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Introduction

A famous conjecture of Bondal-Orlov [8,9] in birational geometry states

Conjecture 0.1. [8,9] If Y1 and Y3 are crepant resolutions of a scheme X, then derived
categories D?(coh(Y1)) and Db(coh(Ys)) are equivalent.

In dimension three (respectively, two), this conjecture was proved by Bridgeland [10]
in 2002 (respectively, by Kapranov-Vasserot [24] in 2000). The conjecture is still open in
higher dimensions. As was noticed by Van den Bergh [34] in the study of one-dimensional
fibres and by Bridgeland-King-Reid [11] in the study of the McKay correspondence for
dimension d < 3 that both D%(coh(Y7)) and D?(coh(Y>)) are equivalent to the derived
category of certain noncommutative rings. Motivated by Conjecture 0.1 and work of
[11,10,34], Van den Bergh [35] introduced the notation of a noncommutative crepant
resolution (NCCR) of a commutative normal Gorenstein domain A (in the original ref-
erence, the author used the notation R). Let us recall the definition of a NCCR given
in [21, Section 8] which is quite close to the original definition of Van den Bergh [35,
Definition 4.1]. As usual, CM stands for Cohen-Macaulay.

Definition 0.2. Let R be a noetherian commutative CM ring and let A be a module-finite
R-algebra.

(1) [4] A is called an R-order if A is a maximal CM R-module. An R-order A is called
non-singular if gldim A, = Kdim R, for all p € Spec(R).

(2) [21, Section 8] Let M be a finitely generated right A-module that is reflexive. We
say that M gives a noncommutative crepant resolution, or NCCR, B := End (M)
of A if

(¢) M is a height one progenerator of A (namely, M, is a progenerator of A, for
any height one prime ideal p of R), and
(i¢) B is a non-singular R-order.

Note that Van den Bergh’s original definition of a NCCR was only for A = R being
Gorenstein, since these are the types of varieties which have a chance of admitting
crepant resolutions and so there is a good analogy with geometry [22, after Definition 1.2].
However when A is non-Gorenstein (but CM) there are sometimes many NCCRs of A,
and these are related to cluster tilting (CT) objects in the category of CM modules
over A [23, Corollary 5.9]. Thus, although geometrically we are only really interested in
NCCRs when A is Gorenstein, there are strong algebraic reasons to consider the more
general case. In this paper we will further relax the hypotheses on A: we allow A to be
non-CM and to be noncommutative in the most general sense. Van den Bergh made the
following conjecture, which is an extension of Bondal-Orlov Conjecture 0.1.
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Conjecture 0.3. [35, Conjecture 4.6] If A is a normal Gorenstein domain, then all crepant
resolutions of Spec(A) (commutative and noncommutative) are derived equivalent.

Van den Bergh proved this conjecture for 3-dimensional terminal singularities [35,
Theorem 6.6.3]. Since the existence of commutative crepant resolutions is not equiva-
lent to the existence of noncommutative crepant resolutions in high dimension [22], one
should probably break up the above conjecture into two parts: commutative crepant
resolutions and noncommutative crepant resolutions. In [21, Section 8], Iyama-Reiten
proved the noncommutative part of this conjecture for noncommutative algebras A as
in Definition 0.2 in dimension three. Similarly in [22], Iyama-Wemyss proved Conjec-
ture 0.3 for NCCRs for CM algebras A(= R) in dimension three, therefore generalizing
[21, Corollary 8.8] to algebras which do not have Gorenstein base rings.

Theorem 0.4.

(1) [21, Corollary 8.8] Let R be a commutative normal Gorenstein domain with
Kdim R < 3 and A a module-finite R-algebra. Then all NCCRs of A are derived
equivalent.

(2) [22, Theorem 1.5] Let A be a d-dimensional CM equi-codimensional commutative
normal domain with a canonical module.

(2a) If d =2, then all NCCRs of A are Morita equivalent.
(20) If d = 3, then all NCCRs of A are derived equivalent.

Iyama-Wemyss [22, Theorem 1.7] also gave a sufficient condition in arbitrary dimen-
sion (d = Kdim A) to establish when any two given NCCRs of R are derived equivalent.

The study of noncommutative singularities naturally leads a question of how to deal
with algebras that are not module-finite over their centers. Such questions were implicitly
asked in [13,14]. Before we present our solution, we would like to discuss some major
differences between the commutative and the noncommutative settings.

(e) First of all, some of previous approaches of using moduli [10] need to be re-developed
in order to prove equivalences of derived categories in a general noncommutative
setting. However, very little is known about the theory of general noncommutative
moduli.

(o) We say an algebra is central-finite if it is module-finite over its center (or more pre-
cisely, a finite module over its center). When algebras are not central-finite, some
homological tools fail due to the fact that localization does not work well in the non-
commutative setting. Our idea is to work with global structures without going to
the localization. For example, we use Auslander regular algebras instead of algebras
having finite global dimension. In the commutative case, the Auslander condition is
automatic. It is easy to see that Auslander regular algebras are a natural general-
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ization of homologically homogeneous algebras which are used in Van den Bergh’s
definition of a NCCR.

(o) In the commutative case, the Krull dimension, denoted by Kdim (see [27, Ch. 6]), is
used extensively and is implicitly assumed. It is well-known that the Krull dimension
might not be a good dimension function in the noncommutative case. Sometimes
Gelfand-Kirillov dimension, denoted by GKdim (see [25] and [27, Ch. 8]), is better
than the Krull dimension, and at other times vice versa. In the noncommutative
case, it is necessary to consider an abstract dimension function (or several different
ones in the different settings).

Let 0 be an exact symmetric dimension function in the sense of Definition 1.2
and Hypothesis 1.3(3) (or [27, Section 6.8.4]) which is defined for all right A-modules
where A is an algebra. Let D be another algebra. Two right A-modules (respec-
tively, (D, A)-bimodules) M and N are called s-isomorphic if there are a third right
A-module (respectively, (D, A)-bimodule) P and two right A-module (respectively,
(D, A)-bimodule) maps

f:M—P and g:N—P

such that the kernel and the cokernel of f and g (viewed as right A-modules) have
0-dimension less than or equal to s. In this case, we write M =, N. We refer to Defi-
nition 1.5 for more details. To state our main result without going to too much detail,
we give a definition of a noncommutative quasi-resolution in the following special case.
Some technical details are explained in Section 3.

Definition 0.5. We fix the dimension function 0 to be GKdim. Let A be a noetherian
locally finite N-graded algebra with GKdim(A) = d € N. If there are a noetherian
locally finite N-graded Auslander regular CM algebra B (see Definitions 2.1 and 2.3)
with GKdim(B) = d and two Z-graded bimodules g M4 and 4 Npg, finitely generated on
both sides, such that

M@A N gd,Q B, and N®B M gd,Q A

as Z-graded bimodules, then the triple (B, M, N) or simply the algebra B is called a
noncommautative quasi-resolution (or NQR for short) of A.

An ungraded version of the above definition is given in Definition 3.2 (also see Defini-
tion 3.16 for a related definition). Note that Van den Bergh considers a normal Gorenstein
noetherian commutative integral domain A. By a classical theorem of Serre, being nor-
mal is equivalent to these two conditions: for every prime ideal p C A of height < 1 the
local ring A, is regular, and for every prime ideal p C A of height > 2 the local ring A,
has depth > 2, which is related to Definition 0.5.
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By Proposition 7.5, Van den Bergh’s NCCRs (or Iyama-Reiten’s version, see Defini-
tion 0.2) produce naturally examples of the ungraded version of NQRs. Noncommutative
examples of NQRs are given in Section 8. Our main theorem is to prove a version of Con-
jecture 0.3 for NQRs in dimension no more than three.

Theorem 0.6. Fiz O to be GKdim as in the setting of Definition 0.5. Let A be a noetherian
locally finite N-graded algebra over the base field.

(1) Suppose GKdim(A) = 2. Then all NQRs of A are Morita equivalent.
(2) Suppose GKdim(A) = 3. Then all NQRs of A are derived equivalent.

The proof of Theorem 0.6 is given in Section 8. A version of Theorem 0.6 holds for other
dimension functions 0 with some extra hypotheses and details are given in Theorems 4.2
and 6.6. Note that the hypotheses on 9 (as listed in Theorem 6.6) are automatic in the
commutative case or the central-finite case when 9 = Kdim (see Lemmas 7.1 and 7.2).
Therefore Theorem 0.6, or Theorems 4.2 and 6.6 together, generalize important results of
Van den Bergh [35, Theorem 6.6.3], Iyama-Reiten [21, Corollary 8.8] and Iyama-Wemyss
[22, Theorem 1.5].

Inspired by the work in [21,22] and Theorem 0.6(1), we have the following question:

Question 0.7. Let By and Bs be Auslander-regular and 0-CM algebras with gldim B; =
d(B;) = 2 for i = 1,2. If By and By are derived equivalent, then are they Morita
equivalent?

The paper is organized as follows. Sections 1 and 2 are preliminaries containing a
discussion of dimension functions and homological properties. A detailed definition and
basic properties of a NQR are given in Section 3. A proof of the main theorem is basically
given in Sections 4, 6 and 8, while some technical material is taken care of in Section 5.
The connections between NCCRs and NQRs are given in Section 7. The final Section 8
contains examples of NQRs of noncommutative algebras.

1. Dimension functions and quotient categories

Throughout let k be a field. All algebras and modules are over k. We further assume
that all algebras are noetherian in this paper.

We first briefly review background material on dimension functions and quotient cat-
egories of the module categories.

Notation 1.1. For an algebra A, we fix the following notations.

(1) Mod A (respectively, Mod A°P): the category of all right (respectively, left) A-mod-
ules.
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(2) mod A (respectively, mod A°P): the full subcategory of Mod A (respectively,
Mod A°P) consisting of finitely generated right (respectively, left) A-modules.

(3) proj A (respectively, proj A°P): the full subcategory of mod A (respectively, mod A°P)
consisting of finitely generated projective right (respectively, left) A-modules.

(4) ref A (respectively, ref A°P): the full subcategory of mod A (respectively, mod A°P)
consisting of reflexive right (respectively, left) A-modules, see Definition 2.11.

(5) adda(M)(=add M) for M € mod A: the full subcategory of mod A consisting of
direct summands of finite direct sums of copies of M.

Usually we work with right modules. We will use the functor Homa(—, A4) a lot, so
let us mention a simple fact below. A contravariant equivalence between two categories
is called a duality. Let A be an algebra. Then there is a duality of categories

Homu(—, Aa) : proj A — proj A°P.

Our proof of the main result uses quotient categories of the module categories defined
via a dimension function, so we first give the following definition, which is a slight
modification of the definition given in [27, Section 6.8.4]. We also refer to [5, Section 1]
for a similar definition.

Definition 1.2. A function 0 : Mod A — R>o U {£o0} is called a dimension function if,

(a) O(M) = —oc if and only if M =0, and
(b) for all A-modules M,

(M) = max{0(N),0(M/N)},
whenever N is a submodule of M.
The 0 is called an exact dimension function if, further,
(¢) for all A-modules M,
(M) = sup{0(N), 0(M/N)},

whenever N is any submodule of M, and
(d) for every direct system of submodules of M, say {M;}icr,

o) M;) = sup{o(Ms;) | i € I}. (E1.2.1)

i€l

Condition (d) in Definition 1.2 is new. As a consequence of condition (d), we obtain
that, for every M € Mod A,
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O(M) :=sup{9(N) | for all finitely generated submodules N C M }. (E1.2.2)

If we start with an exact dimension function 0 defined on mod A, then 0 can be extended
to Mod A by using (E1.2.2). In this case, both condition (¢) and condition (d) in Defi-
nition 1.2 are automatic. In fact, natural examples of dimension functions in this paper
are constructed by (E1.2.2) from an exact dimension function 9 defined on mod A, see
Remark 1.4. One advantage of condition (d) is that, for any fixed n, every right A-module
M has a maximal submodule M’ with (M’) < n.

Similarly, one can define a dimension function on left modules. For most of the state-
ments in this paper, we assume the following:

Hypothesis 1.3. Let A and B be algebras with dimension function 0.

(1) 0 is an exact dimension function defined on both right modules and left modules.

(2) 0(A),0(B) € N.

(3) Ifan (A, B)-bimodule M is finitely generated as a B-module, then (4 M) < d(Mp).
This also holds when switching A and B. In particular, for an (A4, B)-bimodule M
which is finitely generated both as a left A-module and as a right B-module, we have

A(AM) = d(Mp). (E1.3.1)

A dimension function 0 is called symmetric if (E1.3.1) holds, which is identical to
[40, Definition 2.20].

Note that symmetry condition (E1.3.1) resembles “symmetric derived torsion”, in the
sense of [36, Section 9].

Unless otherwise stated, an (A, B)-bimodule means finitely generated on both sides.
Recall that A is called central-finite if it is a finitely generated module over its center.

Remark 1.4. Two standard choices of 0 are the Gelfand-Kirillov dimension, denoted by
GKdim, see [27, Ch. 8] and [25], and the Krull dimension, denoted by Kdim, see [27,
Ch. 6]. As a convention, we define the Krull dimension of an infinitely generated module
via (E1.2.2). Note that, while Kdim is defined for every noetherian ring A, it is not
known whether it is always symmetric. If A is central-finite, then Kdim is symmetric
[27, Corollary 6.4.13]. On the other hand, GKdim is always symmetric [25, Corollary 5.4],
though it could be infinite for a nice noetherian k-algebra. For a central-finite algebra
A with affine center, Kdim coincides with GKdim; this is an easy consequence of the
equality of the two dimensions for affine commutative algebras [25, Theorem 4.5].

We need to recall some definitions and notations introduced in [5]. From now on, we
fix an exact dimension function, say 0. We use n for a nonnegative integer. Let Mod,, A
denote the full subcategory of Mod A consisting of right A-modules M with (M) < n.
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Since 0 is exact, Mod,, A is a Serre subcategory of Mod A. Hence it makes sense to define
the quotient categories:

Mod A A
A= Mod A and qgmod, A := %,
le) HlOdn A

which can be seen as a generalized noncommutative scheme (see [3]). Note that there
are some symmetries between qmod,, A and qmod,, A°? when A admits a nice dualizing
complex, see [40, Theorem 2.15]. We denote the natural and exact projection functor by

m: Mod A — QMod,, A. (E14.1)

For M € Mod A, we write M for the object 7(M) in QMod,, A. The hom-set in the
quotient category is defined by

Homqntod, 4(M, ') = lim Homa(M', N') (E1.4.2)

for M, N € Mod A, where M’ is a submodule of M such that d(M/M') <n, N' = N/T
for some submodule T C N with 9(T') < n, and where the direct limit runs over all the
pairs (M’, N') with these properties.

Definition 1.5. Let n > 0. Let A and D be two algebras.

(1) Two right A-modules X, Y are called n-isomorphic, denoted by X =, Y, if there
exist a right A-module P and morphisms f: X — P and g : Y — P such that both
the kernel and cokernel of f and g are in Mod,, A.

(2) Two (D, A)-bimodules X,Y are called n-isomorphic, denoted by X =, Y, if there
exist a (D, A)-bimodule P and bimodule morphisms f: X — P and g : Y — P such
that both the kernel and cokernel of f and g are in Mod,, A when viewed as right
A-modules.

Definition 1.5(2) is useful when we consider bimodules. Most of right module state-
ments regarding n-isomorphisms have bimodule analogues, for which we might omit the
proofs if these are clear.

Remark 1.6.

(1) Since we usually consider finitely generated modules, it turns out that we are mostly
talking about n-isomorphisms in mod A. In this case, we can take P € mod A in the
above definition.

(2) If X is a submodule of Y in mod A and Y/X € mod,, 4, then clearly X =, Y.

(3) 1t

0O—-—K—M-—-N-—-C—0
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is an exact sequence in mod A with K, C € mod,, A, then M =,, N in mod A.
The following lemma is easy and the proof is omitted.

Lemma 1.7. Two right A-modules X and Y are n-isomorphic in mod A if and only if
their images X and Y in qmod,, A are isomorphic.

Definition 1.8. [5, Definition 1.2] Let A and B be algebras and 9 be an exact dimension
function that is defined on A-modules and B-modules. Let n and i be nonnegative
integers. Suppose that 4 Mp is a bimodule.

(1) We say O satisfies v, ;(M)! if for any N € mod,, A, Torf(N7 M) € mod,, B for all
0<j <

(2) We say 0O satisfies v, ;(M)" if for any N € mod,, B°P, Torf(M, N) € mod,, A° for
all 0 <j <.

(3) We say O satisfies v, ;(M) if it satisfies 7, ;(M)! and v, ;(M)".

(4) We say 0 satisfies 'yn,i(A,B)l if it satisfies %M-(M)l for all 4Mp that are finitely
generated on both sides.

(5) We say O satisfies v, (A, B)" if it satisfies 7, ;(M)" for all 4Mp that are finitely
generated on both sides.

(6) We say O satisfies 7v,:(4, B) if it satisfies v, (M) for all 4Mp that are finitely
generated on both sides.

Note that the conditions listed in the above definition are related to some conditions
in terms of symmetric (derived) torsion, generalizing the y-condition of [3], see [38,
Section 16.5].

In the most parts of this paper, we will be particularly interested in the v, 1 property.
Lemma 1.9. /5, Lemma 1.3] Let A and B be algebras such that O is an exact dimension
function on A-modules and B-modules. Assume that O satisfies yn.1(M)' for a bimodule
AMp. Then the functor — ® 4 M induces a functor

—®4 M :QMod,, A — QMod,, B.
Since M is finitely generated on both sides, this functor restricts to:

—®4 M : gmod,, A — qmod,, B.

Lemma 1.10. Retain the hypotheses in Lemma 1.9. Suppose that X and Y are in mod A
such that X =2, Y. Then X @4 M =,, Y ® 4 M in mod B.

Proof. The assertion follows from Lemmas 1.7 and 1.9 or the proof of [5, Lemma 1.3]. O
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We will also use the right adjoint functor of 7 defined in (E1.4.1). Since Mod,, A is
a Serre subcategory (or a dense subcategory in the sense of [29, Sect. 4.3]), every right
A-module has a largest submodule in Mod,, A (see also (E1.2.1)). Note that Mod A is
locally small (in the sense of [29, p. 5]) and has enough injective objects. By a well-known
classical category theory result [29, Theorem 4.4.5 or Proposition 4.5.2] (which is in a
different mathematical language unfortunately), there is a section functor, denoted by w
(we are following the notation of [3, p. 234]) such that there is a natural isomorphism

HomMod A(N, W(M)) = HOHl(;zMod71 A(?T(N), M), (E1.10.1)

for all M € Mod A and M € QMod,, A. Given a module M, let C; denote the filtering
category of maps M — M’ whose kernel and cokernel are in Mod,, A. Then

wr(M) = lim M'. (E1.10.2)
(M—M")eCum

By [29, Proposition 4.4.3], the unit of the adjunction I'd — wm induces the natural map
upy M — wr (M), (E1.10.3)

which has kernel and cokernel in Mod,, A. Further, u,; is an isomorphism if and only if
M is closed in the sense of [29, p. 176]. By [29, Lemma 4.4.6(2)], the image of us, which
is canonically isomorphic to M /M’ where M’ is the largest subobject of M in Mod,, A,
is an essential subobject in wm(M). The assertions in the following lemma are known to
experts.

Lemma 1.11. Let A and B be two algebras and n be a nonnegative integer. Let M be a
right A-module and M’ be the largest submodule of M such that O(M') < n.

(1) wn(M) is naturally isomorphic to the largest submodule of the injective hull of M /M’
containing M/M' such that X/(M/M') is in Mod,, A.

(2) If M is a (B, A)-bimodule, then wr(M) is a (B, A)-bimodule and ups s a bimodule
morphism.

Proof. (1) Without loss of generality, we can assume that M does not contain a nonzero
submodule of d-dimension < n, namely, M’ = 0. Let C(M) be the largest submodule
X D M of the injective hull of M such that X/M is in Mod,, A. By [29, Lemma 4.4.6(2)],
we have canonical injective maps

M % wr(M) L o)

such that the cokernel of f is in Mod,, A. In particular, w(f) is an isomorphism. Applying
the natural transformation Id — wm, we have a commutative diagram
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wr(M) —L— o)

uwﬂ'(]\l)J/ l“C(M)

wrwr (M) Tm) wr(C(M)).

~

Since 7w = Id, Uy is an isomorphism. Since 7(f) is an isomorphism, wn(f) is
an isomorphism. Note that both f and wuc(ar) are injective. Hence f and uc(yr) are
isomorphisms.

(2) Since M is a (B, A)-bimodule, there is an algebra map B — Endpeq a(My).
Applying the functor wm, we obtain an algebra map

B — EndModA(MA) — EndMod A(oJ?T(M)),

which means that wr (M) is a (B, A)-bimodule. Since the unit of the adjunction Id — wm
is a natural transformation, u,; is a bimodule morphism. O

2. Preliminaries on homological properties

In this section, we review some homological properties that are needed in the definition
of a noncommutative quasi-resolution.

Definition 2.1. [26, Definitions 1.2, 2.1, 2.4] Let A be an algebra and M a right A-module.
(1) The grade number of M is defined to be
ja(M) = inf{i| Ext’, (M, A) # 0} € N U {+o0}.

If no confusion can arise, we write j(M) for j4(M). Note that j4(0) = +oo.

(2) A nonzero A-module M is called n-pure (or just pure) if j4(N) = n for all nonzero
finitely generated submodules NV of M.

(3) We say M satisfies the Auslander condition if for any ¢ > 0, ja(IN) > ¢ for all left
A-submodules N of Ext? (M, A).

(4) We say A is Auslander-Gorenstein (respectively, Auslander regular) of dimension n
if injdim A4 = injdim 44 = n < oo (respectively, gldim A = n < o) and every
finitely generated left and right A-module satisfies the Auslander condition.

Proposition 2.2. [7, Proposition 1.8] Let A be Auslander-Gorenstein. If
0—M —M-—M'—0
is an exact sequence of finitely generated A-modules, then

J(M) = inf{j(M"), j(M")}.
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Definition 2.3. [1, Definition 0.4] Let A be an algebra with a dimension function 9. We
say A is 9-Cohen-Macaulay (or, 9-CM in short) if 9(4) =d € N, and

J(M) + (M) = a(A)

for every finitely generated nonzero left (or right) A-module M. If A is GKdim-Cohen-
Macaulay, namely, if 0 = GKdim, we just say it is Cohen-Macaulay or CM.

There are other modified definitions of noncommutative CM algebras, in particular,
using the rigid Auslander dualizing complex over the algebra A [40]. Here we are using
a more classical approach in Definition 2.3.

Remark 2.4.

(1) If Ais 9-CM with 9(A) € N, then ja(M) < co and 9(M) € N for all nonzero finitely
generated A-modules M.

(2) If Ais a 9-CM algebra, then 9 is an exact dimension [2, p. 3]. In particular, GKdim
is exact on finitely generated modules over CM algebras.

(3) Let A be Auslander-Gorenstein. The canonical dimension of a finitely generated
right (or left) A-module M is defined to be

A(M) = injdim A — j(M), (E2.4.1)

which was introduced in [40, Definition 2.9], in the more general setting of Aus-
lander dualizing complexes. For infinitely generated modules, see (E1.2.2). By [26,
Proposition 4.5], the canonical dimension is an exact (but not necessarily symmetric)
dimension function. By (FE2.4.1), A is trivially 9-CM.

Definition 2.5. [7, Definition 1.12] Let M be a finitely generated pure right A-module, see
Definition 2.1(2). A tame and pure extension of M is a finitely generated right A-module
N such that M C N, N is pure and j(N/M) > j(M) + 2. Note that a tame and pure
extension is always an essential extension.

The following result of Bjork is called Gabber’s Mazimality Principle, see [7, Theo-
rem 1.14].

Theorem 2.6. [7, Theorem 1.14] Let A be an Auslander-Gorenstein algebra. Suppose that
M is a finitely generated n-pure A-module. Let N be an A-module containing M such that
every nonzero finitely generated submodule of N is n-pure. Then N contains a unique
largest tame and pure extension of M.

We do not assume that N is finitely generated in the above theorem. On the other
hand, by definition, a tame and pure extension of M is finitely generated. We will explain
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the Gabber’s Maximality Principle in some details in the following two lemmas. Firstly,
we recall some functors. Let 0 be the canonical dimension defined in Remark 2.4(3)
when M is finitely generated and extended to Mod A by (E1.2.2). We fix a non-negative
integer n and let d = injdim A. If M is n-pure, then (M) = d — n by (E2.4.1). In the
next two lemmas, M will be an n-pure right A-module. Let

m:Mod A — QMod,;_,,_, A
and
w:QMod,_,,_5 A — Mod A,

see (E1.4.1) and (E1.10.1).
The following lemma is a special case of [40, Theorem 2.19]. For the convenience of
readers, we give detailed proof.

Lemma 2.7. Let A be an Auslander-Gorenstein algebra. Suppose that M is a finitely
generated n-pure A-module. Then there is an n-pure A-module M, unique up to unique
isomorphism, such that the following hold.

(1) M is a tame and pure extension of M, namely, there is a given injective morphism
gm - M — M,

(2) If N is a tame and pure extension of M, then gy factors uniquely through the
inclusion map M — N.

Further, M is naturally isomorphic to both w(M) and Ext"., (Ext’y (M, A), A) and gy
agrees with upr in (E1.10.3) when M is identified with wr(M).

Proof. Let O be the canonical dimension defined by (E2.4.1) and d = injdim A.

(1) Let E(M) be the injective hull of M. By Lemma 1.11(1), wn (M) is a largest
submodule of E(M) containing M such that wn(M)/M has 0-dimension at most d —
n — 2. So every nonzero finitely generated submodule N(2D M) of wn(M) is n-pure and
J(N/M) > mn+ 2. Thus N is a tame and pure extension of M. By Theorem 2.6, wr (M)
contains a largest (and maximal) tame and pure extension, which must be wr (M) itself.
So wm(M) satisfies (1). We now define M= wr(M) and gps to be the inclusion map.

(2) Let N be a tame and pure extension of M. Then N is an essential extension of M.
Let i : M — N be the inclusion map. Since E(M) is injective, there is an injective map
f: N — E(M) such that foi: M — E(M) is the inclusion map. Since N is a tame and
pure extension of M, it is easy to see that the image of f is inside wr(M). Thus we have
amap f: N — M= wm (M) such that gy = f o . Finally we prove the uniqueness of
this factorization. Suppose there are two maps fi, fo such that gy; = fi 07 = fooi. Then
(f1— f2)oi=0or the (f1 — f2)(M) = 0. Then the image of f; — f2 is a quotient module
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of N/M, which has 0-dimension strictly less than d —n. Since M is n-pure, f1 — fo must
be zero, namely, f; = fy. This shows that uniqueness.

Part (2) can be considered as a universal property. The uniqueness of M follows from
part (2).

For the last assertion, we let M** := Ext’jop (Ext’y (M, A), A). By [26, Lemma 2.2] and
[7, Proposition 1.13], M** is a tame and pure extension and there is no other tame and
pure extensions properly containing M**. Therefore M** = wr(M) by part (2). O

Definition 2.8. Let A be an Auslander-Gorenstein algebra. Suppose that M is a finitely
generated n-pure right A-module. The map gp; : M — M (or simply the module M ) in
Lemma 2.7, is called a Gabber closure of M. By Lemma 2.7, a Gabber closure of M always
exists and is unique up to a unique isomorphism. Therefore, it is no confusion to call it
the Gabber closure of M. In this case, we write the Gabber closure as gy : M — G 4(M)
(or simply Ga(M)).

Suppose 0 is an arbitrary dimension function. When A is a 9-CM algebra, 0 equals to
the canonical dimension up to a uniform shift. Hence (E2.4.1) implies that the condition

JOM/M) = (M) +2
is equivalent to
(M /M) < d(M) — 2.

Lemma 2.9. Let A be an Auslander-Gorenstein algebra. Suppose that M is a finitely
generated n-pure right A-module. Let N be an n-pure A-module such that

(a) N is an essential extension of M, and
(b) J(N'/M) > j(M)+2 for all finitely generated A-submodule N' of N that contains M.

Then N is a finitely generated A-module.

Proof. In this proof, let M** denote Ext’op (Exty (M, A), A). If N is not finitely gener-
ated, then there is an ascending chain of finitely generated A-submodules

MCM CMGC---CN

such that M; € modA are n-pure and j(M;/M) > j(M) + 2 for every i. By [7,
Lemma 1.15], M* = M**. Moreover, since every M; are n-pure, we have

MCM CMyC--Coon C M =M™

for every 4. Since M** is finitely generated by Lemma 2.7, the ascending chain stabilizes,
a contradiction. O
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We collect some facts and re-statements concerning the Gabber closure.

Proposition 2.10. Let A be an Auslander-Gorenstein algebra. Suppose that M is a finitely
generated n-pure A-module.

(1) The Gabber closure of M, denoted by gar : M — Gao(M) as in Definition 2.8, exists
and is unique up to a unique isomorphism.

(2) g agrees with upr in (E1.10.3) for specific choices of m and w given before
Lemma 2.7.

(3) Ga(M) is a tame and pure extension of M. In particular, Ga(M) is finitely gener-
ated over A.

(4) [7, Proposition 1.13] Gao(M) does not have any proper tame and pure extension.

(5) Let N be a tame and pure extension of M. If N does not have any proper tame and
pure extension, then N = G4(M).

(6) If M is a (B, A)-bimodule, then G o(M) is a (B, A)-bimodule and gpr is a morphism
of (B, A)-bimodules.

Proof. (1, 2, 3) See Lemma 2.7.

(4) Since G4 (M) is identified with Ext.p (Ext’; (M, A), A), the assertion is exactly
[7, Proposition 1.13].

(5) By Lemma 2.7(2), Ga(M) is a tame and pure extension of N. Since N does not
have a proper tame and pure extension, N = G 4(M).

(6) Since GA(M) can be identified with ww(M), the assertion follows from
Lemma 1.11(2). O

For every right A-module M, let
MY = Homy (M, A) (E2.10.1)
and
MYV = Hom gop (Hom 4 (M, A), A). (E2.10.2)

When n = 0 as in the proof of Lemma 2.9, M** = MV. By adjunction, there is a
natural map M — MYV := Hom gor (Hom 4 (M, A), A).

Definition 2.11. Let A be an algebra. A finitely generated right A-module M is called
reflexive if the natural morphism M — MV is an isomorphism. A reflexive left module
is defined similarly.

It’s obvious that when A is Auslander-Gorenstein, an A-module M of maximal di-
mension is reflexive if and only if M is its own Gabber closure. Note that the definition
of a reflexive module given in [21-23] is relative to a given base commutative ring. It is
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clear that every projective module is reflexive, but the converse is not true. The following
lemma and corollary are well-known.

Lemma 2.12. Let A be an algebra of global dimension d. If M € modA, then
projdim op MV < max{0,d — 2}, where (—)¥ = Hom(—, A).

Proof. Suppose that --- — P, — Py — M — 0 is a projective resolution of M such
that each P; is finitely generated. Applying (—)¥ to the above exact sequence, there is
an exact sequence of left A-modules

0— M — P/ — P —E—0,

where E = coker(Py — P,'). Since projdim 4op £ < d and Fy, P} € proj A°P, we have
projdim gop MV < max{0,d — 2}. O

Corollary 2.13. Let A be an algebra of global dimension d. If M € ref A, then
projdim 4 M < max{0,d — 2}. In particular, if d < 2, then any reflexive A-module is
projective.

Proof. Use Lemma 2.12 and the fact M = Hom 4o (Homy (M, A), A). O

Next we recall some results about spectral sequences.

If A is noetherian with injdim A < co and M is a finitely generated A-module, then
there is a convergent spectral sequence [26, Theorem 2.2(a)], see (E2.13.1) below. To
simplify notation later, we use a non-standard indexing of EY?, with our indexing, the

boundary maps on the Es-page are d5? : EY? — ppt2atl;

0, ifp#gq,

E2.13.1
M, ifp=q. ( 31)

EY .= Ext., (Ext} (M, A), A) = H"9(M) := {

When A is Auslander-Gorenstein with injdim A = d, there is a canonical filtration
0=F'MCFMC.---CF'MCF'M=M (E2.13.2)

such that FPM/FPHIM = EPP. By [26, Theorem 2.2], for each p, there exists an exact
sequence

0— EZ? — B — Q(p) — 0

with j(Q(p)) = p+ 2.
We collect some facts which can be shown by using the above spectral sequences.
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Proposition 2.14. [26, Theorem 2.4] Let A be Auslander-Gorenstein and M be a
nonzero finitely generated A-module. If n = ja(M), then Ext’y(M,A) is n-pure and
(EY? =) Extlyo, (Extly (M, A), A) is either 0 or p-pure for every integer p.

Proposition 2.15. [7, Proposition 1.9] Let A be Auslander-Gorenstein. Then a finitely
generated A-module M is j(M)-pure if and only if EY* =0 for any p # j(M).

Corollary 2.16. Let A be Auslander-Gorenstein and M a nonzero reflexive A-module.
Then M is O-pure, and E5Y = 0 for any p # 0. As a consequence, if A is also a -CM
algebra, then (M) = 0(A) = I(N) for any nonzero reflexive A-module M and any

nonzero submodule N of M.

Proof. Suppose that M is a nonzero reflexive A-module, then j(M) = 0 and
0 # EY° = Hom aop (Hom4 (M, A), A) = M,

which is 0-pure by Proposition 2.14. By Proposition 2.15, F¥? = 0 for every p # 0. The
remaining statement follows by the definition of -CM. O

Lemma 2.17. Let A be Auslander-Gorenstein and M a finitely generated m-pure

A-module where m = j(M). Then M = F™M 2 F™1M = 0. Further, M = ET™M C
EF M. In particular, if M is a 0-pure module, then

M C M"Y := Hom gor (Hom 4 (M, A), A).
Proof. If M is m-pure, then EY¥ = 0 for every p # m. Therefore
EP? =0=FPM/FP*' M

for p # m. Taking p = m + 1, we obtain that F™H M = F"™t2M = ... = 0, as
required. O

Proposition 2.18. Let A be an Auslander reqular algebra with gldim A = 3. If M is a
nonzero reflexive A-module, then

M, ifp=q=0,
B =E}, ifp=14q=0,
E =B, ifp=34q=1,
0, otherwise.

Pq ~
EDT =
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Proof. Since A is Auslander regular, we have that the Fs table for M looks like

0 B
E22 E32
Et 1 E21 ESI
E00 10 20 p30

with E?Y = E3% = 0 by Lemma 2.12, E* = E?2 = E33 = 0 by Propositions 2.14 and
2.15, and E32 = 0 since projdim M < 1 by Lemma 2.12. Hence the F» table reduces to

0 0 0 0

0 0 0 0

0 0 E21 E31
E® EY 0 0

and so it suffices to show that E?! = 0. By (E2.13.1)-(E2.13.2), there is a canonical
filtration 0 = F*M C F3M C F2M C F'M C FYM = M such that FpM/Fp“M &
EPP. Tt is obvious that F'M = 0. Then EFP = 0 for every p # 0 by Proposition 2.15,
E% = FOM/FIM = M, and further, d3° = 0 (as M being reflexive), which implies that
E?!' = 0. Thus, the E5 table for M now looks like

0 0 0 O

0 0 0 O

0 0 0 E3%
EOO ElO 0 0

with F10 = E31 The assertion follows. O

Lemma 2.19. Let A be an Auslander Gorenstein algebra and M be a finitely generated
right A-module.

(1) MY is either 0 or a finitely generated reflexive left A-module.
(2) If M is O-pure, then the Gabber closure Ga(M) is reflexive.

Proof. (1) It is well-known that MV is a finitely generated left A-module.
Let N be the largest submodule of M such that j(IN) > 0 or NV = 0. Then we have
a short exact sequence
0—-N—->M-— M/N -0,

which gives rise to an exact sequence

0— (M/N)Y - MY — NY — ...
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Since NV = 0, we have (M/N)¥Y = MVY. To prove the assertion one may assume that
N =0, or equivalently, M is O-pure.
By [7, Proposition 1.13] (also see Lemma 2.7), there is a short exact sequence

0—M— M"Y — M —0,

where j(M’) > 2. The above short exact sequence gives rise to an exact sequence
0— (M) = (M) = MY — Exty(M',A) = --- .

Since j(M') > 2, we have (M')" = Ext(M’, A) = 0. Therefore (M"V)V is naturally
isomorphic to MV as required.

(2) By Lemma 2.7, the Gabber closure of M is isomorphic to MVV. The assertion
follows from part (1). O

3. A NQR of an algebra

In this section, we introduce the notion of a noncommutative quasi-resolution (NQR),
which is a further generalization of the notion of a NCCR, and then study some basic
properties.

Let A be a category consisting of a class of noetherian k-algebras such that A is in A
if and only if A°P is in 4. Together with .4 we consider a special class of modules/mor-
phisms/bimodules. Our definition of a noncommutative quasi-resolution will be made
inside the category A. Sometimes it is necessary to be specific, but in the most of cases,
it is quite easy to understand what is the setting of .A. We also need to specify or fix a
dimension function 0. Here are a few examples.

Example 3.1.

(1) Let A be the category of N-graded locally finite noetherian k-algebras with finite
GK-dimension. We only consider graded modules. An (A, B)-bimodule is a Z-graded
module that has both left graded A-module and right graded B-module structures.
The dimension function 9 is chosen to be GKdim.

(2) We might modify the category in part (1) by restricting algebras to those with
balanced Auslander dualizing complexes in the sense of [40]. In this case, we might
take the dimension function to be a constant shift of the canonical dimension defined
in [40, Definition 2.9].

(3) Let R be a noetherian commutative algebra with finite Krull dimension. Let A be
the category of algebras that are module-finite R-algebras. Modules are usual mod-
ules, but an (A, B)-bimodule means an R-central (A, B)-bimodule. The dimension
function in this case could be the Krull dimension.
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Unless otherwise stated, we retain Hypothesis 1.3 concerning the fixed dimension
function 0 for modules over A, B and B;, a bimodule (such as M or N in most of cases)
over these rings in this section (including Definitions 3.2 and 3.16) is finitely generated on
both sides. As a consequence of these assumptions, (M) can be defined by considering
M as either a left or a right module. Therefore M =, N is well-defined on either left or
right sides for another bimodule N. If we use other rings such as D, we may not assume
these hypotheses.

Here is our main definition.

Definition 3.2. Let A € A be an algebra with 9(A) = d. Let s be an integer between 0
and d — 2.

(1) If there are an Auslander regular 9-CM algebra B € A with 9(B) = d and two
bimodules gM 4 and 4Np such that

M®sN=3 2 B, NpM=Z; 4, A

as bimodules, then the triple (B,5Ma,aNp) is called an s-noncommutative quasi-
resolution (s-NQR for short) of A.

(2) (Definition 0.5) A 0-noncommutative quasi-resolution (0-NQR) of A is called a non-
commutative quasi-resolution (NQR for short) of A.

We will see that the notion of a NQR is a generalization of the notion of a NCCR in
Section 7. First we prove the following lemmas.

Lemma 3.3. Let B be a 0-CM algebra with 0(B) = d.

(1) If there exist B-modules M and N such that M =4 5 N, then MY = NV, where
(—)Y := Hompg(—, B).

(2) Let D be another algebra and supposed that M and N are (D, B)-bimodules such
that M =4 o N as (D, B)-bimodules. Then MY = NV as (B, D)-bimodules.

Proof. The proofs of parts (1) and (2) are similar. We only prove part (1).

By definition, there exists a right B-module P and B-module morphisms f: M — P
and g : N — P such that both the kernel and cokernel of f and g have 0-dimension
no more than d — 2. It suffices to show that PV = M. Without loss of generality, we
assume that f: M — N is a right B-morphism such that the kernel and cokernel of f
have 0-dimension no more than d—2. By the properties of f we have two exact sequences

0-Q—-N—->C—=0

and
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0+K—>M-—=>Q—0,

where Q = Im f and where C and K have d-dimension no more than d — 2. We need to
show that QY = NV and M"Y = QV. The proofs of these assertions are similar, we only
show the first one. Applying Homp(—, B) to the first short exact sequence, we obtain
that a long exact sequence

0 — Homp(C,B) - NV = Q" — Extp(C,B) — --- .
Since 9(C) + j(C) = 9(B) = d and I(C) < d — 2, j(C) > 2, which means that
Homp(C,B) = 0 = Exty(C,B). So, NV = QV. Similarly, P¥ = QY. Therefore,
PY=NY. O

The following corollary is clear.

Corollary 3.4. Let B be a 9-CM algebra with 9(B) = d.

(1) If M, N € ref B such that M =4_o N, then M = N.

(2) Let D be another algebra and supposed that M and N are (D, B)-bimodules such that
M =49 N as (D, B)-bimodules. If M, N € ref B, then M = N as (B, D)-bimodules.

Proof. We prove (2). Since M =; 5 N, Lemma 3.3 implies that MY = NV as

(B, D)-bimodules. The assertion follows by applying (—)¥ and the fact that M, N €

ref B. O

Lemma 3.5. Let A and B be algebras and n € N. Suppose that there exist two bimodules
M4 and ANp such that

M®aN=,B, NpM=,A
as bimodules. If O satisfies vn 1(M)' and v, 1(N)!, then
gqmod,, A = qmod,, B.
Proof. Let m be the natural functor mod A — qmod,, A (or mod B — qmod,, B).
Denote by M := w(M) and N := 7(N). By Lemma 1.9, we have two well-defined
functors
F(-):=—=®4N :qmod, A — qmod,, B

and

G(-) = —®g M : gmod, B — qmod,, A.
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By Lemma 1.9 again,
FoG(-)=—-@pMIAN = —@n(M®sN)=—®5h8,

and

GoF(-)=—-@uNegM=—-an(NepM)= -4 A
Therefore F' and G are equivalences, in other words, qmod,, A = qmod,, B. O

The equivalence qmod,, A = gmod,, B in the above lemma can be considered as a
noncommutative Fourier-Mukai transform between two noncommutative spaces. We refer
to [20] for the classical setting.

Remark 3.6. The above lemma holds true for a NQR (B,pMa,aNp) of an algebra A
when 0 satisfies v4_2.1(M)" and v4_21(N).

For an n-pure (A4, B)-bimodule M, the Gabber closure of 4 M is denoted by G 400 (M)
and the Gabber closure of Mp is denoted by G (M). We consider both G 400 (M) and
Gp(M) as extensions of M.

Lemma 3.7. Let A and B be Auslander-Gorenstein and 0-CM algebras with

Assume Hypothesis 1.3 holds. Let n be an integer. Let M denote an (A, B)-bimodule that
is finitely generated on both sides.

(1) Let M be n-pure on both sides. Then Gaop(M) = Gg(M) naturally as bimodules
with restriction on M being the identity.

(2) Let M be n-pure on both sides. Then Ggp(M) = M if and only if Gaer (M) = M.

(3) The (A, B)-bimodule M is reflexive on the left if and only if it is reflexive on the
right.

Proof. Without loss of generality, we can assume that 0 is the canonical dimension.

(1) By Proposition 2.10(6), Gg(M) is an (A, B)-bimodule and gy, : M — Gp(M) is
a bimodule morphism. By Proposition 2.10(3), Gg(M) is finitely generated on the right.
We claim that

(a) ga, is an essential extension of M on the left,
(b) Gp(M) is finitely generated over the left, and
(¢) gmy is a tame and pure extension of M on the left.
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By Hypothesis 1.3(3),
Ia(Gp(M)/M)) < 0(Gp(M)/M)p) <d—n—2. (E3.7.1)

To prove (a) let S be a left A-submodule of Gg(M) such that SN M = 0. Then S is
isomorphic to a submodule of Gg(M)/M. As a consequence, 9(S) < d —n — 2. Let U
be the largest left A-submodule of Gg(M) with 9 <d—n—2. Then UNM =0 and U
is also a right B-submodule. If U # 0, it contradicts the fact that G (M) is an essential
extension of M on the right. Therefore U = 0 and S = 0. Thus Claim (a) is proven.

Claim (b) follows from Lemma 2.9 and (E3.7.1).

Claim (c) follows from Claim (b) and (E3.7.1).

Next we consider the Gabber closure of the module N := Gp(M) on the left. By
Proposition 2.10(6), G400 (N) is an (A, B)-bimodule and gaorny : N — Gaop(N) is a
bimodule morphism. By symmetric, g40p ;v has properties (a, b, ¢) on the right. By part
(c), gaern is a tame and pure extension of N on the right. By Proposition 2.10(4),
Np(:= Gp(M)) does not have a proper tame and pure extension on the right. Therefore
G ao»(N) = N. This implies that 4N does not have a proper tame and pure extension.
Thus N must be G 40» (M) by Proposition 2.10(5).

(2) This is a consequence of part (1).

(3) By Lemma 2.7, Mp is reflexive if and only if M is 0-pure and Gp(M) = M. The
assertion follows by part (2). O

Hypothesis 3.8. We are continuing to work with algebras in a given category A with a
fixed dimension function 9 defined for all modules over rings in A. As indicated at the
beginning of this section we assume Hypothesis 1.3 for all algebras in .A. Now we further
assume that 0 satisfies y4_2,1(A, B) for algebras A and B in A with d = 9(A) = 9(B),
which covers the hypotheses in Lemmas 1.9 and 1.10.

Proposition 3.9. Assume Hypothesis 3.8. Let B; be Auslander-Gorenstein and 0-CM al-
gebras with O(B;) = d for i = 1,2. Suppose that there are bimodules p,Tp, and pIp,
(finitely generated on both sides) such that

T®p, T =q_2 By (E3.9.1)
and
T ®p, T ~4_s Bs.

Then there exist p,Up, and p,Vp, (finitely generated on both sides) such that U,V are
reflexive modules on both sides and

U®p,V =4-2B1, V®p, UZ=4_9 Bs.
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In other words, we can replace T and T with B,UB, and B,Vp, respectively, which are
reflexive modules on both sides.

In the following proof, we need to deal with multiple different rings/modules. It is
convenient to fix the following notation specially when we deal with bimodules. Starting
from a right B-module M, we use M (respectively, MVV) for Hompg(M, B) (respectively,
Hompor (Hompg (M, B), B)). Starting from a left B-module M, we use ¥ M (respectively,
VYV M) for Hompger (M, B) (respectively, Hom g (Hompger (M, B), B)). For example, for a
(B1, B2)-bimodule M, we have

MY = Hompgr (Homp, (M, Bs), By)
and
YV M = Homp, (Hompger (M, B1), By).

By Lemma 2.19, for every finitely generated right B-module M, MVV is (either zero or)
always reflexive when B is Auslander-Gorenstein.

Proof of Proposition 3.9. By Lemma 3.3(2) and (E3.9.1), we have
vv(T ®s, T) ~VV By & By,
as Bi-bimodules. Hence there is a composite map
Vv:Top, T—"Y(T®pT)— B

which induces the (d — 2)-isomorphism from T ®p, T to By.
Define

7(T) := {z € T|zr = 0 for some regular element r € By}.

By [1, Proposition 2.4(4) and Theorem 6.1], 7(7") is the maximal torsion Bs-submodule
of T such that 9(7(T)) is at most d — 1, namely, 7(T') € mody_1 Bs. Since we assume
that 0 is symmetric (Hypothesis 1.3(3)), 7(T') € modg— B,

Note that T is a finitely generated left Bo-module, and by the definition of 7(7"), we
have 7(T) ®p, T € mody_1 B{®. Applying — ®p, T to an exact sequence

0—=>7(T)=>T—=>T/7(T)—=0
in mod By, one has an exact sequence

(T)®p, T L Top, T — T/r(T) @5, T — 0
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in mod B;y. Then
T/7(T) @p, T = (T @p, T)/Im(f)

in mod B;. Since By € ref By is a 0-pure module and Im(f) C T ®p, T, we have
¥(Im(f)) = 0, whence there are well-defined morphisms

T ®p, T — T/7(T) ®p, T = (T'®p, T)/Im(f) — B1 =42 T ®p, T

such that the composition is a (d — 2)-isomorphism. Therefore, T/7(T) @, T =4—2 Bi.
Now, we can replace T with T'/7(T) in (E3.9.1) and assume that 7(T') = 0, namely, T is
a 0-pure By-module (whence a 0-pure left Bi-module by the symmetry of 9).

Let U := Gp,(T) be the Gabber closure of T. By Lemma 3.7, U is isomorphic to
G por (T') as bimodules. This implies that U is finitely generated on both sides and 7" =4
U by the definition of the Gabber closure. Combining this (d — 2)-isomorphism with
(E3.9.1) and Lemma 1.10, we have

U®p, T =, o By.
Similarly,
T ®p, V 24_y Bo.

Since T is 0-pure, by Lemmas 2.19 and 3.7(3), U is reflexive on both sides. Next we take

V = Gp,(T) and repeat the above argument. It is easy to see that U and V satisfy the
required conditions. O

Lemma 3.10. Let B be an Auslander-Gorenstein and 0-CM algebra with 9(B) = d and
U a nonzero reflexive B-module. Then

(1) Homp(C,U) =0 for any C € modg_1 B.
(2) Exth(K,U) =0 for any K € mody_s B.

Proof. (1) Let f € Homp(C,U). Since Im(f) is a quotient module of C,

o(m(f)) < O(C) <d 1.
By Corollary 2.16, U is O-pure. If Im(f) # 0, then O(Im(f)) = (U) = d, a contradiction.
Therefore Im(f) = 0, which implies that Homp(C,U) = 0.

(2) If Exty (K, U) # 0, there is a non-split extension

0—-U—-E—-K=0 (E3.10.1)
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in mod B. Let 7(E) be the maximal submodule of E such that d(7(E)) < d — 1. Then
there exists an induced morphism ¢ : 7(E) — K such that ker¢o C U N 7(E). Since
OUNT(E)) <I(1(F)) <d-1and U is O-pure, U N 7(E) = 0. This implies that ¢ is
injective, whence, we can consider 7(F) as a submodule of K, and ¢ is not surjective
(following by the fact that (E3.10.1) is non-split). Hence, we obtain a short exact sequence

0—U—E/T(E) — K/T(E) —0
with
o(E/r(B) [U) = o(K/r(E)) < 9(K) < d -2 =0(U) -2,
By the definition of 7(E), E/7(E) is 0-pure. So, E/7(FE) is a tame and pure extension
of U. By hypothesis, U is a reflexive module, whence U = Gg(U) by Lemma 2.7. Then,
by Proposition 2.10(4), E/7(E) = U, or equivalently, K/7(E) = 0. This means that
K = 7(FE), or equivalently, the exact sequence (E3.10.1) is split, a contradiction. The

assertion follows. O

Remark 3.11. The reflexivity of module U is not necessary for Lemma 3.10(1). In fact,
when U is a 0-pure module, Lemma 3.10(1) is also true.

Lemma 3.12. Let B be an Auslander-Gorenstein and 9-CM algebra with 9(B) = d. Sup-
pose that 0 # U € mod B satisfies

Homp(N,U) = 0 = Exty(N,U)
for all N € mody_o B.
(1) For M € mod B, Homgmed, , B(M,U) = Homp(M,U).
(2) Endqmodd_2 B(U) = EndB(U)
(3) In particular, if M € mod B and U € ref B, then
Homgmed, , 5(M,U) = Homp(M,U)
and

Endqmodd_2 B(U) = El’ldB(U)

Proof. (1) By the assumption, U does not have any nonzero B-submodule of d-dimension
at most d — 2. Combining with (E1.4.2), we have

I—Iornqmodd_2 B(M,U) = h_II} HOHlB(f(7 U),
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where the limit runs over all the submodules K C M such that d(M/K) < d — 2. The
functor 7 induces a natural morphism

¢r :  Homp(M,U) = Homgmed, , B(M,U) := lii>nH0mB(K, U), (E3.12.1)
where K C M as described as above. By hypotheses,
Homp(M/K,U) = 0 = Extx(M/K,U).

Now the short exact sequence 0 - K — M — M/K — 0 induces a long exact sequence
0 — Homp(M/K,U) — Homp(M,U) — Homp(K,U) — Extg(M/K,U) — -- -,
which implies that Hompg(M,U) = Hompg(K,U) for all K. Thus ¢, in (E3.12.1) is an

isomorphism. The assertion follows.

(2) Take M = U in (E3.12.1), the functor 7 induces a morphism of algebras ¢,. By
part (1), ¢, is also an isomorphism of k-vector spaces. The assertion follows.

(3) If U € ref B, then by Lemma 3.10,

Homp(N,U) = 0 = Exti (N, U).

The assertion follows from parts (1, 2). O
Lemma 3.13. Assume Hypothesis 3.8. Let p,Up, be the module appeared in Proposi-
tion 3.9. Then it is a reflexive module on both sides such that By = Endp,(U) and

BsP 2 End gor (U).

Proof. By Proposition 3.9 and Lemma 3.5, p,Up, is a reflexive module on both sides
and induces the following equivalence of categories

F:=—®p U:qmod,; 5 B; — qmod,_, Bs.
Since F' is an equivalence functor, we obtain isomorphisms of algebras:
Endgmod,_, B, (B1) = Endgmod,_, B, (F(B1)) = Endgmoa,_, B, ().
Now it suffices to show that
Endgmod,_, B, (B1) = By
and

Endqmodd_2 B (U) = El’lde (U)
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Since B; € ref By and U € ref By, by Lemma 3.12(3), the above isomorphisms hold, as
required.
By symmetry, By = Endpger (U). O

Corollary 3.14. Assume Hypothesis 3.8. Let A be an Auslander-Gorenstein and 9-CM
algebra with O(A) = d. Let (B,gMa,aNp) be a NQR of A. Then there exists a bimodule
BUA := MYV which is a reflexive module on both sides such that

B~=Ends(U) and A° = Endge(U).
Theorem 3.15. Assume Hypothesis 3.8. Let A be an algebra with 0(A) = d. Suppose that

A has two NQRs (B;,p,(M;)a,a(N;)p,) fori=1,2. Then there exists a bimodule p,Up,
which is a reflexive module on both sides such that

By 2 Endp,(U) and By® = Endger(U).

Proof. Let T := M; ®4 Ny and T = My ®4 Ni. Then there are isomorphisms, by
Lemma 1.10,

T®p, T=4 2 B,
and

T ®p, T =42 Bo.
Thus, the result follows from Lemma 3.13. O

Finally we introduce another definition, which is a bit closer to Van den Bergh’s
NCCR.

Definition 3.16. Let A € A be an Auslander-Gorenstein algebra with 9(A) = d. Let s be
an integer between 0 and d — 2.

(1) If there are an Auslander regular 9-CM algebra B € A with d(B) = d and two
bimodules gpM 4 and 4Np which are reflexive on both sides such that

M®sN<=3 2 B, NpM=Z; 4, A

as bimodules, then the triple (B,pMa,aNp) is called an s-noncommutative quasi-
crepant resolution (s-NQCR for short) of A.

(2) A O-noncommutative quasi-crepant resolution (0-NQCR) of A is called a noncom-
mutative quasi-crepant resolution (NQCR for short) of A.
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By definition, a NQCR of an Auslander-Gorenstein algebra A is automatic a NQR
of A. Suppose A is an Auslander-Gorenstein and 0-CM algebra. If A has a NQR, then,
by Proposition 3.9, A has a NQCR. However, it is not clear to us whether an s-NQR
(Definition 3.2) produces an s-NQCR when s > 0.

4. NQRs in dimension two

With the preparation in the last few sections, we are ready to prove a version of part
(1) of the main theorem.

Lemma 4.1. Let A be an Auslander-Gorenstein and 0-CM algebra. Then
injdim A < 9(A).

Proof. Let d = injdim A. Then there is a right A-module M such that 4N :=
Ext% (M, A) # 0. By the Auslander condition, j(N) > d. Now, by the -CM property,

0(A) =0(N)+j(N) >d=injdimA. O

Theorem 4.2. Assume Hypothesis 3.8. Suppose that (Bj,p,(M;)a,a(Ni)p,) are two
NQRs of A fori=1,2. If 9(A) <2, then By and Bs are Morita equivalent.

Proof. By definition, 9(B;) = 0(A) < 2. By Lemma 4.1,
gldim(B;) = injdim(B;) < 9(By) < 2.
Let T := M1®4 N> and T := M5® 4 N7. Then there are isomorphisms, by Lemma 1.10,
T®g, T ~4_5 By,
and

T @p, T 24_2 Bs.

By Proposition 3.9, there exist p,Up, and p,Vp, which are reflexive modules (and finitely
generated) on both sides such that

U®p, V=4_9B1 and V ®p, U=4_9 Bs.

Since gldim(B;) < 2, by Corollary 2.13, U and V are projective modules on both sides.
Hence U ®p, V and V ®p, U are projective (whence reflexive) on both sides. Therefore,
by Corollary 3.4, we have

U®p, V=D and V ®p, U= By,
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which implies that B; and By are Morita equivalent. This finishes the proof. O
5. Depth in the noncommutative setting

The proof of part (2) of the main theorem needs some extra preparation. In particular,
it uses the concept of a depth in noncommutative algebra. There are several slightly
different definitions of the depth in the noncommutative setting. It is a good idea to fix
some notation.

Let A be an algebra with a dimension function 0.

Hypothesis 5.1. Let A be an algebra. Assume that modgy A # 0, namely, there is a nonzero
module S € mody A.

Hypothesis 5.1 is sometimes quite natural, but not automatic. By abuse of notation,
we can also talk about Hypothesis 5.1 for a single algebra A or for a family of algebras

A.

Definition 5.2. Let A be an algebra and 0 be a dimension function. For an A-module
M € mod A, define

dep 4 M = inf{i| Ext’y(S, M) # 0 forsome S € mody A} € N U {+o0}.

If no confusion can arise, we write dep M for dep 4 M. If Hypothesis 5.1 fails for A, then
dep 4 M = 4o for every A-module M.

If depy M < +oo for some A-module M, then Hypothesis 5.1 holds for the algebra
A. One can easily prove the following depth lemma.

Lemma 5.3. Let A be an algebra and O be a dimension function. Let
0—-M —-M-—>M'—0

be a short exact sequence of finitely generated right A-modules. Then

(1) dep M > min{dep M’ ,dep M"}.
(2) dep M’ > min{dep M,dep M" + 1}.
(3) dep M” > min{dep M,dep M’ — 1}.

The proof of Lemma 5.3(2) is basically given in the proof of Lemma 5.5.
The following proposition resembles the “special yx condition” in [38, Defini-
tion 16.5.16].

Proposition 5.4. Suppose that Hypothesis 5.1 holds for A. If A is a 0-CM algebra with
0(A) = 0(A°P) = d, then
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depy A =depyop A =d.

Proof. Given every nonzero S € modg A, we have

namely,
d = inf{i| Ext% (S, A) # 0}.
Thus dep 4 A = d. Similarly, we have dep op A =d. O

The proof of Theorem 0.6(2) also uses the following two lemmas, which were known
in the local or graded setting [14, Lemma 3.15].

Lemma 5.5. Suppose that M and N are nonzero finitely generated A-modules related by
the exact sequence

0O—M—P,1—P,9—-—FP—N—70.
Then
dep 4 (M) > min{dep 4 (N) + s,dep4 (), - - ., dep s (Ps—2), depy (Ps—1)}-
If, further, dep ,(P;) > s+ dep4(IN) for each j, then dep (M) = dep(N) + s.

Proof. There is nothing to be proved if Hypothesis 5.1 fails for A. So we assume that
Hypothesis 5.1 holds for A for the rest of the proof. By induction on s, it suffices to show
the assertion in the case of s = 1. For any S € mody A, letting P = Py and applying
Hom 4 (S, —) to the short exact sequence

0—+M—P—N—D0,

we obtain a long exact sequence

-+ — Ext’y (S, P) — Ext’; (S, N) — Ext’ (S, M) — Ext’ (S, P)
— Ext’y (S, N) — Ext, ™ (S, M) — --- .
Since Ext’y(S,P) = 0 for all i < depy P, we get Ext’(S, M) = Ext’; '(S, N) for all
1 < depy P. The latter is equal to 0 for all « < depy N. In other words, for every
i < min{dep4(N) + 1,dep4(P)}, we have Ext’y (S, M) = 0, namely,

dep 4 (M) > min{dep4(N) + 1,dep4(P)}.
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This assertion also follows from Lemma 5.3(2). If ¢ = dep4(N) + 1 < dep 4(P), one has
0 # Ext’; '(S, N) C Ext’y (S, M),
which implies that dep 4 (M) = dep4(N) + 1, as desired. O

Lemma 5.6. Let A and B be algebras. Suppose that M is a finitely generated right
B-module and N is an (A, B)-bimodule that is finitely generated on both sides. Then

dep gop (Homp (M, N)) > min{2, dep 400 (N)}.
Proof. Consider a projective resolution of the right B-module M
o= PPy M =0,

where P; is finitely generated for ¢ = 0, 1. By applying Hompg(—, N) to the exact sequence
above, one has short exact sequences

0 — Homp (M, N) — Homp(Py, N) = Cy — 0, (E5.6.1)
and
0 — C; — Homp(P;,N) — Cy — 0, (E5.6.2)

for some left A-modules C and Cs. Since P; is projective over B, Homp(P;, N) has (left)
depth at least equal to dep 4op(N) for ¢ = 0,1. Without loss of generality, we assume
that dep 4op (V) > 1. So we consider two different cases.

If dep gop (V) = 1, then dep gop (Homp (P, N)) > 1. By (E5.6.1) and Lemma 5.5,
we have depgop(Homp(M,N)) > 1, as desired. If depyop(N) > 2, then
dep 4op (Homp(P;, N)) > 2 for i = 0,1. Applying Lemma 5.5 to (E5.6.2) and (E5.6.1)
respectively, we have dep 4op (C1) > 1 and dep 4op (Hompgoer (M, N)) > 2. This finishes the
proof. 0O

Remark 5.7. The above lemma holds true for a finitely generated left B-module M and
a (B, A)-bimodule N which is finitely generated on both sides, namely,

depA(HomBup (M, N)) > min{2, depA(N)}
Corollary 5.8. Let A be an algebra.

(1) If dep gop A > 2 and M € ref A°P, then dep gop M > 2.
(2) If depy A > 2 and M € ref A, then depy M > 2.
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Proof. We just need to show part (1). By Lemma 5.6,

dep gop M = dep gop Hom 4 (Hom gop (M, A), A)
> min{2, dep 4op A} =2,

as desired. O
The following lemma is the noncommutative version of [21, Lemma 8.5].

Lemma 5.9. Let t be a nonnegative integer and let

0= X, I x, I x xS xS0

be an exact sequence of finitely generated A-modules with Xy € modg A. If, for every
1> 0, depy X; > 1, then Xy = 0.

Proof. The assertion is automatic if Hypothesis 5.1 fails for A. So for the rest of the
proof, we assume that Hypothesis 5.1 holds for A.

Let Y; denote Im f; € X,;_; for 1 < ¢ < t. Inductively, we will show dep, Y; > i for
all 4. This is clearly true for ¢ = t. Now we assume that dep, Y41 > i+ 1 for some ¢ and
would like to show that dep, Y; > . Consider the exact sequence

0 —YyyH — X, —Y, —0

with the hypothesis dep 4 Y;+1 > i+ 1 and dep X; > ¢. By Lemma 5.3(3), dep, Y; > .
This finishes the inductive step and therefore dep 4 Y; > @ for all 1 <+¢ < ¢. In particular,
depy4 Xo =dep,y Y1 > 1. Since Xg = Y; € modg A, the only possibility is Xg =0. O
Proposition 5.10. Let A be an algebra and d be a positive integer. Suppose that

Xi= 0o X0 xt Ly xd I e
is a complex in mod A satisfying the following:
(1) dep X* > d —i for all i > 0;
(2) H' =0 for alli > d, where H' denotes the i-th cohomology of the above complex X ;
(3) H' € modg A for alli > 0.

Then the complex X is exact.

Proof. The assertion is automatic if Hypothesis 5.1 fails for A. So for the rest of the
proof, we assume that Hypothesis 5.1 holds for A.
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For ¢ = 0, we have an exact sequence
0—H"— X% x9H" - 0.

By Lemma 5.3(2). dep H” > min{dep X°, dep(X°/H") 4 1} > 1. Since H® € mod, A, we
have H? = 0.

Now we fix an integer 1 < j < d and assume that H° =0 for all 0 < s < j — 1. Then
there are two exact sequences:

0—X%— ... = X7 — coker f7=1 =0
and
0 — H? — coker fi71 — XJ*1,

By using Lemma 5.3(3) repeatedly, we obtain that dep(coker f=1) > d — j > 0. Since
H’ € mody 4, the second exact sequence forces H = 0. By induction, we have H = 0
foralli=0,---,d — 1 as required. 0O

6. NQRs in dimension three

Part (2) of the main theorem concerns derived equivalences of two algebras. This can
be achieved by constructing a tilting complex between them. Let A be an algebra. Recall
that T € K°(projA) is a tilting complex [31, Definition 6.5] if Hom p(nod o) (T, T'[i]) = 0
for any i # 0 and the category add(T) generates K®(projA) as triangulated categories.
Let © be another algebra. If there exists a tilting complex T € Kdimb(proj A) such
that Q = Endp(nod a)(T), then we call A and Q derived equivalent. Rickard proved
that there are other three equivalent conditions to characterize derived equivalent [31,
Theorem 6.4], also see [38, Section 14.5]. If a A-module T is a tilting complex, then it is
called a tilting module. Here we only need to use tilting modules, so we first recall the
detailed definition of a tilting module.

Definition 6.1. [19] Let A be a ring. Then T' € mod A is called a tilting module if the
following conditions are satisfied:

(a) projdim, T' < oo;
(b) Exty (T,T) =0 for all i > 0;
(c) there is an exact sequence

0—A—Ty—T —— T — T —0

with each T; € add T
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Let A and Q be two algebras. If there is a tilting A-module T" such that 2 = End, (T),
then A and € are derived equivalent, namely, there is a triangulated equivalence between
D’(mod A) and D°(mod 2) [31, Theorem 6.4].

Theorem 6.2. Let B; be Auslander-reqular and 0-CM algebras for i = 1,2. Suppose
d(B;) = d > 3. If there exists a (B, Ba)-bimodule U satisfying the following condi-
tions:

(1) U € ref By;

(2) prOJdlmB U<1;

(3) ExtB (U,U) € modg BY¥;
(4) Bi = Endg, (U);

(5)

5 When switching By and Bs, the above conditions still hold,
then U is a tilting Ba-module and further, By and Bs are derived equivalent.

Proof. It suffices to show that U is a tilting Bs-module as given in Definition 6.1. Below
we check (a, b, ¢) in Definition 6.1.

(a) By hypothesis (2), projdimp, U < 1, hence Definition 6.1(a) holds.

(b) By hypothesis (2), we need to prove that Extp_(U,U) = 0. If mody B;® contains
only the zero module, then hypothesis (3) implies that Extp (U,U) = 0. Otherwise,
Hypothesis 5.1 holds for left By-modules, which we assume for the rest of the proof.

Consider the exact sequence 0 — P, — Py — U — 0 of By-modules where P; are
projective over By. Applying Homp, (—, U), we obtain an exact sequence of B{*-modules

0 — Homp, (U,U) — Homp, (Py,U) — Homp, (P,U) — Extp, (U,U) =0

Since U is a reflexive B{P-module and depger By = d > 2 (Proposition 5.4), by
Lemma 5.6 and Corollary 5.8, we have

depB;m (HOHle (P(), U)) > miH{Q,depB?p U} = 2,
and
deprp (I‘IOI’IIB2 (Pl, U)) > min{2, depB?p U} =22>1.

Moreover, depger(Homp, (U,U)) = depger(B1) = d > 3, then by hypothesis (3) and
Lemma 5.9, EXth(U U)=0.

(c) By hypothesis (5), we have that By & Endger(U,U) and projdimpger U < 1. By
the same proof as in (b), we have Ext}gi)p(U, U)=0.Let 0 > Q1 = Qo — U — 0 be a
projective resolution of the By”-module U. Applying Hom ger (—,U) and using the fact
that Extgfp(U, U) = 0, we obtain an exact sequence
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0— By — HOIIIB(IW(Q(LU) — HOHIBflm(Ql,U) —0

of By-modules, and clearly, Hom pgor (Qi,U) € addp, U for i« = 0,1. Thus we proved
condition (c) of a tilting module.
Thus, U is a tilting Bs-module, and consequently, By, B are derived equivalent. O

Lemma 6.3. Let By and Bs be algebras such that By is (Auslander) Gorenstein. Suppose
that O satisfies vy 0(B2, B1)". Let M be a right Ba-module with projdim M < 1 and U
be a (Bi, Ba)-bimodule such that projdim Ug, < cc. If Extp (M, Bs) € modg Bs®, then
Extp, (M,U) € mody B}P.

Proof. By [26, Section 5 (b.1)], there is an Ischebeck spectral sequence

Tor? (U, Ext%,_(M, Bz)) = Ext% P (M, U).

Since projdim M < 1, the FEs-page of this spectral sequence has only two nonzero
columns. Therefore

Tory? (U, Exty, (M, Ba)) = Exty, (M, U).
Note that
Tory? (U, Exty, (M, Bo)) = U ®p, Exty, (M, Bo) € modg B,
by 70,0(B2, B1)" condition. Therefore, Extp, (M,U) € mody Bi*. O

Remark 6.4. If 9 = GKdim and B is affine over k, then M € modg B is equivalent to M
being finite dimensional over k. In this case, 0 automatically satisfies 7 ; for all i.

Hypothesis 6.5. We assume

(1) Hypothesis 3.8 holds.
(2) v0.0(A,B) for all A, B € A.

Next we prove a version of Theorem 0.6(2).

Theorem 6.6. Assume Hypothesis 6.5. Let A € A be an algebra with 0(A) = 3. Suppose
that (B;,p,(M;)a,a(N;)p,;) are two NQRs of A fori=1,2. Then By and By are derived

equivalent.

Proof. We need to verify the hypotheses in Theorem 6.2.
By Proposition 3.9, Theorem 3.15 and Corollary 2.13, there exists a bimodule p,Up,
which is reflexive on both sides such that By = Endp, (U) and projdimp, U < 1. Hence
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hypotheses (1, 2, 4) in Theorem 6.2 hold. To show hypothesis (3) in Theorem 6.2, we
follow Proposition 2.18. There are two cases that should be considered:
Case 1: E3' = Ext%gp (Extp, (U, B2), B2) = 0. By Proposition 2.18,

Extjgor (Bxty, (U, By), B2) = 0

for all (4, j) except for (4,5) = (0,0). This implies that U € proj Bs. Then Theorem 6.2(3)
holds trivially.
Case 2: E3' # 0. Then Exty, (U, Bs) # 0, and by Proposition 2.18,

jpee (Extp, (U, B2)) = 3.
Since By is 9-CM, we have
ang (EXt}B2<U7 Bg)) = ang <B2> — jB;p (EXt132 (U, Bz)) =3-3=0,

namely, Exty, (U, B2) € mody Bs¥. By Lemma 6.3, Extp_(U,U) € modg B{?, which is
Theorem 6.2(3).

Up to this point, we have proved conditions (1, 2, 3, 4) in Theorem 6.2. By symmetry,
Theorem 6.2(5) holds. Therefore, by Theorem 6.2, B; and B are derived equivalent. O

7. Connections between NQRs and NCCRs

In this section we show that Van den Bergh’s noncommutative crepant resolutions
(NCCRs) are in fact equivalent to noncommutative quasi-resolutions (NQRs) in the
commutative or central-finite case. We use the definition given in [21, Section 8] which
is slightly more general than original definition, see Definition 0.2.

Let R be a noetherian commutative domain with finite Krull dimension. Let Ag kdim
be the category of algebras that are module-finite R-algebras with O being the Krull
dimension (Kdim). As explained in Example 3.1(3), we need to specify modules too.
As usual, one-sided modules are just usual modules, but bimodules are assumed to be
R-central.

Lemma 7.1. Retain the notation as above. Let A,B € Apr kdim- Then Hypothesis 1.3
holds.

Proof. By [6, Lemma 1.3], 9 := Kdim is exact and symmetric. Hypothesis 1.3(1) and
(2) are clear. It remains to show (3). By definition all bimodules are central over R.
If 4Mp is finitely generated over B, then it is finitely generated over R as every al-
gebra is module-finite over R. Then M is finitely generated over A. This implies that
Hypothesis 1.3(3) is equivalent to the fact that J is symmetric. O
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We recall a definition from [6, Definition 1.1(5)]. Let A and B be two algebras. We
say 0 is (A, B);-torsitive if, for every (A, B)-bimodule M finitely generated on both sides
and every finitely generated right A-module N, one has

d(Tor! (N, M)p) < d(Na)
for all j <. Part (1) of the following lemma was proven in [6].
Lemma 7.2. Let A and B be two algebras in Ap Kdim-
1) [6, Lemma 3.1] O is (A, B)o-torsitive.
2) Vi, ks (A, B) hold for all k1, ko (see Definition 1.8).
)
)

(
(
(3) Hypothesis 3.8 holds.
(4) Hypothesis 6.5 holds.

Proof. (2) This follows from part (1) and the definition.
(3) This follows from Lemma 7.1 and a special case of part (2).
(4) This follows from part (3) and another special case of part (2). O

For the purpose of this paper, we only need 7o,0(A, B) and v1,1(4, B). But it is good
to know that ~yi, x, (A, B) hold for all kq,ks. For the rest of this section, CM stands
for “Cohen-Macaulay” in the classical sense in commutative algebra, while Kdim-CM is
defined in Definition 2.3 by taking the dimension function 0 to be the Krull dimension
Kdim. By [12, p. 1435], when R is commutative and noetherian, then R is Kdim-CM if
and only if R is CM and equi-codimensional. The following lemma is known.

Lemma 7.3. Let R be a commutative d-dimensional CM equi-codimensional normal do-
main. Let A be a module-finite R-algebra and K € mod A. Let s be an integer between
0 and d — 2. Then K € modg—2—s A if and only if K, =0 for every prime ideal p of R
with ht(p) <1+ s.

Proof. Since Kdim Mp = Kdim M4, it suffices to consider the case A = R. By [27,
Lemma 6.2.11], we can always assume that K is a critical R-module such that g :=
Anngp(K) = {z € R|zK = 0} is a prime ideal of R. In this case, K is an essential
R/g-module.

Suppose that K, = 0 for all prime ideals p with ht(p) < 1+s. If Kdim(K) > d—1—s,
by [12, Theorem 3.1(iv)], we have

ht(q) = Kdim R — Kdim R/q = Kdim R — Kdim K < 1 + s.

By the definition of q, Ky # 0, which is a contradiction. Therefore Kdim(K) < d—2 —s,
as desired.
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Conversely, suppose that Kdim(K) < d—2 —s. Then Kdim R/q < d —2 — s. By [12,
Theorem 3.1(iv)], we have ht(q) > 2 + s. Therefore K, = 0 for all prime ideal p with
ht(p) <1+s. O

Remark 7.4. In the papers [35,21], the commutative base ring R is a normal Gorenstein
domain, which is automatically CM equi-codimensional and normal. In [22, Theorem 1.5],
it is assumed that R is a CM equi-codimensional normal domain. Hence the first hypoth-
esis of Lemma 7.3 holds.

Proposition 7.5. Let R be a commutative noetherian CM equi-codimensional normal do-
main of dimension d. Let A be a module-finite R-algebra that is a maximal CM R-module.
If M gives rise to a NCCR of A in the sense of Definition 0.2(2), then (Q,oaMa,a(MY)q)
is a NQR of A. In other words,

(1) Q is an Auslander regular Kdim-CM algebra with gldim Q = Kdim Q = d.
(2) M &4 MY =, 2 Q and MY R M =449 A.

Proof. (1) By the assumption, R is equi-codimensional, ) is a module-finite R-algebra,
and Q is a maximal CM R-module, so, by [12, Lemma 2.8(2) and Theorem 4.8], § is
a Kdim-CM algebra with Kdim(Q?) = Kdim(R) = d. Moreover, 2 being a nonsingular
R-order means that it is a homologically homogeneous noetherian PI ring. Then, by [33,
Theorem 1.4(1)], Q is an Auslander regular algebra with gldim Q = d. The assertion
follows.

(2) Let ¢ : MY ®q M — A be the natural evaluation map. Then there is an exact
sequence

0K —->MY@oM 25 A—C—0

with K,C € mod A. By definition of a NCCR, M € ref A is a height one progenerator
of A, we have M, ®q, M, = A, for p € Spec(R) with ht(p) < 1. Therefore, K, =
0 = C,. By Lemma 7.3, K,C € modg_2 R. Combining with the assumption that A is a
module-finite R-algebra, K,C € mody_o A, namely, MV ®@q M =,;_5 A.

Similarly, there is a natural map

a:M®a MY — Homy (M, M) =:

such that a(n ® f)(m) = nf(m) for all f € MY and all n,m € M. One can use the
above argument to show that M ®4 MY ;5 Q, whence (2) follows. O

Conversely, a NQR is also a NCCR for Gorenstein singularities.

Proposition 7.6. Let R be a commutative d-dimensional CM equi-codimensional normal
domain. Let A be a module-finite R-algebra that is a maximal CM R-module. Suppose that
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A is Auslander-Gorenstein and Kdim-CM, then a NQR of A, say (B, M, N), provides a
NCCR B of A in the sense of Definition 0.2.

Proof. Let (B, M, N) be a NQR of A. Then B is an Auslander regular Kdim-CM algebra
of Krull dimension d, and

M®aN=3 2B, N®pM=4,A.

By Proposition 3.9, (M, N) can be replaced by (U, V') such that (B, U, V) is also a NQR of
A and that U and V are reflexive on both sides. By Lemmas 3.13 and 7.2, B = End 4(U).
Since B is Auslander regular and Kdim-CM, it is easy to check that B is a non-singular
order. It remains to show that U is a height one progenerator. By Proposition 3.9, we
have

UaV=;9B and VgU=,;_, A.
It follows from Lemma 7.3 that
Up®a, Vo 2By, and V,®p, U, = A,

for every prime ideal p of R with ht(p) < 1. Hence U is a height one progenerator of A.
Therefore U gives a NCCR of A. O

By the above two propositions, NCCRs are essentially equivalent to NQRs when A
is Auslander-Gorenstein. Therefore Theorem 0.4(2b) is essentially equivalent to Theo-
rem 6.6 in this setting. In the next section, we will introduce more examples of NQRs
in the noncommutative setting. One advantage of NQRs is that they can be defined for
many algebras that are not Gorenstein (not even CM). In this case we do not require M
or N to be reflexive. Here is an easy example.

Example 7.7. Let B be the commutative polynomial ring k[z1, 2, 3] with the standard
grading and let A be the subring of B generated by B>>. Then A is noetherian of Krull
dimension three and the Hilbert series of A is

1

W—Z’)t.

HA(t) =

It is easy to see that A is not normal and that H () can not be written as

1+ at + ast® + - - + agt?
(T tm)(1— t72)(1 - t79)

for any nonnegative integers a;,n;. By [17, Ex. 21.17(b), p. 551], A is not CM. Then a
NCCR of A is not defined. But A has a NQR as shown below.
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Let M = B as a (B, A)-bimodule and N = B as an (A, B)-bimodule. It is easy to see
that

M®aN=B, and N®gM =y A.

Consequently, (B, M, N) is a NQR of A. As a consequence of Proposition 7.9 below, any
two NQRs of A are Morita equivalent.

In addition, it is easy to check that A has an isolated singularity at the unique maximal
graded ideal.

Though NQRs are weaker than NCCRs, not every algebra admits a NQR.

Example 7.8. Let A be an affine commutative Gorenstein algebra that does not admit a
NCCR. Then A does not admit a NQR by Proposition 7.6. For example, A is an affine
Gorenstein algebra of dimension two with non-isolated singularities, then A does not
admit either a NCCR or a NQR. By [16, Theorem 1.2(2) and Example 3.5], there are
isolated hypersurface singularities of (any) even dimension > 4 that do not admit either
a NCCR or a NQR.

Proposition 7.9. Let A be a module-finite R-algebra with 0(A) = 3. Suppose

(a) (Bi,B,(M;)a,a(N;)g,) are two NQRs of A fori=1,2, and
(b) By or By is Azumaya.

Then By and Bs are Morita equivalent.

Proof. The hypotheses in Theorem 6.6 are automatic by Lemma 7.2. Hence B; and Bs
are derived equivalent. Since By (or Bs) is Azumaya, by [39, Proposition 5.1], By and
B, are Morita equivalent. 0O

8. Examples of NQRs of noncommutative algebras and comments

In this section we give some examples of NQRs of noncommutative algebras. At the
end of the section we also give some comments. It turns out that, except for Example 8.6,
all examples in this section have the same kind of construction, namely, by noncommuta-
tive McKay correspondence. Precisely, fixed subrings R, considered as noncommutative
quotient singularities, have NQRs of the form R#H, where R and H will be explained
in details. However, by taking different R and H, we obtain many different examples.

8.1. Graded case

Let Ay cxdim be the category of locally finite N-graded noetherian algebras with finite
Gelfand-Kirillov dimension and let 9 = GKdim. Modules are usual Z-graded A-modules.
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In this setting, (A, B)-bimodules are assumed to be Z-graded (A, B)-bimodules, namely,
having both a left graded A-module and a right graded B-module structure with the
same grading. See Example 3.1(1).

Remark 8.1. Many of basic results in ring theory and module theory have been general-
ized to the graded setting in the literature. For example, the graded version of some basic
results in ring theory can be found in the book [28]. Using the graded version of these
results one can carefully adapt the arguments to reprove all statements in Sections 1-7 in
the graded setting. To save space we will use the graded version of results in Sections 1-7
without proofs.

Lemma 8.2. Retain the notation as above concerning the category Agr GKdim-

(1) Hypothesis 1.3 holds.

(2) Let A and B be two algebras in Agy gKdim- Then 0 is (A, B)oo-torsitive. As a con-
sequence, Vi, .k, (A, B) hold for all k1, k;.

(3) Hypothesis 6.5 holds.

Proof. (1) By [6, Lemma 1.2(1)], 9 is exact. By [6, Lemma 1.2(4)], it is symmetric.
Hypothesis 1.3(2) is [25, Lemma 5.3(b)].

(2) This is [6, Lemma 1.2(6)].

(3) This follows from parts (1) and (2) and the definition. O

From now on until Example 8.7, we are working with the category Ag, cKdim-

Proof of Theorem 0.6. By Lemma 8.2(3), Hypothesis 6.5 holds.
(1) This is a (graded) consequence of Theorem 4.2.
(2) This is a consequence of Theorem 6.6 and Lemma 8.2(3). O

Proposition 8.3. Suppose that A and B are two noetherian locally finite N-graded algebras
that satisfy the following

(a) B is an Auslander regular CM algebra with GKdim(B) :=d > 2.

(b) Let e be an idempotent in B (or in By) and A = eBe.

(¢) N :=eB is an (A, B)-bimodule which is finitely generated on both sides.
)

)

)

(d M Be is a (B, A)-bimodule which is finitely generated on both sides.
(e) GKdim(B/BeB) <d — 2.

Then (B,M,N) is a NQR of A.
Proof. Below is a proof in the ungraded setting which can easily adapted to the graded

case. Since 0 = GKdim, by [6, Lemma 2.2(ii)], 0((Ne)a) < 0(Np) for every finitely
generated right B-module N, which is precisely [6, Hypothesis 2.1(7)]. It is easy to
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verify [5, Hypothesis 2.1(1-6)]. By Lemma 8.2(2), 0 satisfies y4_2.1(eB), which is precisely
[5, (E2.3.1)]. Therefore we can apply the proof of [5, Lemma 2.3]. By the proof of [5,
Lemma 2.3], the hypothesis GKdim(B/BeB) < d — 2 implies that

M®y N =45 B.
On the other hand, it is clear that
N ®p M =eBe=A.
Therefore (B, M,N) isa NQR of A. O

Remark 8.4.

(1) By the above proof, Proposition 8.3 holds in the ungraded case as long as condition [5,
(E2.3.1)] holds. Note that [5, (E2.3.1)] is a consequence of 9 being (A, B)oo-torsitive
for those algebras A and B in the category A.

(2) Similar to the proof of Proposition 8.3, if we replace condition (e) by

GKdim(B/BeB) < d -2 — s,

then (B, M, N) is an s-NQR of A in the sense of Definition 3.2(1).

(3) If A =: R is a commutative normal Gorenstein domain, then the NQRs in Proposi-
tion 8.3 might not be in the category of Ag kdim (Section 7) as we are not required
that B is R-central. Keep this in mind, it is also possible that R has a NCCR in the
category Apg kdim and a NQR not in Ag kaim (but in a different category such as

Agr,GKdim)~
Explicit examples of NQRs in the graded case are given next.
Example 8.5. Suppose the following hold.

(a) Let R be a noetherian connected graded (locally finite) Auslander regular CM algebra
with GKdim(R) =d > 2.

(b) Let H be a semisimple Hopf algebra acting on R homogeneously and inner-faithfully
with integral [ such that e([) = 1.

(c) Let B be the smash product algebra R#H with e := 1# [ € B and A be the fixed
subring RY.

(d) Suppose GKdim(B/BeB) < d — 2.

By Proposition 8.3, (B,M,N) := (B, Be,eB) is a NQR of A. This produces many
examples of NQRs in following work. Note that the condition (d) is equivalent to that a
version of Auslander’s theorem holds, namely, the natural algebra morphism
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¢: R#H — Endgu(R)

is an isomorphism. In [13,14,5,6,15,18], the results state that Auslander’s theorem holds
instead of condition (d). Auslander’s theorem is a fundamental ingredient in the study of
the McKay correspondence, see [13,14]. In the following we further assume that char k =
0.

(1) Let R be an Auslander regular and CM algebra of global dimension two and H
act on R with trivial homological determinant. Then A := R has a NQR [13,
Theorem 0.3].

(2) Let R be a graded noetherian down-up algebra (of global dimension three) which is
not A(a, —1) and G be a finite subgroup of Aut,,(R). Then A := R has a NQR [6,
Theorem 0.6].

(3) Let R be a graded noetherian down-up algebra (of global dimension three) and
G be a finite subgroup coacting on R with trivial homological determinant. Then
A = R @ has a NQR [15, Theorem 0.1].

(4) Let R = k_q[zy, -+ ,x,) and S,, act on R naturally permuting variables z;. Then
A := RY has a NQR for every nontrivial subgroup G C S, [18, Theorem 2.4]. A
special case was proved earlier in [5, Theorem 0.5].

Next we give an example of a NQR that does not fit into the framework of Proposi-
tion 8.3.

Example 8.6. Let ¢ be a nonzero scalar in k that is not a root of unity. Let B be
the algebra k(z,y)/(yz — qvy — x?), which is connected graded noetherian Auslander
regular and CM of GKdim 2. Let A := k + By be the subalgebra of B as given in [32,
Notation 2.1]. By [32, Theorem 2.3], A is a noetherian algebra that does not satisfy
the condition x in the sense of [3]. As a consequence, A does not admit a balanced
dualizing complex in the sense of Yekutieli [37]. In other words, this algebra does not
have nice properties required in noncommutative algebraic projective geometry. By [32,
Corollary 2.8],

qmody A = gqmod, B.

This indicates that A might have a NQR. Indeed, this is the case as we show next.

Let M be the (graded) (B, A)-bimodule By and N be the (graded) (A, B)-bimodule
B. One can verify that M and N are finitely generated on both sides. Note that, as a
right A-module, M =, A since we have an exact sequence 0 — M — A — k — 0. Hence,
following the Hilbert series computations,

N®BM%()B®BBy%By%0A

as A-bimodules, and
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M@ANgoBy@)ABgoByBgoB

as B-bimodules, where the last = follows from the fact that ByB is co-finite-dimensional
inside B. By definition, B is a NQR of A.

8.2. Ungraded case

All NQRs in the graded case are NQRs in the ungraded setting. Below are other
ungraded examples.

Example 8.7. Let Ay gr.ckaim be the category of affine k-algebras with finite Gelfand-
Kirillov dimension and let @ = GKdim. Suppose the following hold.

(a) Let R be a noetherian Auslander regular CM algebra with GKdim(R) = d > 2.

(b) Let H be a semisimple Hopf algebra acting on R and inner-faithfully with integral
| such that e([) = 1.

(c) Let B be the smash product algebra R#H with e := 1# [ € B and A be the fixed
subring RY.

(d) Suppose GKdim(B/BeB) < d — 2.

If [5, (E2.3.1)] holds, by Proposition 8.3, (B, M, N) := (B, (R#H)e,e(R#H)) is a NQR
of A. We have some examples in the ungraded case. Here is the first example. Again
assume that char k = 0. Let R be the universal enveloping algebra U(g) of a finite
dimensional Lie algebra g. Suppose that g # g’ x kx for a 1-dimensional Lie ideal kx C g
and a Lie subalgebra g’ C g. Then [6, Corollary 0.5] implies that R has a NQR for
every finite group G C Autp.(g).

Example 8.8. Let Apr ckdim be the category of affine k-algebras that satisfy a polynomial
identity and let 0 = GKdim. In fact, GKdim = Kdim in this case. But we do not
assume that algebras are central-finite. By [6, Lemma 3.1], 9 is (A, B)oo-torsitive for
two algebras A and B in Ayngr pr. As a consequence, i, k, (A4, B) hold for all ki, ko,
see Lemma 7.2. Then in the setting of Example 8.6, RY has a NQR B := R#H when
0(B/BeB) < 9(B) — 2, or equivalently, when the Auslander’s theorem holds by [6,
Theorem 3.3]. Explicit examples of R and H are given in [6, Corollaries 3.4 and 3.7].

8.3. Comments on potential directions of further research

There are some further studies of NQRs in dimension two in [30, Theorem 0.2(1)]
where the Gabriel quiver of a NQR is classified. It is natural to ask what we can do in
dimension three.

The next question was suggested by the referee. Is it possible to remove the condition
that the singular ring A (either in the commutative regime or in the noncommutative
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regime) is Gorenstein or CM? Instead, we just assume that A has an Auslander dualizing
complex. Note that, except for the definition (Definition 3.2), we use the Gorenstein or
CM property in a large part of the paper.

In future study of higher dimensional NQRs, dualizing complexes and derived cate-
gories [40,38] would play a more important role than the classical methods presented in
this paper.
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