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Abstract: Structural diversity is a key feature of forest ecosystems that influences ecosystem 17 
functions from local to macroscales. The ability to measure structural diversity in forests with 18 
varying ecological composition and management history can improve the understanding of 19 
linkages between forest structure and ecosystem functioning. Terrestrial LiDAR has often been used 20 
to provide a detailed characterization of structural diversity at local scales, but it is largely unknown 21 
whether these same structural features are detectable using aerial LiDAR data that are available 22 
across larger spatial scales. We used univariate and multivariate analyses to quantify cross-23 
compatibility of structural diversity metrics from terrestrial versus aerial LiDAR in seven National 24 
Ecological Observatory Network sites across the eastern USA. We found strong univariate 25 
agreement between terrestrial and aerial LiDAR metrics of canopy height, openness, internal 26 
heterogeneity, and leaf area, but found marginal agreement between metrics that describe 27 
heterogeneity of the outer most layer of the canopy. Terrestrial and aerial LiDAR both demonstrated 28 
the ability to distinguish forest sites from structural diversity metrics in multivariate space, but 29 
terrestrial LiDAR was able to resolve finer-scale detail within sites. Our findings indicate that aerial 30 
LiDAR can be of use in quantifying broad-scale variation in structural diversity across macroscales. 31 
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 33 

1. Introduction 34 

Forest structural diversity is the physical arrangement and variability of the living and non-35 

living biotic elements within forest stands, that support many essential ecosystem functions [1]. As 36 

a critical driver of forest function, estimates of structural diversity are a useful proxy for predicting 37 

forest ecosystem functions. For example, structural diversity can be used to predict light 38 

interception [2], microclimate [3], hydrology [4], and resilience to disturbance [5]. Forest structural 39 

diversity arises from the complex interactions of a range of abiotic and biotic factors that influence 40 

the growth and the quantity of vegetation [6–8]. A wide variety of structural diversity metrics can 41 

be estimated using methods that range from traditional forest inventory approaches (e.g. basal area 42 

[9]) to next-generation remote sensing techniques (e.g. canopy traits or multivariate structural types 43 

[7]). The complex and dynamic nature of forest structure has proven challenging to measure 44 
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accurately across scales and forest structure types [10,11], but such measurements could 45 

substantially improve predictions of forest ecosystem functions [12].  46 

 47 

Fig. 1. Comparison of aerial laser scanning (ALS) and terrestrial laser scanning (TLS) point clouds for 48 

the Great Smoky Mountains site of the National Ecological Observatory Network at plot 053 (40 x 40 49 

m) from oblique (A), overhead (B), and side angles (C). Vertical profiles of return heights from raw 50 

LiDAR returns (D) demonstrate the occlusion experienced by both LiDAR methods as a result of their 51 

respective view angles (return density refers to the proportion of total points or relative densities of 52 

returns from each platform).  53 

 54 

LiDAR remote sensing may be particularly useful in quantifying structural diversity by 55 

providing detailed three-dimensional data on the vegetative features and canopy elements within 56 

forest stands, but each LiDAR platform has trade-offs in resolution [13]. LiDAR is a useful tool for 57 

the multi-dimensional characterization of forest structure that has versatile terrestrial and aerial 58 

deployment platforms spanning a multiple of spatial extents and resolutions [14–18]. Terrestrial laser 59 

scanning (TLS) and aerial laser scanning (ALS) have both been shown to be effective at quantifying 60 

components of forest structural diversity [14–20], however, each LiDAR platform has trade-offs for 61 

data resolution and spatial coverage. Stationary TLS instruments and ALS scan the forest from 62 

opposite angles and occlusion by the canopy constrains the capacity of each to obtain data from 63 

portions of the canopy distal to the instrument [21] (Fig. 1). TLS measures the forest from within, 64 

providing high resolution data on complex, fine-scale internal features of canopy structural diversity 65 

[22]. However, TLS data are less reliable for the upper canopy due to occlusion by intervening foliage 66 

[23]. Conversely, ALS measures the forest from above, providing the highest level of detail on the 67 

outer canopy surface with declining capacity to resolve canopy features with increasing canopy 68 

depth [23]. ALS can delineate vertical stratification and understory layers of vegetation [24], but the 69 

accuracy of measuring the sub-canopy with ALS can depend upon the orientation of the overstory 70 
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[25] and the metrics being used [26,27]. Furthermore, it has been shown that ALS instrumentation 71 

specifications, such as point density, can influence the ability to access sub-canopy elements [28,29].  72 

Despite past work examining whether it is possible to obtain similar estimates of structural 73 

diversity with high density TLS data and low density ALS data [23,30–32], little is known about how 74 

these compare across ecologically heterogeneous macroscales. TLS and ALS may not always be able 75 

to resolve the same aspects or metrics of structural diversity well due to their opposing viewing 76 

angles [23,33]. Previous studies within a single site or forest type dominated by one tree species 77 

demonstrated that TLS and ALS estimates of forest structural diversity were correlated [23,34–36]. 78 

However, forests vary in structure and species composition substantially from local to regional scales 79 

[37]. The ability to scale high resolution TLS metrics of structural diversity with spatially extensive 80 

ALS data could help improve the understanding of links between structural diversity and ecosystem 81 

function across scales. It is therefore necessary to compare their ability to estimate forest structural 82 

diversity across different forest types that may vary in their structural types within ecologically 83 

heterogeneous macroscales.  84 

We compared the quantification of structural diversity using metrics from TLS and ALS 85 

across seven forested sites in the eastern USA from the National Ecological Observatory Network 86 

(NEON) (Table 1, Fig. 2). We focused on the types of structural diversity metrics (i.e. canopy 87 

structural traits) that can be measured by LiDAR methods. First, we examined the univariate 88 

correlations of computationally comparable ALS and TLS structural diversity metrics. Second, we 89 

tested for intercorrelations between ALS and TLS suites of structural diversity metrics. Third, we 90 

compared the multivariate suites of ALS and TLS structural diversity metrics to compare their 91 

relative abilities to categorize plots from different forest types. Our study results have implications 92 

for providing a reliable remote sensing toolkit for linking structural diversity and ecosystem 93 

functions in forest macrosystems. 94 

 95 

 96 

 97 

 98 

 99 
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 100 

Fig. 2. Seven forested sites (see Table 1 for site descriptions) from the National Ecological 101 

Observatory Network across the eastern USA measured by aerial laser scanning (ALS) and 102 

terrestrial laser scanning (TLS). 103 

 104 

 105 

Table 1. Seven forested National Ecological Observatory Network sites measured using both 106 

terrestrial laser scanning (TLS) and aerial laser scanning (ALS). 107 

Site (ID) Ecoclimatic domain Dominant forest type NPlots 

Harvard Forest (HARV) Northeast Mixed temperate 19 

Smithsonian Conservation Biology 

Institute (SCBI) 
Mid-Atlantic Mixed temperate 6 

Smithsonian Environmental Research 

Center (SERC) 
Mid-Atlantic Temperate deciduous 13 

Ordway-Swisher Biological Station 

(OSBS) 
Southeast Pine Savannah 20 

University of Notre Dame 

Environmental Research Center East 

(UNDE) 

Great Lakes Mixed temperate 8 

Great Smoky Mountain National Park 

(GRSM) 

Appalachians & 

Cumberland Plateau 
Temperate rainforest 10 

Talladega National Forest (TALL) Ozarks Complex Pine savannah 12 

 108 
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2. Materials and Methods  109 

2.1 LiDAR Data Collection and structural diversity metrics 110 

To evaluate the potential for combining TLS and ALS structural diversity metrics into a more 111 

comprehensive assessment of forest structural diversity at large spatial scales, we analyzed data 112 

acquired using both platforms within 40 m x 40 m distributed sampling plots (n = 88) at seven NEON 113 

sites in the eastern USA (Table 1, Fig. 2). These sites are located in 6 ecoclimatic domains that span a 114 

wide gradient of structural diversity and forest community composition. Structural diversity metrics 115 

derived from both ALS and TLS are grouped into four different categories that all describe traits of 116 

the canopy [10]. These categories include: (1) canopy height, (2) canopy cover and openness, and (3) canopy 117 

heterogeneity (internal and external; [1]), and (4) vegetation area.  118 

 119 

Table 2. Categories of forest structural diversity and metrics from terrestrial laser scanning (TLS) and 120 

aerial laser scanning (ALS) platforms. Details on the derivation and R functions used to calculate 121 

structural metrics can be found in Atkins et al. [10] for TLS and Table S1 for ALS. The abbreviations 122 

of metric names are listed in parentheses. 123 

Category ALS metric TLS metric 

Height 

Mean canopy height (H), Mean 

outer canopy height (MOCH), 

Maximum canopy height (Hmax)  

Mean leaf height (Mean H), Mean 

outer canopy height (MOCH), 

Maximum canopy height 

(Max.can.ht), Mean of squared leaf 

height model (Mode.2), Mode.el 

(Model.el), Mean height of 

maximum VAI (Max.el), Root mean 

square height (meanHRMS), Mean 

height variability (meanHvar), SD 

of mean height (Height.2) 

Cover and openness 

Deep gaps (DG), Deep gap 

fraction (DGF), Cover fraction 

(CF), Gap fraction profile (GFP) 

Deep gaps (DG), Deep gap fraction 

(DGF), Sky fraction (SF), Cover 

fraction (CF) 

 

H
et

er
o

g
en

ei
ty

 

External  
Top rugosity (TR), Rumple 

(Rumple) 

Top rugosity (TR), Rumple 

(Rumple) 

Internal  

SD of vertical SD of height 

(StdStd), Entropy (Entropy), 

Height SD (HSD: rLiDAR), 

Height SD (StdH: lidR), Vertical 

complexity index (VCI) 

Canopy rugosity (Rugosity), Mean 

of vertical SD (MeanStd), SD of 

vertical SD (StdStd), Effective 

number of layers (ENL) 

Vegetation area Vegetation area index (VAI) 
Mean VAI (Mean.VAI), Mean peak 

VAI (Mean.peak.VAI) 

 124 

We measured canopy structural diversity with 21 different metrics (Table 2) from TLS data. 125 

TLS data were collected using a portable canopy LiDAR (a type of TLS) (Riegl LD90-3100VHS-FLP; 126 

Table 3) from each site in summer 2016. The system consists of an upward facing 900 nm laser 127 
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rangefinder mounted on a wearable frame that is moved along a 40 m pre-defined transect through 128 

the plot. The data collected corresponds to a vertical two-dimensional cross section through the 129 

canopy with approximately 500–2,000 data points collected per linear meter (Fig. 1). The full 130 

description of the design, operation, and validation of the TLS system is found in Parker et al. [22]. 131 

For this study, three parallel transects of 40 m each in length were measured per NEON plot (Fig. 1A; 132 

see [2] for data collection methods). In order to reduce seasonal differences in forest structural 133 

diversity, plots were sampled at each site at or very near peak greenness; the exact dates of sampling 134 

for each site can be found in Atkins et al. [38]. This TLS data was then used to characterize canopy 135 

structural diversity from a suite of 21 metrics (Table 2) in the forestr 1.0.1 package [10] in R v.3.5.2 [39], 136 

which creates 1 m2 bins of returns along the 40 m 2D LiDAR point cloud to quantify the 21 structural 137 

diversity metrics. 138 

Table 3. LiDAR system specifications for aerial laser scanning (ALS) and terrestrial laser scanning 139 

(TLS) platforms. 140 

System Specifications Optech ALTM Gemini (ALS) Riegl LD90-3100VHS-FLP (TLS) 

Returns per Pulse Four Five 

Wavelength 1064 nm 900 nm 

Measurement Range 150–4000 m 60 m (ρ ≥ 0.1) –200 m (ρ ≥ 0.8) 

Range Accuracy (typical) ± 5–30 cm ± 2.5 cm 

Bean Divergence Angle 0.25 mrad x 0.8 mrad 3 mrad x 5 mrad 

Measurement Rate (per second) 0–70 (programmable) 2,000 

Average Point Density 1 - 4 points per m2 500–2,000 points per linear meter 

Laser Product Classification Class IV (US FDA 21 CFR) IEC 60825–1:2007 (Eye-safe) 

 141 

We derived a suite of 15 structural diversity metrics (Table 2) from level-1 discrete return 142 

ALS data (Product No. DP1.30003.001) that is collected by the NEON Aerial Observation Platform. 143 

This ALS consists of a 1,064 nm whiskbroom scanning laser (Optech ALTM Gemini; Table 3) flown 144 

over the study sites at 1,000 m above ground level, producing a three-dimensional point cloud with 145 

a final point density of 1–4 points m2 (Table 3). Detailed methods on the NEON ALS data collection 146 

methods and all data can be found on the NEON Data Portal [40]. ALS data were collected for each 147 

site in 2016 (TALL, OSBS, GRSM, HARV, UNDE) or 2017 (SCBI, SERC). All NEON Aerial 148 

Observation Platform data is collected during peak growing season (maximum canopy greenness). 149 

The exact dates for data collection of ALS data used here are available through the NEON data portal 150 

[40]. Extreme outlier points were visually screened in the 1 km2 .laz files provided by NEON and if 151 

outliers were found they were manually filtered out using the readLAS function in the lidR package 152 

[41]. Return heights were corrected for topographic variation using a digital terrain model (DTM). 153 

The DTM was created from the grid_terrain function and was then used to correct return heights for 154 
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topographic variation in the lasnormlize function of the lidR package [41]. A 100 m buffer zone was 155 

included around each plot center to minimize potential edge effects when correcting for topographic 156 

variation. A point cloud encompassing the 1,600 m2 plot area was then clipped from the buffer point 157 

cloud. We used the lidR [41] and rLiDAR R packages [42] to measure 15 structural diversity metrics 158 

(Table 2). The definitions and R functions used to calculate each of the 15 structural diversity metrics 159 

are found in Table S1. There were fewer ALS than TLS metrics because the point density of ALS is 160 

much lower than TLS. Therefore, low density ALS cannot be used to describe some of the TLS metrics 161 

that require fine-scale data on the absence of laser pulses intersecting vegetation in the subcanopy 162 

(e.g. the porousness of gaps between vegetative materials such as leaves [10]). Finally, we compared 163 

the data collection methods of ALS and TLS, by measuring the distance at which structural diversity 164 

metrics stabilized from slices of varying widths taken from ALS data (see the Supplemental 165 

Information Section 1). The analysis supported our approach of averaging multiple 2D canopy slices 166 

of TLS data to estimate plot structural diversity, so that we could then compare these values to whole 167 

plot ALS metrics of structural diversity. 168 

2.2 Data Analysis 169 

To investigate the univariate strength and direction of correlations between ALS and TLS 170 

structural diversity metrics, we calculated a non-parametric Spearman’s correlation coefficient (r) 171 

between equivalently estimated structural diversity metrics and each pairwise combination of 172 

metrics between LiDAR platforms. To facilitate interpretation, we considered an | r | ≥ 0.7 as a strong 173 

correlation, | r | ≥ 0.5 as a moderate correlation, and a | r | ≤ 0.5 as a weak correlation. 174 

We performed multivariate analyses to assess differentiation in the clustering of plots from 175 

different sites based on all the structural diversity metrics provided by the two LiDAR methods. First, 176 

we performed non-metric multidimensional scaling (NMS) ordination on plot-level data sets of the 177 

TLS and ALS suites of structural diversity metrics. Ordinations were conducted in PC-ORD v.5.31 178 

[43] with Sorensen’s distance measure and the ‘‘slow-and-thorough’’ auto-pilot setting, using 250 179 

runs of real data and 250 Monte Carlo randomizations to assess the robustness of the solution [44]. 180 

Ordinations were conducted on matrices with all metrics first relativized to the maximum value that 181 

the metric obtained to scale all metrics equivalently. We tested for differences among groupings in 182 

each data set (TLS, ALS) in multivariate suites of canopy structural metrics using Multiple Response 183 

Permutation Procedure (MRPP) with Sorensen’s distance measure in PC-ORD [44]. We performed 184 

hierarchical agglomerative clustering on matrices of structural diversity metrics to determine 185 

clustering of plots into canopy structural types [7]. Clustering was performed with PC-ORD using 186 

Ward’s Method and Euclidean distance measures [44]. The optimal cluster grouping level was 187 

determined by conducting Indicator Species Analysis and deriving mean p-values for indicator 188 

values across all metrics for each level of grouping [44]. The grouping level with the lowest mean p-189 

value was selected as the optimal grouping level or cluster for the data [44]. Finally, we compared 190 

the classification of plots between the ALS and TLS-derived classifications by creating a confusion 191 

matrix with TLS classifications utilized as the “ground-truth” data for assessing the classification 192 

produced by the ALS system. 193 

3. Results 194 

3.1 Univariate Comparison of ALS and TLS Metrics 195 
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Many metrics from ALS and TLS were correlated (r = 0.44–0.92) within and across structural 196 

diversity categories (Fig. 3). First, there were significant moderate to strong correlations of r > 0.6 197 

among eight metrics that have equivalent measurements of the same structural aspect of canopies 198 

(Table 4). The only exception was in the category of external heterogeneity, where there was a weak 199 

significant correlation between ALS and TLS metrics of top rugosity (r = 0.44), but not rumple (r = 200 

0.09) (Table 4, Fig. 3). Second, ALS and TLS metrics within the same category of structural diversity, 201 

but not necessarily the equivalent measurement of the same metric, varied in how strongly they were 202 

correlated (Fig. 3). Height and vegetation area metrics were both moderately to strongly positively 203 

correlated (Fig. 3). Cover and openness metrics were strongly correlated between TLS and ALS (Fig. 204 

3). When comparing ALS and TLS, heterogeneity metrics were much more variable in their 205 

correlation strength, which varied from neutral to strongly positively correlated (Fig. 3). Third, there 206 

was significant and frequent intercorrelation among metrics of structural diversity from different 207 

categories (Fig. 3). Overall, this analysis suggests that ALS-derived metrics of structural diversity can 208 

provide statistically similar estimates of structural diversity compared to TLS, though the accuracy 209 

of these estimates vary depending on the specific structural metric.  210 

 211 

Table 4. Spearman correlations between equivalently estimated structural diversity metrics with 212 

terrestrial laser scanning (TLS) and aerial laser scanning (ALS). * indicates that values were significant 213 

at α < 0.05. 214 

Category ALS TLS r 

Height 

MOCH MOCH 0.80* 

H H 0.72* 

Hmax Max.can.ht 0.92* 

Cover and openness 
DGF DGF 0.66* 

CF CF 0.74* 

External heterogeneity 
Rumple Rumple 0.09 

TR TR 0.44* 

Internal heterogeneity 
StdH MeanStd 0.61* 

StdStd Rugosity 0.74* 

Vegetation area VAI VAI 0.87* 

 215 
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 216 

Fig. 3. Pairwise Spearman correlation coefficients between aerial laser scanning (ALS) (Y-axis) and 217 

terrestrial lasering scanning (TLS) metrics (X-axis). Boxes show the paired correlation coefficient 218 

results and the colors of the squares indicate the strength of each correlation; an X indicates a 219 

relationship was not significant at α < 0.05.  220 

 221 

3.2 Multivariate Comparison of ALS and TLS Classifications 222 

There was strong agreement in the general multivariate classification of plots from different 223 

forest sites by ALS and TLS metrics of structural diversity (Fig. 4), demonstrating the ability of both 224 

systems to resolve forest type differences at the macroscale. NMS ordination of structural diversity 225 

derived from ALS data had a two-dimensional solution with a mean Stress of 7.811, which was 226 

significant relative to randomized data (p = 0.004) and explained a 98.2% of the variation in the 227 

original data matrix (Fig. 4A). The first axis explained 73.4% of the variation and was driven most 228 

strongly by VAI and maximum canopy height. The second axis explained an additional 24.8% of the 229 

variation and was most strongly driven by vertical variation in canopy height. There was relatively 230 

strong separation between sites in the ALS-based ordination space (Fig. 4A) and MRPP analysis 231 

indicated significant differentiation among sites in structural diversity (A = 0.50, p < 0.001). 232 

Classification of the TLS structural diversity metrics was also explained in two dimensions of 233 

multivariate structural space (Fig. 4B). The NMS ordination based on TLS structural diversity metrics 234 

had a two-dimensional solution that was significant relative to randomized data (p = 0.004; mean 235 

Stress = 8.665) and explained a 97.9 % of the variation in the original data matrix. The first axis 236 

explained 80.6% of the variation and was driven by vegetation area and openness. The second axis 237 

explained an additional 17.4% of the variation and was driven by canopy height and internal 238 

heterogeneity. NMS ordination of structural diversity derived from TLS data illustrated 239 
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differentiation among sites (MRPP analysis A = 0.45, p < 0.001). Both ALS and TLS suites of structural 240 

diversity metrics provided similar two-dimensional characterization of plots from different sites (c.f. 241 

Fig. 4A, 4B), indicating that both LiDAR systems are able to resolve differences in structural diversity 242 

of plots from different forest types at a sub-continental scale.  243 

 244 

Fig. 4. Non-metric multi-dimensional scaling ordination illustrating variation in multivariate 245 

classification of plots across seven studied forest sites from structural diversity as measured using a) 246 

aerial laser scanning (ALS) and b) terrestrial laser scanning (TLS). Site ID abbreviations can be found 247 

in Table 1.  248 

 249 

While there was broad agreement in the clustering of plots from structurally similar forest 250 

sites that vary by height and openness from ALS and TLS metrics of structural diversity, the finer 251 

resolution of TLS data provided a greater ability to distinguish plots from within sites that have subtle 252 

differences in structural diversity (Fig. 5, Table 5). Hierarchical agglomerative clustering of TLS and 253 

ALS structural metrics produced different numbers of clusters in structural diversity space indicating 254 

that, as expected, TLS and ALS are sensitive to different canopy structural features. ALS structural 255 

diversity metrics were clustered into 3 groups (based on iterative indicator species analysis 256 

conducted on grouping levels; minimum average p-value in 3 cluster solution: p = 0.0002) (Table 5). 257 

These three groups separate plots from sites approximately by geography (latitude) with groups of 258 

northern (medium height and high canopy cover), mid-Atlantic/Appalachian (tallest height and high 259 

canopy cover), and southern sites (lowest height and open canopy) (Fig. 5A). In contrast, TLS 260 

structural diversity metrics grouped canopies into 5 clusters (minimum mean p-value from ISA – p = 261 

0.001) (Table 5). These clusters split the plots from the following groups of sites: HARV/SERC, 262 

GRSM/SERC, UNDE/SCBI, OSBS, and a subset of TALL (Fig. 5B). The additional groupings 263 

distinguished by the TLS data were related to plots with very tall canopy, but low complexity (cluster 264 

5 – TALL site), plots with short canopy, but high VAI (cluster 3 – largely at HARV and UNDE), and 265 

plots with extreme vertical complexity (cluster 2 – largely GRSM and SERC). Comparison of the 266 

groupings of plots into clusters using the two different data sets illustrated both substantial 267 

agreement in some regards and separation in others (Table 5). The two classification systems agreed 268 

in placing the OSBS plots into a distinct cluster group, while the other two ALS clusters aggregated 269 

plots largely from 2 or 3 of the TLS clusters respectively. The ability of the TLS to split plots from 270 

different sites into clusters with plots from other sites illustrates that TLS permits the characterization 271 
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of within-site variability of structural diversity, versus the purely among-site variation that was 272 

represented in the ALS ordination and clustering (c.f. Fig. 5A, B). 273 

 274 

Table 5. Comparison of plot assignment to groupings derived from hierarchical agglomerative 275 

clustering of aerial laser scanning (ALS) and terrestrial laser scanning (TLS) illustrating structural 276 

diversity variation in multivariate space between LiDAR platforms. Cluster name indicates which 277 

plot was assigned to a given TLS or ALS cluster. Numbers indicate the how many plots were assigned 278 

to each cluster.  279 

Cluster TLS1 TLS2 TLS3 TLS4 TLS5 Total 

ALS1 12 15 4 0 4 35 

ALS2 14 2 16 0 0 32 

ALS3 1 0 0 20 0 21 

Total 27 17 20 20 4 88 

 280 

 281 

Fig. 5. Illustration of canopy structural type groupings derived from hierarchical agglomerative 282 

clustering overlaid on non-metric multi-dimensional scaling ordination of structural diversity across 283 

seven studied forest sites; A) illustrates cluster groups derived from aerial laser scanning (ALS) data 284 

and b) cluster groups from terrestrial laser scanning (TLS) data. 285 

4. Discussion 286 

Despite terrestrial and aerial LiDAR systems having trade-offs in their resolution and spatial 287 

extent for the characterization of structural diversity, the results of our study show broad agreement 288 

between ALS and TLS in the potential to quantify canopy structural diversity across a variety of forest 289 
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types at a sub-continental scale. We showed robust concurrence among equivalent measures of 290 

canopy height, cover and openness, vegetation area, and internal heterogeneity. We also show that 291 

ALS delineates the multivariate canopy structural types among forest sites at a sub-continental scale. 292 

Our results demonstrate that low resolution, large footprint ALS systems may be a useful tool for 293 

classifying forests by structural diversity at landscape to sub-continental scales. However, TLS 294 

derived metrics may be required to resolve fine-scale structural variation within forest types, such as 295 

that related to disturbance history, management, or successional development [34,45]. Previous 296 

studies have focused on comparisons of ALS and TLS at a single site or forest type in a localized 297 

region, but consistent with our results, these have found that ALS and TLS are comparable in their 298 

capacity to delineate features such as canopy height, cover, and vertical stratification [23,34–36]. TLS 299 

systems are a well-established method to provide high resolution, functionally meaningful 300 

measurements of structural diversity in forest ecosystems at the stand-scale [2,19,20,22,35,46], but 301 

these results demonstrate that ALS could potentially be used to scale the characterization of canopy 302 

structural diversity to much broader spatial extents.  303 

The effects of occlusion that plague both bottom-up TLS and top-down ALS methods did not 304 

prevent robust agreement for 8 of the 10 equivalent metrics tested here, but did result in low 305 

agreement for two metrics of external heterogeneity. The top-down view of ALS versus the bottom-306 

up viewing angle of TLS results in a difference of laser beam attenuation that may mean these systems 307 

see non-overlapping portions of the canopy volume (Fig. 1). Specifically, ALS typically exhibits 308 

decreased capacity to resolve subcanopy vegetation relative to TLS due to increased attenuation. 309 

However, ALS has been shown to be able to resolve layer differences in multi-level forest canopies 310 

in combination with robust predictive models [47]. Meanwhile, TLS exhibited a decreased ability to 311 

clearly characterize upper canopy elements relative to ALS also due increased attenuation [36]. The 312 

partial occlusion of the canopy surface in TLS data was apparent in our study, as univariate analyses 313 

illustrated only partial agreement among measures of external canopy heterogeneity that estimate 314 

structural diversity at the outer canopy surface. A similar issue was observed by Hilker et al. [23], 315 

who found that while TLS accurately measured canopy height from the top 10% of points, it 316 

underestimated total canopy height by approximately a meter. This suggests a need for caution in 317 

relying on the Portable Canopy TLS [22] for measuring outer canopy features (e.g. external 318 

heterogeneity), whereas ALS seems better suited for this category of structural diversity metric. 319 

Nevertheless, the broad agreement we observed between ALS and TLS methods for quantifying most 320 

categories of structural diversity metrics supports the use of ALS to scale up functionally relevant 321 

measurements of canopy structure, and further suggests that structural metrics derived from ALS 322 

can serve as a reasonable proxy for TLS derived metrics (e.g. [47]). Recent advances in new LiDAR 323 

technologies (e.g. full waveform LiDAR, Geiger mode, or USGS level-1 aggregates of a nominal pulse 324 

density 8 pts/m) and new computational algorithms are beginning to help reduce occlusion issues 325 

that hinder ALS, which may result in an even stronger agreement between ALS and TLS for 326 

measuring structural diversity. ALS is useful for measuring structural diversity metrics, however 327 

future research that incorporates these technological and computational advances could further 328 

improve the measurement of forest structural diversity.  329 

The relatively low resolution of ALS is sufficient to distinguish between different forest sites 330 

based on multivariate structural diversity, but TLS is better suited to resolving within site variation. 331 

In our study there was a similar placement of plots from different forest types in multivariate space 332 
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based on ALS and TLS structural diversity metrics. These seven forest sites spanned an ecological 333 

gradient across six of NEON’s ecoclimatic domains, which may enhance our ability to identify unique 334 

clusters of structural diversity types. However, there were both similarities and differences in the 335 

hierarchical agglomerative clustering by TLS (5 clusters) and ALS (3 clusters). For example, OSBS, a 336 

pine savannah characterized by open canopies and short trees, was always placed in its own cluster 337 

by both LiDAR platforms. This illustrates the ability to clearly delineate general structural types 338 

among different forests for ALS or TLS. Forest sites with denser canopies, dominated by deciduous 339 

species (which tend to have broader, rounded crowns), did not cluster similarly and were split among 340 

four TLS clusters and two from ALS. This indicates that studies seeking to investigate fine-scale 341 

differences in structural diversity within a forest type or single site should rely on TLS to accurately 342 

characterize sub-canopy structure. There are ecological and management circumstances for which it 343 

is desirable to resolve fine-scale structural variation and its role in forest ecosystem function; for 344 

example, to understand differences in local disturbance on the same forest type [34] or to assess the 345 

effects of forest management actions [48]. However, previous studies have demonstrated that at 346 

larger scales greater variation in structural diversity occurs across forest types and sites rather than 347 

within sites [2,18,49]. For example, canopy structural types defined using multi-dimensional metrics 348 

of three-dimensional forest structure are useful for predicting forest productivity [7]. The 349 

applicability of ALS to delineate structural diversity types in forest transitional zones has yet to be 350 

rigorously tested, but we hypothesize the within-type structural variability might be high while the 351 

among-type variability would be low for different forest types. Transitional forest types on a 352 

landscape-level would likely create additional clusters to those that we found in the ALS multivariate 353 

analysis here. We suggest that the derivation of some canopy traits and general canopy structural 354 

types across landscapes is feasible with ALS and that ALS could be an appropriate choice for 355 

characterizing broad-scale forest variation in forest macrosystem studies (e.g. [50]). We also caution 356 

users of ALS to keep the context of structural attributes of forests in mind, because resolving 357 

structural diversity in the sub-canopy of open canopies will be easier than dense, closed canopies that 358 

pose occlusion issues for low density ALS.   359 

5. Conclusions 360 

The TLS and ALS systems compared here each provide unique benefits for remotely sensing 361 

forest structural diversity, and both can be robustly applied across different forest types at a sub-362 

continental scale. The portable canopy LiDAR TLS system we examined is extremely portable and 363 

efficient at collecting within-canopy structural diversity data at stand scales—which makes this TLS 364 

system useful in small-scale structural diversity analyses where higher point densities are needed. 365 

The ALS system has the capacity to measure structural diversity at broader scales, which is 366 

advantageous for investigating spatial and temporal dynamics or testing compatibility to model 367 

simulations that use spaceborne remote sensing data at larger extents than is feasible to measure with 368 

TLS systems. Furthermore, future studies should also compare remotely sensed measures of 369 

structural diversity with forest-inventory based-structural diversity metrics (e.g. [9]), because forest 370 

managers often make management decisions based predominantly on inventory metrics. Advances 371 

in the open source coding and the accessibility of ALS, from organizations such as NEON, has a 372 

distinct capacity to quantify forest canopy structural diversity at scales that have not been possible 373 

until recently. These improvements allow for the incorporation of more comprehensive structural 374 



Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 18 

 

information in ecological models, forest management, and strategic decision making for forest 375 

macrosystems. Understanding the limitations and shortcomings of ALS and TLS LiDAR systems, and 376 

how we can utilize the complementary strengths of these systems, is a critical step forward for further 377 

understanding the complex dynamics that link forest structural diversity with macroscale patterns 378 

of ecosystem functioning.  379 
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analysis for cover fraction, deep gaps, deep gap fraction, and gap fraction profile. 385 
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