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Abstract: Structural diversity is a key feature of forest ecosystems that influences ecosystem
functions from local to macroscales. The ability to measure structural diversity in forests with
varying ecological composition and management history can improve the understanding of
linkages between forest structure and ecosystem functioning. Terrestrial LIDAR has often been used
to provide a detailed characterization of structural diversity at local scales, but it is largely unknown
whether these same structural features are detectable using aerial LIDAR data that are available
across larger spatial scales. We used univariate and multivariate analyses to quantify cross-
compatibility of structural diversity metrics from terrestrial versus aerial LIDAR in seven National
Ecological Observatory Network sites across the eastern USA. We found strong univariate
agreement between terrestrial and aerial LIDAR metrics of canopy height, openness, internal
heterogeneity, and leaf area, but found marginal agreement between metrics that describe
heterogeneity of the outer most layer of the canopy. Terrestrial and aerial LIDAR both demonstrated
the ability to distinguish forest sites from structural diversity metrics in multivariate space, but
terrestrial LIDAR was able to resolve finer-scale detail within sites. Our findings indicate that aerial
LiDAR can be of use in quantifying broad-scale variation in structural diversity across macroscales.

Keywords: ALS; Forest Ecology; Forest Structure; NEON; Macrosystems Biology; TLS

1. Introduction

Forest structural diversity is the physical arrangement and variability of the living and non-
living biotic elements within forest stands, that support many essential ecosystem functions [1]. As
a critical driver of forest function, estimates of structural diversity are a useful proxy for predicting
forest ecosystem functions. For example, structural diversity can be used to predict light
interception [2], microclimate [3], hydrology [4], and resilience to disturbance [5]. Forest structural
diversity arises from the complex interactions of a range of abiotic and biotic factors that influence
the growth and the quantity of vegetation [6-8]. A wide variety of structural diversity metrics can
be estimated using methods that range from traditional forest inventory approaches (e.g. basal area
[9]) to next-generation remote sensing techniques (e.g. canopy traits or multivariate structural types

[7]). The complex and dynamic nature of forest structure has proven challenging to measure
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accurately across scales and forest structure types [10,11], but such measurements could

substantially improve predictions of forest ecosystem functions [12].
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Fig. 1. Comparison of aerial laser scanning (ALS) and terrestrial laser scanning (TLS) point clouds for
the Great Smoky Mountains site of the National Ecological Observatory Network at plot 053 (40 x 40
m) from oblique (A), overhead (B), and side angles (C). Vertical profiles of return heights from raw
LiDAR returns (D) demonstrate the occlusion experienced by both LIDAR methods as a result of their
respective view angles (return density refers to the proportion of total points or relative densities of

returns from each platform).

LiDAR remote sensing may be particularly useful in quantifying structural diversity by
providing detailed three-dimensional data on the vegetative features and canopy elements within
forest stands, but each LiDAR platform has trade-offs in resolution [13]. LiDAR is a useful tool for
the multi-dimensional characterization of forest structure that has versatile terrestrial and aerial
deployment platforms spanning a multiple of spatial extents and resolutions [14-18]. Terrestrial laser
scanning (TLS) and aerial laser scanning (ALS) have both been shown to be effective at quantifying
components of forest structural diversity [14-20], however, each LiDAR platform has trade-offs for
data resolution and spatial coverage. Stationary TLS instruments and ALS scan the forest from
opposite angles and occlusion by the canopy constrains the capacity of each to obtain data from
portions of the canopy distal to the instrument [21] (Fig. 1). TLS measures the forest from within,
providing high resolution data on complex, fine-scale internal features of canopy structural diversity
[22]. However, TLS data are less reliable for the upper canopy due to occlusion by intervening foliage
[23]. Conversely, ALS measures the forest from above, providing the highest level of detail on the
outer canopy surface with declining capacity to resolve canopy features with increasing canopy
depth [23]. ALS can delineate vertical stratification and understory layers of vegetation [24], but the

accuracy of measuring the sub-canopy with ALS can depend upon the orientation of the overstory
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[25] and the metrics being used [26,27]. Furthermore, it has been shown that ALS instrumentation
specifications, such as point density, can influence the ability to access sub-canopy elements [28,29].

Despite past work examining whether it is possible to obtain similar estimates of structural
diversity with high density TLS data and low density ALS data [23,30-32], little is known about how
these compare across ecologically heterogeneous macroscales. TLS and ALS may not always be able
to resolve the same aspects or metrics of structural diversity well due to their opposing viewing
angles [23,33]. Previous studies within a single site or forest type dominated by one tree species
demonstrated that TLS and ALS estimates of forest structural diversity were correlated [23,34-36].
However, forests vary in structure and species composition substantially from local to regional scales
[37]. The ability to scale high resolution TLS metrics of structural diversity with spatially extensive
ALS data could help improve the understanding of links between structural diversity and ecosystem
function across scales. It is therefore necessary to compare their ability to estimate forest structural
diversity across different forest types that may vary in their structural types within ecologically
heterogeneous macroscales.

We compared the quantification of structural diversity using metrics from TLS and ALS
across seven forested sites in the eastern USA from the National Ecological Observatory Network
(NEON) (Table 1, Fig. 2). We focused on the types of structural diversity metrics (i.e. canopy
structural traits) that can be measured by LiDAR methods. First, we examined the univariate
correlations of computationally comparable ALS and TLS structural diversity metrics. Second, we
tested for intercorrelations between ALS and TLS suites of structural diversity metrics. Third, we
compared the multivariate suites of ALS and TLS structural diversity metrics to compare their
relative abilities to categorize plots from different forest types. Our study results have implications
for providing a reliable remote sensing toolkit for linking structural diversity and ecosystem

functions in forest macrosystems.
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Fig. 2. Seven forested sites (see Table 1 for site descriptions) from the National Ecological
Observatory Network across the eastern USA measured by aerial laser scanning (ALS) and

terrestrial laser scanning (TLS).

Table 1. Seven forested National Ecological Observatory Network sites measured using both

terrestrial laser scanning (TLS) and aerial laser scanning (ALS).

Site (ID) Ecoclimatic domain ~ Dominant forest type  Npios
Harvard Forest (HARV) Northeast Mixed temperate 19
Smithsonian Conservation Biology
Mid-Atlantic Mixed temperate 6
Institute (SCBI)
Smithsonian Environmental Research
Mid-Atlantic Temperate deciduous 13
Center (SERC)
Ordway-Swisher Biological Station
Southeast Pine Savannah 20
(OSBS)
University of Notre Dame
Environmental Research Center East Great Lakes Mixed temperate 8
(UNDE)
Great Smoky Mountain National Park Appalachians & )
Temperate rainforest 10
(GRSM) Cumberland Plateau
Talladega National Forest (TALL) Ozarks Complex Pine savannah 12
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2. Materials and Methods

2.1 LiDAR Data Collection and structural diversity metrics

To evaluate the potential for combining TLS and ALS structural diversity metrics into a more
comprehensive assessment of forest structural diversity at large spatial scales, we analyzed data
acquired using both platforms within 40 m x 40 m distributed sampling plots (n = 88) at seven NEON
sites in the eastern USA (Table 1, Fig. 2). These sites are located in 6 ecoclimatic domains that span a
wide gradient of structural diversity and forest community composition. Structural diversity metrics
derived from both ALS and TLS are grouped into four different categories that all describe traits of
the canopy [10]. These categories include: (1) canopy height, (2) canopy cover and openness, and (3) canopy

heterogeneity (internal and external; [1]), and (4) vegetation area.

Table 2. Categories of forest structural diversity and metrics from terrestrial laser scanning (TLS) and
aerial laser scanning (ALS) platforms. Details on the derivation and R functions used to calculate
structural metrics can be found in Atkins et al. [10] for TLS and Table S1 for ALS. The abbreviations

of metric names are listed in parentheses.

Category ALS metric TLS metric

Mean leaf height (Mean H), Mean
outer canopy height (MOCH),
Maximum canopy height
(Max.can.ht), Mean of squared leaf
height model (Mode.2), Mode.el
(Model.el), Mean height of
maximum VAI (Max.el), Root mean

square height (meanHRMS), Mean

Mean canopy height (H), Mean
Height outer canopy height (MOCH),
Maximum canopy height (Hmax)

height variability (meanHvar), SD
of mean height (Height.2)

Deep gaps (DG), Deep gap Deep gaps (DG), Deep gap fraction
Cover and openness fraction (DGF), Cover fraction (DGF), Sky fraction (SF), Cover
(CF), Gap fraction profile (GFP) fraction (CF)
Top rugosity (TR), Rumple Top rugosity (TR), Rumple
External
= (Rumple) (Rumple)
'E SD of vertical SD of height . )
) Canopy rugosity (Rugosity), Mean
&0 (StdStd), Entropy (Entropy), .
g ) ] of vertical SD (MeanStd), SD of
< Internal Height SD (HSD: rLiDAR), ] i
T ) ) ) vertical SD (StdStd), Effective
Height SD (StdH: lidR), Vertical
o number of layers (ENL)
complexity index (VCI)
. . ) Mean VAI (Mean.VAI), Mean peak
Vegetation area Vegetation area index (VAI)

VAI (Mean.peak.VAI)

We measured canopy structural diversity with 21 different metrics (Table 2) from TLS data.
TLS data were collected using a portable canopy LiDAR (a type of TLS) (Riegl LD90-3100VHS-FLP;

Table 3) from each site in summer 2016. The system consists of an upward facing 900 nm laser
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rangefinder mounted on a wearable frame that is moved along a 40 m pre-defined transect through
the plot. The data collected corresponds to a vertical two-dimensional cross section through the
canopy with approximately 500-2,000 data points collected per linear meter (Fig. 1). The full
description of the design, operation, and validation of the TLS system is found in Parker et al. [22].
For this study, three parallel transects of 40 m each in length were measured per NEON plot (Fig. 1A;
see [2] for data collection methods). In order to reduce seasonal differences in forest structural
diversity, plots were sampled at each site at or very near peak greenness; the exact dates of sampling
for each site can be found in Atkins et al. [38]. This TLS data was then used to characterize canopy
structural diversity from a suite of 21 metrics (Table 2) in the forestr 1.0.1 package [10] in R v.3.5.2 [39],
which creates 1 m2bins of returns along the 40 m 2D LiDAR point cloud to quantify the 21 structural
diversity metrics.

Table 3. LiDAR system specifications for aerial laser scanning (ALS) and terrestrial laser scanning
(TLS) platforms.

System Specifications Optech ALTM Gemini (ALS)  Riegl LD90-3100VHS-FLP (TLS)
Returns per Pulse Four Five

Wavelength 1064 nm 900 nm

Measurement Range 150-4000 m 60 m (0=0.1) 200 m (0 = 0.8)
Range Accuracy (typical) +5-30 cm +25cm

Bean Divergence Angle 0.25 mrad x 0.8 mrad 3 mrad x 5 mrad

Measurement Rate (per second) 0-70 (programmable) 2,000

Average Point Density 1 - 4 points per m? 500-2,000 points per linear meter

Laser Product Classification Class IV (US FDA 21 CFR) IEC 60825-1:2007 (Eye-safe)

We derived a suite of 15 structural diversity metrics (Table 2) from level-1 discrete return
ALS data (Product No. DP1.30003.001) that is collected by the NEON Aerial Observation Platform.
This ALS consists of a 1,064 nm whiskbroom scanning laser (Optech ALTM Gemini; Table 3) flown
over the study sites at 1,000 m above ground level, producing a three-dimensional point cloud with
a final point density of 1-4 points m? (Table 3). Detailed methods on the NEON ALS data collection
methods and all data can be found on the NEON Data Portal [40]. ALS data were collected for each
site in 2016 (TALL, OSBS, GRSM, HARV, UNDE) or 2017 (SCBI, SERC). All NEON Aerial
Observation Platform data is collected during peak growing season (maximum canopy greenness).
The exact dates for data collection of ALS data used here are available through the NEON data portal
[40]. Extreme outlier points were visually screened in the 1 km? laz files provided by NEON and if
outliers were found they were manually filtered out using the readLAS function in the lidR package
[41]. Return heights were corrected for topographic variation using a digital terrain model (DTM).

The DTM was created from the grid_terrain function and was then used to correct return heights for



155
156
157
158
159
160
161
162
163
164
165
166
167
168

169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194

195

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 18

topographic variation in the lasnormlize function of the lidR package [41]. A 100 m buffer zone was
included around each plot center to minimize potential edge effects when correcting for topographic
variation. A point cloud encompassing the 1,600 m? plot area was then clipped from the buffer point
cloud. We used the lidR [41] and rLiDAR R packages [42] to measure 15 structural diversity metrics
(Table 2). The definitions and R functions used to calculate each of the 15 structural diversity metrics
are found in Table S1. There were fewer ALS than TLS metrics because the point density of ALS is
much lower than TLS. Therefore, low density ALS cannot be used to describe some of the TLS metrics
that require fine-scale data on the absence of laser pulses intersecting vegetation in the subcanopy
(e.g. the porousness of gaps between vegetative materials such as leaves [10]). Finally, we compared
the data collection methods of ALS and TLS, by measuring the distance at which structural diversity
metrics stabilized from slices of varying widths taken from ALS data (see the Supplemental
Information Section 1). The analysis supported our approach of averaging multiple 2D canopy slices
of TLS data to estimate plot structural diversity, so that we could then compare these values to whole

plot ALS metrics of structural diversity.

2.2 Data Analysis

To investigate the univariate strength and direction of correlations between ALS and TLS
structural diversity metrics, we calculated a non-parametric Spearman’s correlation coefficient ()
between equivalently estimated structural diversity metrics and each pairwise combination of
metrics between LiDAR platforms. To facilitate interpretation, we considered an | # | 2 0.7 as a strong
correlation, | | > 0.5 as a moderate correlation, and a | » | 0.5 as a weak correlation.

We performed multivariate analyses to assess differentiation in the clustering of plots from
different sites based on all the structural diversity metrics provided by the two LiDAR methods. First,
we performed non-metric multidimensional scaling (NMS) ordination on plot-level data sets of the
TLS and ALS suites of structural diversity metrics. Ordinations were conducted in PC-ORD v.5.31
[43] with Sorensen’s distance measure and the “slow-and-thorough’ auto-pilot setting, using 250
runs of real data and 250 Monte Carlo randomizations to assess the robustness of the solution [44].
Ordinations were conducted on matrices with all metrics first relativized to the maximum value that
the metric obtained to scale all metrics equivalently. We tested for differences among groupings in
each data set (TLS, ALS) in multivariate suites of canopy structural metrics using Multiple Response
Permutation Procedure (MRPP) with Sorensen’s distance measure in PC-ORD [44]. We performed
hierarchical agglomerative clustering on matrices of structural diversity metrics to determine
clustering of plots into canopy structural types [7]. Clustering was performed with PC-ORD using
Ward’s Method and Euclidean distance measures [44]. The optimal cluster grouping level was
determined by conducting Indicator Species Analysis and deriving mean p-values for indicator
values across all metrics for each level of grouping [44]. The grouping level with the lowest mean p-
value was selected as the optimal grouping level or cluster for the data [44]. Finally, we compared
the classification of plots between the ALS and TLS-derived classifications by creating a confusion
matrix with TLS classifications utilized as the “ground-truth” data for assessing the classification

produced by the ALS system.
3. Results

3.1 Univariate Comparison of ALS and TLS Metrics
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Many metrics from ALS and TLS were correlated (r = 0.44-0.92) within and across structural
diversity categories (Fig. 3). First, there were significant moderate to strong correlations of r > 0.6
among eight metrics that have equivalent measurements of the same structural aspect of canopies
(Table 4). The only exception was in the category of external heterogeneity, where there was a weak
significant correlation between ALS and TLS metrics of top rugosity (v = 0.44), but not rumple (r =
0.09) (Table 4, Fig. 3). Second, ALS and TLS metrics within the same category of structural diversity,
but not necessarily the equivalent measurement of the same metric, varied in how strongly they were
correlated (Fig. 3). Height and vegetation area metrics were both moderately to strongly positively
correlated (Fig. 3). Cover and openness metrics were strongly correlated between TLS and ALS (Fig.
3). When comparing ALS and TLS, heterogeneity metrics were much more variable in their
correlation strength, which varied from neutral to strongly positively correlated (Fig. 3). Third, there
was significant and frequent intercorrelation among metrics of structural diversity from different
categories (Fig. 3). Overall, this analysis suggests that ALS-derived metrics of structural diversity can
provide statistically similar estimates of structural diversity compared to TLS, though the accuracy

of these estimates vary depending on the specific structural metric.

Table 4. Spearman correlations between equivalently estimated structural diversity metrics with
terrestrial laser scanning (TLS) and aerial laser scanning (ALS). * indicates that values were significant
at a <0.05.

Category ALS TLS r
MOCH MOCH 0.80*
Height H H 0.72*
Hmax Max.can.ht 0.92*
DGF DGF 0.66*
Cover and openness
CF CF 0.74*
. Rumple Rumple 0.09
External heterogeneity

TR TR 0.44*
) StdH MeanStd 0.61%

Internal heterogeneity .
StdStd Rugosity 0.74*
Vegetation area VAI VAI 0.87*
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Fig. 3. Pairwise Spearman correlation coefficients between aerial laser scanning (ALS) (Y-axis) and
terrestrial lasering scanning (TLS) metrics (X-axis). Boxes show the paired correlation coefficient
results and the colors of the squares indicate the strength of each correlation; an X indicates a

relationship was not significant at ot < 0.05.

3.2 Multivariate Comparison of ALS and TLS Classifications

There was strong agreement in the general multivariate classification of plots from different
forest sites by ALS and TLS metrics of structural diversity (Fig. 4), demonstrating the ability of both
systems to resolve forest type differences at the macroscale. NMS ordination of structural diversity
derived from ALS data had a two-dimensional solution with a mean Stress of 7.811, which was
significant relative to randomized data (p = 0.004) and explained a 98.2% of the variation in the
original data matrix (Fig. 4A). The first axis explained 73.4% of the variation and was driven most
strongly by VAI and maximum canopy height. The second axis explained an additional 24.8% of the
variation and was most strongly driven by vertical variation in canopy height. There was relatively
strong separation between sites in the ALS-based ordination space (Fig. 4A) and MRPP analysis
indicated significant differentiation among sites in structural diversity (A = 0.50, p < 0.001).
Classification of the TLS structural diversity metrics was also explained in two dimensions of
multivariate structural space (Fig. 4B). The NMS ordination based on TLS structural diversity metrics
had a two-dimensional solution that was significant relative to randomized data (p = 0.004; mean
Stress = 8.665) and explained a 97.9 % of the variation in the original data matrix. The first axis
explained 80.6% of the variation and was driven by vegetation area and openness. The second axis
explained an additional 17.4% of the variation and was driven by canopy height and internal

heterogeneity. NMS ordination of structural diversity derived from TLS data illustrated
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differentiation among sites (MRPP analysis A =0.45, p <0.001). Both ALS and TLS suites of structural
diversity metrics provided similar two-dimensional characterization of plots from different sites (c.f.
Fig.4A, 4B), indicating that both LIDAR systems are able to resolve differences in structural diversity

of plots from different forest types at a sub-continental scale.
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Fig. 4. Non-metric multi-dimensional scaling ordination illustrating variation in multivariate

classification of plots across seven studied forest sites from structural diversity as measured using a)
aerial laser scanning (ALS) and b) terrestrial laser scanning (TLS). Site ID abbreviations can be found
in Table 1.

While there was broad agreement in the clustering of plots from structurally similar forest
sites that vary by height and openness from ALS and TLS metrics of structural diversity, the finer
resolution of TLS data provided a greater ability to distinguish plots from within sites that have subtle
differences in structural diversity (Fig. 5, Table 5). Hierarchical agglomerative clustering of TLS and
ALS structural metrics produced different numbers of clusters in structural diversity space indicating
that, as expected, TLS and ALS are sensitive to different canopy structural features. ALS structural
diversity metrics were clustered into 3 groups (based on iterative indicator species analysis
conducted on grouping levels; minimum average p-value in 3 cluster solution: p = 0.0002) (Table 5).
These three groups separate plots from sites approximately by geography (latitude) with groups of
northern (medium height and high canopy cover), mid-Atlantic/Appalachian (tallest height and high
canopy cover), and southern sites (lowest height and open canopy) (Fig. 5A). In contrast, TLS
structural diversity metrics grouped canopies into 5 clusters (minimum mean p-value from ISA —p =
0.001) (Table 5). These clusters split the plots from the following groups of sites: HARV/SERC,
GRSM/SERC, UNDE/SCBI, OSBS, and a subset of TALL (Fig. 5B). The additional groupings
distinguished by the TLS data were related to plots with very tall canopy, but low complexity (cluster
5 — TALL site), plots with short canopy, but high VAI (cluster 3 — largely at HARV and UNDE), and
plots with extreme vertical complexity (cluster 2 — largely GRSM and SERC). Comparison of the
groupings of plots into clusters using the two different data sets illustrated both substantial
agreement in some regards and separation in others (Table 5). The two classification systems agreed
in placing the OSBS plots into a distinct cluster group, while the other two ALS clusters aggregated
plots largely from 2 or 3 of the TLS clusters respectively. The ability of the TLS to split plots from

different sites into clusters with plots from other sites illustrates that TLS permits the characterization
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272 of within-site variability of structural diversity, versus the purely among-site variation that was
273 represented in the ALS ordination and clustering (c.f. Fig. 5A, B).
274
275  Table 5. Comparison of plot assignment to groupings derived from hierarchical agglomerative
276  clustering of aerial laser scanning (ALS) and terrestrial laser scanning (TLS) illustrating structural
277  diversity variation in multivariate space between LiDAR platforms. Cluster name indicates which
278  plot was assigned to a given TLS or ALS cluster. Numbers indicate the how many plots were assigned
279  toeach cluster.
Cluster | TLS1 TLS2 TLS3 TLS4 TLS5 | Total
ALS1 12 15 4 0 4 35
ALS2 14 2 16 0 0 32
ALS3 1 0 0 20 0 21
Total 27 17 20 20 4 88
280
4 clusters ¢ TLS clusters
A)ALS a . . ALS"lt B) TLS o lt
) a A‘ A 02 ° N v & 2
R L a . A +3 o x 3
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282  Fig. 5. lllustration of canopy structural type groupings derived from hierarchical agglomerative
283  clustering overlaid on non-metric multi-dimensional scaling ordination of structural diversity across
284  seven studied forest sites; A) illustrates cluster groups derived from aerial laser scanning (ALS) data
285  and b) cluster groups from terrestrial laser scanning (TLS) data.
286 4. Discussion
287 Despite terrestrial and aerial LIDAR systems having trade-offs in their resolution and spatial
288  extent for the characterization of structural diversity, the results of our study show broad agreement
289

between ALS and TLS in the potential to quantify canopy structural diversity across a variety of forest
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types at a sub-continental scale. We showed robust concurrence among equivalent measures of
canopy height, cover and openness, vegetation area, and internal heterogeneity. We also show that
ALS delineates the multivariate canopy structural types among forest sites at a sub-continental scale.
Our results demonstrate that low resolution, large footprint ALS systems may be a useful tool for
classifying forests by structural diversity at landscape to sub-continental scales. However, TLS
derived metrics may be required to resolve fine-scale structural variation within forest types, such as
that related to disturbance history, management, or successional development [34,45]. Previous
studies have focused on comparisons of ALS and TLS at a single site or forest type in a localized
region, but consistent with our results, these have found that ALS and TLS are comparable in their
capacity to delineate features such as canopy height, cover, and vertical stratification [23,34-36]. TLS
systems are a well-established method to provide high resolution, functionally meaningful
measurements of structural diversity in forest ecosystems at the stand-scale [2,19,20,22,35,46], but
these results demonstrate that ALS could potentially be used to scale the characterization of canopy
structural diversity to much broader spatial extents.

The effects of occlusion that plague both bottom-up TLS and top-down ALS methods did not
prevent robust agreement for 8 of the 10 equivalent metrics tested here, but did result in low
agreement for two metrics of external heterogeneity. The top-down view of ALS versus the bottom-
up viewing angle of TLS results in a difference of laser beam attenuation that may mean these systems
see non-overlapping portions of the canopy volume (Fig. 1). Specifically, ALS typically exhibits
decreased capacity to resolve subcanopy vegetation relative to TLS due to increased attenuation.
However, ALS has been shown to be able to resolve layer differences in multi-level forest canopies
in combination with robust predictive models [47]. Meanwhile, TLS exhibited a decreased ability to
clearly characterize upper canopy elements relative to ALS also due increased attenuation [36]. The
partial occlusion of the canopy surface in TLS data was apparent in our study, as univariate analyses
illustrated only partial agreement among measures of external canopy heterogeneity that estimate
structural diversity at the outer canopy surface. A similar issue was observed by Hilker et al. [23],
who found that while TLS accurately measured canopy height from the top 10% of points, it
underestimated total canopy height by approximately a meter. This suggests a need for caution in
relying on the Portable Canopy TLS [22] for measuring outer canopy features (e.g. external
heterogeneity), whereas ALS seems better suited for this category of structural diversity metric.
Nevertheless, the broad agreement we observed between ALS and TLS methods for quantifying most
categories of structural diversity metrics supports the use of ALS to scale up functionally relevant
measurements of canopy structure, and further suggests that structural metrics derived from ALS
can serve as a reasonable proxy for TLS derived metrics (e.g. [47]). Recent advances in new LiDAR
technologies (e.g. full waveform LiDAR, Geiger mode, or USGS level-1 aggregates of a nominal pulse
density 8 pts/m) and new computational algorithms are beginning to help reduce occlusion issues
that hinder ALS, which may result in an even stronger agreement between ALS and TLS for
measuring structural diversity. ALS is useful for measuring structural diversity metrics, however
future research that incorporates these technological and computational advances could further
improve the measurement of forest structural diversity.

The relatively low resolution of ALS is sufficient to distinguish between different forest sites
based on multivariate structural diversity, but TLS is better suited to resolving within site variation.

In our study there was a similar placement of plots from different forest types in multivariate space
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based on ALS and TLS structural diversity metrics. These seven forest sites spanned an ecological
gradient across six of NEON's ecoclimatic domains, which may enhance our ability to identify unique
clusters of structural diversity types. However, there were both similarities and differences in the
hierarchical agglomerative clustering by TLS (5 clusters) and ALS (3 clusters). For example, OSBS, a
pine savannah characterized by open canopies and short trees, was always placed in its own cluster
by both LiDAR platforms. This illustrates the ability to clearly delineate general structural types
among different forests for ALS or TLS. Forest sites with denser canopies, dominated by deciduous
species (which tend to have broader, rounded crowns), did not cluster similarly and were split among
four TLS clusters and two from ALS. This indicates that studies seeking to investigate fine-scale
differences in structural diversity within a forest type or single site should rely on TLS to accurately
characterize sub-canopy structure. There are ecological and management circumstances for which it
is desirable to resolve fine-scale structural variation and its role in forest ecosystem function; for
example, to understand differences in local disturbance on the same forest type [34] or to assess the
effects of forest management actions [48]. However, previous studies have demonstrated that at
larger scales greater variation in structural diversity occurs across forest types and sites rather than
within sites [2,18,49]. For example, canopy structural types defined using multi-dimensional metrics
of three-dimensional forest structure are useful for predicting forest productivity [7]. The
applicability of ALS to delineate structural diversity types in forest transitional zones has yet to be
rigorously tested, but we hypothesize the within-type structural variability might be high while the
among-type variability would be low for different forest types. Transitional forest types on a
landscape-level would likely create additional clusters to those that we found in the ALS multivariate
analysis here. We suggest that the derivation of some canopy traits and general canopy structural
types across landscapes is feasible with ALS and that ALS could be an appropriate choice for
characterizing broad-scale forest variation in forest macrosystem studies (e.g. [50]). We also caution
users of ALS to keep the context of structural attributes of forests in mind, because resolving
structural diversity in the sub-canopy of open canopies will be easier than dense, closed canopies that

pose occlusion issues for low density ALS.

5. Conclusions

The TLS and ALS systems compared here each provide unique benefits for remotely sensing
forest structural diversity, and both can be robustly applied across different forest types at a sub-
continental scale. The portable canopy LiDAR TLS system we examined is extremely portable and
efficient at collecting within-canopy structural diversity data at stand scales—which makes this TLS
system useful in small-scale structural diversity analyses where higher point densities are needed.
The ALS system has the capacity to measure structural diversity at broader scales, which is
advantageous for investigating spatial and temporal dynamics or testing compatibility to model
simulations that use spaceborne remote sensing data at larger extents than is feasible to measure with
TLS systems. Furthermore, future studies should also compare remotely sensed measures of
structural diversity with forest-inventory based-structural diversity metrics (e.g. [9]), because forest
managers often make management decisions based predominantly on inventory metrics. Advances
in the open source coding and the accessibility of ALS, from organizations such as NEON, has a
distinct capacity to quantify forest canopy structural diversity at scales that have not been possible

until recently. These improvements allow for the incorporation of more comprehensive structural
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information in ecological models, forest management, and strategic decision making for forest
macrosystems. Understanding the limitations and shortcomings of ALS and TLS LiDAR systems, and
how we can utilize the complementary strengths of these systems, is a critical step forward for further
understanding the complex dynamics that link forest structural diversity with macroscale patterns

of ecosystem functioning.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1. Derivation of
structural diversity metrics from aerial laser scanning (ALS). Supplementary methods: 1. Spatial stability of ALS
metrics estimated from the TLS 2D canopy slice approach, Figure S1: Breakpoint analysis for VAI, mean outer
canopy height, and maximum canopy height, Figure S2: Breakpoint analysis for top rugosity, standard deviation
of standard deviation of height, entropy, VCI, standard deviation of height, and rumple, Figure S3: Breakpoint
analysis for cover fraction, deep gaps, deep gap fraction, and gap fraction profile.
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