

Lemma 2.4 Suppose A is an affine domain of finite GK-dimension.

(1) IfML(A[t]) = A orMLH (A[t]) = A, then A is retractable.
(2) If A is strongly LND-rigid or strong LNDH -rigid, then A is strongly retractable.

Proof See the proof of [5, Theorem 3.3]. �
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The above lemma provides a lot of examples that are strongly retractable. We refer to
papers [5,9,10,12,25] for many examples that are strongly LND-rigid or strongly LNDH -
rigid.

For the rest of this section we want to deal with non-domain case.

Definition 2.5 Let A be an algebra.

(1) We call A Z-retractable if, for any algebra B, any algebra isomorphism φ : A[t] ∼= B[s]
implies that φ(Z(A)) = Z(B).

(2) We call A strongly Z-retractable if, for any algebra B and integer n ≥ 1, any algebra
isomorphism φ : A[t1, . . . , tn] ∼= B[s1, . . . , sn] implies that φ(Z(A)) = Z(B).

It is clear that (strongly) retractable algebras are (strongly) Z -retractable. Copying the
proof of [5, Theorem 3.3], we also have the following, which is similar to Lemma 2.4.

Lemma 2.6 Let A be an algebra such that the center Z(A) is an affine domain.

(1) Suppose MLZ (A[t]) = Z(A) or MLH
Z (A[t]) = Z(A). Then A is Z-retractable.

(2) Suppose that A is strongly LNDZ -rigid (or strongly LNDH
Z -rigid). Then A is strongly

Z-retractable.

By [5, Section 5], effectiveness of the discriminant controls LNDH -rigidity. Since we will
not compute explicitly discriminants in this paper, to save space, we refer to [5,9,10] for the
definition of the discriminant. But we will use the idea of “effectiveness” in later sections,
we now recall its definition next. An algebra is called PI if it satisfies a polynomial identity.

Definition 2.7 [5, Definition 5.1] Let A be a domain and suppose that Y = ⊕n
i=1 kxi gen-

erates A as an algebra. An element f ∈ A is called effective if the following conditions
hold.

(1) There is an N-filtration {Fi A}≥i on A such that the associated graded ring gr A is a
domain (one possible filtration is the trivial filtration F0A = A). With this filtration we
define the degree of elements in A, denoted by degA.

(2) For every testing N-filtered PI algebra T with gr T being an N-graded domain and for
every testing subset {y1, . . . , yn} ⊂ T satisfying

(a) it is linearly independent in the quotient k-module T /k1T , and
(b) deg yi ≥ deg xi for all i and deg yi0 > deg xi0 for some i0,

there is a presentation of f of the form f (x1, . . . , xn) in the free algebra k〈x1, . . . , xn〉,
such that either f (y1, . . . , yn) is zero or degT f (y1, . . . , yn) > degA f .

The following is a special case of [5, Lemma 5.3(6)].

Example 2.8 [5, Lemma 5.3(6)] Let A = k[x]. Every non-unit element f ∈ A is effective in
A. To prove thiswewrite f = ∑n

i=0 ai x
i whereai ∈ k andan �= 0.Without loss of generality

we might assume that an = 1. Consider A as a filtered algebra generated by Y = kx by
defining deg x = 1. Clearly gr A ∼= A is a domain. Let T be any testing filtered algebra and
let {y} be a testing subset of T . If deg y > 1 = deg x , then deg f (y) = n deg y > n = deg f .
Therefore f is effective.

More complicated examples of effective elements are given in [5, Section 5]. There is
another concept, called “dominating”, see [5, Definition 4.5] or [9, Definition 2.1(2)], that is
similar to effective. Both of these properties control LNDH

Z -rigidity. The following result is
similar to [5, Theorem 5.2].
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Theorem 2.9 Let A be a PI prime algebra such that the discriminant (or w-discriminant for
some w) over its center Z is effective (respectively, dominating) in Z. Suppose Z is an affine
domain, then A is strongly LNDH

Z -rigid.

Proof Since the proofs for the “effective” case and the “dominating” case are very similar,
we only prove the “effective” case. We also copy the proof of [5, Theorem 5.2].

Let f be the discriminant of A over Z , d(A/CA) (orw-discriminant dw(A/CA)). Suppose
Z is generated by {x1, . . . , xn} as in Definition 2.7 (as f is effective).

Let R = k[t1, . . . , td ][t]. By a prime algebra version of [5, Lemma 4.6(2)],

dw(A ⊗ R/CA ⊗ R) = dw(A/CA) = f ,

which is effective by hypothesis. Let ∂ ∈ LNDH (A[t1, . . . , td ]). By definition, G := G∂,t ∈
Autk[t](A[t1, . . . , td ][t]). For each j ,

G(x j ) = x j +
∑

i≥1

t i∂i (x j ).

Then G is also an automorphism of Z [t1, . . . , td ][t]. We take the test algebra T to be
Z [t1, . . . , td ][t] where the filtration on T is induced by the filtration on Z together with
deg ts = 1 for all s = 1, . . . , d and deg t = α where α is larger than deg ∂i (x j ) for all
j = 1, . . . , n and all i ≥ 1. Now set y j = G(x j ) ∈ T . By the choice of α, we have that

(a) deg y j ≥ deg x j , and that
(b) deg y j = deg x j if and only if y j = x j .

If G(x j ) �= x j for some j , by effectiveness as in Definition 2.7, deg f (y1, . . . , yn) > deg f .
So f (y1, . . . , yn) �=A× f . But f (y1, . . . , yn) = G( f ) =Z× f by [5, Lemma 4.4(4)],
a contradiction. Therefore G(x j ) = x j for all j . As a consequence, ∂i (x j ) = 0 for
all i ≥ 1, or equivalently, x j ∈ ker ∂ . Since Z is generated by x j ’s, Z ⊂ ker ∂ . Thus
Z ⊆ MLH

Z (A[t1, . . . , td ]). It is clear that Z ⊇ MLH
Z (A[t1, . . . , td ]), see [5, Example 2.4].

Therefore Z = MLH
Z (A[t1, . . . , td ]) as required. �


Corollary 2.10 Let A be a prime PI algebra over a field k such that the center of A is k[x].
If the discriminant of A over Z(A) is a nonunit in Z(A), then A is LNDH

Z -rigid.

Proof This follows from Example 2.8 and Theorem 2.9. �


3 Detectability and cancellation

If B is a subring of C and f1, . . . , fm are elements of C , then the subring generated by B
and the set { f1, . . . , fm} is denoted by B{ f1, . . . , fm}.
Definition 3.1 Let A be an algebra.

(1) We call A detectable if, for any algebra B, an algebra isomorphism φ : A[t] ∼= B[s]
implies that B[s] = B{φ(t)}, or equivalently, s ∈ B{φ(t)}.

(2) We call A strongly detectable if, for any algebra B and any integer n ≥ 1, an algebra
isomorphism

φ : A[t1, . . . , tn] ∼= B[s1, . . . , sn]
implies that B[s1, . . . , sn] = B{φ(t1), . . . , φ(tn)}, or equivalently, for each i = 1, . . . , n,
si ∈ B{φ(t1), . . . , φ(tn)}.
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In the above definition, we do not assume that φ(t) = s. Every strongly detectable algebra
is detectable. The polynomial ring k[x] is cancellative, but not detectable.
Lemma 3.2 If A is Z-retractable (respectively, strongly Z-retractable), then it is detectable
(respectively, strongly detectable).

Proof We only show the “strongly” version. The proof of the non-“strongly” version is
similar.

Suppose that A is strongly Z -retractable. Let B be any algebra such that φ : A[t] → B[s]
is an isomorphism. Since A is strongly Z -retractable, φ restricts to an isomorphism φ |Z(A):
Z(A) → Z(B). Write fi := φ(ti ) for i = 1, . . . , n. Then

Z(B){ f1, . . . , fn} = φ(Z(A)){φ(t1), . . . , φ(tn)}
= φ(Z(A){t1, . . . , tn}) = φ(Z(A)[t])
= φ(Z(A[t])) = Z(B[s])
= Z(B)[s].

Then, for every i , si ∈ Z(B)[s] = Z(B){ f1, . . . , fn} ⊆ B{ f1, . . . , fn} as desired. �

Retractability is stronger than detectability. The next example shows that these two prop-

erties are not equivalent.

Example 3.3 Let A = k[x, y]/(x2 = y2 = xy = 0). By Theorem 4.1 in the next section,
A is strongly detectable. But A is not retractable as we show next. Define an isomorphism
φ : A[t] → A[s] where φ(x) = x, φ(t) = s and φ(y) = y + sx . Clearly φ(A) �= A, so A
is not retractable.

Next we show that detectability implies cancellation under some mild conditions. We first
recall a definition.

Definition 3.4 Let A be a k-algebra.

(1) We say A isHopfian if every k-algebra epimorphism from A to itself is an automorphism.
(2) We say A is strongly Hopfian if A[t1, . . . , tn] is Hopfian for every n ≥ 0.

In this definition, Hopfian property is dependent on the base ring k. Hopfian algebras have
been studied by several authors [6,26,29,33]. Every left noetherian algebra is strongly Hop-
fian, see the next lemma. Some non-noetherian examples can be constructed using Lemma
3.5(2,3). An N-graded k-algebra A = ⊕∞

i=0 Ai is called locally finite if each homogeneous
component Ai is a finitely generated k-module.

Lemma 3.5 The following algebras are strongly Hopfian.

(1) Left or right noetherian algebras.
(2) Finitely generated locally finite N-graded k-algebras that are k-flat.
(3) Prime affine k-algebras satisfying a polynomial identity.

Proof (1) Let A be left noetherian, then A is Hopfian. Since A[t1, . . . , tn] is also left noethe-
rian, A is strongly Hopfian.

(2) If A is an affine locally finite N-graded algebra, so is A[t]. Thus it suffices to show that
A is Hopfian. Replacing A by its localization A ⊗k k where k is the fraction field of k,
we might assume that k is a field k. Note that the k-flatness insures that A ⊗k k being
k-Hopfian implies that A is k-Hopfian.
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Next we assume that k = k which is a field. In this case the assertion is a special case of
[7, Theorem 7, p.77], which is a consequence of a result of Mal’tsev (or Malcev) [29]. We
include a detailed proof here for the convenience of the reader.

We prove that A is k-Hopfian by contradiction. Suppose that φ : A → A is a surjective
endomorphism of A that has a nonzero kernel. Fix 0 �= r ∈ ker φ. Let r ∈ ⊕s

i=0A, for some
integer s ≥ 0, and write r = ∑s

i=0 ri where some ri ∈ Ai are nonzero. Choose a k-linear
basis b := {b j }dj=1 of ⊕s

i=0A of homogeneous elements so that b contains all nonzero ri s.
We use R to denote subrings of k of the special form Z{ f1, . . . , fw} when char k = 0 or

of the special form Fp{ f1, . . . , fw} when char k = p > 0. Since A is finitely generated, A
is generated by a finite set of homogeneous generators, say g := {gt }dt=1. We may assume
that g is k-linearly independent and contains b. Then there is a subring R ⊆ k of the form
specified as above such that φ restricts a surjective R-algebra endomorphism of AR , where
AR denotes the R-subalgebra R{g1, . . . , gd} of A generated by g. Adding only finitely many
new fi to R if necessary we can assume that every product of any two generators gt1 , gt2 ∈ g
has coefficients in R in terms of the basis b if such a product has degree no more than s. By
the choice of b and g, it is clear that r ∈ AR and that ⊕s

i=0(AR)i is a finitely generated free
R-module with R-basis b. By the construction of R, every simple factor ring F of R is a
finite field. The induced map φR ⊗ F : AR ⊗R F → AR ⊗R F is still a surjective F-algebra
endomorphism. Since F is finite and AR ⊗R F is locally finite over F , AR ⊗R F is residually
finite in the sense that the ideals of finite index in ring have a trivial intersection. By [26,
Theorem 3], AR ⊗R F is Hopfian (and then F-Hopfian). This yields a contradiction because
φR ⊗R F is a surjective endomorphism such that φR ⊗R F(r ⊗R 1) = 0, but r ⊗R 1 �= 0.
Therefore the assertion follows.

(3) This is basically [6, Corollary 2.3].

�


We need Hopfian algebras in the next lemma.

Lemma 3.6 Suppose A is strongly Hopfian.

(1) If A is detectable, then A is cancellative.
(2) If A is strongly detectable, then A is strongly cancellative.

Proof We only prove (2).
Let φ : A[t] → B[s] be an isomorphism. Let fi = φ(ti ) for i = 1, . . . , n. Then fi are

central elements in B[s]. Thus B{ f1, . . . , fn} is a homomorphic image of B[s1, . . . , sn] by
sending si �→ fi . Suppose A is strongly detectable. Then B{ f1, . . . , fn} = B[s]. Then we
have algebra homomorphisms

B[s] π−→ B{ f1, . . . , fn} =−→ B[s] ∼= A[t]. (E3.6.1)

Since A is strongly Hopfian, A[t] and then B[s] are Hopfian. Now (E3.6.1) implies that π

is an isomorphism. As a consequence, B{ f1, . . . , fn} = B[ f1, . . . , fn] considering fi as
central indeterminants in B[ f1, . . . , fn]. Now we have

A ∼= A[t]/(ti ) φ−→ B[ f1, . . . , fn]/( fi ) ∼= B.

Therefore A is strongly cancellative. �
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Combining these results we have the following diagram for an algebra.

[Discriminant being] effective

Remark 3.7(5)�⇑
⏐
⏐
�Theorem 2.9

(strongly) LND-rigid
easy−−−−−−−−−→

�Remark 3.7(4)
(strongly) LNDZ -rigid

Lemma 2.4

⏐
⏐
�⇑Remark 3.7(6) ⇑Remark 3.7(7)

⏐
⏐
�Lemma 2.6

(strongly) retractable
easy−−−−−−−−−→

�Remark 3.7(3)
(strongly) Z -retractable

Remark 3.7(2)�⇑
⏐
⏐
�Lemma 3.2

(strongly) detectable

Remark 3.7(1)�⇑
⏐
⏐
�Lemma 3.6

(strongly) cancellative

If char k > 0, one should replace LND by LNDH in the above diagram.

Remark 3.7 The following are easy.

(1) k[x] is (strongly) cancellative, but not detectable.
(2) The algebra in Example 3.3 is strongly detectable, but not retractable (or Z -retractable).
(3) Let Z = k[x±1] and A = M2(Z). Then the center of A is Z . By Example 1.3(1), Z

is strongly retractable. Therefore A is strongly Z -retractable. Consider the conjugation
automorphism φ : A[t] → A[t] determined by

φ : a −→
(

1 t
0 1

)

a

(

1 −t
0 1

)

, ∀a ∈ A.

It is easy to see that φ(A) �= A. Therefore A is not retractable.
(4) One can also check that the algebra A in part (3) is strongly LNDZ -rigid, but not LND-

rigid by Lemma 1.9.
Here is another example. Let A be an affine PI prime such that the discriminant over
its affine center is effective, for example, A is in Example 5.1. By Theorem 2.9, A is
strongly LNDZ -rigid. If A is not a domain [Example 5.1], then it is not LND-rigid by
Lemma 1.9.

(5) Let A = k[x±1]. Since A is a commutative domain, the discriminant of A over its center
is trivial, whence, not effective. But A is strongly LND-rigid and strongly LNDZ -rigid
by Example 1.3(1).

(6) The strong LND-rigidity (when char k = 0) and the strong LNDH -rigidity follow from
the strong retractability without any hypotheses as given in Lemma 2.4. For example, if A
is not strongly LND-rigidity and if char k = 0, then there is a locally nilpotent derivation
of ∂ of A[t1, . . . , tn], for some n ≥ 1, such that ker ∂ � A. Consider the automorphism

exp(∂, t) : A[t1, . . . , tn][t] → A[t1, . . . , tn][t]
determined by

exp(∂, t) : a �→
∞
∑

i=0

t i

i ! ∂
i (a), t �→ t,
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for all a ∈ A[t1, . . . , tn]. Then exp(∂, t)(A) �= A. Therefore A is not strongly retractable.
If ∂ is a higher derivation, one needs use the automorphism similar to the one inDefinition
1.7(2).

(7) The strong LNDZ -rigidity (when char k = 0) and the strong LNDH
Z -rigidity follow from

the strong Z -retractability without any hypotheses as given in Lemma 2.6. The argument
in part (6) can be used with some small modification.

One advantage of considering the detectable property is the following.

Lemma 3.8 Let A be an algebra with center Z(A). If Z(A) is (strongly) detectable, so is A.

Proof Suppose B is an algebra such that φ : A[t] ∼= B[s]. Taking the center, we have
φ : Z(A)[t] ∼= Z(B)[s]. Since Z(A) is strongly detectable, si ∈ Z(B){φ(t j )} for all i . Thus
si ∈ B{φ(t j )} for all i . This means that A is strongly detectable. �


Another property concerning detectable property is the following.

Lemma 3.9 Let A be an algebra and J be the prime radical of A that is nilpotent. If A/J is
(strongly) detectable, so is A.

Proof Suppose B is any algebra such that φ : A[t] ∼= B[s]. Since Jn = 0 for some n, the
prime radical of A[t] is J [t] which is also nilpotent. This implies that the prime radical of
B[s] is nilpotent and of the form J (B)[s] where J (B) is the prime radical of B. Modulo the
prime radical, we obtain that

φ′ : (A/J )[t] ∼= (B/J (B))[s]
where t and s still denote the images of t and s in appropriate algebras respectively. Since
A/J is strongly detectable, si ∈ (B/J (B)){ f1, . . . , fn} for all i , which means that si ∈
B{ f1, . . . , fn} modulo J (B)[s]. Here fi = φ(ti ) for all i . Another way of saying this is, for
every i ,

fi = si +
∑

bd1,...,dn s
d1
1 · · · sdnn ∈ B{ f1, . . . , fn}

for bd1,...,dn ∈ J (B). The point is that si = fi modulo J (B)[s]. Now we re-write si as a
polynomial in f j with coefficients in J (B), starting with,

si = fi −
∑

bd1,...,dn s
d1
1 · · · sdnn

= fi −
∑

bd1,...,dn f
d1
1 · · · f dnn +

∑

b′
d ′
1,...,d

′
n
s
d ′
1

1 · · · sd ′
n

n

where b′
d ′
1,...,d

′
n
are in J (B)2[s]. This means that si equals a polynomial of f1, . . . , fn modulo

J (B)2[s]. By induction, si equals a polynomial of f1, . . . , fn modulo J (B)p[s] for every
p ≥ 1. Since J (B) is nilpotent, si is a polynomial of f1, . . . , fn (with coefficients in B)
when taking p � 0. Therefore si ∈ B{ f1, . . . , fn} as required. �


We also mention an easy consequence of Lemma 3.8 and [1, Theorem 3.3].

Proposition 3.10 If the center of A is an affine domain of GKdimension one that is not
isomorphic to k′[x] for some field extension k′ ⊇ k, then A is strongly detectable.

Proof By [1, Theorem 3.3], Z(A) is strongly retractable. By Lemma 3.2, Z(A) is strongly
detectable. The assertion follows from Lemma 3.8. �
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Lemma 3.11 Let k′ is a field extension of k. If A⊗k k′ is (strongly) detectable as an algebra
over k′, then A is (strongly) detectable as an algebra over k.

Proof We only show the “strongly” version. Suppose that B is an algebra over k such that
φ : A[t] ∼= B[s] is a k-algebra isomorphism. Let C be the k-subalgebra of B{φ(ti )}ni=1.
Then C ⊆ B[s]. We claim that C = B[s].

For any k-module M , let Mk′ denote M ⊗k k′. Consider the isomorphism φk′ :
Ak′ [t] ∼= Bk′ [s]. By hypothesis, Ak′ is a (strongly) detectable algebra over k′. Then
Bk′ {φ(ti )}ni=1 is Bk′ [s] = (B[s])k′ . Nowone can easily show thatCk′ = Bk′ {φ(ti )}ni=1. Thus
Ck′ = (B[s])k′ , consequently, C = B[s]. Therefore A is strongly detectable as an algebra
over k. �


4 Applications to the cancellation problem

In this section we will use the results proven in the previous sections to show some classes
of algebras are cancellative. We first prove Corollary 0.3.

Theorem 4.1 If A is left (or right) artinian, then A is strongly detectable. As a consequence,
A is strongly cancellative.

Proof Since A is artinian, it is noetherian. By Lemma 3.5(1), it is strongly Hopfian. Now
the strongly cancellative property is a consequence of the strongly detectable property by
Lemma 3.6(2). It remains to show that A is strongly detectable.

Let J be the Jacobson radical of A. Then J is also the prime radical of A and J is nilpotent.
By Lemma 3.9, it suffices to show that A′ := A/J is strongly detectable. Since A′ is a finite
direct sum of matrix algebras over division rings, Z(A′) is a finite direct sum of fields. By
Lemmas 2.3 and 3.2, Z(A′) is strongly retractable, and then strongly detectable. By Lemma
3.8, A′ is strongly detectable as required. �

Theorem 4.2 Let A be an algebra with center Z. Suppose J is the prime radical of Z such
that (a) J is nilpotent and (b) Z/J is a finite direct sum of fields.

(1) A is strongly detectable.
(2) If further A is strongly Hopfian, then A is strongly cancellative.

Theorem 0.2 is an immediate consequence of the above theorem.

Proof of Theorem 4.2 (1) Similar to the proof of Theorem 4.1, Z is strongly detectable. By
Lemma 3.8 A is strongly detectable.

(2) Follows from Lemma 3.6 and part (1).
�


The following is an immediate consequence of the above theorem and Lemma 3.5(1).

Corollary 4.3 Let A be a left noetherian algebra such that its center is artinian. Then A is
strongly detectable and strongly cancellative.

Next we will prove Theorem 0.4. We start with the following lemma. We refer to [3]
for basic definitions of quivers and their path algebra. Let Cn be the cyclic quiver with n
vertices and n arrow connecting these vertices in one oriented direction. In representation
theory of finite dimensional algebras, quiver Cn is also called type Ãn−1. Let 0, 1, . . . , n − 1
be the vertices of Cn , and ai : i → i + 1 (in Z/(n)) be the arrows in Cn . Then w :=
∑n−1

i=0 aiai+1 · · · ai+n is a central element in kCn .
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Lemma 4.4 Let Q be a finite quiver that is connected and let kQ be its path algebra. Then

Z(kQ) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

k if Q has no arrows,

k[x] if Q = C1 or equivalently kQ = k[x],
k[w] if Q = Cn for n ≥ 2,

k otherwise.

Proof Since kQ is N-graded, its center Z(kQ) is also N-graded.
If Q has one vertexwithout arrow,kQ = k and the center isk. If Q = C1, thenkQ = k[x]

and the center is k[x]. If Q has one vertex with more than one arrows, then kQ is a free
algebra and in this case, its center is k.

For the rest of the proof we suppose that Q has at least two vertices. Let {ei }vi=1 be the
vertices in Q where v ≥ 2.

First of all, every central element of degree 0 is in the base field k. Let f be a nonzero
central element of degree d > 0.Write f as

∑

cas1as2 · · · asd where c ∈ k and asi are arrows
in Q. Since f is central, ei f = f ei . Thus,

f =
(

v
∑

i=1

ei

)

f =
v

∑

i=1

ei f =
v

∑

i=1

ei f ei =
v

∑

i=1

fi

where fi = ei f ei . Since f �= 0, fi �= 0 for some i . Without loss of generality, we may
assume that f1 �= 0.

If a is an arrow from 1 to i with i �= 1, then

0 �= f1a = f a = a f = a fi .

So fi �= 0. Similarly, if a is an arrow from i �= 1 to 1, then fi a = a f1 �= 0. Since Q is
connected, every vertex is connected with the vertex 1. It follows by induction that fi �= 0.
Further, for every arrow b from i to j , we have

fi b = b f j �= 0. (E4.4.1)

Write fi = ∑

cas1as2 · · · asd with some c ∈ k. Then equation (E4.4.1) implies that

as1 = b (E4.4.2)

for all possible arrow b from i to j and all possible nonzero terms cas1as2 · · · asd in fi .
Equation (E4.4.2) implies that

(1) b is unique, and
(2) as1 is unique.

This means that, for every i , there is a unique j , denoted by σ(i), such that there is a
unique arrow from i to σ(i). Since Q is connected with v vertices, σ(i) �= i for all i . This
characterizes the quiver Cn . Now its routine to check that the center of kCn is as described.

The above paragraph shows that, if Q is not Cn , then there is no nonzero central element
of positive degree. Therefore, Z(kQ) = k. This finishes the proof. �

Lemma 4.5 Let Q = Cn for n ≥ 2.

(1) kQ is a prime algebra of GKdimension 1 that is not Azumaya.
(2) kQ is strongly detectable and strongly cancellative.

Proof (1) By a direct computation.
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(2) If k is algebraically closed, this is a special case of Theorem 4.12(2), which we will prove
later. If k is not algebraically closed, let k′ be the closure of k. By Theorem 4.12(2), k′Q
is strongly detectable over k′. By Lemma 3.11, kQ is strongly detectable over k, and
then strongly cancellative by Lemmas 3.5(2) and 3.6(2). �

We need an elementary lemma. Two idempotents e1 and e2 in an algebra A are counital

if e1 + e2 = 1.

Lemma 4.6 Let A and B be two algebras.

(1) If A and B are (strongly) cancellative, so is A ⊕ B.
(2) If A and B are (strongly) retractable, so is A ⊕ B.
(3) If A and B are (strongly) detectable, so is A ⊕ B.

Proof We only prove part (1). The proof of parts (2, 3) is similar.
Suppose φ : (A ⊕ B)[t] ∼= C[s] is an algebra isomorphism, and let e1 and e2 be two

counital idempotents corresponding to the decomposition A⊕B. Let fi = φ(ei ) for i = 1, 2.
By Lemma 1.5(4), f1 and f2 are two counital idempotents of C . Thus C = C1 ⊕ C2 and
A[t] ∼= C1[s] and B[t] ∼= C2[s]. Since A and B are strongly cancellative, A ∼= C1 and
B ∼= C2, which implies that A ⊕ B ∼= C1 ⊕ C2 = C . The proof of non-“strongly” version
is similar. �


The next is Theorem 0.4.

Theorem 4.7 Let Q be a finite quiver and let A be the path algebra kQ. Then A is strongly
cancellative. If further Q has no connected component beingC1, then A is strongly detectable.

Proof By Lemma 4.6, we may assume that Q is connected.
If Q = C1, then A = k[x] and the assertion follows from [1, Theorem 3.3 and Corollary

3.4].
If Q = Cn , then this is Lemma 4.5(2).
If Q �= Cn for any n ≥ 1, then by Lemma 4.4, the center of A is k. By Theorem 4.2(1),

A is strongly detectable. Since A is N-graded and locally finite, it is strongly Hopfian by
Lemma 3.5(2). By Theorem 4.2(2), A is strongly cancellative. This completes the proof. �


For the rest of this sectionweconsider affineprime algebras ofGKdimensionone andprove
Theorem 0.6. For simplicity, we assume that k is algebraically closed. It is not immediately
clear to us if this assumption can be removed. However, this assumption definitely makes
some of argument and even language easier.

Let A be an affine prime algebra of GKdimension one. By a result of Small–Warfield [36],
A is a finitely generated module over its affine center. As a consequence, A is noetherian.

Let R be a commutative algebra, an R-algebra A is called Azumaya if A is a finitely
generated faithful projective R-module and the canonical morphism

A ⊗R Aop → EndR(A) (E4.7.1)

is an isomorphism. Note that the Brauer group of a commutative algebra R, denoted by
Br(R), is the set of Morita-type-equivalence classes of Azumaya algebras over R, in other
words, Br(R) classifies Azumaya algebras over R up to an equivalence relation [4]. See [35]
for some discussion about the Brauer group. Another way of defining an Azumaya algebra is
the following (when k is algebraically closed). We refer to [8, Introduction] for a discussion.
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Definition 4.8 [8, Introduction] Suppose that k is algebraically closed. Let A be an affine
prime k-algebra which is a finitely generated module over its affine center Z(A). Let n be the
PI-degree of A, which is also the maximal possible k-dimension of irreducible A-modules.

(1) The Azumaya locus of A, denoted by A(A), is the dense open subset of Maxspec Z(A)

which parametrizes the irreducible A-modules of maximal k-dimension. In other word,
m ∈ A(A) if and only if mA is the annihilator in A of an irreducible A-module V with
dim V = n, if and only if A/mA ∼= Mn(k).

(2) IfA(A) = Maxspec Z(A), A is called Azumaya.

There are several other equivalent definitions of an Azumaya algebra, but we will only
use Definition 4.8(2).

For affine prime algebras of GKdimension one, we have the following.

Lemma 4.9 Let A be an affine prime algebra of GKdimension one over an algebraically
closed field k. Then one of the following holds.

(1) Z(A) � k[x].
(2) Z(A) ∼= k[x] and A is not Azumaya.
(3) Z(A) ∼= k[x] and A is Azumaya. In this case, A is a matrix algebra over k[x].

Proof The only non-trivial assertion is the second statement in part (3).
Now we consider R = k[x]. By [4, Theorem 7.5], k[x] has trivial Brauer group when

k is algebraically closed. Since every projective k[x]-module is free, Homk[x](E, E) is a
matrix algebra overk[x] for every finitely generated projectivek[x]-module E . By definition
[4, Section 5], every Azumaya algebra A over k[x] is Morita equivalent to k[x]. Again,
by the fact every finitely generated projective k[x]-module is free, A is a matrix algebra
over k[x]. �


In fact, if char k = 0, by [4, Proposition 7.7], every Azumaya algebra over k[x1, . . . , xn]
is a matrix algebra over k[x1, . . . , xn]. But this is not true when char k > 0 and n ≥ 2, see
Remark 5.2.

Proposition 4.10 Suppose that Z(A) = k[x] and that A is not Azumaya.

(1) If char k = 0, then A is strongly LNDH
Z -rigid.

(2) In general, A is Z-retractable.

As a consequence, A is strongly detectable and strongly cancellative.

Proof The consequence follows from Lemmas 2.6, 3.2 and 3.6.

(1) Thanks to awonderful result ofBrown-Yakimov [8,MainTheorem], the discriminant of A
over Z(A) is nonunit (this happens if and only if A is not Azumaya). Since Z(A) = k[x],
by Corollary 2.10, A is strongly LNDH

Z -rigid.
(2) If char k is positive, a trace on A might not be representation theoretic in the sense of

[8, Section 2.1]. In this case, we can not use [8, Main Theorem]. So we need a slightly
different approach. Let C be a PI prime algebra that is finitely generated over its center
Z(C). LetN(C) denote the complement of the Azumaya locus of C and let N (C) be the
ideal of Z(C) that corresponds to N(C). Then N (C) is a nonzero proper ideal of Z(C)

if C is not Azumaya.
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Let D be the polynomial extension

D := C[t1, . . . , tn] ∼= C ⊗ k[t1, . . . , tn]
for some n ≥ 1. Then D is a finitely generated module over its center Z(D) =
Z(C)[t1, . . . , tn]. Using Definition 4.8, one can routinely show that

N (C[t1, . . . , tn]) = N (C)[t1, . . . , tn]. (E4.10.1)

Now let A be the algebra in the proposition and let B be an algebra such that φ :
A[t1, . . . , tn] ∼= B[s1, . . . , sn]. We claim that φ(Z(A)) = Z(B). First of all, φ induces an
isomorphism Z(A)[t1, . . . , tn] ∼= Z(B)[s1, . . . , sn]. Since Z(A) = k[x] is strongly cancella-
tive, Z(B) = k[y]. Since A is not Azumaya, there is a f ∈ k[x]\k such that N (A) = f k[x].
Similarly, N (B) = gk[y] for some g ∈ k[y] \ k. It follows from (E4.10.1) that

gk[y, s1, . . . , sn] = N (B)[s1, . . . , sn]
= N (B[s1, . . . , sn])
∼= N (A[t1, . . . , tn]) (via φ−1)

= f k[x, t1, . . . , tn].
Thus φ maps f to a scalar multiple of g. Define

W f (A[t1, . . . , tn]) = {w ∈ Z(A[t1, . . . , tn]) | ∃v ∈ Z(A[t1, . . . , tn]), s.t . wv = f }.
Recall that Z(A[t1, . . . , tn]) = k[x, t1, . . . , tn] and f ∈ Z(A) = k[x] is not a scalar. Then
W f (A[t1, . . . , tn]) is a subset of k[x] containing at least an element of form a + x for some
a ∈ k. Similarly,Wg(B[t1, . . . , tn]) is a subset of k[y] containing an element of form a′ + y
for some a′ ∈ k. Since φ maps W f (A[t1, . . . , tn]) to Wg(B[t1, . . . , tn]) and since Z(A)

(respectively, Z(B)) is generated by a + x (respectively, a′ + y), we have φ(Z(A)) = Z(B)

as required. �

Lemma 4.11 The matrix algebra A := Mn(k[x]) is strongly cancellative.
Proof If n = 1, this is [1, Theorem 3.3 and Corollary 3.4]. Now assume that n > 1. Suppose
B is an algebra such that φ : A[t] ∼= B[s] is an isomorphism. Then Z(A)[t] ∼= Z(B)[s].
Since Z(A) = k[x], by [1, Theorem 3.3 and Corollary 3.4], Z(B) ∼= k[x]. It is clear that B is
prime of GKdimension one. If B is not Azumaya over Z(B), then B is strongly cancellative
by Proposition 4.10. As a consequence, A ∼= B. If B is Azumaya over Z(B), then B is a
matrix algebra over k[x] by Lemma 4.9(3), say B = Mn′(k[x]). Now algebra isomorphisms

Mn(k[x, t1, . . . , tn]) ∼= A[t] ∼= B[s] ∼= Mn′(k[x, s1, . . . , sn])
implies that n = n′. Therefore A ∼= B as desired. �


Next we are ready to prove Theorem 0.6.

Theorem 4.12 Let A be an affine prime algebra of GKdimension one over an algebraically
closed field.

(1) A is strongly cancellative.
(2) If either Z(A) �= k[x] or A is not Azumaya, then A is strongly detectable.

Proof By Lemma 4.9, there are three cases to consider.
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Case 1: Z(A) � k[x]. By [1, Theorem 3.3 and Corollary 3.4], Z(A) is strongly retractable.
By Lemma 3.2, A is strongly detectable, and by Lemma 3.6(2), A is strongly can-
cellative.

Case 2: Z(A) ∼= k[x] and A is not Azumaya. The assertion follows from Proposition 4.10.
Case 3: Z(A) ∼= k[x] and A is Azumaya. The assertion follows from Lemma 4.9(3) and

4.11. �


5 Examples, remarks and questions

First of all, it is quite easy to produce a large family of prime, but non-domain, PI rings that
are strongly cancellative.

Example 5.1 Let R be an affine commutative domain and let f be a product of a set of
generating elements of R. Let

A =
(

R f R
R R

)

.

Then the discriminant of A over its center R is − f 2. It easy to see that − f 2 is a effective
element in R. So A is strongly LNDH

Z -rigid [Theorem 2.9]. As a consequence, A is strongly
Z -retractable, detectable and cancellative.

Recall that the Brauer group of a commutative domain A is denoted by Br(A).

Remark 5.2 Let k be an algebraically closed field of characteristic zero and let A be a com-
mutative affine regular domain overk. By [4, Proposition 7.7], Br(A) is naturally isomorphic
to Br(A[t]). Consequently, Br(k[x1, . . . , xn]) is trivial for all n ≥ 0. If A[t] ∼= B[s] for
some algebra B, then B is also a commutative affine regular domain. Therefore

Br(A) ∼= Br(A[t]) ∼= Br(B[s]) ∼= Br(B).

We are wondering if there are other connections between the cancellative property of A
and the structure of Br(A). For example, what kind of structure of Br(A) forces A to be
cancellative?

If k is an algebraically closed field of positive characteristic, the situation is different. First
of all, Br(k[x]) = Br(k) = {1} by [4, Theorem 7.5]. By [31, Lemma 6.1], the nthWeyl alge-
bra is a nontrivial Azumaya algebra over its center and that the center of the nthWeyl algebra
is isomorphic to the polynomial ring of 2n variables. This implies that Br(k[x1, . . . , x2n])
is non-trivial for n ≥ 1. Since Br(A) is a subgroup of Br(A[t]), Br(k[x1, . . . , xm]) is
non-trivial for all m ≥ 2. It is known that, by [34], k[x1, x2] is cancellative, while, by [20],
k[x1, x2, x3] is not.

The study of connections between the cancellative property of A and other invariants such
as the Picard group or Grothendieck group of A might also be interesting.

Remark 5.3 It would be interesting to know if retractable (respectively, detectable, cancella-
tive) property is preserved under some usual constructions. More precisely, suppose A has
property P, where P stands for the retractable, detectable, or cancellative property.

(a) Under what hypotheses, does a localization AS−1 have P?
(b) Under what hypotheses, does the skew polynomial extension A[t, σ, δ] have P?
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(c) Under what hypotheses, does the matrix algebra Mn(A) have P?
We are also wondering the following.

(d) Suppose A is filtered with associated graded ring gr A. If gr A has property P (where P
stands for the retractable, detectable, or cancellative property), under what hypotheses,
does A have P?

(e) Let J (A) be the Jacobson radical of A. Suppose A/J (A) has P, under what hypotheses,
does A have P?
The study of noncommutative Cancellation Problem has just started a couple of years ago.

One can ask if the cancellative property holds for any interesting class of noncommutative
algebras. Here are some examples.

Question 5.4 Prove or disprove the following classes of algebras are cancellative.

(1) Preprojective algebras.
(2) TheWeyl algebras in positive characteristic. Note that theWeyl algebras in characteristic

zero are cancellative by [5, Proposition 1.3].
(3) The Sklyanin algebras of dimension ≥ 3, or the PI Sklyanin algebras of dimension ≥ 3.

Several other questions have already been stated in the introduction.
Finally we have the following remark from the referee report. We thank the referee for

allowing us to include it in this paper.

Remark 5.5 (Referee) Question 0.7 is vague, but one can say a bit about the outer automor-
phism group. If A is an affine prime algebra of GKdimension one, then, by Small–Warfield
theorem [36], A is a finite module over its center Z , which is also affine by the Artin–Tate
lemma. Then Z is an affine domain of Krull dimension one. Now let X = Spec(Z) and let
Y be the normalization of its projective closure. Then every automorphism of X lifts to an
automorphism of Y . Now let G be the group of automorphisms of A that are the identity
on Z . Then G induces an automorphism of the quotient algebra Q(A) of A, which is a cen-
tral simple algebra, and this automorphism fixes the center of Q(A). Then every element σ
of G is inner; that is, there is some u ∈ Q(A) such that σ is the conjugation by u. Since
Q(A) = (Z \ {0})−1A, we can clear denominators and assume that u ∈ A. Since σ is an
automorphism of A, one sees that u is in fact a normal element in A and therefore σ is an
inner automorphism of A. The above argument shows that there is an injective group homo-
morphism from the outer automorphism group of A to the automorphism group Aut(Z),
given by the restriction

g �→ g|Z .

As said before, Aut(X)(= Aut(Z)) lifts to the automorphism group of Y but there is more:
these automorphisms must share common periodic points, and permute the points at infinity.
If Y has genus ≥ 2, then the automorphism group of Y is finite; if Y has genus 1 then it
is an elliptic curve, but since the automorphisms permute a finite (nonempty) set of points,
some finite-index subgroup has a fixed point, which means that these can be seen as group
automorphisms of an elliptic curve and so they are again finite. Finally if Y has genus zero,
then X is rational and Z ⊆ k(t). In this case, if X is not smooth, then the automorphisms
preserve the singular points of X and the points at infinity, so a finite-index subgroup of the
automorphism group of Z induces a subgroup of Aut(Y ) where Y ∼= P

1, in which after a
change of coordinates every element fixes 0 and 1. Now the automorphisms that fix 0 and
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1 are just those of the form t �→ ct , with c ∈ k×. So the automorphism group of X has a
finite-index subgroup that is a subgroup of a torus. Otherwise X is smooth. So if we have two
or more points at infinity, the same argument applies, so we may assume that X is smooth,
has one point at infinity, so Z ∼= k[t] and so every automorphism is of the form t �→ at + b
for a ∈ k× and b ∈ k. Combining these cases, the outer automorphism group of A always
has a finite-index subgroup that is isomorphic to a subgroup of the affine linear group. Of
course, taking A commutative showswe can get the torus, the affine linear group, etc. as outer
automorphism groups. Presumably, one can also say that the outer automorphism group is
an algebraic group, by studying how automorphisms of the center lift. In this case, it has
dimension at most 2 and it has connected component of the identity that is solvable and when
one mods out by the unipotent radical one always has k× or {1}.
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