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1 Introduction

A noncommutative version of the McKay correspondence in dimension two was
developed in [4–6]. One of the main ingredients was the study of the invari-
ant subrings of connected graded, noetherian, Artin-Schelter regular algebras
of global dimension two under natural actions of quantum binary polyhedral
groups. The McKay quivers [6, Definition 2.9] of these quantum binary polyhe-

dral groups are twisted versions of ÃD̃Ẽ graphs where the details can be found
in [4, Proposition 7.1]. It was proved in [6, Theorem B] that the McKay quiver
is isomorphic to the Gabriel quiver [6, Definition 2.8] of the smash product
algebra corresponding to the action.

The noncommutative singularities (or equivalently, their associated alge-
bras) studied in [4–6] are usually far from commutative and do not satisfy a
polynomial identity. For these noncommutative singularities, we introduced the
concept of a noncommutative quasi-resolution [15, Definition 0.5] which gener-
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alizes Van den Bergh’s noncommutative crepant resolution [22,23]. The smash
product constructions used in [4–6] are examples of noncommutative quasi-
resolutions. Recently, Reyes-Rogalski [17] proved that the Gabriel quivers of
non-connected, N-graded, Artin-Schelter regular algebras of global dimension
two are twisted versions (which are called pretzeled quivers in this paper) of the

ÃD̃Ẽ graphs.
Recent study of the invariant theory of (non-connected graded) preprojec-

tive algebras under finite group actions initiated by Weispfenning [24] suggests
that one should extend the noncommutative McKay correspondence to a larger
class of not necessarily connected, graded algebras. The aim of this paper is to
supply a small piece of the puzzle in this slightly more general version of the
noncommutative McKay correspondence. Let k be a base field and let MCM
(resp., CM) stand for ‘maximal Cohen-Macaulay’ (resp., ‘Cohen-Macaulay’).
We summarize the main results as follows.

Theorem 1 Let A be a noetherian N-graded locally finite algebra of Gelfand-
Kirillov dimension two. Suppose that

(a) A has a balanced dualizing complex,

(b) A is Auslander Gorenstein and CM, and

(c) A has a noncommutative quasi-resolution B.

Then we have the following statements.

(1) A is of finite Cohen-Macaulay type in the graded sense.

(2) There is a one-to-one correspondence between the set of indecomposable
MCM graded right A-modules up to degree shifts and isomorphisms and the set
of graded simple right B-modules up to degree shifts and isomorphisms.

(3) Let {M1,M2, . . . ,Md} be a complete list of the indecomposable MCM
graded right A-modules up to degree shifts and isomorphisms. Then, for some
choice of integers w1, w2, . . . , wd,

C := EndA

( d⊕
i=1

Mi(wi)

)
is an N-graded noncommutative quasi-resolution of A. As a consequence, C is
graded Morita equivalent to B.

(4) A is a noncommutative graded isolated singularity.

It is natural to ask that when does A have a noncommutative quasi-
resolution, one can find a partial answer in [15].

One should compare Theorem 1 with results in [9, Section 3] in the com-
mutative case and [10, Theorem 2.5], [6, Corollary 4.5, Theorem 5.7] in the
noncommutative case.

Theorem 2 Let A satisfy the hypotheses in Theorem 1. Furthermore, assume
that the noncommutative quasi-resolution B in Theorem 1 (c) is standard in
the sense of Definition 5 (below). Then the following statements hold:
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(1) the Gabriel quiver of B is a pretzeled quiver of a finite union of graphs

of ÃD̃Ẽ type;

(2) the standard noncommutative quasi-resolution B is unique up to iso-
morphism.

Theorem 2 confirms that a generalized version of the noncommutative
McKay correspondence should still be within the framework of ÃD̃Ẽ diagrams.
Since the Gabriel quiver G (B) of B is defined by using simple modules over
B, by the correspondence given in Theorem 1 (3) and the uniqueness in The-
orem 2 (2), G (B) (if it exists) is also an invariant of MCM modules over A.
The proof of Theorem 2 follows from Theorem 1 and results of Reyes-Rogalski
when one relates the results in [16,17] with the concept of noncommutative
quasi-resolutions.

Terminology used in the above theorems will be explained in later sections.
The proofs of Theorems 1 and 2 will be given in Section 3. By Lemma 30
below, Theorems 1 and 2 can be applied to fixed subrings of preprojective al-
gebras that was recently studied by Weispfenning [24].

2 Definitions and preliminaries

Throughout, let k be a field. All algebras and modules are over k. Recall that
a k-algebra A is N-graded if A = ⊕n∈NAn as vector spaces with 1 ∈ A0 and
AiAj ⊆ Ai+j for all i, j ∈ N. We say that A is locally finite if dimkAn < ∞
for all n. In this paper, a graded algebra usually means N-graded. A right
A-module M is Z-graded if M = ⊕n∈ZMn with MiAj ⊆ Mi+j for all i, j ∈ Z.
We write GrModA for the category of right graded A-modules with morphisms
being the degree preserving homomorphisms, and grmodA for the subcategory
of finitely generated right A-modules. Other definitions such as degree shift or
grading shift (w) can be found in [16,17].

2.1 Generalized Artin-Schelter regular algebras

In this subsection, we review the definition of a generalized Artin-Schelter (AS)
regular algebra.

Definition 3 [16, Definition 1.4] Let A be a locally finite graded algebra and
J := J(A) be the graded Jacobson radical, that is, the intersection of all graded
maximal right ideals of A. Write S = A/J. We say that A is generalized AS
Gorenstein of dimension d if A has graded injective dimension d and there is a
graded invertible (S, S)-bimodule V such that

ExtiA(S,A) ∼=

{
V, i = d,

0, i 6= d,
(2.1)

as (S, S)-bimodules. If further A has graded global dimension d, then A is
called generalized AS regular of dimension d.
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Definition 4 [17, Section 3] Let A be a locally finite N-graded k-algebra. If
the finite-dimensional semisimple algebra

S := A/J(A) ∼= A0/J(A0)

is isomorphic to a product k⊕d of finitely many copies of the base field k, then
we say that A is elementary.

Definition 5 Let A be a graded algebra. We say that A is standard if A0 is
k⊕d for some positive integer d and A is generated by A0 and A1.

A very nice result proven by Reyes-Rogalski is the following theorem.

Theorem 6 [17] Let A be an N-graded generalized AS regular algebra. Suppose
that

(a) A is standard,

(b) A is noetherian,

(c) gldimA = 2.

Then A is isomorphic to an algebra A2(Q, τ) as described in [17, Definition 7.5],
where Q is a quiver whose arrows all have weight 1 and whose spectral radius
ρ(Q) is 2.

Proof We combine some results of Reyes-Rogalski. By [16, Theorem 1.5], A
is twisted Calabi-Yau in the sense of [16, Definition 1.2]. By [17, p. 37], every
locally finite elementary graded twisted Calabi-Yau algebra of global dimension
2 is isomorphic to an algebra A2(Q, τ). Since A is standard, the weight of every
arrow in Q is 1. Since A is noetherian, by [17, Theorem 7.8 (2)], ρ(Q) = 2. �

It is not clear if the inverse of Theorem 6 is true, see the comments after
the proof of [17, Lemma 7.6].

2.2 Noncommutative quasi-resolutions

In this subsection, we review some definitions about noncommutative quasi-
resolutions from [15]. We assume that all algebras are noetherian in this sub-
section. First, we recall the definition of Gelfand-Kirillov dimension.

Definition 7 [11, Definition 2.1] Let A be an algebra andM a right A-module.

(1) The Gelfand-Kirillov dimension (GKdim) of A is defined to be

GKdimA = sup
V

{
lim
n→∞

logn(dimV n) | V ⊆ A
}
,

where V ranges over all finite-dimensional k-subspaces of A.

(2) The Gelfand-Kirillov dimension of M is defined to be

GKdimM = sup
V,W

{
lim
n→∞

logn(dimWV n) | V ⊆ A, W ⊆M
}
,

where V and W range over all finite-dimensional k-subspaces of A and M,
respectively.
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IfM is a finitely generated graded module over a locally finite graded algebra
A, then its GKdim can be computed by [26, (E7)]

GKdimM = lim
n→∞

logn
∑
j6n

dim(Mj).

For simplicity, we always work with the dimension function GKdim in this
paper.

Definition 8 [13, Definitions 1.2, 2.1] Let A be an algebra and M a right
A-module.

(1) The grade number of M is defined to be

jA(M) := inf{i | ExtiA(M,A) 6= 0} ∈ N ∪ {+∞}.

If no confusion can arise, we write j(M) for jA(M). Note that jA(0) = +∞.
(2) We say that M satisfies the Auslander condition if for any q > 0,

jA(N) > q for all left A-submodules N of ExtqA(M,A).

(3) We say that A is Auslander-Gorenstein (resp., Auslander regular) of
dimension n if

injdimAA = injdimAA = n <∞ (resp., gldimA = n <∞)

and every finitely generated left and right A-module satisfies the Auslander
condition.

A graded version of an Auslander-Gorenstein (resp., Auslander regular) algebra
is defined similarly.

Definition 9 [1, Definition 0.4] Let A be a locally finite graded algebra. We
say that A is graded Cohen-Macaulay (graded CM) if

GKdim(A) = d ∈ N,

and
j(M) + GKdim(M) = GKdim(A)

for every graded finitely generated nonzero left (or right) A-module M.

Next, we specialize some definitions in [15] to the GKdim case and omit the
prefix ‘GKdim’ in some cases.

Let A be a locally finite N-graded algebra and n a nonnegative integer. Let
GrModnA denote the full subcategory of GrModA consisting of Z-graded right
A-modules M with GKdim(M) 6 n. Since GKdim is exact over a noetherian
locally finite N-graded algebra [11, Theorem 6.14], GrModnA is a Serre subcat-
egory of GrModA. Hence, it makes sense to define the quotient categories

QGrnA :=
GrModA

GrModnA
, qgrnA :=

grmodA

grmodnA
.
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We denote the natural and exact projection functor by

π : GrModA→ QGrnA. (2.2)

For M ∈ GrModA, we write M for the object π(M) in QGrnA. The hom-sets
in the quotient category are defined by

HomQGrnA(M ,N ) = lim
−→

HomA(M ′, N ′), M,N ∈ GrModA, (2.3)

where M ′ is a graded submodule of M such that the GKdim of M/M ′ is no more
than n, N ′ = N/T for some graded submodule T ⊆ N with GKdim(T ) 6 n,
and where the direct limit runs over all the pairs (M ′, N ′) with these properties.
Note that π is also defined from

grmodA→ qgrnA. (2.4)

It follows from [15, (E1.10.1)] that the functor π in (2.2) has a right adjoint
functor

ω : QGrnA→ GrModA. (2.5)

By [15, Proposition 2.10 (2)], if M is (n + 2)-pure, in the sense of Definition
24 (6) below, over an Auslander Gorenstein and CM algebra A, then ω(π(M))
agrees with the Gabber closure defined in [15, Definition 2.8].

We will use qgr0A in Section 2???, which will be denoted by qgrA.

Definition 10 [15, Definition 1.5] Let n > 0. Let A and B be two locally
finite graded algebras.

(1) Two Z-graded right A-modules X,Y are called n-isomorphic, denoted
by X ∼=n Y, if there exist a Z-graded right A-module P and homogeneous
homomorphisms of degree zero f : X → P and g : Y → P such that both the
kernel and cokernel of f and g are in GrModnA.

(2) Two Z-graded (B,A)-bimodules X,Y are called n-isomorphic, denoted
by X ∼=n Y, if there exist a Z-graded (B,A)-bimodule P and homogeneous
bimodule homomorphisms with degree zero f : X → P and g : Y → P such
that both the kernel and cokernel of f and g are in GrModnA when viewed as
graded right A-modules.

Let A be a category consisting of N-graded, locally finite, noetherian alge-
bras with finite GKdim [15, Example 3.1]. Our definition of a noncommutative
quasi-resolution will be made inside the category A .

Definition 11 [15, Definition 0.5] Let A ∈ A with

GKdim(A) = d > 2.

If there are a graded Auslander-regular and CM algebra B ∈ A with GKdim(B)
= d and two Z-graded bimodules BMA and ANB, finitely generated on both
sides, such that

M ⊗A N ∼=d−2 B, N ⊗B M ∼=d−2 A,
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as Z-graded bimodules, then the triple (B,M,N) or simply the algebra B is
called a noncommutative quasi-resolution (NQR) of A.

If A ∈ A with GKdimA = 2, then by [15, Theorem 4.2, Lemma 8.2], any
two NQRs of A are graded Morita equivalent, namely, up to Morita equivalent,
there is a unique noncommutative quasi-resolution of A.

Lemma 12 If A is noetherian, graded, locally finite, Auslander regular and
CM, then A is generalized AS regular.

Proof By the Auslander and CM properties, for every finite-dimensional graded
right A-module M,

ExtiA(M,A) =

{
0, i 6= d := gldimA,

N, i = d,

for some finite-dimensional graded left A-module N. By the double-Ext spectral
sequence [15, (E2.13.1)], ExtdA(−, A) induces a bijection from the set of graded
simple right A-modules up to isomorphism to the set of graded simple left A-
modules up to isomorphism. By [16, Theorem 5.2], A is generalized AS regular.

�
2.3 Other concepts

We recall some other concepts that are used in the main theorems. The follow-
ing definition is due to Ueyama.

Definition 13 [20, Definition 2.2] Let A be a noetherian graded algebra. We
say that A is a graded isolated singularity if the associated noncommutative
projective scheme QGrA has finite global dimension.

Ueyama gave this definition for connected graded algebras, but we consider
possibly non-connected graded algebras. This concept is used in Theorem 1
(4).

We will also use some results about balanced dualizing complex over non-
commutative rings introduced by Yekutieli [25]. We refer to [3,21,25] for more
details. We need the following local duality formula.

Theorem 14 [21, 25] Let A be a noetherian, graded, locally finite algebra with
balanced dualizing complex R, and let M be a graded right A-module. Then

RΓm(M)∗ = RHomA(M,R),

where m is the graded Jacobson ideal of A and (−)∗ denotes the graded k-linear
dual.

The following corollary is well known.

Corollary 15 Let A be a noetherian, graded, locally finite algebra with bal-
anced dualizing complex R. If A is generalized AS Gorenstein of injective dimen-
sion d, then R is of the form Ω(d), where Ω is a graded invertible A-bimodule.



8 Xiaoshan QIN et al.

3 Preparations

In this section, we will give the relations of Gabriel quivers, pretzeled quivers
of graphs, and noncommutative quasi-resolutions (NQRs).

3.1 Gabriel quivers

Let Q be a quiver with finitely many vertices and arrows. If we label the vertices
of Q by integers from 1 to d, then the adjacency matrix of Q is a square d× d-
matrix over N. It is clear that there is a one-to-one correspondence:

{quivers with vertices labeled {1, 2, . . . , d}} ⇔ {d× d-matrices over N.} (3.1)

For this reason, the adjacency matrix of Q is also denoted by Q if no confusion
occurs. The opposite quiver of Q is obtained by changing the direction of each
arrow in Q. Hence, the adjacency matrix of the opposite quiver of Q is the
transpose of the adjacency matrix of Q. We denote the opposite quiver of Q by
Qop.

Next, we review the definition of a Gabriel quiver. Suppose that A is locally
finite graded and elementary with

S = A/J(A) = k⊕d.

One can lift (not necessarily uniquely) the d primitive orthogonal idempotents
of S to an orthogonal family of primitive idempotents with

1 = e1 + e2 + · · ·+ en

in A0, see [12, Corollary 21.32]. Notice that

A =
n⊕
i=1

eiA.

Then every eiA is a graded projective right A-module, which is an indecompos-
able module since ei is a primitive idempotent. Thus, we get d distinct simple
right A-modules

Si := eiS = eiA/eiJ(A),

and every simple graded right module is isomorphic to a shift of one of the Si
for some i, 1 6 i 6 d.

Definition 16 Let A be an elementary, locally finite, graded algebra such
that A/J(A) = k⊕d. The Gabriel quiver G (A) of A is defined by

• vertices: graded simple right A-modules S1, S2, . . . , Sd corresponding to
individual projection to k;

• arrows: Si
qij−→ Sj if qij = dimk Ext1A(Sj , Si)−1 where Ext1A(Sj , Si) has a

natural Z-grading.

Under the identification in (3.1), G (A) = (qij)d×d, where qij is defined above.
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Note that if A in the above definition is Koszul in the sense of [14, Definition
1.5], then Ext1A(Sj , Si) is concentrated in degree −1. In this case,

qij = dimk Ext1A(Sj , Si)−1 = dimk Ext1A(Sj , Si).

Remark 17 Suppose A0 = k⊕d.
(1) Let Pi = eiA. Then {P1, P2, . . . , Pd} is a complete list of indecomposable

graded projective right A-modules up to degree shifts and isomorphisms.

(2) It is easy to see that

qij = dimk HomA(Pi, Pj)1, ∀ i, j = 1, 2, . . . , d.

3.2 Twists of a quiver and pretzelizations

Let Q = (qij)d×d be a quiver with d vertices (or a d×d-matrix over N). A graph
is a class of special quivers Q with qij = qji for all i, j. Then a quiver Q is a
graph if and only if Q = Qop. A graph is also called a symmetric quiver. The
example given in (3.3) below is a graph, and the example given in (3.4) below
is not a graph in this paper.

Definition 18 Let σ be an automorphism of the vertex set {1, 2, . . . , d}. σ is
said to be an automorphism of Q if

qσ(i)σ(j) = qij , ∀ i, j.

Definition 19 [2] Let Q := (qij) be a quiver, and let σ be an automorphism
of Q. The twist of Q associated to σ, denoted by σQ, is the quiver corresponding
to the matrix PσQ (= QPσ), where Pσ is the permutation matrix associated to
σ; in other words,

(σQ)ij = qσ(i)j = qiσ−1(j), ∀ i, j.

Let G be a graph (or symmetric quiver), and let σ be an automorphism of
the quiver G. Let Q be the twisted quiver σG. Then

Qop = σ−2
Q,

which follows from the following linear algebra computation:

Qop = (PσG)op = (GPσ)op = P−1σ Gop = Pσ−2Q = σ−2
Q. (3.2)

Definition 20 [2] Let G be a graph.

(1) A quiver Q is called a pretzelization of G or a pretzeled quiver of G
if Q ∪ Q is a twisted quiver of a finite disjoint union of G. It is possible that
Q itself is a twisted quiver of another finite disjoint union of copies of G. In
general, a pretzelization of a graph is not a graph.

(2) We say that a graph G is of ÃD̃Ẽ type if it is of type

Ãn, D̃n, L̃n, D̃Ln, Ẽ6, Ẽ7, Ẽ8,
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listed in [8, Theorem 2].

We assume that the readers are familiar with ÃD̃Ẽ graphs, which can be

found in many papers including [8]. We only list L̃n for n > 0 and D̃Ln for
n > 2 here:

0 1 2 n− 1 nL̃n :

D̃Ln :

0

1

2 3 n− 1 n

In the above, the vertex set is {0, 1, . . . , n}. If there is an edge between
vertices i and j, then both qij and qji are 1. If there is a loop at vertex i, then
qii = 1.

A result of Smith [19] states that a simple graph G (i.e., a graph with no

double edges and loops) has spectral radius 2 if and only if it is either Ãn, D̃n,

Ẽ6, Ẽ7, or Ẽ8, see also [7, Theorem 1.3]. The following generalization is folklore
for some experts; it follows from the proof of [8, Theorem 2].

Lemma 21 Let G be a graph (i.e., a symmetric quiver) which is not neces-
sarily simple. Then ρ(G) = 2 if and only if G is listed in Definition 20 (2).

This result was also proved by Chan et al. when they were working on the
project [4–6], but it was removed by the authors in the final published versions

of [4–6]. Another related result in [2] is that graphs of types L̃n and D̃Ln are

pretzelizations of graphs of types Ãn and D̃n. Note that graphs of type D̃Ln
and L̃1 appeared in [4, Proposition 7.1]. A key lemma concerning pretzelization
is as follows.

Lemma 22 [2] Let Q be a quiver. Then Q is a pretzelization of a graph if
and only if Qop = µQ for some automorphism µ of the quiver Q.

The automorphism µ in Lemma 22 is called a Nakayama automorphism of
the quiver Q. For example, σ−2 is a Nakayama automorphism of Q in (3.2).

For example, if Q is the Dynkin graph of type A3 :

(3.3)

then one twist of the disconnected graph Q ∪Q ∪Q (or a pretzelization of the
graph Q) is the following connected pretzel-shaped quiver:
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1

2

3

4

5

6

7

8

9

(3.4)

Proposition 23 Let Q be a quiver such that Qop = σQ for some automor-
phism σ of Q. If ρ(Q) = 2, then Q is a pretzelization of a graph of ÃD̃Ẽ types.

Proof By Lemma 22, Q is a pretzelization of a graph G. This means that
Q∪Q = τG for some automorphism τ of G. By a result of [2], ρ is stable under
twists of quiver. Since ρ(Q) = 2, we have

ρ(G) = ρ(Q ∪Q) = ρ(Q) = 2.

By Lemma 21, G is of ÃD̃Ẽ type in the sense of Definition 20 (2). �

3.3 Depth and maximal Cohen-Macaulay modules

We first collect some definitions from the literature. In the next definition
we only consider graded right modules. The same definition can be made for
graded left modules. Since we always consider graded algebras and graded
modules, we sometimes omit the word ‘graded’. The following definition of
a Cohn-Macaulay module is different from the concept of a Cohen-Macaulay
algebra given in Definition 9.

Definition 24 Let A be a noetherian, locally finite, graded algebra with finite
GKdimension. Let S = A/J(A). Let M be a nonzero finitely generated graded
right A-module.

(1) The depth of M is defined to be

depthAM := inf{i | ExtiA(S,M) 6= 0} ∈ N ∪ {+∞}.

If no confusion can arise, we write depthM for depthAM.

(2) We say that M is Cohen-Macaulay if depthM = GKdimM.

(3) We say that M is a maximal Cohen-Macaulay (MCM) module if M is
a Cohen-Macaulay and GKdimM = GKdimA.

(4) We say that A is of finite Cohen-Macaulay type (in the graded sense) if
there are only finite many indecomposable graded MCM modules up to degree
shifts and isomorphisms.



12 Xiaoshan QIN et al.

(5) M is called reflexive if the natural map M → HomAop(HomA(M,A), A)
is an isomorphism.

(6) Let n be an integer. Then M is called n-pure if GKdimN = n for every
nonzero submodule N ⊆M.

Note that the definition of an n-pure module in [15, Definition 2.1 (2)] is
different from and related to ours. Some basic lemmas about depth can be
found in [15, Section 5]. The following lemma is clear. An object M in qgrA
is called 2-pure if M = π(M) for a 2-pure graded A-module M and there is no
nonzero sub-object N ⊆ M such that N = π(N) for some N ∈ grmodA of
GKdimension 1, where π is defined in (2.2).

Lemma 25 Let A be a noetherian, locally finite, graded algebra with GKdimA
= 2. Suppose that A is Auslander-Gorenstein and CM.

(1) There is a bijection between 2-pure objects in qgrA and reflexive modules
in grmodA.

(2) The functors π and ω defined in (2.4)-(2.5) induce an equivalence be-
tween the category of 2-pure objects in qgrA and that of reflexive modules in
grmodA.

Proof We only prove (2) as (1) follows immediately from (2).

(2) For every reflexive module M, by [15, Proposition 2.14], it is 2-pure
(the definition of n-pure is slightly different from the definition in this paper,
but it is easily checked that this is not a problem). Then π(M) is 2-pure in
qgrA by definition. Conversely, let M be a 2-pure object in qgrA. Let M

be any finitely generated 2-pure module such that M = π(M). Let M̃ be the
Gabber closure of M defined in [15, Definition 2.8]. Since two such M differ

only by finite-dimensional vector spaces, M̃ is independent of the choices of M.

Or equivalently, M̃ is only dependent on M , which is ω(M ). Therefore,

πω(M ) = M

for 2-pure objects in qgrA by the fact that reflexive objects in grmodA are
Gabber-closed, which is following [15, Definition 2.11] and

ωπ(M) = M

for reflexive objects in grmodA. The assertion follows. �

Here is the main result in this subsection.

Theorem 26 Let A be a noetherian graded locally finite algebra with GKdim
2, and let M be a finitely generated graded A-module. Suppose that

(a) A has a balanced dualizing complex R, and

(b) A is Auslander-Gorenstein and CM.

Then M is reflexive if and only if it is MCM in grmodA.
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Proof Since A is Auslander Gorenstein and CM, the depth of A (and Aop) is
2. It follows from [15, Lemma 5.6] that the depth of a nonzero reflexive module
is 2. Therefore, a reflexive module is MCM as GKdimA = 2.

Conversely, let M be a MCM right A-module. Then ExtiA(S,M) = 0 for
i = 0, 1, where S = A/J(A). This implies that

RiΓm(M) = 0, i = 0, 1.

By Theorem 14,
Ext−iA (M,R) = 0, i = 0, 1.

Since R = Ω[2], where Ω is a graded invertible A-bimodule (see Corollary 15)
and [2] denotes the second complex shift,

ExtjA(M,A) = ExtjA(M,Ω)⊗ Ω−1 = 0, j = 1, 2.

By the double-Ext spectral sequence [15, (E2.13.1)], M is reflexive. �

4 Proofs of main results

We give the proofs of the main results here.

Proof of Theorem 1 The statements apply to left and right modules. We only
prove the results for right modules.

(1) By Lemma 25 (1), there is a bijection between 2-pure objects in qgrA
and reflexive modules in grmodA. Similarly, there is a bijection between 2-pure
objects in qgrB and reflexive modules in grmodB. By [15, Lemma 3.5], qgrA
is equivalent to qgrB. Therefore, there is a bijection between reflexive modules
in grmodA and those in grmodB. By Theorem 26, the reflexive modules in
grmodA are exactly the MCM modules in grmodA. Since B is generalized AS
regular, the reflexive modules in grmodB are precisely the projective modules in
grmodB. Since B is locally finite, there are only finitely many indecomposable
graded projective modules over B up to degree shifts and isomorphisms. This
implies that there are only finitely many indecomposable graded MCM modules
over A up to degree shifts and isomorphisms. The assertion follows by Definition
24 (4).

(2) By the proof of (1), there is a one-to-one correspondence between the
set of indecomposable MCM graded right A-modules up to degree shifts and
isomorphisms and the set of graded indecomposable projective right B-modules
up to degree shifts and isomorphisms. The assertion follows from the fact that
there is a one-to-one correspondence between the set of indecomposable graded
projective right B-modules up to degree shifts and isomorphisms and the set of
graded simple right B-modules up to degree shifts and isomorphisms.

(3) Let F : qgrB → qgrA be the equivalence given in [15, Lemma 3.5]. Let
(πA, ωA) be the adjoint pair of functors given in (2.4) and (2.5), and similar for
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(πB, ωB). Then we have a functor

Φ := ωA ◦ F ◦ πB : grmodB → grmodA, (4.1)

which is an equivalence of categories when restricted to the categories of reflex-
ive modules over A and B.

Let

B =

d⊕
i=1

P⊕uii , (4.2)

where ui > 1 and {P1, P2, . . . , Pd} is a complete list of indecomposable projec-
tive right B-modules which are direct summands of B. Let

C = EndB

( d⊕
i=1

Pi

)
. (4.3)

Then C is graded Morita equivalent to B. Let Mi = Φ(Pi). Then {M1,M2, . . . ,
Md} is a complete list of MCM right modules over A up to degree shifts and
isomorphisms. Since Φ is an equivalence,

C ∼= EndA

( d⊕
i=1

Mi

)
,

as desired.

(4) The assertion follows by Definition 13 and from the fact that qgrA is
equivalent to qgrB [15, Lemma 3.5] and that the global dimension of qgrB is
bounded by the global dimension of grmodB. �

Recall that an algebra A is called indecomposable if it cannot be written as
a sum of two nontrivial algebras; this is equivalent to A having no nontrivial
central idempotents. Similarly, there is a definition of graded indecomposable
algebra. By [16, Lemma 2.7], a graded algebra A is indecomposable if and only
if A is graded indecomposable.

Lemma 27 Let B1 and B2 be two NQRs of a noetherian graded locally finite
algebra A of GKdimension two. Suppose that

(B1)0 = k⊕d1 , (B2)0 = k⊕d2 ,

and that B1 is standard. Then B1
∼= B2 as graded algebras.

Proof By Theorem 6, B1 is isomorphic to A2(Q, τ) for some quiver Q satisfying
the extra conditions listed in Theorem 6. By [17, Lemma 3.4 (2)], the quiver Q
agrees with the Gabriel quiver of B1 (Definition 16). By [15, Theorem 0.6 (1)],
B1 and B2 are graded Morita equivalent. Let

Ψ: grmodB1 → grmodB2
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be an equivalence of categories. Via Ψ, one sees that B1 and B2 have the same
number of indecomposable summands and Ψ matches up these indecomposable
summands as graded Morita equivalences. Therefore, without loss of generality,
one can assume that both B1 and B2 are indecomposable.

By Theorem 1 (2), the number of graded simple right B1-modules (up to
degree shifts and isomorphisms) is the same as the number of graded simple
right B2-modules (up to degree shifts and isomorphisms). That number is
d1 = d2 =: d as

(B1)0 = k⊕d1 , (B2)0 = k⊕d2 .

Let {ei}di=1 be the set of primitive idempotents of B1 (and of B2). Then
{Pi := eiB1}di=1 is a complete set of indecomposable graded projective right
B1-modules up to degree shifts and isomorphisms. Similarly, {Ri := eiB2}di=1
is a complete set of indecomposable graded projective right B2-modules up
to degree shifts and isomorphisms. Since Ψ is an equivalence and the degree
shifts are also equivalences, we may assume that Ψ(Pi) = Ri(wi) for some in-
teger wi > 0 with one of wi being 0. We can further assume that all wi are
non-negative and w1 = 0 after some permutation.

We claim that wi = 0 for all i. If not, there is an i such that wi > 0. By [17,
Lemma 7.3], the quiver Q in B1 = A2(Q, τ) is strongly connected, that is, given
any two vertices i and j in Q there is a directed path from i to j. In particular,
there is a path from 1 to i in Q where w1 = 0 and wi > 0. Along this path,
choose two vertices a 6= b such that there is an arrow from a to b and wa = 0
and wb > 0. By the above choice,

HomB2(Rb(wb), Ra(wa))1 = HomB2(Rb(wb), Ra)1

= HomB2(Rb(wb − 1), Ra)0

= 0

as wb − 1 > 0 and a 6= b. Applying Ψ−1, we obtain

HomB1(Pb, Pa)1 = 0,

which implies that there is no arrow from a to b in the Gabriel quiver Q. This
yields a contradiction. Therefore, all wi = 0 and Ψ(Pi) = Ri for all i. Since Ψ
is an equivalence, we have an isomorphism of algebras

B1
∼= EndB1

(⊕
i

Pi

)
∼= EndB2

(⊕
i

Ri

)
∼= B2,

as desired. �

Proof of Theorem 2 (1) By Lemma 12, any standard NQR B is generalized
AS regular. By Theorem 6, B is isomorphic to A2(Q, τ) that is given in [17,
Definition 7.5].

By Theorem 6, the arrows in the quiver Q have weight 1. Note that B is a
direct sum of finitely many indecomposable algebras. Without loss of generality,
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we may assume that B is indecomposable. Then Q is strongly connected by
[17, Lemma 7.3]. By Theorem 6, ρ(Q) = 2. By [17, Theorem 1.2 (2)], there
is an automorphism µ of Q such that Qop = µQ. By Proposition 23, Q is a
pretzelization of a graph of type ÃD̃Ẽ.

By [17, Lemma 3.4] and the definition of Gabriel quiver, Q is exactly the
Gabriel quiver G (B) of B, whence, G (B) is a pretzelization of a graph of type

ÃD̃Ẽ.

(2) Suppose that there are two standard NQRs, say B1 and B2, of A. The
assertion follows from Lemma 27. �

Definition 28 Suppose that A satisfies the hypotheses of Theorem 2. By
Theorem 2 (2), the standard NQR of A is unique up to isomorphism. In this
case, the Auslander-Reiten quiver of A is defined to be the Gabriel quiver of
the standard NQR of A.

Following Definition 28, one can speak of the Auslander-Retein quiver for
MCM modules over graded algebras in Theorem 2.

Unfortunately, not every algebra A in Theorem 1 has a standard NQR, as
the following example shows.

Example 29 Let char(k) 6= 2, and let k[x, y] be a commutative polynomial
ring with deg x > 0 and deg y > 0. Let

A = k[x, y]〈σ〉,

where σ is the automorphism of k[x, y] of order 2 defined by

σ : x→ −x, y → −y.

Then
B = k[x, y] ∗ 〈σ〉

is an NQR of A by [15, Example 8.5]. It is well known by the commutative
theory that A has two MCMs: A itself and the module C such that

A⊕ C = k[x, y].

(1) If deg x = deg y = 1, then B is a standard NQR and is the preprojective

algebra associated to the Dynkin graph Ã1. Let B′ = EndA(A ⊕ C(1)). Then
B′ is another NQR of A and is isomorphic to B as ungraded algebras. As an
N-graded algebra,

B′0 =
(k k⊕ k

0 k

)
,

which is not semisimple.

(2) If deg x > 1 or deg y > 1, then B is not standard. Note that B0 = k2. If
A has a standard NQR, say B′, then by Lemma 27, B ∼= B′ as graded algebras.
This implies that B is standard, a contradiction. Therefore, A does not have a
standard NQR.
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(3) The uniqueness of B fails in Theorem 2 (2) if we only require B0 = k⊕d.
To see this, we consider the case when deg x = deg y = 2. It is easy to see that
elements in A live in degrees 4N and elements in C(1) live in degrees 4N + 1.
Let B′ = EndA(A ⊕ C(1)). Then B′ is another NQR of A and B′0 = k2 = B0.
But B′1 = k⊕2 and B1 = 0. Therefore, B′ 6∼= B.

The existence of standard NQRs can be proved in the following case.

Lemma 30 Let R be a standard, noetherian, graded, locally finite Auslander
regular and CM algebra with GKdim = 2. Let H be a semisimple Hopf algebra
acting on R homogeneously and inner-faithfully. Assume that the homological
determinant of the H-action [18, Definition 3.7] is trivial. Let A = RH . Suppose
that k is algebraically closed and that the conditions in [15, Example 8.5] hold.
Then A has a standard NQR. As a consequence, the Auslander-Reiten quiver
of A is a pretzelization of a graph of ÃD̃Ẽ type.

Proof Let B = R#H as in [15, Example 8.5]. By [15, Example 8.5], B is an
NQR of A. It is easy to check that B0 is semisimple and B is generated by B0

and B1. Write B and C as in (4.2) and (4.3), respectively, and then C is graded
Morita equivalent to B. As a consequence, C is an NQR of A. By working with
the minimal projective resolution of the graded simples, one can show that C is
generated by C0 and C1. Since k is algebraically closed, it forces that C0 = k⊕d.
This means that C is standard.

The consequence follows from Theorem 2 (1) and Definition 28. �

By Lemma 30, we can apply Theorems 1 and 2 to the situation where R is
a preprojective algebra as studied by Weispfenning [24].
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