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Introduction

A famous conjecture of Bondal-Orlov [8,9] in birational geometry states

Conjecture 0.1. [8,9] If Y1 and Y2 are crepant resolutions of a scheme X, then derived 
categories Db(coh(Y1)) and Db(coh(Y2)) are equivalent.

In dimension three (respectively, two), this conjecture was proved by Bridgeland [10]
in 2002 (respectively, by Kapranov-Vasserot [24] in 2000). The conjecture is still open in 
higher dimensions. As was noticed by Van den Bergh [34] in the study of one-dimensional 
fibres and by Bridgeland-King-Reid [11] in the study of the McKay correspondence for 
dimension d ≤ 3 that both Db(coh(Y1)) and Db(coh(Y2)) are equivalent to the derived 
category of certain noncommutative rings. Motivated by Conjecture 0.1 and work of 
[11,10,34], Van den Bergh [35] introduced the notation of a noncommutative crepant 
resolution (NCCR) of a commutative normal Gorenstein domain A (in the original ref-
erence, the author used the notation R). Let us recall the definition of a NCCR given 
in [21, Section 8] which is quite close to the original definition of Van den Bergh [35, 
Definition 4.1]. As usual, CM stands for Cohen-Macaulay.

Definition 0.2. Let R be a noetherian commutative CM ring and let A be a module-finite 
R-algebra.

(1) [4] A is called an R-order if A is a maximal CM R-module. An R-order A is called 
non-singular if gldimAp = KdimRp for all p ∈ Spec(R).

(2) [21, Section 8] Let M be a finitely generated right A-module that is reflexive. We 
say that M gives a noncommutative crepant resolution, or NCCR, B := EndA(M)
of A if
(i) M is a height one progenerator of A (namely, Mp is a progenerator of Ap for 

any height one prime ideal p of R), and
(ii) B is a non-singular R-order.

Note that Van den Bergh’s original definition of a NCCR was only for A = R being 
Gorenstein, since these are the types of varieties which have a chance of admitting 
crepant resolutions and so there is a good analogy with geometry [22, after Definition 1.2]. 
However when A is non-Gorenstein (but CM) there are sometimes many NCCRs of A, 
and these are related to cluster tilting (CT) objects in the category of CM modules 
over A [23, Corollary 5.9]. Thus, although geometrically we are only really interested in 
NCCRs when A is Gorenstein, there are strong algebraic reasons to consider the more 
general case. In this paper we will further relax the hypotheses on A: we allow A to be 
non-CM and to be noncommutative in the most general sense. Van den Bergh made the 
following conjecture, which is an extension of Bondal-Orlov Conjecture 0.1.
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Conjecture 0.3. [35, Conjecture 4.6] If A is a normal Gorenstein domain, then all crepant 
resolutions of Spec(A) (commutative and noncommutative) are derived equivalent.

Van den Bergh proved this conjecture for 3-dimensional terminal singularities [35, 
Theorem 6.6.3]. Since the existence of commutative crepant resolutions is not equiva-
lent to the existence of noncommutative crepant resolutions in high dimension [22], one 
should probably break up the above conjecture into two parts: commutative crepant 
resolutions and noncommutative crepant resolutions. In [21, Section 8], Iyama-Reiten 
proved the noncommutative part of this conjecture for noncommutative algebras A as 
in Definition 0.2 in dimension three. Similarly in [22], Iyama-Wemyss proved Conjec-
ture 0.3 for NCCRs for CM algebras A(= R) in dimension three, therefore generalizing 
[21, Corollary 8.8] to algebras which do not have Gorenstein base rings.

Theorem 0.4.

(1) [21, Corollary 8.8] Let R be a commutative normal Gorenstein domain with 
KdimR ≤ 3 and A a module-finite R-algebra. Then all NCCRs of A are derived 
equivalent.

(2) [22, Theorem 1.5] Let A be a d-dimensional CM equi-codimensional commutative 
normal domain with a canonical module.
(2a) If d = 2, then all NCCRs of A are Morita equivalent.
(2b) If d = 3, then all NCCRs of A are derived equivalent.

Iyama-Wemyss [22, Theorem 1.7] also gave a sufficient condition in arbitrary dimen-
sion (d = KdimA) to establish when any two given NCCRs of R are derived equivalent.

The study of noncommutative singularities naturally leads a question of how to deal 
with algebras that are not module-finite over their centers. Such questions were implicitly 
asked in [13,14]. Before we present our solution, we would like to discuss some major 
differences between the commutative and the noncommutative settings.

(•) First of all, some of previous approaches of using moduli [10] need to be re-developed 
in order to prove equivalences of derived categories in a general noncommutative 
setting. However, very little is known about the theory of general noncommutative 
moduli.

(•) We say an algebra is central-finite if it is module-finite over its center (or more pre-
cisely, a finite module over its center). When algebras are not central-finite, some 
homological tools fail due to the fact that localization does not work well in the non-
commutative setting. Our idea is to work with global structures without going to 
the localization. For example, we use Auslander regular algebras instead of algebras 
having finite global dimension. In the commutative case, the Auslander condition is 
automatic. It is easy to see that Auslander regular algebras are a natural general-
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ization of homologically homogeneous algebras which are used in Van den Bergh’s 
definition of a NCCR.

(•) In the commutative case, the Krull dimension, denoted by Kdim (see [27, Ch. 6]), is 
used extensively and is implicitly assumed. It is well-known that the Krull dimension 
might not be a good dimension function in the noncommutative case. Sometimes 
Gelfand-Kirillov dimension, denoted by GKdim (see [25] and [27, Ch. 8]), is better 
than the Krull dimension, and at other times vice versa. In the noncommutative 
case, it is necessary to consider an abstract dimension function (or several different 
ones in the different settings).

Let ∂ be an exact symmetric dimension function in the sense of Definition 1.2
and Hypothesis 1.3(3) (or [27, Section 6.8.4]) which is defined for all right A-modules 
where A is an algebra. Let D be another algebra. Two right A-modules (respec-
tively, (D, A)-bimodules) M and N are called s-isomorphic if there are a third right 
A-module (respectively, (D, A)-bimodule) P and two right A-module (respectively, 
(D, A)-bimodule) maps

f : M → P, and g : N → P

such that the kernel and the cokernel of f and g (viewed as right A-modules) have 
∂-dimension less than or equal to s. In this case, we write M ∼=s N . We refer to Defi-
nition 1.5 for more details. To state our main result without going to too much detail,
we give a definition of a noncommutative quasi-resolution in the following special case. 
Some technical details are explained in Section 3.

Definition 0.5. We fix the dimension function ∂ to be GKdim. Let A be a noetherian 
locally finite N-graded algebra with GKdim(A) = d ∈ N. If there are a noetherian 
locally finite N-graded Auslander regular CM algebra B (see Definitions 2.1 and 2.3) 
with GKdim(B) = d and two Z-graded bimodules BMA and ANB , finitely generated on 
both sides, such that

M ⊗A N ∼=d−2 B, and N ⊗B M ∼=d−2 A

as Z-graded bimodules, then the triple (B, M, N) or simply the algebra B is called a 
noncommutative quasi-resolution (or NQR for short) of A.

An ungraded version of the above definition is given in Definition 3.2 (also see Defini-
tion 3.16 for a related definition). Note that Van den Bergh considers a normal Gorenstein 
noetherian commutative integral domain A. By a classical theorem of Serre, being nor-
mal is equivalent to these two conditions: for every prime ideal p ⊆ A of height ≤ 1 the 
local ring Ap is regular, and for every prime ideal p ⊆ A of height ≥ 2 the local ring Ap

has depth ≥ 2, which is related to Definition 0.5.
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By Proposition 7.5, Van den Bergh’s NCCRs (or Iyama-Reiten’s version, see Defini-
tion 0.2) produce naturally examples of the ungraded version of NQRs. Noncommutative 
examples of NQRs are given in Section 8. Our main theorem is to prove a version of Con-
jecture 0.3 for NQRs in dimension no more than three.

Theorem 0.6. Fix ∂ to be GKdim as in the setting of Definition 0.5. Let A be a noetherian 
locally finite N-graded algebra over the base field.

(1) Suppose GKdim(A) = 2. Then all NQRs of A are Morita equivalent.
(2) Suppose GKdim(A) = 3. Then all NQRs of A are derived equivalent.

The proof of Theorem 0.6 is given in Section 8. A version of Theorem 0.6 holds for other 
dimension functions ∂ with some extra hypotheses and details are given in Theorems 4.2
and 6.6. Note that the hypotheses on ∂ (as listed in Theorem 6.6) are automatic in the 
commutative case or the central-finite case when ∂ = Kdim (see Lemmas 7.1 and 7.2). 
Therefore Theorem 0.6, or Theorems 4.2 and 6.6 together, generalize important results of 
Van den Bergh [35, Theorem 6.6.3], Iyama-Reiten [21, Corollary 8.8] and Iyama-Wemyss 
[22, Theorem 1.5].

Inspired by the work in [21,22] and Theorem 0.6(1), we have the following question:

Question 0.7. Let B1 and B2 be Auslander-regular and ∂-CM algebras with gldimBi =
∂(Bi) = 2 for i = 1, 2. If B1 and B2 are derived equivalent, then are they Morita 
equivalent?

The paper is organized as follows. Sections 1 and 2 are preliminaries containing a 
discussion of dimension functions and homological properties. A detailed definition and 
basic properties of a NQR are given in Section 3. A proof of the main theorem is basically 
given in Sections 4, 6 and 8, while some technical material is taken care of in Section 5. 
The connections between NCCRs and NQRs are given in Section 7. The final Section 8
contains examples of NQRs of noncommutative algebras.

1. Dimension functions and quotient categories

Throughout let k be a field. All algebras and modules are over k. We further assume 
that all algebras are noetherian in this paper.

We first briefly review background material on dimension functions and quotient cat-
egories of the module categories.

Notation 1.1. For an algebra A, we fix the following notations.

(1) ModA (respectively, ModAop): the category of all right (respectively, left) A-mod-
ules.
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(2) modA (respectively, modAop): the full subcategory of ModA (respectively,
ModAop) consisting of finitely generated right (respectively, left) A-modules.

(3) projA (respectively, projAop): the full subcategory of modA (respectively, modAop) 
consisting of finitely generated projective right (respectively, left) A-modules.

(4) ref A (respectively, ref Aop): the full subcategory of modA (respectively, modAop) 
consisting of reflexive right (respectively, left) A-modules, see Definition 2.11.

(5) addA(M)(=addM) for M ∈ modA: the full subcategory of modA consisting of 
direct summands of finite direct sums of copies of M .

Usually we work with right modules. We will use the functor HomA(−, AA) a lot, so 
let us mention a simple fact below. A contravariant equivalence between two categories 
is called a duality. Let A be an algebra. Then there is a duality of categories

HomA(−, AA) : projA −→ projAop.

Our proof of the main result uses quotient categories of the module categories defined 
via a dimension function, so we first give the following definition, which is a slight 
modification of the definition given in [27, Section 6.8.4]. We also refer to [5, Section 1]
for a similar definition.

Definition 1.2. A function ∂ : ModA → R≥0 ∪ {±∞} is called a dimension function if,

(a) ∂(M) = −∞ if and only if M = 0, and
(b) for all A-modules M ,

∂(M) ≥ max{∂(N), ∂(M/N)},

whenever N is a submodule of M .

The ∂ is called an exact dimension function if, further,

(c) for all A-modules M ,

∂(M) = sup{∂(N), ∂(M/N)},

whenever N is any submodule of M , and
(d) for every direct system of submodules of M , say {Mi}i∈I ,

∂(
⋃
i∈I

Mi) = sup{∂(Mi) | i ∈ I}. (E1.2.1)

Condition (d) in Definition 1.2 is new. As a consequence of condition (d), we obtain 
that, for every M ∈ ModA,
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∂(M) := sup{∂(N) | for all finitely generated submodules N ⊆ M}. (E1.2.2)

If we start with an exact dimension function ∂ defined on modA, then ∂ can be extended 
to ModA by using (E1.2.2). In this case, both condition (c) and condition (d) in Defi-
nition 1.2 are automatic. In fact, natural examples of dimension functions in this paper 
are constructed by (E1.2.2) from an exact dimension function ∂ defined on modA, see 
Remark 1.4. One advantage of condition (d) is that, for any fixed n, every right A-module 
M has a maximal submodule M ′ with ∂(M ′) ≤ n.

Similarly, one can define a dimension function on left modules. For most of the state-
ments in this paper, we assume the following:

Hypothesis 1.3. Let A and B be algebras with dimension function ∂.

(1) ∂ is an exact dimension function defined on both right modules and left modules.
(2) ∂(A), ∂(B) ∈ N.
(3) If an (A, B)-bimodule M is finitely generated as a B-module, then ∂(AM) ≤ ∂(MB). 

This also holds when switching A and B. In particular, for an (A, B)-bimodule M
which is finitely generated both as a left A-module and as a right B-module, we have

∂(AM) = ∂(MB). (E1.3.1)

A dimension function ∂ is called symmetric if (E1.3.1) holds, which is identical to 
[40, Definition 2.20].

Note that symmetry condition (E1.3.1) resembles “symmetric derived torsion”, in the 
sense of [36, Section 9].

Unless otherwise stated, an (A, B)-bimodule means finitely generated on both sides. 
Recall that A is called central-finite if it is a finitely generated module over its center.

Remark 1.4. Two standard choices of ∂ are the Gelfand-Kirillov dimension, denoted by 
GKdim, see [27, Ch. 8] and [25], and the Krull dimension, denoted by Kdim, see [27, 
Ch. 6]. As a convention, we define the Krull dimension of an infinitely generated module 
via (E1.2.2). Note that, while Kdim is defined for every noetherian ring A, it is not 
known whether it is always symmetric. If A is central-finite, then Kdim is symmetric 
[27, Corollary 6.4.13]. On the other hand, GKdim is always symmetric [25, Corollary 5.4], 
though it could be infinite for a nice noetherian k-algebra. For a central-finite algebra 
A with affine center, Kdim coincides with GKdim; this is an easy consequence of the 
equality of the two dimensions for affine commutative algebras [25, Theorem 4.5].

We need to recall some definitions and notations introduced in [5]. From now on, we 
fix an exact dimension function, say ∂. We use n for a nonnegative integer. Let Modn A

denote the full subcategory of ModA consisting of right A-modules M with ∂(M) ≤ n. 
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Since ∂ is exact, Modn A is a Serre subcategory of ModA. Hence it makes sense to define 
the quotient categories:

QModn A := ModA

Modn A
, and qmodn A := modA

modn A
,

which can be seen as a generalized noncommutative scheme (see [3]). Note that there 
are some symmetries between qmodn A and qmodn A

op when A admits a nice dualizing 
complex, see [40, Theorem 2.15]. We denote the natural and exact projection functor by

π : ModA −→ QModn A. (E1.4.1)

For M ∈ ModA, we write M for the object π(M) in QModn A. The hom-set in the 
quotient category is defined by

HomQModn A(M,N ) = lim
−→

HomA(M ′, N ′) (E1.4.2)

for M , N ∈ ModA, where M ′ is a submodule of M such that ∂(M/M ′) ≤ n, N ′ = N/T

for some submodule T ⊆ N with ∂(T ) ≤ n, and where the direct limit runs over all the 
pairs (M ′, N ′) with these properties.

Definition 1.5. Let n ≥ 0. Let A and D be two algebras.

(1) Two right A-modules X, Y are called n-isomorphic, denoted by X ∼=n Y , if there 
exist a right A-module P and morphisms f : X → P and g : Y → P such that both 
the kernel and cokernel of f and g are in Modn A.

(2) Two (D, A)-bimodules X, Y are called n-isomorphic, denoted by X ∼=n Y , if there 
exist a (D, A)-bimodule P and bimodule morphisms f : X → P and g : Y → P such 
that both the kernel and cokernel of f and g are in Modn A when viewed as right 
A-modules.

Definition 1.5(2) is useful when we consider bimodules. Most of right module state-
ments regarding n-isomorphisms have bimodule analogues, for which we might omit the 
proofs if these are clear.

Remark 1.6.

(1) Since we usually consider finitely generated modules, it turns out that we are mostly 
talking about n-isomorphisms in modA. In this case, we can take P ∈ modA in the 
above definition.

(2) If X is a submodule of Y in modA and Y/X ∈ modn A, then clearly X ∼=n Y .
(3) If

0 → K → M → N → C → 0
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is an exact sequence in modA with K, C ∈ modn A, then M ∼=n N in modA.

The following lemma is easy and the proof is omitted.

Lemma 1.7. Two right A-modules X and Y are n-isomorphic in modA if and only if 
their images X and Y in qmodn A are isomorphic.

Definition 1.8. [5, Definition 1.2] Let A and B be algebras and ∂ be an exact dimension 
function that is defined on A-modules and B-modules. Let n and i be nonnegative 
integers. Suppose that AMB is a bimodule.

(1) We say ∂ satisfies γn,i(M)l if for any N ∈ modn A, TorAj (N, M) ∈ modn B for all 
0 ≤ j ≤ i.

(2) We say ∂ satisfies γn,i(M)r if for any N ∈ modn B
op, TorBj (M, N) ∈ modn A

op for 
all 0 ≤ j ≤ i.

(3) We say ∂ satisfies γn,i(M) if it satisfies γn,i(M)l and γn,i(M)r.
(4) We say ∂ satisfies γn,i(A, B)l if it satisfies γn,i(M)l for all AMB that are finitely 

generated on both sides.
(5) We say ∂ satisfies γn,i(A, B)r if it satisfies γn,i(M)r for all AMB that are finitely 

generated on both sides.
(6) We say ∂ satisfies γn,i(A, B) if it satisfies γn,i(M) for all AMB that are finitely 

generated on both sides.

Note that the conditions listed in the above definition are related to some conditions 
in terms of symmetric (derived) torsion, generalizing the χ-condition of [3], see [38, 
Section 16.5].

In the most parts of this paper, we will be particularly interested in the γn,1 property.

Lemma 1.9. [5, Lemma 1.3] Let A and B be algebras such that ∂ is an exact dimension 
function on A-modules and B-modules. Assume that ∂ satisfies γn,1(M)l for a bimodule 

AMB. Then the functor − ⊗A M induces a functor

−⊗A M : QModn A −→ QModn B.

Since M is finitely generated on both sides, this functor restricts to:

−⊗A M : qmodn A −→ qmodn B.

Lemma 1.10. Retain the hypotheses in Lemma 1.9. Suppose that X and Y are in modA

such that X ∼=n Y . Then X ⊗A M ∼=n Y ⊗A M in modB.

Proof. The assertion follows from Lemmas 1.7 and 1.9 or the proof of [5, Lemma 1.3]. �
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We will also use the right adjoint functor of π defined in (E1.4.1). Since Modn A is 
a Serre subcategory (or a dense subcategory in the sense of [29, Sect. 4.3]), every right 
A-module has a largest submodule in Modn A (see also (E1.2.1)). Note that ModA is 
locally small (in the sense of [29, p. 5]) and has enough injective objects. By a well-known 
classical category theory result [29, Theorem 4.4.5 or Proposition 4.5.2] (which is in a 
different mathematical language unfortunately), there is a section functor, denoted by ω
(we are following the notation of [3, p. 234]) such that there is a natural isomorphism

HomMod A(N,ω(M)) ∼= HomQModn A(π(N),M), (E1.10.1)

for all M ∈ ModA and M ∈ QModn A. Given a module M , let CM denote the filtering 
category of maps M → M ′ whose kernel and cokernel are in Modn A. Then

ωπ(M) = lim
(M→M ′)∈CM

M ′. (E1.10.2)

By [29, Proposition 4.4.3], the unit of the adjunction Id → ωπ induces the natural map

uM : M → ωπ(M), (E1.10.3)

which has kernel and cokernel in Modn A. Further, uM is an isomorphism if and only if 
M is closed in the sense of [29, p. 176]. By [29, Lemma 4.4.6(2)], the image of uM , which 
is canonically isomorphic to M/M ′ where M ′ is the largest subobject of M in Modn A, 
is an essential subobject in ωπ(M). The assertions in the following lemma are known to 
experts.

Lemma 1.11. Let A and B be two algebras and n be a nonnegative integer. Let M be a 
right A-module and M ′ be the largest submodule of M such that ∂(M ′) ≤ n.

(1) ωπ(M) is naturally isomorphic to the largest submodule of the injective hull of M/M ′

containing M/M ′ such that X/(M/M ′) is in Modn A.
(2) If M is a (B, A)-bimodule, then ωπ(M) is a (B, A)-bimodule and uM is a bimodule 

morphism.

Proof. (1) Without loss of generality, we can assume that M does not contain a nonzero 
submodule of ∂-dimension ≤ n, namely, M ′ = 0. Let C(M) be the largest submodule 
X ⊇ M of the injective hull of M such that X/M is in Modn A. By [29, Lemma 4.4.6(2)], 
we have canonical injective maps

M
uM−−→ ωπ(M) f−→ C(M)

such that the cokernel of f is in Modn A. In particular, π(f) is an isomorphism. Applying 
the natural transformation Id → ωπ, we have a commutative diagram
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ωπ(M) f−−−−→ C(M)

uωπ(M)

⏐⏐� ⏐⏐�uC(M)

ωπωπ(M) −−−−→
ωπ(f)

ωπ(C(M)).

Since πω ∼= Id, uωπ(M) is an isomorphism. Since π(f) is an isomorphism, ωπ(f) is 
an isomorphism. Note that both f and uC(M) are injective. Hence f and uC(M) are 
isomorphisms.

(2) Since M is a (B, A)-bimodule, there is an algebra map B → EndMod A(MA). 
Applying the functor ωπ, we obtain an algebra map

B → EndMod A(MA) → EndMod A(ωπ(M)),

which means that ωπ(M) is a (B, A)-bimodule. Since the unit of the adjunction Id → ωπ

is a natural transformation, uM is a bimodule morphism. �
2. Preliminaries on homological properties

In this section, we review some homological properties that are needed in the definition 
of a noncommutative quasi-resolution.

Definition 2.1. [26, Definitions 1.2, 2.1, 2.4] Let A be an algebra and M a right A-module.

(1) The grade number of M is defined to be

jA(M) := inf{i|ExtiA(M,A) �= 0} ∈ N ∪ {+∞}.

If no confusion can arise, we write j(M) for jA(M). Note that jA(0) = +∞.
(2) A nonzero A-module M is called n-pure (or just pure) if jA(N) = n for all nonzero 

finitely generated submodules N of M .
(3) We say M satisfies the Auslander condition if for any q ≥ 0, jA(N) ≥ q for all left 

A-submodules N of ExtqA(M, A).
(4) We say A is Auslander-Gorenstein (respectively, Auslander regular) of dimension n

if injdimAA = injdim AA = n < ∞ (respectively, gldimA = n < ∞) and every 
finitely generated left and right A-module satisfies the Auslander condition.

Proposition 2.2. [7, Proposition 1.8] Let A be Auslander-Gorenstein. If

0 −→ M ′ −→ M −→ M ′′ −→ 0

is an exact sequence of finitely generated A-modules, then

j(M) = inf{j(M ′), j(M ′′)}.
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Definition 2.3. [1, Definition 0.4] Let A be an algebra with a dimension function ∂. We 
say A is ∂-Cohen-Macaulay (or, ∂-CM in short) if ∂(A) = d ∈ N, and

j(M) + ∂(M) = ∂(A)

for every finitely generated nonzero left (or right) A-module M . If A is GKdim-Cohen-
Macaulay, namely, if ∂ = GKdim, we just say it is Cohen-Macaulay or CM.

There are other modified definitions of noncommutative CM algebras, in particular, 
using the rigid Auslander dualizing complex over the algebra A [40]. Here we are using 
a more classical approach in Definition 2.3.

Remark 2.4.

(1) If A is ∂-CM with ∂(A) ∈ N, then jA(M) < ∞ and ∂(M) ∈ N for all nonzero finitely 
generated A-modules M .

(2) If A is a ∂-CM algebra, then ∂ is an exact dimension [2, p. 3]. In particular, GKdim
is exact on finitely generated modules over CM algebras.

(3) Let A be Auslander-Gorenstein. The canonical dimension of a finitely generated 
right (or left) A-module M is defined to be

∂(M) = injdimA− j(M), (E2.4.1)

which was introduced in [40, Definition 2.9], in the more general setting of Aus-
lander dualizing complexes. For infinitely generated modules, see (E1.2.2). By [26, 
Proposition 4.5], the canonical dimension is an exact (but not necessarily symmetric) 
dimension function. By (E2.4.1), A is trivially ∂-CM.

Definition 2.5. [7, Definition 1.12] Let M be a finitely generated pure right A-module, see 
Definition 2.1(2). A tame and pure extension of M is a finitely generated right A-module 
N such that M ⊆ N , N is pure and j(N/M) ≥ j(M) + 2. Note that a tame and pure 
extension is always an essential extension.

The following result of Björk is called Gabber’s Maximality Principle, see [7, Theo-
rem 1.14].

Theorem 2.6. [7, Theorem 1.14] Let A be an Auslander-Gorenstein algebra. Suppose that 
M is a finitely generated n-pure A-module. Let N be an A-module containing M such that 
every nonzero finitely generated submodule of N is n-pure. Then N contains a unique 
largest tame and pure extension of M .

We do not assume that N is finitely generated in the above theorem. On the other 
hand, by definition, a tame and pure extension of M is finitely generated. We will explain 
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the Gabber’s Maximality Principle in some details in the following two lemmas. Firstly, 
we recall some functors. Let ∂ be the canonical dimension defined in Remark 2.4(3) 
when M is finitely generated and extended to ModA by (E1.2.2). We fix a non-negative 
integer n and let d = injdimA. If M is n-pure, then ∂(M) = d − n by (E2.4.1). In the 
next two lemmas, M will be an n-pure right A-module. Let

π : ModA → QModd−n−2 A

and

ω : QModd−n−2 A → ModA,

see (E1.4.1) and (E1.10.1).
The following lemma is a special case of [40, Theorem 2.19]. For the convenience of 

readers, we give detailed proof.

Lemma 2.7. Let A be an Auslander-Gorenstein algebra. Suppose that M is a finitely 
generated n-pure A-module. Then there is an n-pure A-module M̃ , unique up to unique 
isomorphism, such that the following hold.

(1) M̃ is a tame and pure extension of M , namely, there is a given injective morphism 
gM : M → M̃ ,

(2) If N is a tame and pure extension of M , then gM factors uniquely through the 
inclusion map M → N .

Further, M̃ is naturally isomorphic to both ωπ(M) and ExtnAop(ExtnA(M, A), A) and gM
agrees with uM in (E1.10.3) when M̃ is identified with ωπ(M).

Proof. Let ∂ be the canonical dimension defined by (E2.4.1) and d = injdimA.
(1) Let E(M) be the injective hull of M . By Lemma 1.11(1), ωπ(M) is a largest 

submodule of E(M) containing M such that ωπ(M)/M has ∂-dimension at most d −
n − 2. So every nonzero finitely generated submodule N(⊇ M) of ωπ(M) is n-pure and 
j(N/M) ≥ n + 2. Thus N is a tame and pure extension of M . By Theorem 2.6, ωπ(M)
contains a largest (and maximal) tame and pure extension, which must be ωπ(M) itself. 
So ωπ(M) satisfies (1). We now define M̃ = ωπ(M) and gM to be the inclusion map.

(2) Let N be a tame and pure extension of M . Then N is an essential extension of M . 
Let i : M → N be the inclusion map. Since E(M) is injective, there is an injective map 
f : N → E(M) such that f ◦ i : M → E(M) is the inclusion map. Since N is a tame and 
pure extension of M , it is easy to see that the image of f is inside ωπ(M). Thus we have 
a map f : N → M̃ := ωπ(M) such that gM = f ◦ i. Finally we prove the uniqueness of 
this factorization. Suppose there are two maps f1, f2 such that gM = f1 ◦ i = f2 ◦ i. Then 
(f1 − f2) ◦ i = 0 or the (f1 − f2)(M) = 0. Then the image of f1 − f2 is a quotient module 
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of N/M , which has ∂-dimension strictly less than d −n. Since M̃ is n-pure, f1 − f2 must 
be zero, namely, f1 = f2. This shows that uniqueness.

Part (2) can be considered as a universal property. The uniqueness of M̃ follows from 
part (2).

For the last assertion, we let M∗∗ := ExtnAop(ExtnA(M, A), A). By [26, Lemma 2.2] and 
[7, Proposition 1.13], M∗∗ is a tame and pure extension and there is no other tame and 
pure extensions properly containing M∗∗. Therefore M∗∗ ∼= ωπ(M) by part (2). �
Definition 2.8. Let A be an Auslander-Gorenstein algebra. Suppose that M is a finitely 
generated n-pure right A-module. The map gM : M → M̃ (or simply the module M̃) in 
Lemma 2.7, is called a Gabber closure of M . By Lemma 2.7, a Gabber closure of M always 
exists and is unique up to a unique isomorphism. Therefore, it is no confusion to call it 
the Gabber closure of M . In this case, we write the Gabber closure as gM : M → GA(M)
(or simply GA(M)).

Suppose ∂ is an arbitrary dimension function. When A is a ∂-CM algebra, ∂ equals to 
the canonical dimension up to a uniform shift. Hence (E2.4.1) implies that the condition

j(M̃/M) ≥ j(M) + 2

is equivalent to

∂(M̃/M) ≤ ∂(M) − 2.

Lemma 2.9. Let A be an Auslander-Gorenstein algebra. Suppose that M is a finitely 
generated n-pure right A-module. Let N be an n-pure A-module such that

(a) N is an essential extension of M , and
(b) j(N ′/M) ≥ j(M) +2 for all finitely generated A-submodule N ′ of N that contains M .

Then N is a finitely generated A-module.

Proof. In this proof, let M∗∗ denote ExtnAop(ExtnA(M, A), A). If N is not finitely gener-
ated, then there is an ascending chain of finitely generated A-submodules

M � M1 � M2 � · · · � N

such that Mi ∈ modA are n-pure and j(Mi/M) ≥ j(M) + 2 for every i. By [7, 
Lemma 1.15], M∗∗

i = M∗∗. Moreover, since every Mi are n-pure, we have

M ⊆ M1 ⊆ M2 ⊆ · · · ⊆ · · · ⊆ M∗∗
i = M∗∗

for every i. Since M∗∗ is finitely generated by Lemma 2.7, the ascending chain stabilizes, 
a contradiction. �
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We collect some facts and re-statements concerning the Gabber closure.

Proposition 2.10. Let A be an Auslander-Gorenstein algebra. Suppose that M is a finitely 
generated n-pure A-module.

(1) The Gabber closure of M , denoted by gM : M → GA(M) as in Definition 2.8, exists 
and is unique up to a unique isomorphism.

(2) gM agrees with uM in (E1.10.3) for specific choices of π and ω given before 
Lemma 2.7.

(3) GA(M) is a tame and pure extension of M . In particular, GA(M) is finitely gener-
ated over A.

(4) [7, Proposition 1.13] GA(M) does not have any proper tame and pure extension.
(5) Let N be a tame and pure extension of M . If N does not have any proper tame and 

pure extension, then N ∼= GA(M).
(6) If M is a (B, A)-bimodule, then GA(M) is a (B, A)-bimodule and gM is a morphism 

of (B, A)-bimodules.

Proof. (1, 2, 3) See Lemma 2.7.
(4) Since GA(M) is identified with ExtnAop(ExtnA(M, A), A), the assertion is exactly 

[7, Proposition 1.13].
(5) By Lemma 2.7(2), GA(M) is a tame and pure extension of N . Since N does not 

have a proper tame and pure extension, N = GA(M).
(6) Since GA(M) can be identified with ωπ(M), the assertion follows from

Lemma 1.11(2). �
For every right A-module M , let

M∨ = HomA(M,A) (E2.10.1)

and

M∨∨ = HomAop(HomA(M,A), A). (E2.10.2)

When n = 0 as in the proof of Lemma 2.9, M∗∗ = M∨∨. By adjunction, there is a 
natural map M −→ M∨∨ := HomAop(HomA(M, A), A).

Definition 2.11. Let A be an algebra. A finitely generated right A-module M is called 
reflexive if the natural morphism M −→ M∨∨ is an isomorphism. A reflexive left module 
is defined similarly.

It’s obvious that when A is Auslander-Gorenstein, an A-module M of maximal di-
mension is reflexive if and only if M is its own Gabber closure. Note that the definition 
of a reflexive module given in [21–23] is relative to a given base commutative ring. It is 
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clear that every projective module is reflexive, but the converse is not true. The following 
lemma and corollary are well-known.

Lemma 2.12. Let A be an algebra of global dimension d. If M ∈ modA, then 
projdimAop M∨ ≤ max{0, d − 2}, where (−)∨ = HomA(−, A).

Proof. Suppose that · · · −→ P1 −→ P0 −→ M −→ 0 is a projective resolution of M such 
that each Pi is finitely generated. Applying (−)∨ to the above exact sequence, there is 
an exact sequence of left A-modules

0 −→ M∨ −→ P∨
0 −→ P∨

1 −→ E −→ 0,

where E = coker(P∨
0 → P∨

1 ). Since projdimAop E ≤ d and P∨
0 , P∨

1 ∈ projAop, we have 
projdimAop M∨ ≤ max{0, d − 2}. �
Corollary 2.13. Let A be an algebra of global dimension d. If M ∈ ref A, then 
projdimA M ≤ max{0, d − 2}. In particular, if d ≤ 2, then any reflexive A-module is 
projective.

Proof. Use Lemma 2.12 and the fact M ∼= HomAop(HomA(M, A), A). �
Next we recall some results about spectral sequences.
If A is noetherian with injdimA < ∞ and M is a finitely generated A-module, then 

there is a convergent spectral sequence [26, Theorem 2.2(a)], see (E2.13.1) below. To 
simplify notation later, we use a non-standard indexing of Epq

2 , with our indexing, the 
boundary maps on the E2-page are dp,q2 : Epq

2 → Ep+2,q+1
2 :

Epq
2 := ExtpAop(ExtqA(M,A), A) ⇒ Hp−q(M) :=

{
0, if p �= q,
M, if p = q.

(E2.13.1)

When A is Auslander-Gorenstein with injdimA = d, there is a canonical filtration

0 = F d+1M ⊆ F dM ⊆ · · · ⊆ F 1M ⊆ F 0M = M (E2.13.2)

such that F pM/F p+1M ∼= Epp
∞ . By [26, Theorem 2.2], for each p, there exists an exact 

sequence

0 −→ Epp
∞ −→ Epp

2 −→ Q(p) −→ 0

with j(Q(p)) ≥ p + 2.
We collect some facts which can be shown by using the above spectral sequences.
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Proposition 2.14. [26, Theorem 2.4] Let A be Auslander-Gorenstein and M be a 
nonzero finitely generated A-module. If n = jA(M), then ExtnA(M, A) is n-pure and
(Epp

2 =) ExtpAop(ExtpA(M, A), A) is either 0 or p-pure for every integer p.

Proposition 2.15. [7, Proposition 1.9] Let A be Auslander-Gorenstein. Then a finitely 
generated A-module M is j(M)-pure if and only if Epp

2 = 0 for any p �= j(M).

Corollary 2.16. Let A be Auslander-Gorenstein and M a nonzero reflexive A-module. 
Then M is 0-pure, and Epp

2 = 0 for any p �= 0. As a consequence, if A is also a ∂-CM
algebra, then ∂(M) = ∂(A) = ∂(N) for any nonzero reflexive A-module M and any 
nonzero submodule N of M .

Proof. Suppose that M is a nonzero reflexive A-module, then j(M) = 0 and

0 �= E00
2 = HomAop(HomA(M,A), A) ∼= M,

which is 0-pure by Proposition 2.14. By Proposition 2.15, Epp
2 = 0 for every p �= 0. The 

remaining statement follows by the definition of ∂-CM. �
Lemma 2.17. Let A be Auslander-Gorenstein and M a finitely generated m-pure 
A-module where m = j(M). Then M = FmM ⊇ Fm+1M = 0. Further, M = Emm

∞ M ⊆
Emm

2 M . In particular, if M is a 0-pure module, then

M ⊆ M∨∨ := HomAop(HomA(M,A), A).

Proof. If M is m-pure, then Epp
2 = 0 for every p �= m. Therefore

Epp
∞ = 0 = F pM/F p+1M

for p �= m. Taking p = m + 1, we obtain that Fm+1M = Fm+2M = · · · = 0, as 
required. �
Proposition 2.18. Let A be an Auslander regular algebra with gldimA = 3. If M is a 
nonzero reflexive A-module, then

Epq
2

∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M, if p = q = 0,
E10

2
∼= E31

2 , if p = 1, q = 0,
E31

2
∼= E10

2 , if p = 3, q = 1,
0, otherwise.
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Proof. Since A is Auslander regular, we have that the E2 table for M looks like

0 0 0 E33

0 0 E22 E32

0 E11 E21 E31

E00 E10 E20 E30

with E20 = E30 = 0 by Lemma 2.12, E11 = E22 = E33 = 0 by Propositions 2.14 and 
2.15, and E32 = 0 since projdimM ≤ 1 by Lemma 2.12. Hence the E2 table reduces to

0 0 0 0
0 0 0 0
0 0 E21 E31

E00 E10 0 0

and so it suffices to show that E21 = 0. By (E2.13.1)-(E2.13.2), there is a canonical 
filtration 0 = F 4M ⊆ F 3M ⊆ F 2M ⊆ F 1M ⊆ F 0M = M such that F pM/F p+1M ∼=
Epp

∞ . It is obvious that F 1M = 0. Then Epp
∞ = 0 for every p �= 0 by Proposition 2.15, 

E00
∞

∼= F 0M/F 1M = M , and further, d00
2 = 0 (as M being reflexive), which implies that 

E21 = 0. Thus, the E2 table for M now looks like

0 0 0 0
0 0 0 0
0 0 0 E31

E00 E10 0 0

with E10 ∼= E31. The assertion follows. �
Lemma 2.19. Let A be an Auslander Gorenstein algebra and M be a finitely generated 
right A-module.

(1) M∨ is either 0 or a finitely generated reflexive left A-module.
(2) If M is 0-pure, then the Gabber closure GA(M) is reflexive.

Proof. (1) It is well-known that M∨ is a finitely generated left A-module.
Let N be the largest submodule of M such that j(N) > 0 or N∨ = 0. Then we have 

a short exact sequence

0 → N → M → M/N → 0,

which gives rise to an exact sequence

0 → (M/N)∨ → M∨ → N∨ → · · · .
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Since N∨ = 0, we have (M/N)∨ ∼= M∨. To prove the assertion one may assume that 
N = 0, or equivalently, M is 0-pure.

By [7, Proposition 1.13] (also see Lemma 2.7), there is a short exact sequence

0 → M → M∨∨ → M ′ → 0,

where j(M ′) ≥ 2. The above short exact sequence gives rise to an exact sequence

0 → (M ′)∨ → (M∨∨)∨ → M∨ → Ext1A(M ′, A) → · · · .

Since j(M ′) ≥ 2, we have (M ′)∨ = Ext1A(M ′, A) = 0. Therefore (M∨∨)∨ is naturally 
isomorphic to M∨ as required.

(2) By Lemma 2.7, the Gabber closure of M is isomorphic to M∨∨. The assertion 
follows from part (1). �
3. A NQR of an algebra

In this section, we introduce the notion of a noncommutative quasi-resolution (NQR), 
which is a further generalization of the notion of a NCCR, and then study some basic 
properties.

Let A be a category consisting of a class of noetherian k-algebras such that A is in A
if and only if Aop is in A. Together with A we consider a special class of modules/mor-
phisms/bimodules. Our definition of a noncommutative quasi-resolution will be made 
inside the category A. Sometimes it is necessary to be specific, but in the most of cases, 
it is quite easy to understand what is the setting of A. We also need to specify or fix a 
dimension function ∂. Here are a few examples.

Example 3.1.

(1) Let A be the category of N-graded locally finite noetherian k-algebras with finite 
GK-dimension. We only consider graded modules. An (A, B)-bimodule is a Z-graded 
module that has both left graded A-module and right graded B-module structures. 
The dimension function ∂ is chosen to be GKdim.

(2) We might modify the category in part (1) by restricting algebras to those with 
balanced Auslander dualizing complexes in the sense of [40]. In this case, we might 
take the dimension function to be a constant shift of the canonical dimension defined 
in [40, Definition 2.9].

(3) Let R be a noetherian commutative algebra with finite Krull dimension. Let A be 
the category of algebras that are module-finite R-algebras. Modules are usual mod-
ules, but an (A, B)-bimodule means an R-central (A, B)-bimodule. The dimension 
function in this case could be the Krull dimension.
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Unless otherwise stated, we retain Hypothesis 1.3 concerning the fixed dimension 
function ∂ for modules over A, B and Bi, a bimodule (such as M or N in most of cases) 
over these rings in this section (including Definitions 3.2 and 3.16) is finitely generated on 
both sides. As a consequence of these assumptions, ∂(M) can be defined by considering 
M as either a left or a right module. Therefore M ∼=n N is well-defined on either left or 
right sides for another bimodule N . If we use other rings such as D, we may not assume 
these hypotheses.

Here is our main definition.

Definition 3.2. Let A ∈ A be an algebra with ∂(A) = d. Let s be an integer between 0
and d − 2.

(1) If there are an Auslander regular ∂-CM algebra B ∈ A with ∂(B) = d and two 
bimodules BMA and ANB such that

M ⊗A N ∼=d−2−s B, N ⊗B M ∼=d−2−s A

as bimodules, then the triple (B,BMA,ANB) is called an s-noncommutative quasi-
resolution (s-NQR for short) of A.

(2) (Definition 0.5) A 0-noncommutative quasi-resolution (0-NQR) of A is called a non-
commutative quasi-resolution (NQR for short) of A.

We will see that the notion of a NQR is a generalization of the notion of a NCCR in 
Section 7. First we prove the following lemmas.

Lemma 3.3. Let B be a ∂-CM algebra with ∂(B) = d.

(1) If there exist B-modules M and N such that M ∼=d−2 N , then M∨ ∼= N∨, where 
(−)∨ := HomB(−, B).

(2) Let D be another algebra and supposed that M and N are (D, B)-bimodules such 
that M ∼=d−2 N as (D, B)-bimodules. Then M∨ ∼= N∨ as (B, D)-bimodules.

Proof. The proofs of parts (1) and (2) are similar. We only prove part (1).
By definition, there exists a right B-module P and B-module morphisms f : M → P

and g : N → P such that both the kernel and cokernel of f and g have ∂-dimension 
no more than d − 2. It suffices to show that P∨ ∼= M∨. Without loss of generality, we 
assume that f : M → N is a right B-morphism such that the kernel and cokernel of f
have ∂-dimension no more than d −2. By the properties of f we have two exact sequences

0 → Q → N → C → 0

and
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0 → K → M → Q → 0,

where Q = Im f and where C and K have ∂-dimension no more than d − 2. We need to 
show that Q∨ ∼= N∨ and M∨ ∼= Q∨. The proofs of these assertions are similar, we only 
show the first one. Applying HomB(−, B) to the first short exact sequence, we obtain 
that a long exact sequence

0 → HomB(C,B) → N∨ → Q∨ → Ext1B(C,B) → · · · .

Since ∂(C) + j(C) = ∂(B) = d and ∂(C) ≤ d − 2, j(C) ≥ 2, which means that 
HomB(C, B) = 0 = Ext1B(C, B). So, N∨ ∼= Q∨. Similarly, P∨ ∼= Q∨. Therefore, 
P∨ ∼= N∨. �

The following corollary is clear.

Corollary 3.4. Let B be a ∂-CM algebra with ∂(B) = d.

(1) If M, N ∈ ref B such that M ∼=d−2 N , then M ∼= N .
(2) Let D be another algebra and supposed that M and N are (D, B)-bimodules such that 

M ∼=d−2 N as (D, B)-bimodules. If M, N ∈ ref B, then M ∼= N as (B, D)-bimodules.

Proof. We prove (2). Since M ∼=d−2 N , Lemma 3.3 implies that M∨ ∼= N∨ as 
(B, D)-bimodules. The assertion follows by applying (−)∨ and the fact that M, N ∈
ref B. �
Lemma 3.5. Let A and B be algebras and n ∈ N. Suppose that there exist two bimodules 
BMA and ANB such that

M ⊗A N ∼=n B, N ⊗B M ∼=n A

as bimodules. If ∂ satisfies γn,1(M)l and γn,1(N)l, then

qmodn A
∼= qmodn B.

Proof. Let π be the natural functor modA −→ qmodn A (or modB −→ qmodn B). 
Denote by M := π(M) and N := π(N). By Lemma 1.9, we have two well-defined 
functors

F (−) := −⊗A N : qmodn A −→ qmodn B

and

G(−) := −⊗B M : qmodn B −→ qmodn A.
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By Lemma 1.9 again,

F ◦G(−) = −⊗B M⊗A N ∼= −⊗B π(M ⊗A N) ∼= −⊗B B,

and

G ◦ F (−) = −⊗A N ⊗B M ∼= −⊗A π(N ⊗B M) ∼= −⊗A A.

Therefore F and G are equivalences, in other words, qmodn A ∼= qmodn B. �
The equivalence qmodn A ∼= qmodn B in the above lemma can be considered as a 

noncommutative Fourier-Mukai transform between two noncommutative spaces. We refer 
to [20] for the classical setting.

Remark 3.6. The above lemma holds true for a NQR (B,BMA,ANB) of an algebra A
when ∂ satisfies γd−2,1(M)l and γd−2,1(N)l.

For an n-pure (A, B)-bimodule M , the Gabber closure of AM is denoted by GAop(M)
and the Gabber closure of MB is denoted by GB(M). We consider both GAop(M) and 
GB(M) as extensions of M .

Lemma 3.7. Let A and B be Auslander-Gorenstein and ∂-CM algebras with

∂(A) = ∂(B) = d.

Assume Hypothesis 1.3 holds. Let n be an integer. Let M denote an (A, B)-bimodule that 
is finitely generated on both sides.

(1) Let M be n-pure on both sides. Then GAop(M) ∼= GB(M) naturally as bimodules 
with restriction on M being the identity.

(2) Let M be n-pure on both sides. Then GB(M) = M if and only if GAop(M) = M .
(3) The (A, B)-bimodule M is reflexive on the left if and only if it is reflexive on the 

right.

Proof. Without loss of generality, we can assume that ∂ is the canonical dimension.
(1) By Proposition 2.10(6), GB(M) is an (A, B)-bimodule and gMB

: M → GB(M) is 
a bimodule morphism. By Proposition 2.10(3), GB(M) is finitely generated on the right. 
We claim that

(a) gMB
is an essential extension of M on the left,

(b) GB(M) is finitely generated over the left, and
(c) gMB

is a tame and pure extension of M on the left.
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By Hypothesis 1.3(3),

∂(A(GB(M)/M)) ≤ ∂((GB(M)/M)B) ≤ d− n− 2. (E3.7.1)

To prove (a) let S be a left A-submodule of GB(M) such that S ∩ M = 0. Then S is 
isomorphic to a submodule of GB(M)/M . As a consequence, ∂(S) ≤ d − n − 2. Let U
be the largest left A-submodule of GB(M) with ∂ ≤ d − n − 2. Then U ∩M = 0 and U
is also a right B-submodule. If U �= 0, it contradicts the fact that GB(M) is an essential 
extension of M on the right. Therefore U = 0 and S = 0. Thus Claim (a) is proven.

Claim (b) follows from Lemma 2.9 and (E3.7.1).
Claim (c) follows from Claim (b) and (E3.7.1).
Next we consider the Gabber closure of the module N := GB(M) on the left. By 

Proposition 2.10(6), GAop(N) is an (A, B)-bimodule and gAopN : N → GAop(N) is a 
bimodule morphism. By symmetric, gAopN has properties (a, b, c) on the right. By part 
(c), gAopN is a tame and pure extension of N on the right. By Proposition 2.10(4), 
NB(:= GB(M)) does not have a proper tame and pure extension on the right. Therefore 
GAop(N) = N . This implies that AN does not have a proper tame and pure extension. 
Thus N must be GAop(M) by Proposition 2.10(5).

(2) This is a consequence of part (1).
(3) By Lemma 2.7, MB is reflexive if and only if M is 0-pure and GB(M) = M . The 

assertion follows by part (2). �
Hypothesis 3.8. We are continuing to work with algebras in a given category A with a 
fixed dimension function ∂ defined for all modules over rings in A. As indicated at the 
beginning of this section we assume Hypothesis 1.3 for all algebras in A. Now we further 
assume that ∂ satisfies γd−2,1(A, B) for algebras A and B in A with d = ∂(A) = ∂(B), 
which covers the hypotheses in Lemmas 1.9 and 1.10.

Proposition 3.9. Assume Hypothesis 3.8. Let Bi be Auslander-Gorenstein and ∂-CM al-
gebras with ∂(Bi) = d for i = 1, 2. Suppose that there are bimodules B1TB2 and B2T̃B1

(finitely generated on both sides) such that

T ⊗B2 T̃
∼=d−2 B1 (E3.9.1)

and

T̃ ⊗B1 T
∼=d−2 B2.

Then there exist B1UB2 and B2VB1 (finitely generated on both sides) such that U, V are 
reflexive modules on both sides and

U ⊗B2 V
∼=d−2 B1, V ⊗B1 U

∼=d−2 B2.
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In other words, we can replace T and T̃ with B1UB2 and B2VB1 respectively, which are 
reflexive modules on both sides.

In the following proof, we need to deal with multiple different rings/modules. It is 
convenient to fix the following notation specially when we deal with bimodules. Starting 
from a right B-module M , we use M∨ (respectively, M∨∨) for HomB(M, B) (respectively, 
HomBop(HomB(M, B), B)). Starting from a left B-module M , we use ∨M (respectively, 
∨∨M) for HomBop(M, B) (respectively, HomB(HomBop(M, B), B)). For example, for a 
(B1, B2)-bimodule M , we have

M∨∨ = HomBop
2

(HomB2(M,B2), B2)

and

∨∨M = HomB1(HomBop
1

(M,B1), B1).

By Lemma 2.19, for every finitely generated right B-module M , M∨∨ is (either zero or) 
always reflexive when B is Auslander-Gorenstein.

Proof of Proposition 3.9. By Lemma 3.3(2) and (E3.9.1), we have

∨∨(T ⊗B2 T̃ ) ∼=∨∨B1 ∼= B1,

as B1-bimodules. Hence there is a composite map

ψ : T ⊗B2 T̃ −→∨∨ (T ⊗B2 T̃ ) −→ B1

which induces the (d − 2)-isomorphism from T ⊗B2 T̃ to B1.
Define

τ(T ) := {x ∈ T |xr = 0 for some regular element r ∈ B2}.

By [1, Proposition 2.4(4) and Theorem 6.1], τ(T ) is the maximal torsion B2-submodule 
of T such that ∂(τ(T )) is at most d − 1, namely, τ(T ) ∈ modd−1 B2. Since we assume 
that ∂ is symmetric (Hypothesis 1.3(3)), τ(T ) ∈ modd−1 B

op
1 .

Note that T̃ is a finitely generated left B2-module, and by the definition of τ(T ), we 
have τ(T ) ⊗B2 T̃ ∈ modd−1 B

op
1 . Applying − ⊗B2 T̃ to an exact sequence

0 → τ(T ) → T → T/τ(T ) → 0

in modB2, one has an exact sequence

τ(T ) ⊗B2 T̃
f−→ T ⊗B2 T̃ → T/τ(T ) ⊗B2 T̃ → 0
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in modB1. Then

T/τ(T ) ⊗B2 T̃
∼= (T ⊗B2 T̃ )/ Im(f)

in modB1. Since B1 ∈ ref B1 is a 0-pure module and Im(f) ⊆ T ⊗B2 T̃ , we have 
ψ(Im(f)) = 0, whence there are well-defined morphisms

T ⊗B2 T̃ → T/τ(T ) ⊗B2 T̃
∼= (T ⊗B2 T̃ )/ Im(f) −→ B1 ∼=d−2 T ⊗B2 T̃

such that the composition is a (d − 2)-isomorphism. Therefore, T/τ(T ) ⊗B2 T̃
∼=d−2 B1. 

Now, we can replace T with T/τ(T ) in (E3.9.1) and assume that τ(T ) = 0, namely, T is 
a 0-pure B2-module (whence a 0-pure left B1-module by the symmetry of ∂).

Let U := GB2(T ) be the Gabber closure of T . By Lemma 3.7, U is isomorphic to 
GBop

1
(T ) as bimodules. This implies that U is finitely generated on both sides and T ∼=d−2

U by the definition of the Gabber closure. Combining this (d − 2)-isomorphism with 
(E3.9.1) and Lemma 1.10, we have

U ⊗B2 T̃
∼=d−2 B1.

Similarly,

T̃ ⊗B1 V
∼=d−2 B2.

Since T is 0-pure, by Lemmas 2.19 and 3.7(3), U is reflexive on both sides. Next we take 
V = GB1(T̃ ) and repeat the above argument. It is easy to see that U and V satisfy the 
required conditions. �
Lemma 3.10. Let B be an Auslander-Gorenstein and ∂-CM algebra with ∂(B) = d and 
U a nonzero reflexive B-module. Then

(1) HomB(C, U) = 0 for any C ∈ modd−1 B.
(2) Ext1B(K, U) = 0 for any K ∈ modd−2 B.

Proof. (1) Let f ∈ HomB(C, U). Since Im(f) is a quotient module of C,

∂(Im(f)) ≤ ∂(C) ≤ d− 1.

By Corollary 2.16, U is 0-pure. If Im(f) �= 0, then ∂(Im(f)) = ∂(U) = d, a contradiction. 
Therefore Im(f) = 0, which implies that HomB(C, U) = 0.

(2) If Ext1B(K, U) �= 0, there is a non-split extension

0 → U → E → K → 0 (E3.10.1)
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in modB. Let τ(E) be the maximal submodule of E such that ∂(τ(E)) ≤ d − 1. Then 
there exists an induced morphism ϕ : τ(E) → K such that kerϕ ⊆ U ∩ τ(E). Since 
∂(U ∩ τ(E)) ≤ ∂(τ(E)) ≤ d − 1 and U is 0-pure, U ∩ τ(E) = 0. This implies that ϕ is 
injective, whence, we can consider τ(E) as a submodule of K, and ϕ is not surjective 
(following by the fact that (E3.10.1) is non-split). Hence, we obtain a short exact sequence

0 −→ U −→ E/τ(E) −→ K/τ(E) −→ 0

with

∂
(
E/τ(E)

/
U
)

= ∂(K/τ(E)) ≤ ∂(K) ≤ d− 2 = ∂(U) − 2.

By the definition of τ(E), E/τ(E) is 0-pure. So, E/τ(E) is a tame and pure extension 
of U . By hypothesis, U is a reflexive module, whence U = GB(U) by Lemma 2.7. Then, 
by Proposition 2.10(4), E/τ(E) ∼= U , or equivalently, K/τ(E) = 0. This means that 
K = τ(E), or equivalently, the exact sequence (E3.10.1) is split, a contradiction. The 
assertion follows. �
Remark 3.11. The reflexivity of module U is not necessary for Lemma 3.10(1). In fact, 
when U is a 0-pure module, Lemma 3.10(1) is also true.

Lemma 3.12. Let B be an Auslander-Gorenstein and ∂-CM algebra with ∂(B) = d. Sup-
pose that 0 �= U ∈ modB satisfies

HomB(N,U) = 0 = Ext1B(N,U)

for all N ∈ modd−2 B.

(1) For M ∈ modB, Homqmodd−2 B(M, U) ∼= HomB(M, U).
(2) Endqmodd−2 B(U) ∼= EndB(U).
(3) In particular, if M ∈ modB and U ∈ ref B, then

Homqmodd−2 B(M,U) = HomB(M,U)

and

Endqmodd−2 B(U) ∼= EndB(U).

Proof. (1) By the assumption, U does not have any nonzero B-submodule of ∂-dimension 
at most d − 2. Combining with (E1.4.2), we have

Homqmodd−2 B(M,U) = lim HomB(K,U),

−→
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where the limit runs over all the submodules K ⊆ M such that ∂(M/K) ≤ d − 2. The 
functor π induces a natural morphism

φπ : HomB(M,U) → Homqmodd−2 B(M,U) := lim
−→

HomB(K,U), (E3.12.1)

where K ⊆ M as described as above. By hypotheses,

HomB(M/K,U) = 0 = Ext1B(M/K,U).

Now the short exact sequence 0 → K → M → M/K → 0 induces a long exact sequence

0 → HomB(M/K,U) → HomB(M,U) → HomB(K,U) → Ext1B(M/K,U) → · · · ,

which implies that HomB(M, U) ∼= HomB(K, U) for all K. Thus φπ in (E3.12.1) is an 
isomorphism. The assertion follows.

(2) Take M = U in (E3.12.1), the functor π induces a morphism of algebras φπ. By 
part (1), φπ is also an isomorphism of k-vector spaces. The assertion follows.

(3) If U ∈ ref B, then by Lemma 3.10,

HomB(N,U) = 0 = Ext1B(N,U).

The assertion follows from parts (1, 2). �
Lemma 3.13. Assume Hypothesis 3.8. Let B1UB2 be the module appeared in Proposi-
tion 3.9. Then it is a reflexive module on both sides such that B1 ∼= EndB2(U) and 
Bop

2
∼= EndBop

1
(U).

Proof. By Proposition 3.9 and Lemma 3.5, B1UB2 is a reflexive module on both sides 
and induces the following equivalence of categories

F := −⊗B1 U : qmodd−2 B1 −→ qmodd−2 B2.

Since F is an equivalence functor, we obtain isomorphisms of algebras:

Endqmodd−2 B1(B1) ∼= Endqmodd−2 B2(F (B1)) = Endqmodd−2 B2(U).

Now it suffices to show that

Endqmodd−2 B1(B1) ∼= B1

and

Endqmod B2(U) ∼= EndB2(U).

d−2
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Since B1 ∈ ref B1 and U ∈ ref B2, by Lemma 3.12(3), the above isomorphisms hold, as 
required.

By symmetry, Bop
2

∼= EndBop
1

(U). �
Corollary 3.14. Assume Hypothesis 3.8. Let A be an Auslander-Gorenstein and ∂-CM
algebra with ∂(A) = d. Let (B,BMA,ANB) be a NQR of A. Then there exists a bimodule 

BUA := M∨∨ which is a reflexive module on both sides such that

B ∼= EndA(U) and Aop ∼= EndBop(U).

Theorem 3.15. Assume Hypothesis 3.8. Let A be an algebra with ∂(A) = d. Suppose that 
A has two NQRs (Bi,Bi

(Mi)A,A(Ni)Bi
) for i = 1, 2. Then there exists a bimodule B1UB2

which is a reflexive module on both sides such that

B1 ∼= EndB2(U) and Bop
2

∼= EndBop
1

(U).

Proof. Let T := M1 ⊗A N2 and T̃ := M2 ⊗A N1. Then there are isomorphisms, by 
Lemma 1.10,

T ⊗B2 T̃
∼=d−2 B1,

and

T̃ ⊗B1 T
∼=d−2 B2.

Thus, the result follows from Lemma 3.13. �
Finally we introduce another definition, which is a bit closer to Van den Bergh’s 

NCCR.

Definition 3.16. Let A ∈ A be an Auslander-Gorenstein algebra with ∂(A) = d. Let s be 
an integer between 0 and d − 2.

(1) If there are an Auslander regular ∂-CM algebra B ∈ A with ∂(B) = d and two 
bimodules BMA and ANB which are reflexive on both sides such that

M ⊗A N ∼=d−2−s B, N ⊗B M ∼=d−2−s A

as bimodules, then the triple (B,BMA,ANB) is called an s-noncommutative quasi-
crepant resolution (s-NQCR for short) of A.

(2) A 0-noncommutative quasi-crepant resolution (0-NQCR) of A is called a noncom-
mutative quasi-crepant resolution (NQCR for short) of A.
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By definition, a NQCR of an Auslander-Gorenstein algebra A is automatic a NQR 
of A. Suppose A is an Auslander-Gorenstein and ∂-CM algebra. If A has a NQR, then, 
by Proposition 3.9, A has a NQCR. However, it is not clear to us whether an s-NQR 
(Definition 3.2) produces an s-NQCR when s > 0.

4. NQRs in dimension two

With the preparation in the last few sections, we are ready to prove a version of part 
(1) of the main theorem.

Lemma 4.1. Let A be an Auslander-Gorenstein and ∂-CM algebra. Then

injdimA ≤ ∂(A).

Proof. Let d = injdimA. Then there is a right A-module M such that AN :=
ExtdA(M, A) �= 0. By the Auslander condition, j(N) ≥ d. Now, by the ∂-CM property,

∂(A) = ∂(N) + j(N) ≥ d = injdimA. �
Theorem 4.2. Assume Hypothesis 3.8. Suppose that (Bi,Bi

(Mi)A,A(Ni)Bi
) are two 

NQRs of A for i = 1, 2. If ∂(A) ≤ 2, then B1 and B2 are Morita equivalent.

Proof. By definition, ∂(Bi) = ∂(A) ≤ 2. By Lemma 4.1,

gldim(Bi) = injdim(Bi) ≤ ∂(B1) ≤ 2.

Let T := M1⊗AN2 and T̃ := M2⊗AN1. Then there are isomorphisms, by Lemma 1.10,

T ⊗B2 T̃
∼=d−2 B1,

and

T̃ ⊗B1 T
∼=d−2 B2.

By Proposition 3.9, there exist B1UB2 and B2VB1 which are reflexive modules (and finitely 
generated) on both sides such that

U ⊗B2 V
∼=d−2 B1 and V ⊗B1 U

∼=d−2 B2.

Since gldim(Bi) ≤ 2, by Corollary 2.13, U and V are projective modules on both sides. 
Hence U ⊗B2 V and V ⊗B1 U are projective (whence reflexive) on both sides. Therefore, 
by Corollary 3.4, we have

U ⊗B2 V
∼= B1 and V ⊗B1 U

∼= B2,
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which implies that B1 and B2 are Morita equivalent. This finishes the proof. �
5. Depth in the noncommutative setting

The proof of part (2) of the main theorem needs some extra preparation. In particular, 
it uses the concept of a depth in noncommutative algebra. There are several slightly 
different definitions of the depth in the noncommutative setting. It is a good idea to fix 
some notation.

Let A be an algebra with a dimension function ∂.

Hypothesis 5.1. Let A be an algebra. Assume that mod0 A �= 0, namely, there is a nonzero 
module S ∈ mod0 A.

Hypothesis 5.1 is sometimes quite natural, but not automatic. By abuse of notation, 
we can also talk about Hypothesis 5.1 for a single algebra A or for a family of algebras 
A.

Definition 5.2. Let A be an algebra and ∂ be a dimension function. For an A-module 
M ∈ modA, define

depA M = inf{i|ExtiA(S,M) �= 0 for some S ∈ mod0 A} ∈ N ∪ {+∞}.

If no confusion can arise, we write depM for depA M . If Hypothesis 5.1 fails for A, then 
depA M = +∞ for every A-module M .

If depA M < +∞ for some A-module M , then Hypothesis 5.1 holds for the algebra 
A. One can easily prove the following depth lemma.

Lemma 5.3. Let A be an algebra and ∂ be a dimension function. Let

0 → M ′ → M → M ′′ → 0

be a short exact sequence of finitely generated right A-modules. Then

(1) depM ≥ min{depM ′, depM ′′}.
(2) depM ′ ≥ min{depM, depM ′′ + 1}.
(3) depM ′′ ≥ min{depM, depM ′ − 1}.

The proof of Lemma 5.3(2) is basically given in the proof of Lemma 5.5.
The following proposition resembles the “special χ condition” in [38, Defini-

tion 16.5.16].

Proposition 5.4. Suppose that Hypothesis 5.1 holds for A. If A is a ∂-CM algebra with 
∂(A) = ∂(Aop) = d, then
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depA A = depAop A = d.

Proof. Given every nonzero S ∈ mod0 A, we have

jA(S) = ∂(A) − ∂(S) = ∂(A) = d,

namely,

d = inf{i|ExtiA(S,A) �= 0}.

Thus depA A = d. Similarly, we have depAop A = d. �
The proof of Theorem 0.6(2) also uses the following two lemmas, which were known 

in the local or graded setting [14, Lemma 3.15].

Lemma 5.5. Suppose that M and N are nonzero finitely generated A-modules related by 
the exact sequence

0 −→ M −→ Ps−1 −→ Ps−2 −→ · · · −→ P0 −→ N −→ 0.

Then

depA(M) ≥ min{depA(N) + s,depA(P0), . . . ,depA(Ps−2),depA(Ps−1)}.

If, further, depA(Pj) ≥ s + depA(N) for each j, then depA(M) = depA(N) + s.

Proof. There is nothing to be proved if Hypothesis 5.1 fails for A. So we assume that 
Hypothesis 5.1 holds for A for the rest of the proof. By induction on s, it suffices to show 
the assertion in the case of s = 1. For any S ∈ mod0 A, letting P = P0 and applying 
HomA(S, −) to the short exact sequence

0 → M → P → N → 0,

we obtain a long exact sequence

· · · → Exti−1
A (S, P ) → Exti−1

A (S,N) → ExtiA(S,M) → ExtiA(S, P )

→ ExtiA(S,N) → Exti+1
A (S,M) → · · · .

Since ExtiA(S, P ) = 0 for all i < depA P , we get ExtiA(S, M) ∼= Exti−1
A (S, N) for all 

i < depA P . The latter is equal to 0 for all i ≤ depA N . In other words, for every 
i < min{depA(N) + 1, depA(P )}, we have ExtiA(S, M) = 0, namely,

depA(M) ≥ min{depA(N) + 1, depA(P )}.
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This assertion also follows from Lemma 5.3(2). If i = depA(N) + 1 ≤ depA(P ), one has

0 �= Exti−1
A (S,N) ⊆ ExtiA(S,M),

which implies that depA(M) = depA(N) + 1, as desired. �
Lemma 5.6. Let A and B be algebras. Suppose that M is a finitely generated right 
B-module and N is an (A, B)-bimodule that is finitely generated on both sides. Then

depAop(HomB(M,N)) ≥ min{2, depAop(N)}.

Proof. Consider a projective resolution of the right B-module M

· · · → P1 → P0 → M → 0,

where Pi is finitely generated for i = 0, 1. By applying HomB(−, N) to the exact sequence 
above, one has short exact sequences

0 → HomB(M,N) → HomB(P0, N) → C1 → 0, (E5.6.1)

and

0 → C1 → HomB(P1, N) → C2 → 0, (E5.6.2)

for some left A-modules C1 and C2. Since Pi is projective over B, HomB(Pi, N) has (left) 
depth at least equal to depAop(N) for i = 0, 1. Without loss of generality, we assume 
that depAop(N) ≥ 1. So we consider two different cases.

If depAop(N) = 1, then depAop(HomB(P0, N)) ≥ 1. By (E5.6.1) and Lemma 5.5,
we have depAop(HomB(M, N)) ≥ 1, as desired. If depAop(N) ≥ 2, then
depAop(HomB(Pi, N)) ≥ 2 for i = 0, 1. Applying Lemma 5.5 to (E5.6.2) and (E5.6.1)
respectively, we have depAop(C1) ≥ 1 and depAop(HomBop(M, N)) ≥ 2. This finishes the 
proof. �
Remark 5.7. The above lemma holds true for a finitely generated left B-module M and 
a (B, A)-bimodule N which is finitely generated on both sides, namely,

depA(HomBop(M,N)) ≥ min{2, depA(N)}.

Corollary 5.8. Let A be an algebra.

(1) If depAop A ≥ 2 and M ∈ ref Aop, then depAop M ≥ 2.
(2) If depA A ≥ 2 and M ∈ ref A, then depA M ≥ 2.
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Proof. We just need to show part (1). By Lemma 5.6,

depAop M = depAop HomA(HomAop(M,A), A)

≥ min{2, depAop A} = 2,

as desired. �
The following lemma is the noncommutative version of [21, Lemma 8.5].

Lemma 5.9. Let t be a nonnegative integer and let

0 → Xt
ft−→ Xt−1

ft−1−−−→ · · · → X2
f2−−→ X1

f1−−→ X0 → 0

be an exact sequence of finitely generated A-modules with X0 ∈ mod0 A. If, for every 
i > 0, depA Xi ≥ i, then X0 = 0.

Proof. The assertion is automatic if Hypothesis 5.1 fails for A. So for the rest of the 
proof, we assume that Hypothesis 5.1 holds for A.

Let Yi denote Im fi ⊆ Xi−1 for 1 ≤ i ≤ t. Inductively, we will show depA Yi ≥ i for 
all i. This is clearly true for i = t. Now we assume that depA Yi+1 ≥ i +1 for some i and 
would like to show that depA Yi ≥ i. Consider the exact sequence

0 −→ Yi+1 −→ Xi −→ Yi −→ 0

with the hypothesis depA Yi+1 ≥ i + 1 and depXi ≥ i. By Lemma 5.3(3), depA Yi ≥ i. 
This finishes the inductive step and therefore depA Yi ≥ i for all 1 ≤ i ≤ t. In particular, 
depA X0 = depA Y1 ≥ 1. Since X0 = Y1 ∈ mod0 A, the only possibility is X0 = 0. �
Proposition 5.10. Let A be an algebra and d be a positive integer. Suppose that

X := 0 → X0 f0

−−→ X1 f1

−−→ · · · → Xd fd

−−→ Xd+1 → · · ·

is a complex in modA satisfying the following:

(1) depXi ≥ d − i for all i ≥ 0;
(2) Hi = 0 for all i ≥ d, where Hi denotes the i-th cohomology of the above complex X;
(3) Hi ∈ mod0 A for all i ≥ 0.

Then the complex X is exact.

Proof. The assertion is automatic if Hypothesis 5.1 fails for A. So for the rest of the 
proof, we assume that Hypothesis 5.1 holds for A.
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For i = 0, we have an exact sequence

0 → H0 → X0 → X0/H0 → 0.

By Lemma 5.3(2). dep H0 ≥ min{depX0, dep(X0/H0) + 1} ≥ 1. Since H0 ∈ mod0 A, we 
have H0 = 0.

Now we fix an integer 1 ≤ j < d and assume that Hs = 0 for all 0 ≤ s ≤ j − 1. Then 
there are two exact sequences:

0 → X0 → · · · → Xj → coker f j−1 → 0

and

0 → Hj → coker f j−1 → Xj+1.

By using Lemma 5.3(3) repeatedly, we obtain that dep(coker f j−1) ≥ d − j > 0. Since 
Hj ∈ mod0 A, the second exact sequence forces Hj = 0. By induction, we have Hi = 0
for all i = 0, · · · , d − 1 as required. �
6. NQRs in dimension three

Part (2) of the main theorem concerns derived equivalences of two algebras. This can 
be achieved by constructing a tilting complex between them. Let Λ be an algebra. Recall 
that T ∈ Kb(proj Λ) is a tilting complex [31, Definition 6.5] if HomD(Mod Λ)(T, T [i]) = 0
for any i �= 0 and the category add(T ) generates Kb(proj Λ) as triangulated categories. 
Let Ω be another algebra. If there exists a tilting complex T ∈ Kdimb(proj Λ) such 
that Ω ∼= EndD(Mod Λ)(T ), then we call Λ and Ω derived equivalent. Rickard proved 
that there are other three equivalent conditions to characterize derived equivalent [31, 
Theorem 6.4], also see [38, Section 14.5]. If a Λ-module T is a tilting complex, then it is 
called a tilting module. Here we only need to use tilting modules, so we first recall the 
detailed definition of a tilting module.

Definition 6.1. [19] Let Λ be a ring. Then T ∈ mod Λ is called a tilting module if the 
following conditions are satisfied:

(a) projdimΛ T < ∞;
(b) ExtiΛ(T, T ) = 0 for all i > 0;
(c) there is an exact sequence

0 −→ Λ −→ T0 −→ T1 −→ · · · −→ Tt−1 −→ Tt −→ 0

with each Ti ∈ addT .
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Let Λ and Ω be two algebras. If there is a tilting Λ-module T such that Ω ∼= EndΛ(T ), 
then Λ and Ω are derived equivalent, namely, there is a triangulated equivalence between 
Db(mod Λ) and Db(modΩ) [31, Theorem 6.4].

Theorem 6.2. Let Bi be Auslander-regular and ∂-CM algebras for i = 1, 2. Suppose 
∂(Bi) = d ≥ 3. If there exists a (B1, B2)-bimodule U satisfying the following condi-
tions:

(1) U ∈ ref B2;
(2) projdimB2

U ≤ 1;
(3) Ext1B2

(U, U) ∈ mod0 B
op
1 ;

(4) B1 ∼= EndB2(U);
(5) When switching B1 and B2, the above conditions still hold,

then U is a tilting B2-module and further, B1 and B2 are derived equivalent.

Proof. It suffices to show that U is a tilting B2-module as given in Definition 6.1. Below 
we check (a, b, c) in Definition 6.1.

(a) By hypothesis (2), projdimB2
U ≤ 1, hence Definition 6.1(a) holds.

(b) By hypothesis (2), we need to prove that Ext1B2
(U, U) = 0. If mod0 B

op
1 contains 

only the zero module, then hypothesis (3) implies that Ext1B2
(U, U) = 0. Otherwise, 

Hypothesis 5.1 holds for left B1-modules, which we assume for the rest of the proof.
Consider the exact sequence 0 −→ P1 −→ P0 −→ U −→ 0 of B2-modules where Pi are 

projective over B2. Applying HomB2(−, U), we obtain an exact sequence of Bop
1 -modules

0 → HomB2(U,U) → HomB2(P0, U) → HomB2(P2, U) → Ext1B2
(U,U) → 0.

Since U is a reflexive Bop
1 -module and depBop

1
B1 = d ≥ 2 (Proposition 5.4), by 

Lemma 5.6 and Corollary 5.8, we have

depBop
1

(HomB2(P0, U)) ≥ min{2, depBop
1

U} = 2,

and

depBop
1

(HomB2(P1, U)) ≥ min{2, depBop
1

U} = 2 ≥ 1.

Moreover, depBop
1

(HomB2(U, U)) = depBop
1

(B1) = d ≥ 3, then by hypothesis (3) and 
Lemma 5.9, Ext1B2

(U, U) = 0.
(c) By hypothesis (5), we have that B2 ∼= EndBop

1
(U, U) and projdimBop

1
U ≤ 1. By 

the same proof as in (b), we have Ext1Bop
1

(U, U) = 0. Let 0 → Q1 → Q0 → U → 0 be a 
projective resolution of the Bop

1 -module U . Applying HomBop
1

(−, U) and using the fact 
that Ext1Bop(U, U) = 0, we obtain an exact sequence
1
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0 → B2 → HomBop
1

(Q0, U) → HomBop
1

(Q1, U) → 0

of B2-modules, and clearly, HomBop
1

(Qi, U) ∈ addB2 U for i = 0, 1. Thus we proved 
condition (c) of a tilting module.

Thus, U is a tilting B2-module, and consequently, B1, B2 are derived equivalent. �
Lemma 6.3. Let B1 and B2 be algebras such that B2 is (Auslander) Gorenstein. Suppose 
that ∂ satisfies γ0,0(B2, B1)r. Let M be a right B2-module with projdimM ≤ 1 and U
be a (B1, B2)-bimodule such that projdimUB2 < ∞. If Ext1B2

(M, B2) ∈ mod0 B
op
2 , then 

Ext1B2
(M, U) ∈ mod0 B

op
1 .

Proof. By [26, Section 5 (b.1)], there is an Ischebeck spectral sequence

TorB2
p (U,ExtqB2

(M,B2)) ⇒ Extq−p
B2

(M,U).

Since projdimM ≤ 1, the E2-page of this spectral sequence has only two nonzero 
columns. Therefore

TorB2
0 (U,Ext1B2

(M,B2)) ∼= Ext1B2
(M,U).

Note that

TorB2
0 (U,Ext1B2

(M,B2)) = U ⊗B2 Ext1B2
(M,B2) ∈ mod0 B1

op

by γ0,0(B2, B1)r condition. Therefore, Ext1B2
(M, U) ∈ mod0 B

op
1 . �

Remark 6.4. If ∂ = GKdim and B is affine over k, then M ∈ mod0 B is equivalent to M
being finite dimensional over k. In this case, ∂ automatically satisfies γ0,i for all i.

Hypothesis 6.5. We assume

(1) Hypothesis 3.8 holds.
(2) γ0,0(A, B) for all A, B ∈ A.

Next we prove a version of Theorem 0.6(2).

Theorem 6.6. Assume Hypothesis 6.5. Let A ∈ A be an algebra with ∂(A) = 3. Suppose 
that (Bi,Bi

(Mi)A,A(Ni)Bi
) are two NQRs of A for i = 1, 2. Then B1 and B2 are derived 

equivalent.

Proof. We need to verify the hypotheses in Theorem 6.2.
By Proposition 3.9, Theorem 3.15 and Corollary 2.13, there exists a bimodule B1UB2

which is reflexive on both sides such that B1 ∼= EndB2(U) and projdimB U ≤ 1. Hence 

2
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hypotheses (1, 2, 4) in Theorem 6.2 hold. To show hypothesis (3) in Theorem 6.2, we 
follow Proposition 2.18. There are two cases that should be considered:

Case 1: E31
2 = Ext3Bop

2
(Ext1B2

(U, B2), B2) = 0. By Proposition 2.18,

ExtiBop
2

(ExtjB2
(U,B2), B2) = 0

for all (i, j) except for (i, j) = (0, 0). This implies that U ∈ projB2. Then Theorem 6.2(3) 
holds trivially.

Case 2: E31
2 �= 0. Then Ext1B2

(U, B2) �= 0, and by Proposition 2.18,

jBop
2

(Ext1B2
(U,B2)) = 3.

Since B2 is ∂-CM, we have

∂Bop
2

(Ext1B2
(U,B2)) = ∂Bop

2
(B2) − jBop

2
(Ext1B2

(U,B2)) = 3 − 3 = 0,

namely, Ext1B2
(U, B2) ∈ mod0 B

op
2 . By Lemma 6.3, Ext1B2

(U, U) ∈ mod0 B
op
1 , which is 

Theorem 6.2(3).
Up to this point, we have proved conditions (1, 2, 3, 4) in Theorem 6.2. By symmetry, 

Theorem 6.2(5) holds. Therefore, by Theorem 6.2, B1 and B2 are derived equivalent. �
7. Connections between NQRs and NCCRs

In this section we show that Van den Bergh’s noncommutative crepant resolutions 
(NCCRs) are in fact equivalent to noncommutative quasi-resolutions (NQRs) in the 
commutative or central-finite case. We use the definition given in [21, Section 8] which 
is slightly more general than original definition, see Definition 0.2.

Let R be a noetherian commutative domain with finite Krull dimension. Let AR,Kdim

be the category of algebras that are module-finite R-algebras with ∂ being the Krull 
dimension (Kdim). As explained in Example 3.1(3), we need to specify modules too. 
As usual, one-sided modules are just usual modules, but bimodules are assumed to be 
R-central.

Lemma 7.1. Retain the notation as above. Let A, B ∈ AR,Kdim. Then Hypothesis 1.3
holds.

Proof. By [6, Lemma 1.3], ∂ := Kdim is exact and symmetric. Hypothesis 1.3(1) and 
(2) are clear. It remains to show (3). By definition all bimodules are central over R. 
If AMB is finitely generated over B, then it is finitely generated over R as every al-
gebra is module-finite over R. Then M is finitely generated over A. This implies that 
Hypothesis 1.3(3) is equivalent to the fact that ∂ is symmetric. �
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We recall a definition from [6, Definition 1.1(5)]. Let A and B be two algebras. We 
say ∂ is (A, B)i-torsitive if, for every (A, B)-bimodule M finitely generated on both sides 
and every finitely generated right A-module N , one has

∂(TorAj (N,M)B) ≤ ∂(NA)

for all j ≤ i. Part (1) of the following lemma was proven in [6].

Lemma 7.2. Let A and B be two algebras in AR,Kdim.

(1) [6, Lemma 3.1] ∂ is (A, B)∞-torsitive.
(2) γk1,k2(A, B) hold for all k1, k2 (see Definition 1.8).
(3) Hypothesis 3.8 holds.
(4) Hypothesis 6.5 holds.

Proof. (2) This follows from part (1) and the definition.
(3) This follows from Lemma 7.1 and a special case of part (2).
(4) This follows from part (3) and another special case of part (2). �
For the purpose of this paper, we only need γ0,0(A, B) and γ1,1(A, B). But it is good 

to know that γk1,k2(A, B) hold for all k1, k2. For the rest of this section, CM stands 
for “Cohen-Macaulay” in the classical sense in commutative algebra, while Kdim-CM is 
defined in Definition 2.3 by taking the dimension function ∂ to be the Krull dimension 
Kdim. By [12, p. 1435], when R is commutative and noetherian, then R is Kdim-CM if 
and only if R is CM and equi-codimensional. The following lemma is known.

Lemma 7.3. Let R be a commutative d-dimensional CM equi-codimensional normal do-
main. Let A be a module-finite R-algebra and K ∈ modA. Let s be an integer between 
0 and d − 2. Then K ∈ modd−2−s A if and only if Kp = 0 for every prime ideal p of R
with ht(p) ≤ 1 + s.

Proof. Since KdimMR = KdimMA, it suffices to consider the case A = R. By [27, 
Lemma 6.2.11], we can always assume that K is a critical R-module such that q :=
AnnR(K) = {x ∈ R|xK = 0} is a prime ideal of R. In this case, K is an essential 
R/q-module.

Suppose that Kp = 0 for all prime ideals p with ht(p) ≤ 1 +s. If Kdim(K) ≥ d −1 −s, 
by [12, Theorem 3.1(iv)], we have

ht(q) = KdimR− KdimR/q = KdimR− KdimK ≤ 1 + s.

By the definition of q, Kq �= 0, which is a contradiction. Therefore Kdim(K) ≤ d −2 − s, 
as desired.
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Conversely, suppose that Kdim(K) ≤ d − 2 − s. Then KdimR/q ≤ d − 2 − s. By [12, 
Theorem 3.1(iv)], we have ht(q) ≥ 2 + s. Therefore Kp = 0 for all prime ideal p with 
ht(p) ≤ 1 + s. �
Remark 7.4. In the papers [35,21], the commutative base ring R is a normal Gorenstein 
domain, which is automatically CM equi-codimensional and normal. In [22, Theorem 1.5], 
it is assumed that R is a CM equi-codimensional normal domain. Hence the first hypoth-
esis of Lemma 7.3 holds.

Proposition 7.5. Let R be a commutative noetherian CM equi-codimensional normal do-
main of dimension d. Let A be a module-finite R-algebra that is a maximal CM R-module. 
If M gives rise to a NCCR of A in the sense of Definition 0.2(2), then (Ω,ΩMA,A(M∨)Ω)
is a NQR of A. In other words,

(1) Ω is an Auslander regular Kdim-CM algebra with gldim Ω = Kdim Ω = d.
(2) M ⊗A M∨ ∼=d−2 Ω and M∨ ⊗Ω M ∼=d−2 A.

Proof. (1) By the assumption, R is equi-codimensional, Ω is a module-finite R-algebra, 
and Ω is a maximal CM R-module, so, by [12, Lemma 2.8(2) and Theorem 4.8], Ω is 
a Kdim-CM algebra with Kdim(Ω) = Kdim(R) = d. Moreover, Ω being a nonsingular 
R-order means that it is a homologically homogeneous noetherian PI ring. Then, by [33, 
Theorem 1.4(1)], Ω is an Auslander regular algebra with gldim Ω = d. The assertion 
follows.

(2) Let ϕ : M∨ ⊗Ω M → A be the natural evaluation map. Then there is an exact 
sequence

0 → K → M∨ ⊗Ω M
ϕ−→ A → C → 0

with K, C ∈ modA. By definition of a NCCR, M ∈ ref A is a height one progenerator 
of A, we have M∨

p ⊗Ωp
Mp

∼= Ap for p ∈ Spec(R) with ht(p) ≤ 1. Therefore, Kp =
0 = Cp. By Lemma 7.3, K, C ∈ modd−2 R. Combining with the assumption that A is a 
module-finite R-algebra, K, C ∈ modd−2 A, namely, M∨ ⊗Ω M ∼=d−2 A.

Similarly, there is a natural map

α : M ⊗A M∨ → HomA(M,M) =: Ω

such that α(n ⊗ f)(m) = nf(m) for all f ∈ M∨ and all n, m ∈ M . One can use the 
above argument to show that M ⊗A M∨ ∼=d−2 Ω, whence (2) follows. �

Conversely, a NQR is also a NCCR for Gorenstein singularities.

Proposition 7.6. Let R be a commutative d-dimensional CM equi-codimensional normal 
domain. Let A be a module-finite R-algebra that is a maximal CM R-module. Suppose that 
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A is Auslander-Gorenstein and Kdim-CM, then a NQR of A, say (B, M, N), provides a 
NCCR B of A in the sense of Definition 0.2.

Proof. Let (B, M, N) be a NQR of A. Then B is an Auslander regular Kdim-CM algebra 
of Krull dimension d, and

M ⊗A N ∼=d−2 B, N ⊗B M ∼=d−2 A.

By Proposition 3.9, (M, N) can be replaced by (U, V ) such that (B, U, V ) is also a NQR of 
A and that U and V are reflexive on both sides. By Lemmas 3.13 and 7.2, B ∼= EndA(U). 
Since B is Auslander regular and Kdim-CM, it is easy to check that B is a non-singular 
order. It remains to show that U is a height one progenerator. By Proposition 3.9, we 
have

U ⊗A V ∼=d−2 B and V ⊗B U ∼=d−2 A.

It follows from Lemma 7.3 that

Up ⊗Ap
Vp

∼= Bp and Vp ⊗Bp
Up

∼= Ap

for every prime ideal p of R with ht(p) ≤ 1. Hence U is a height one progenerator of A. 
Therefore U gives a NCCR of A. �

By the above two propositions, NCCRs are essentially equivalent to NQRs when A
is Auslander-Gorenstein. Therefore Theorem 0.4(2b) is essentially equivalent to Theo-
rem 6.6 in this setting. In the next section, we will introduce more examples of NQRs 
in the noncommutative setting. One advantage of NQRs is that they can be defined for 
many algebras that are not Gorenstein (not even CM). In this case we do not require M
or N to be reflexive. Here is an easy example.

Example 7.7. Let B be the commutative polynomial ring k[x1, x2, x3] with the standard 
grading and let A be the subring of B generated by B≥2. Then A is noetherian of Krull 
dimension three and the Hilbert series of A is

HA(t) = 1
(1 − t)3 − 3t.

It is easy to see that A is not normal and that HA(t) can not be written as

1 + a1t + a2t
2 + · · · + adt

d

(1 − tn1)(1 − tn2)(1 − tn3)

for any nonnegative integers ai, nj . By [17, Ex. 21.17(b), p. 551], A is not CM. Then a 
NCCR of A is not defined. But A has a NQR as shown below.



142 X.-S. Qin et al. / Journal of Algebra 536 (2019) 102–148
Let M = B as a (B, A)-bimodule and N = B as an (A, B)-bimodule. It is easy to see 
that

M ⊗A N ∼=0 B, and N ⊗B M ∼=0 A.

Consequently, (B, M, N) is a NQR of A. As a consequence of Proposition 7.9 below, any 
two NQRs of A are Morita equivalent.

In addition, it is easy to check that A has an isolated singularity at the unique maximal 
graded ideal.

Though NQRs are weaker than NCCRs, not every algebra admits a NQR.

Example 7.8. Let A be an affine commutative Gorenstein algebra that does not admit a 
NCCR. Then A does not admit a NQR by Proposition 7.6. For example, A is an affine 
Gorenstein algebra of dimension two with non-isolated singularities, then A does not 
admit either a NCCR or a NQR. By [16, Theorem 1.2(2) and Example 3.5], there are 
isolated hypersurface singularities of (any) even dimension ≥ 4 that do not admit either 
a NCCR or a NQR.

Proposition 7.9. Let A be a module-finite R-algebra with ∂(A) = 3. Suppose

(a) (Bi,Bi
(Mi)A,A(Ni)Bi

) are two NQRs of A for i = 1, 2, and
(b) B1 or B2 is Azumaya.

Then B1 and B2 are Morita equivalent.

Proof. The hypotheses in Theorem 6.6 are automatic by Lemma 7.2. Hence B1 and B2
are derived equivalent. Since B1 (or B2) is Azumaya, by [39, Proposition 5.1], B1 and 
B2 are Morita equivalent. �
8. Examples of NQRs of noncommutative algebras and comments

In this section we give some examples of NQRs of noncommutative algebras. At the 
end of the section we also give some comments. It turns out that, except for Example 8.6, 
all examples in this section have the same kind of construction, namely, by noncommuta-
tive McKay correspondence. Precisely, fixed subrings RH , considered as noncommutative 
quotient singularities, have NQRs of the form R#H, where R and H will be explained 
in details. However, by taking different R and H, we obtain many different examples.

8.1. Graded case

Let Agr,GKdim be the category of locally finite N-graded noetherian algebras with finite 
Gelfand-Kirillov dimension and let ∂ = GKdim. Modules are usual Z-graded A-modules. 
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In this setting, (A, B)-bimodules are assumed to be Z-graded (A, B)-bimodules, namely, 
having both a left graded A-module and a right graded B-module structure with the 
same grading. See Example 3.1(1).

Remark 8.1. Many of basic results in ring theory and module theory have been general-
ized to the graded setting in the literature. For example, the graded version of some basic 
results in ring theory can be found in the book [28]. Using the graded version of these 
results one can carefully adapt the arguments to reprove all statements in Sections 1-7 in 
the graded setting. To save space we will use the graded version of results in Sections 1-7
without proofs.

Lemma 8.2. Retain the notation as above concerning the category Agr,GKdim.

(1) Hypothesis 1.3 holds.
(2) Let A and B be two algebras in Agr,GKdim. Then ∂ is (A, B)∞-torsitive. As a con-

sequence, γk1,k2(A, B) hold for all k1, k2.
(3) Hypothesis 6.5 holds.

Proof. (1) By [6, Lemma 1.2(1)], ∂ is exact. By [6, Lemma 1.2(4)], it is symmetric. 
Hypothesis 1.3(2) is [25, Lemma 5.3(b)].

(2) This is [6, Lemma 1.2(6)].
(3) This follows from parts (1) and (2) and the definition. �
From now on until Example 8.7, we are working with the category Agr,GKdim.

Proof of Theorem 0.6. By Lemma 8.2(3), Hypothesis 6.5 holds.
(1) This is a (graded) consequence of Theorem 4.2.
(2) This is a consequence of Theorem 6.6 and Lemma 8.2(3). �

Proposition 8.3. Suppose that A and B are two noetherian locally finite N-graded algebras 
that satisfy the following

(a) B is an Auslander regular CM algebra with GKdim(B) := d ≥ 2.
(b) Let e be an idempotent in B (or in B0) and A = eBe.
(c) N := eB is an (A, B)-bimodule which is finitely generated on both sides.
(d) M := Be is a (B, A)-bimodule which is finitely generated on both sides.
(e) GKdim(B/BeB) ≤ d − 2.

Then (B, M, N) is a NQR of A.

Proof. Below is a proof in the ungraded setting which can easily adapted to the graded 
case. Since ∂ = GKdim, by [6, Lemma 2.2(ii)], ∂((Ne)A) ≤ ∂(NB) for every finitely 
generated right B-module N , which is precisely [6, Hypothesis 2.1(7)]. It is easy to 
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verify [5, Hypothesis 2.1(1-6)]. By Lemma 8.2(2), ∂ satisfies γd−2,1(eB), which is precisely 
[5, (E2.3.1)]. Therefore we can apply the proof of [5, Lemma 2.3]. By the proof of [5, 
Lemma 2.3], the hypothesis GKdim(B/BeB) ≤ d − 2 implies that

M ⊗A N ∼=d−2 B.

On the other hand, it is clear that

N ⊗B M = eBe = A.

Therefore (B, M, N) is a NQR of A. �
Remark 8.4.

(1) By the above proof, Proposition 8.3 holds in the ungraded case as long as condition [5, 
(E2.3.1)] holds. Note that [5, (E2.3.1)] is a consequence of ∂ being (A, B)∞-torsitive 
for those algebras A and B in the category A.

(2) Similar to the proof of Proposition 8.3, if we replace condition (e) by

GKdim(B/BeB) ≤ d− 2 − s,

then (B, M, N) is an s-NQR of A in the sense of Definition 3.2(1).
(3) If A =: R is a commutative normal Gorenstein domain, then the NQRs in Proposi-

tion 8.3 might not be in the category of AR,Kdim (Section 7) as we are not required
that B is R-central. Keep this in mind, it is also possible that R has a NCCR in the 
category AR,Kdim and a NQR not in AR,Kdim (but in a different category such as 
Agr,GKdim).

Explicit examples of NQRs in the graded case are given next.

Example 8.5. Suppose the following hold.

(a) Let R be a noetherian connected graded (locally finite) Auslander regular CM algebra 
with GKdim(R) = d ≥ 2.

(b) Let H be a semisimple Hopf algebra acting on R homogeneously and inner-faithfully 
with integral 

∫
such that ε(

∫
) = 1.

(c) Let B be the smash product algebra R#H with e := 1# 
∫
∈ B and A be the fixed 

subring RH .
(d) Suppose GKdim(B/BeB) ≤ d − 2.

By Proposition 8.3, (B, M, N) := (B, Be, eB) is a NQR of A. This produces many 
examples of NQRs in following work. Note that the condition (d) is equivalent to that a 
version of Auslander’s theorem holds, namely, the natural algebra morphism
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φ : R#H −→ EndRH (R)

is an isomorphism. In [13,14,5,6,15,18], the results state that Auslander’s theorem holds 
instead of condition (d). Auslander’s theorem is a fundamental ingredient in the study of 
the McKay correspondence, see [13,14]. In the following we further assume that char k =
0.

(1) Let R be an Auslander regular and CM algebra of global dimension two and H
act on R with trivial homological determinant. Then A := RH has a NQR [13, 
Theorem 0.3].

(2) Let R be a graded noetherian down-up algebra (of global dimension three) which is 
not A(α, −1) and G be a finite subgroup of Autgr(R). Then A := RG has a NQR [6, 
Theorem 0.6].

(3) Let R be a graded noetherian down-up algebra (of global dimension three) and 
G be a finite subgroup coacting on R with trivial homological determinant. Then 
A := Rco G has a NQR [15, Theorem 0.1].

(4) Let R = k−1[x1, · · · , xn] and Sn act on R naturally permuting variables xi. Then 
A := RG has a NQR for every nontrivial subgroup G ⊆ Sn [18, Theorem 2.4]. A 
special case was proved earlier in [5, Theorem 0.5].

Next we give an example of a NQR that does not fit into the framework of Proposi-
tion 8.3.

Example 8.6. Let q be a nonzero scalar in k that is not a root of unity. Let B be 
the algebra k〈x, y〉/(yx − qxy − x2), which is connected graded noetherian Auslander 
regular and CM of GKdim 2. Let A := k + By be the subalgebra of B as given in [32, 
Notation 2.1]. By [32, Theorem 2.3], A is a noetherian algebra that does not satisfy 
the condition χ in the sense of [3]. As a consequence, A does not admit a balanced 
dualizing complex in the sense of Yekutieli [37]. In other words, this algebra does not 
have nice properties required in noncommutative algebraic projective geometry. By [32, 
Corollary 2.8],

qmod0 A
∼= qmod0 B.

This indicates that A might have a NQR. Indeed, this is the case as we show next.
Let M be the (graded) (B, A)-bimodule By and N be the (graded) (A, B)-bimodule 

B. One can verify that M and N are finitely generated on both sides. Note that, as a 
right A-module, M ∼=0 A since we have an exact sequence 0 → M → A → k → 0. Hence, 
following the Hilbert series computations,

N ⊗B M ∼=0 B ⊗B By ∼= By ∼=0 A

as A-bimodules, and
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M ⊗A N ∼=0 By ⊗A B ∼=0 ByB ∼=0 B

as B-bimodules, where the last ∼=0 follows from the fact that ByB is co-finite-dimensional 
inside B. By definition, B is a NQR of A.

8.2. Ungraded case

All NQRs in the graded case are NQRs in the ungraded setting. Below are other 
ungraded examples.

Example 8.7. Let Aungr,GKdim be the category of affine k-algebras with finite Gelfand-
Kirillov dimension and let ∂ = GKdim. Suppose the following hold.

(a) Let R be a noetherian Auslander regular CM algebra with GKdim(R) = d ≥ 2.
(b) Let H be a semisimple Hopf algebra acting on R and inner-faithfully with integral ∫

such that ε(
∫
) = 1.

(c) Let B be the smash product algebra R#H with e := 1# 
∫
∈ B and A be the fixed 

subring RH .
(d) Suppose GKdim(B/BeB) ≤ d − 2.

If [5, (E2.3.1)] holds, by Proposition 8.3, (B, M, N) := (B, (R#H)e, e(R#H)) is a NQR 
of A. We have some examples in the ungraded case. Here is the first example. Again 
assume that char k = 0. Let R be the universal enveloping algebra U(g) of a finite 
dimensional Lie algebra g. Suppose that g �= g′�kx for a 1-dimensional Lie ideal kx ⊆ g

and a Lie subalgebra g′ ⊂ g. Then [6, Corollary 0.5] implies that RG has a NQR for 
every finite group G ⊆ AutLie(g).

Example 8.8. Let API,GKdim be the category of affine k-algebras that satisfy a polynomial 
identity and let ∂ = GKdim. In fact, GKdim = Kdim in this case. But we do not 
assume that algebras are central-finite. By [6, Lemma 3.1], ∂ is (A, B)∞-torsitive for 
two algebras A and B in Aungr,PI . As a consequence, γk1,k2(A, B) hold for all k1, k2, 
see Lemma 7.2. Then in the setting of Example 8.6, RH has a NQR B := R#H when 
∂(B/BeB) ≤ ∂(B) − 2, or equivalently, when the Auslander’s theorem holds by [6, 
Theorem 3.3]. Explicit examples of R and H are given in [6, Corollaries 3.4 and 3.7].

8.3. Comments on potential directions of further research

There are some further studies of NQRs in dimension two in [30, Theorem 0.2(1)]
where the Gabriel quiver of a NQR is classified. It is natural to ask what we can do in 
dimension three.

The next question was suggested by the referee. Is it possible to remove the condition 
that the singular ring A (either in the commutative regime or in the noncommutative 
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regime) is Gorenstein or CM? Instead, we just assume that A has an Auslander dualizing 
complex. Note that, except for the definition (Definition 3.2), we use the Gorenstein or 
CM property in a large part of the paper.

In future study of higher dimensional NQRs, dualizing complexes and derived cate-
gories [40,38] would play a more important role than the classical methods presented in 
this paper.
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