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Abstract

Discrete Gaussian distributions over lattices are central to lattice-based cryptography, and to
the computational and mathematical aspects of lattices more broadly. The literature contains
a wealth of useful theorems about the behavior of discrete Gaussians under convolutions and
related operations. Yet despite their structural similarities, most of these theorems are formally
incomparable, and their proofs tend to be monolithic and written nearly “from scratch,” making
them unnecessarily hard to verify, understand, and extend.

In this work we present a modular framework for analyzing linear operations on discrete
Gaussian distributions. The framework abstracts away the particulars of Gaussians, and usually
reduces proofs to the choice of appropriate linear transformations and elementary linear algebra.
To showcase the approach, we establish several general properties of discrete Gaussians, and
show how to obtain all prior convolution theorems (along with some new ones) as straight-
forward corollaries. As another application, we describe a self-reduction for Learning With
Errors (LWE) that uses a fixed number of samples to generate an unlimited number of additional
ones (having somewhat larger error). The distinguishing features of our reduction are its simple
analysis in our framework, and its exclusive use of discrete Gaussians without any loss in
parameters relative to a prior mixed discrete-and-continuous approach.

As a contribution of independent interest, for subgaussian random matrices we prove a
singular value concentration bound with explicitly stated constants, and we give tighter heuristics
for specific distributions that are commonly used for generating lattice trapdoors. These bounds
yield improvements in the concrete bit-security estimates for trapdoor lattice cryptosystems.
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1 Introduction
The rapid development of lattice-based cryptography in recent years has moved the topic from a
theoretical corner of cryptography to a leading candidate for post-quantum cryptography1, while
also providing advanced cryptographic functionalities like fully homomorphic encryption [Gen09].
Further appealing aspects of lattice-based cryptography are its innate parallelism and that its two
foundational hardness assumptions, Short Integer Solution (SIS) and Learning With Errors (LWE),
are supported by worst-case to average-case reductions (e.g., [Ajt96, Reg05]).

A very important object in lattice cryptography, and the computational and mathematical
aspects of lattices more broadly, is a discrete Gaussian probability distribution, which (informally)
is a Gaussian distribution restricted to a particular lattice (or coset thereof). For example, the
strongest worst-case to average-case reductions [MR04, GPV08, Reg05] all rely centrally on
discrete Gaussians and their nice properties. In addition, much of the development of lattice-
based signature schemes, identity-based encryption, and other cryptosystems has centered around
efficiently sampling from discrete Gaussians (see, e.g., [GPV08, Pei10, MP12, DDLL13, DLP14,
MW17]), as well as the analysis of various kinds of combinations of discrete Gaussians [Pei10,
BF11, MP13, AGHS13, AR16, BPMW16, GM18, CGM19, DGPY19].

By now, the literature contains a plethora of theorems about the behavior of discrete Gaussians in
a variety of contexts, e.g., “convolution theorems” about sums of independent or dependent discrete
Gaussians. Despite the close similarities between the proof approaches and techniques employed,
these theorems are frequently incomparable and are almost always proved monolithically and nearly
“from scratch.” This state of affairs makes it unnecessarily difficult to understand the existing
proofs, and to devise and prove new theorems when the known ones are inadequate. Because of the
structural similarities among so many of the existing theorems and their proofs, a natural question is
whether there is some “master theorem” for which many others are corollaries. That is what we aim
to provide in this work.

1.1 Our Contributions
We present a modular framework for analyzing linear operations on discrete Gaussians over lattices,
and show several applications. Our main theorem, which is the heart of the framework, is a simple,
general statement about linear transformations of discrete Gaussians. We establish several natural
consequences of this theorem, e.g., for joint distributions of correlated discrete Gaussians. Then
we show how to combine these tools in a modular way to obtain all previous discrete Gaussian
convolution theorems (and some new ones) as corollaries. Notably—and in contrast to prior works—
all the consequences of our main theorem follow mostly by elementary linear algebra, and do not
use any additional properties (or even the definition) of the discrete Gaussian. In other words, our
framework abstracts away the particulars of discrete Gaussians, and makes it easier to prove and
verify many useful theorems about them.

As a novel application of our framework, we describe and tightly analyze an LWE self-reduction
that, given a fixed number of LWE samples, directly generates (up to negligible statistical distance)

1https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
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an unlimited number of additional LWE samples with discrete Gaussian error (of a somewhat larger
width than the original error). The ability to generate fresh, properly distributed LWE samples is
often used in cryptosystems and security proofs (see [GPV08, ACPS09] for two early examples), so
the tightness and simplicity of the procedure is important. The high-level idea behind prior LWE
self-reductions, first outlined in [GPV08], is that a core procedure of [Reg05] can be used to generate
fresh LWE samples with continuous Gaussian error. If desired, these samples can then be randomly
rounded to have discrete Gaussian error [Pei10], but this increases the error width somewhat, and
using continuous error to generate discrete samples seems unnecessarily cumbersome. We instead
describe a fully discrete procedure, and use our framework to prove that it works for exactly the
same parameters as the continuous one.

As a secondary contribution, motivated by the concrete security of “trapdoor” lattice cryp-
tosystems, we analyze the singular values of the subgaussian matrices often used as such trap-
doors [AP09, MP12]. Our analysis precisely tracks the exact constants in traditional concentration
bounds for the singular values of a random matrix with independent, subgaussian rows [Ver12].
We also give a tighter heuristic bound on matrices chosen with independent subgaussian entries,
supported by experimental evidence. Since the trapdoor’s maximum singular value directly influ-
ences the hardness of the underlying SIS/LWE problems in trapdoor cryptosystems, our heuristic
yields up to 10 more bits of security in a common parameter regime, where the trapdoor’s entries
are chosen independently from {0,±1} (with one-half probability on 0, and one-quarter probability
on each of ±1).2

1.2 Technical Overview
Linear transformations of discrete Gaussians. It is well known that any linear transformation
of a (continuous, multivariate) Gaussian is another Gaussian. The heart of our work is a similar
theorem for discrete Gaussians (Theorem 3.1). Note that we cannot hope to say anything about this
in full generality, because a linear transformation of a lattice Λ may not even be a lattice. However,
it is one if the kernel K of the transformation is a Λ-subspace, i.e., the lattice Λ ∩ K spans K
(equivalently, K is spanned by vectors in Λ), so we restrict our attention to this case.

For a positive definite matrix Σ and a lattice coset Λ + c, the discrete Gaussian distribution
DΛ+c,

√
Σ assigns to each x in its support Λ + c a probability proportional to exp(−π · xtΣ−1x). We

show that for an arbitrary linear transformation T, if the lattice Λ ∩ ker(T) spans ker(T) and has
smoothing parameter bounded by

√
Σ, then T applied to DΛ+c,

√
Σ behaves essentially as one might

expect from continuous Gaussians:

TDΛ+c,
√

Σ ≈ DT(Λ+c),T
√

Σ.

The key observation for the proof is that for any point in the support of these two distributions, its
probabilities under TDΛ+c,

√
Σ and DT(Λ+c),T

√
Σ differ only by a factor proportional to the Gaussian

mass of some coset of Λ ∩ K. But because this sublattice is “smooth” by assumption, all such
cosets have essentially the same mass.

2Our security analysis is a simple BKZ estimate, which is not a state-of-the-art concrete security analysis. However,
we are only interested in the change in concrete security when changing from previous bounds to our new ones. Our
point is that the underlying SIS problem is slightly harder in this trapdoor lattice regime than previously thought.
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Convolutions. It is well known that the sum of two independent continuous Gaussians having
covariances Σ1,Σ2 is another Gaussian of covariance Σ. We use our above-described Theorem 3.1
to prove similar statements for convolutions of discrete Gaussians. A typical such convolution is the
statistical experiment where one samples

x1 ← DΛ1+c1,
√

Σ1
, x2 ← x1 +DΛ2+c2−x1,

√
Σ2
.

Based on the behavior of continuous Gaussians, one might expect the distribution of x2 to be close to
DΛ2+c2,

√
Σ, where Σ = Σ1 + Σ2. This turns out to be the case, under certain smoothness conditions

on the lattices Λ1,Λ2 relative to the Gaussian parameters
√

Σ1,
√

Σ2. This was previously shown
in [Pei10, Theorem 3.1], using a specialized analysis of the particular experiment in question.

We show how to obtain the same theorem in a higher-level and modular way, via Theorem 3.1.
First, we show that the joint distribution of (x1,x2) is close to a discrete Gaussian over (Λ1 + c1)×
(Λ2 + c2), then we analyze the marginal distribution of x2 by applying the linear transformation
(x1,x2) 7→ x2 and analyzing the intersection of Λ1 × Λ2 with the kernel of the transformation.
Interestingly, our analysis arrives upon exactly the same hypotheses on the parameters as [Pei10,
Theorem 3.1], so nothing is lost by proceeding via this generic route.

We further demonstrate the power of this approach—i.e., viewing convolutions as linear trans-
formations of a joint distribution—by showing that it yields all prior discrete Gaussian convolution
theorems from the literature. Indeed, we give a very general theorem on integer combinations of
independent discrete Gaussians (Theorem 4.6), then show that several prior convolution theorems
follow as immediate corollaries.

LWE self-reduction. Recall the LWE distribution (A,bt = stA + et mod q) where the secret
s← Znq and A← Zn×mq are uniform and independent, and the entries of e are chosen independently
from some error distribution, usually a discrete one over Z. As described in [GPV08, ACPS09]
(based on a core technique from [Reg05]), when m ≈ n log q or more we can generate unlimited
additional LWE samples (up to small statistical distance) with the same secret s and continuous
Gaussian error, as

(a = Ax ∈ Znq , b = btx + ẽ = sta + (etx + ẽ) mod q)

for discrete Gaussian x← DZm,r and continuous Gaussian “smoothing error” ẽ← Dr̃, for suitable
parameters r, r̃. More specifically, the error term etx + ẽ is close to a continuous Gaussian Dt,
where t2 = (r‖e‖)2 + r̃2.

We emphasize that the above procedure yields samples with continuous Gaussian error. If
discrete error is desired, one can then “round off” b, either naı̈vely (yielding somewhat unnatural
“rounded Gaussian” error), or using more sophisticated randomized rounding (yielding a true discrete
Gaussian [Pei10]). However, this indirect route to discrete error via a continuous intermediate step
seems cumbersome and also somewhat loose, due to the extra round-off error.

An obvious alternative approach is to directly generate samples with discrete error, by choosing
the “smoothing” term ẽ← DZ,r̃ from a discrete Gaussian. However, directly and tightly analyzing
this alternative is surprisingly non-trivial, and to our knowledge it has never been proven that the
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resulting error is (close to) a discrete Gaussian, without incurring some loss relative to what is
known for the continuous case.3 Using the techniques developed in this paper, we give a modular
proof that this alternative approach does indeed work, for the very same parameters as in the
continuous case. As the reader may guess, we again express the overall error distribution as a linear
transformation on some joint discrete Gaussian distribution. More specifically, the joint distribution
is that of (x, ẽ) where x is conditioned on a = Ax, and the linear transformation is given by [et | 1]
(where et is the original LWE error vector). The result then follows from our general theorem on
linear transformations of discrete Gaussians (Theorem 3.1).

Analysis of subgaussian matrices. A distribution over R is subgaussian with parameter s > 0
if its tails are dominated by those of a Gaussian distribution of parameter s. More generally, a
distribution X over Rn is subgaussian (with parameter s) if its marginals 〈X ,u〉 are subgaussian
(with the same parameter s) for every unit vector u ∈ Rn. We give precise concentration bounds on
the singular values of random matrices whose columns, rows, or individual entries are independent
subgaussians. We follow a standard proof strategy based on a union bound over an ε-net (see,
e.g., [Ver12]), but we precisely track all the constant factors. For example, let R ∈ Rm×n be a
matrix with independent subgaussian rows. First, we reduce the analysis of R’s singular values to
measuring how close R is to an isometry, specifically the norm ‖RtR−In‖ = supu ‖(RtR−In)u‖
where the supremum is taken over all unit vectors u. Next, we approximate all unit vectors by an
ε-net of the unit-sphere and bound the probability that ‖Ru‖2

2 is too large by expressing ‖Ru‖2
2

as a sum of independent terms (namely, ‖Ru‖2
2 =

∑
i〈ri,u〉2 where ri is a row of R). Finally, we

take a union bound over the net to get a concentration bound. Lastly, we give a tighter heuristic for
subgaussian matrices with independent entries from commonly used distributions in lattice-based
cryptography.

1.3 Organization
The rest of the paper is organized as follows. Section 2 reviews the relevant mathematical back-
ground. Section 3 gives our general theorem on linear transformations of discrete Gaussians.
Section 4 is devoted to convolutions of discrete Gaussians: we first analyze joint distributions and
linear transforms of such convolutions, then show how all prior convolution theorems follow as
corollaries. Section 5 gives our improved, purely discrete LWE self-reduction. Finally, Section 6
gives our provable and heuristic subgaussian matrix analysis; the proof of the main subgaussianity
theorem appears in Appendix A.

2 Preliminaries
In this section we review some basic notions and mathematical notation used throughout the paper.
Column vectors are denoted by lower-case bold letters (a,b, etc.) and matrices by upper-case bold

3Of course, one can view the discrete Gaussian as a randomly rounded continuous one, but this is equivalent to the
indirect, loose approach described above.
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letters (A,B, etc.). In addition, positive semidefinite matrices are sometimes denoted by upper-case
Greek letters like Σ. The integers and reals are respectively denoted by Z and R. All logarithms are
base two unless specified otherwise.

Probability. We use calligraphic letters like X ,Y for probability distributions, and sometimes
for random variables having such distributions. We make informal use of probability theory,
without setting up formal probability spaces. We use set-like notation to describe probability
distributions: for any distribution X over a set X , predicate P on X , and function f : X → Y ,
we write Jf(x) | x ← X , P (x)K for the probability distribution over Y obtained by sampling x
according to X , conditioning on P (x) being satisfied, and outputting f(x) ∈ Y . Similarly, we
write {P (x) | x ← X} to denote the event that P (x) is satisfied when x is selected according
to X , and use Pr{z ← X} as an abbreviation for X (z) = Pr{x = z | x ← X}. We write
f(X ) = Jf(x) | x ← X K for the result of applying a function to a probability distribution. We
let U(X) denote the uniform distribution over a set X of finite measure.

The statistical distance between any two probability distributions X ,Y over the same set is
∆(X ,Y) := supA|Pr{X ∈ A} − Pr{Y ∈ A}|, where A ranges over all measurable sets. Similarly,
for distributions X ,Y with the same support, their max-log distance [MW18] is defined as

∆ML(X ,Y) := sup
A
|log Pr{X ∈ A} − log Pr{Y ∈ A}|,

or, equivalently, ∆ML(X ,Y) = supa|log Pr{X = a} − log Pr{Y = a}|.

Distance notation. For any two real numbers x, y, and ε ≥ 0, we say that x approximates y within
relative error ε (written x ≈ε y) if x ∈ [1− ε, 1 + ε] · y. We also write x

ε
≈ y as an abbreviation for

the symmetric relation (x ≈ε y) ∧ (y ≈ε x), or, equivalently, | log x− log y| ≤ log(1 + ε) ≤ ε.
For two probability distributions X ,Y over the same set, we write X ≈ε Y if X (z) ≈ε Y(z)

for every z. Similarly, we write X
ε
≈ Y if X ≈ε Y and Y ≈ε X . The following facts are easily

verified:

1. If X ≈ε Y , then Y ≈ε̄ X (and therefore, X
ε̄
≈ Y) for ε̄ = ε/(1− ε).

2. If X ≈ε Y and Y ≈δ Z then X ≈ε+δ+εδ Z , and similarly for
ε
≈.

3. For any (possibly randomized) function f , ∆(f(X ), f(Y)) ≤ ∆(X ,Y), and X ≈ε Y implies
f(X ) ≈ε f(Y).

4. If X ≈ε Y then ∆(X ,Y) ≤ ε/2.

5. X
ε
≈ Y if and only if ∆ML(X ,Y) ≤ log(1 + ε).

Linear algebra. For any set of vectors S ⊆ Rn, we write span(S) for the linear span of S, i.e.,
the smallest linear subspace of Rn that contains S. For any matrix T ∈ Rn×k, we write span(T)
for the linear span of the columns of T, or, equivalently, the image of T as a linear transformation.
Moreover, we often identify T with this linear transformation, treating them interchangeably. A
matrix has full column rank if its columns are linearly independent.

6



We write 〈x,y〉 =
∑

i xi · yi for the standard inner product of two vectors in Rn. For any vector
x ∈ Rn and a (possibly empty) set S ⊆ Rn, we write x⊥S for the component of x orthogonal to S,
i.e., the unique vector x⊥S ∈ x + span(S) such that 〈x⊥S, s〉 = 0 for every s ∈ S.

The singular values of a matrix A ∈ Rm×n are the square roots of the first d = min(m,n)
eigenvalues of its Gram matrix AtA. We list singular values in non-increasing order, as s1(A) ≥
s2(A) ≥ · · · ≥ sd(A) ≥ 0. The spectral norm is ‖A‖ := supx6=0 ‖Ax‖2/‖x‖2, which equals its
largest singular value s1(A).

The (Moore-Penrose) pseudoinverse of a matrix A ∈ Rn×k of full column rank4is A+ =
(AtA)−1At, and it is the unique matrix A+ ∈ Rk×n such that A+A = I and span((A+)t) =
span(A). (If A is square, its pseudoinverse is just its inverse A+ = A−1.) For any v ∈ span(A)
we have AA+v = v, because v = Ac for some vector c.

The tensor product (or Kronecker product) of any two matrices A = (ai,j) and B is the matrix
obtained by replacing each entry ai,j of A with the block ai,jB. It obeys the mixed-product property
(A⊗B)(C⊗D) = (AC)⊗ (BD) for any matrices A,B,C,D with compatible dimensions.

Positive (semi)definite matrices. A symmetric matrix Σ = Σt is positive semidefinite, written
Σ � 0, if xtΣx ≥ 0 for all vectors x. It is positive definite, written Σ � 0, if xtΣx > 0 for all
nonzero x. Positive (semi)definiteness defines a partial ordering on symmetric matrices: we write
Σ � Σ′ (and Σ′ � Σ) if Σ − Σ′ � 0 is positive semidefinite, and similarly for Σ � Σ′.5 For any
two (not necessarily positive semidefinite) matrices S,T ∈ Rn×k, we write S ≤ T if SSt � TTt.

For any matrix A, its Gram matrix AtA is positive semidefinite. Conversely, a matrix Σ is
positive semidefinite if and only if it can be written as Σ = SSt for some matrix S; we write
S =
√

Σ, and say that S is a square root of Σ. Note that such a square root is not unique, because,
e.g., −S =

√
Σ as well. We often just write

√
Σ to refer to some arbitrary but fixed square root

of Σ. For positive definite Σ � 0, observe that S =
√

Σ if and only if Σ−1 = (SSt)−1 = S−tS−1,
so S−t =

√
Σ−1, i.e.,

√
Σ
−t

is equivalent to
√

Σ−1, and hence
√

Σ
−1

is equivalent to
√

Σ−1
t
.

Lattices. An n-dimensional lattice Λ is a discrete subgroup of Rn, or, equivalently, the set
Λ = L(B) = {Bx : x ∈ Zk} of all integer linear combinations of the columns of a full-column-
rank basis matrix B ∈ Rn×k. The dimension k is the rank of Λ, and the lattice is full rank if k = n.
The basis B is not unique; any B′ = BU for U ∈ Zk×k with det(U) = ±1 is also a basis of the
same lattice.

A coset of a lattice Λ ⊂ Rn is a set of the form A = Λ +a = {v+a : v ∈ Λ} for some a ∈ Rn.
The dual lattice of Λ is the lattice Λ∨ = {x ∈ span(Λ) : 〈x,Λ〉 ⊆ Z}. If B is a basis for Λ, then
B+t is a basis for Λ∨. A Λ-subspace, also called a lattice subspace when Λ is clear from context,
is the linear span of some set of lattice points, i.e., a subspace S for which S = span(Λ ∩ S).
A fundamental property of lattices is that if T is a linear transformation for which ker(T) is
a Λ-subspace, then TΛ is also a lattice. The proof of this fact relies on the following classical
lemma.

4The pseudoinverse can also be defined for arbitrary matrices, but the definition is more complex, and we will not
need this level of generality.

5Notice that it is possible for Σ � Σ′ and Σ 6= Σ′, and still Σ 6� Σ′.
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Lemma 2.1. Let P be a Λ-subspace. Then any basis for P ∩ Λ can be extended to a basis for Λ.

The proof of this lemma is not obvious, but it is used to show the lattice basis theorem (i.e. that
every lattice has a basis). We sketch the proof for completeness, for full details see [Bas10].

Proof sketch. We sketch the proof for dim(P ) = k − 1, where k is the rank of Λ. The full proof
then follows from induction. Let Bk−1 be a basis for P ∩ Λ and v ∈ Λ \ P such that it minimizes
the distance to P .

Note that such a point must exist: consider the fundamental parallelepiped associated to Bk−1

and consider a ball around it that contains at least one point in Λ \ P . Clearly, this ball contains
finitely many lattice points and thus it contains one point v′ that is in Λ\P and closest to P . Assume
that there was another point in Λ \ P outside of this ball that was closer to P . Using the basis Bk−1

this point can be shifted into the ball without changing its distance to P . This shifted point would
still be in Λ \ P and closer to P : a contradiction. So v′ is such a point.

We now claim that B = [Bk−1 | v] is a basis of Λ. To see this, consider the coordinates of a
point w ∈ Λ in the basis B. If the last coordinate αk is not an integer, subtract bαkcv from it, which
is a point in Λ \ P and clearly closer to P than v: a contradiction. Thus, αk must be an integer.
Since w − αkv ∈ P ∩ Λ it follows that the remaining coordinates are also integral.

Corollary 2.2. For any matrix T and lattice Λ, if ker(T) is a Λ-subspace then TΛ is a lattice.

Proof. Let Bk be a basis for ker(T) ∩ Λ and extend it to a basis B for Λ. Consider B′ = TB.
Clearly, the first k columns of B′ are 0, where k = dim(ker(T)). By the rank-nullity theorem
the remaining vectors are linearly independent and by linearity form a basis for the set TΛ as a
Z-module.

The Gram-Schmidt orthogonalization (GSO) of a lattice basis B = {bi} is the set B̃ = {b̃i}
of vectors defined iteratively as b̃i = (bi)⊥{b1,...,bi−1}, i.e., the component of bi orthogonal to the
previous basis vectors. (Notice that the GSO is sensitive to the ordering of the basis vectors.) We
define the minimum GSO length of a lattice as b̃l(Λ) := minB maxi ‖b̃i‖2, where the minimum is
taken over all bases B of Λ.

For any two lattices Λ1,Λ2, their tensor product Λ1 ⊗ Λ2 is the set of all sums of vectors of
the form v1 ⊗ v2 where v1 ∈ Λ1 and v2 ∈ Λ2. If B1,B2 are respectively bases of Λ1,Λ2, then
B1 ⊗B2 is a basis of Λ1 ⊗ Λ2.

Gaussians. Let D be the Gaussian probability measure on Rk (for any k ≥ 1) having density
function defined by ρ(x) = e−π‖x‖

2 , the Gaussian function with total measure
∫
x∈Rk ρ(x) dx = 1.

For any (possibly non-full-rank) matrix S ∈ Rn×k, we define the (possibly non-spherical) Gaussian
distribution

DS := S · D = JSx | x← DK

as the image of D under S; this distribution has covariance Σ/(2π) where Σ = SSt is positive
semidefinite. Notice that DS depends only on Σ, and not on any specific choice of the square
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root S.6 So, we often write D√Σ instead of DS. When Σ = s2I is a scalar matrix, we often write Ds
(observe that D = D1).

For any Gaussian distribution DS and set A ⊆ span(S), we define DA,S as the conditional
distribution (where S−1(A) = {x : Sx ∈ A})

DA,S := [DS]A = Jy | y← DS,y ∈ AK = JSx | x← D,Sx ∈ AK = S · [D]S−1(A)

whenever this distribution is well-defined.7 Examples for which this is the case include all sets A
with positive measure

∫
x∈A dx > 0, and all sets of the form A = L + Λ + c, where L ⊆ Rn is a

linear subspace and Λ + c ⊂ Rn is a lattice coset.
For any lattice cosetA = Λ+c (and taking S = I for simplicity), the distributionDΛ+c is exactly

the (origin-centered) discrete Gaussian distribution given by Pr{x← DA} := ρ(x)/
∑

y∈A ρ(y), as
usually defined in lattice cryptography. It also follows immediately from the definition that c+DΛ−c
is the “c-centered” discrete Gaussian DΛ,c that is defined and used in some works. Because of this,
there is no loss of generality in dealing solely with origin-centered Gaussians, as we do in this work.

Lemma 2.3. For any A ⊆ Rn and matrices S,T representing linear functions where T is injective
on A, we have

T · DA,S = DTA,TS. (2.1)

Proof. By definition of the conditioned Gaussian and the fact that A = T−1(TA), we have

T · DA,S = TS · [D]S−1(A) = TS · [D](TS)−1(TA) = DTA,TS.

We now recall the notion of the smoothing parameter [MR04] and its generalization to non-
spherical Gaussians [Pei10].

Definition 2.4. For a lattice Λ and ε ≥ 0, we say ηε(Λ) ≤ 1 if ρ(Λ∨) ≤ 1 + ε.
More generally, for any matrix S of full column rank, we write ηε(Λ) ≤ S if Λ ⊂ span(S) and
ηε(S

+Λ) ≤ 1, where S+ is the pseudoinverse of S. When S = sI is a scalar matrix, we may simply
write ηε(Λ) ≤ s.

Observe that for a fixed lattice Λ, whether ηε(Λ) ≤ S depends only on Σ = SSt, and not the
specific choice of square root S =

√
Σ. This is because the dual lattice (S+Λ)∨ = StΛ∨, so for any

dual vector w = Stv where v ∈ Λ∨, ρ(w) = exp(−π‖w‖2) = exp(−πvtSStv) = exp(−πvtΣv)
is invariant under the choice of S. From this analysis it is also immediate that Definition 2.4 is
consistent with our partial ordering of matrices (i.e., S ≤ T when SSt � TTt), and with the
original definition [MR04] of the smoothing parameter of Λ as the smallest positive real s > 0 such
that ρ(sΛ∨) ≤ 1 + ε. The following lemma also follows immediately from the definition.

6To see this, notice that the probability under S(D) of any vector Σx ∈ span(SSt) = span(S) in its support is
ρ({z : Sz = Σx}) = ρ(Ttx + ker(S)) = ρ(Stx) · ρ(ker(T)) because Stx is orthogonal to ker(S) = {z : Sz = 0}.
Moreover, ρ(ker(S)) = 1 and ρ(Stx) = ρ(‖Stx‖) = ρ(

√
xtΣx) depends only on Σ.

7For any nonempty set A with zero measure, one can first define Aε = A + {x : ‖x‖ < ε}, which has nonzero
measure for any ε > 0. Then, [DS]A is defined as the limit of [DS]Aε as ε→ 0, if this limit exists.
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Lemma 2.5. For any lattice Λ, ε ≥ 0, and matrices S,T of full column rank, we have ηε(Λ) ≤ S
if and only if ηε(TΛ) ≤ TS.

The name “smoothing parameter” comes from the following fundamental property proved
in [MR04, Reg05].

Lemma 2.6. For any lattice Λ and ε ≥ 0 where ηε(Λ) ≤ 1, we have ρ(Λ + c) ≈ε 1/ det(Λ) for
any c ∈ span(Λ); equivalently, (D mod Λ) ≈ε U := U(span(Λ)/Λ).
In particular, ∆(D mod Λ,U) ≤ ε/2 and ∆ML(D mod Λ,U) ≤ − log(1− ε).

The lemma is easily generalized to arbitrary vectors c not necessarily in span(Λ).

Corollary 2.7. For any lattice Λ and ε ≥ 0 where ηε(Λ) ≤ 1, and any vector c, we have

ρ(Λ + c) ≈ε
ρ(c⊥Λ)

det(Λ)
.

Proof. Because c⊥Λ is orthogonal to span(Λ) and c′ = c− (c⊥Λ) ∈ span(Λ), we have

ρ(Λ + c) = ρ(Λ + c′ + (c⊥Λ)) = ρ(c⊥Λ) · ρ(Λ + c′) ≈ε
ρ(c⊥Λ)

det(Λ)
,

where ρ(Λ + c′) ≈ε det(Λ)−1 by Lemma 2.6.

Finally, we recall the following bounds on the smoothing parameter.

Lemma 2.8 ([GPV08, Lemma 3.1]). For any rank-n lattice Λ and ε > 0, we have ηε(Λ) ≤
b̃l(Λ) ·

√
ln(2n(1 + 1/ε))/π.

Lemma 2.9 ([MP13, Corollary 2.7]). For any lattices Λ1,Λ2, we have

ηε′(Λ1 ⊗ Λ2) ≤ b̃l(Λ1) · ηε(Λ2),

where 1 + ε′ = (1 + ε)n and n is the rank of Λ1. (Note that ε′ ≈ nε for sufficiently small ε.)

Quotients and groups. Lattice cryptography typically involves integer lattices Λ that are periodic
modulo some integer q, i.e., qZm ⊆ Λ ⊆ Zm. These “q-ary lattices” lattices can be equivalently
viewed as subgroups of Zmq = Zm/qZm. Let A ∈ Zn×mq for some n ≥ 1 and define the lattice
Λ⊥q (A) := {x ∈ Zm : Ax = 0 mod q}. We say that A is primitive if A · Zm = Znq .

All the results in this paper apply not only to lattices, but also to arbitrary (topologically closed)
subgroups of Rn. These are groups of the form G = Λ + L where Λ is a lattice and L is a linear
subspace. When considering such groups, one can always assume, without loss of generality,
that Λ and L are mutually orthogonal because Λ + L = (Λ⊥L) + L. Intuitively, one can think
of groups Λ + L as lattices of the form Λ + δΛL where span(ΛL) = L and δ ≈ 0. Notice that
limδ→0 ηε(Λ + δΛL) = ηε(Λ⊥L). For simplicity, we will focus the presentation on lattices, and
leave the generalization to arbitrary groups to the reader. Results for the continuous Gaussian
distribution D are obtained as a special case by taking the limit, for δ → 0, of δΛ, where Λ is an
arbitrary lattice spanning the support of D.
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Subgaussian distributions. Subgaussian distributions are those on R which have tails dominated
by Gaussians [Ver12]. An equivalent formulation is through a distribution’s moment-generating
function, and the definition below is commonly used throughout lattice-based cryptography [MP12,
LPR13].

Definition 2.10. A real random variable X is subgaussian with parameter s > 0 if for all t ∈ R,

E[e2πtX ] ≤ eπs
2t2 .

From this we can derive a standard Gaussian concentration bound.

Lemma 2.11. A subgaussian random variable X with parameter s > 0 satisfies, for all t > 0,

Pr{|X| ≥ t} ≤ 2 exp(−πt2/s2).

Proof. Let δ ∈ R be arbitrary. Then,

Pr{X ≥ t} = Pr{exp(2πδX) ≥ exp(2πδt)} ≤ exp(−2πδt) · E[exp(2πδX)]

≤ exp(−2πδt+ πδ2s2).

This is minimized at δ = t/s2, so we have

Pr{X ≥ t} ≤ exp(−πt2/s2).

The symmetric case X ≤ −t is analogous, and the proof is completed by a union bound.

A random vector x over Rn is subgaussian with parameter α if 〈x,u〉 is subgaussian with
parameter α for all unit vectors u. If each coordinate of a random vector is subgaussian (with a
common parameter) conditioned any values of the previous coordinates, then the vector itself is
subgaussian (with the same parameter). See [LPR13, Claim 2.1] for a proof.

3 Lattice Projections
We emphasize that the proof of Lemma 2.3 makes essential use of the injectivity of T, and the
lemma does not hold when T is not injective. There are two reasons for this. Consider, for simplicity,
the special case where A = Λ is a lattice and S = I. First, the set TΛ is not necessarily a lattice, and
the conditional distribution DTΛ,T may not be well defined.8 We resolve this issue by restricting T
to be a linear transformation whose kernel is a lattice subspace P = span(P ∩ Λ). Second, even
when T · DΛ is well defined, in general it does not equal the discrete Gaussian DTΛ,T. We address
this issue by showing that these distributions are statistically close, assuming that the sublattice
Λ ∩ P has small enough smoothing parameter.

8For example, if Λ is the lattice generated by the vectors (1, 0) and (
√

2, 1), and T(x, y) = x is the projection on
the first coordinate, then TΛ = Z +

√
2Z is a countable but dense subset of R. In particular,

∑
x∈TΛ ρ(x) =∞ and so

the conditional distribution DTΛ,T is not well defined.
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Theorem 3.1. For any ε ∈ [0, 1) defining ε̄ = 2ε/(1−ε), matrix S of full column rank, lattice coset
A = Λ + a ⊂ span(S), and matrix T such that ker(T) is a Λ-subspace and ηε(Λ ∩ ker(T)) ≤ S,
we have

T · DA,S
ε̄
≈ DTA,TS.

The proof of Theorem 3.1 (given below) relies primarily on the following specialization to linear
transformations that are orthogonal projections x 7→ x⊥P .

Lemma 3.2. For any ε ∈ [0, 1), lattice coset A = Λ + a, and lattice subspace P = span(Λ ∩ P )
such that ηε(Λ ∩ P ) ≤ 1, we have

∆ML((DA)⊥P , DA⊥P
) ≤ log

1 + ε

1− ε
,

or equivalently, (DA)⊥P
ε̄
≈ DA⊥P

where ε̄ = 2ε/(1− ε).

Proof. It is immediate that both (DA)⊥P and DA⊥P
are both well-defined distributions over A⊥P ,

which is a lattice coset. For any v ∈ A⊥P , let pv = Pr{v← (DA)⊥P} and qv = Pr{v← DA⊥P
}.

By definition, qv = ρ(v)/ρ(A⊥P ). In order to analyze pv, let ΛP = Λ ∩ P , and select any w ∈ A
such that w⊥P = v. Then

pv =
ρ({x ∈ A : x⊥P = v})

ρ(A)
=
ρ(w + ΛP )

ρ(A)
≈ε

ρ(w⊥ΛP
)

ρ(A) det(ΛP )
,

where the last step follows by Corollary 2.7. By assumption, span(ΛP ) = P , so w⊥ΛP
= w⊥P = v

and hence

pv ≈ε
ρ(v)

ρ(A) det(ΛP )
= C · qv

for some constant C = ρ(A⊥P )/(ρ(A) det(ΛP )). Summing over all v ∈ AA⊥P
gives 1 ≈ε C, or,

equivalently, C ∈ [1/(1 + ε), 1/(1− ε)]. It follows that

1− ε
1 + ε

qv ≤ pv ≤
1 + ε

1− ε
· qv,

and therefore ∆ML((DA)⊥P ,DA⊥P
) ≤ log 1+ε

1−ε .

We now prove the main theorem.

Proof of Theorem 3.1. The main idea is to express Λ as SΛ′ for a lattice Λ′, then use the injectivity
of TS on the subspace orthogonal to ker(TS), which contains Λ′⊥ker(TS).

Notice that a ∈ A ⊂ span(S) and Λ = A− a ⊂ span(S). Therefore, we can write A = SA′

for some lattice coset A′ = Λ′ + a′ with SΛ′ = Λ and Sa′ = a. Since S is injective, by Lemma 2.3
we have

T · DA,S = T · DSA′,S = TS · DA′ . (3.1)
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Now let P = ker(TS), so that SP = span(S) ∩ ker(T). In particular, using Λ ⊂ span(S) and the
injectivity of S, we get

Λ ∩ ker(T) = Λ ∩ span(S) ∩ ker(T) = Λ ∩ SP = SΛ′ ∩ SP = S(Λ′ ∩ P ).

Using the assumption ker(T) = span(Λ ∩ ker(T)) we also get

SP = span(S) ∩ ker(T) = span(S) ∩ span(Λ ∩ ker(T)) = span(Λ ∩ ker(T)).

It follows that SP = span(S(Λ′ ∩ P )), and, since S is injective, P = span(Λ′ ∩ P ). We also have

ηε(S(Λ′ ∩ P )) = ηε(Λ ∩ ker(T)) ≤ S,

which, by definition, gives ηε(Λ′ ∩ P ) ≤ 1. So, the hypotheses of Lemma 3.2 are satisfied, and

∆ML((DA′)⊥P , DA′⊥P
) ≤ log

1 + ε

1− ε
.

Applying TS to both distributions we get that

∆ML(TS · (DA′)⊥P , TS · DA′⊥P
) ≤ log

1 + ε

1− ε
.

It remains to show that these are the distributions in the theorem statement. To this end, observe
that TSx = TS(x⊥P ) for any vector x. Therefore, the first distribution equals

TS · (DA′)⊥P = TS · DA′ = T · DSA′,S = T · DA,S.
Finally, since TS is injective on A′⊥P , we can apply Lemma 2.3 and see that the second distribution
is

TS · DA′⊥P
= DTSA′,TS = DTA,TS.

Corollary 3.3 below, recently stated in [DGPY19], is a special case of Theorem 3.1. The
difference is that while Corollary 3.3 assumes that T is a primitive integer matrix and A = Λ = Zm
is the integer lattice, Theorem 3.1 applies to arbitrary linear transformations T and lattice cosets
A = Λ + a ⊂ Rm.

Corollary 3.3 ([DGPY19, Lemma 3]). For any ε ∈ (0, 1/2) and T ∈ Zn×m such that TZm = Zn
and ηε(Zm ∩ ker(T)) ≤ r, we have

∆ML(T · DZm,r , DZn,rT) ≤ 4ε.

4 Convolutions
This section focuses on convolutions of discrete Gaussians. The literature on lattice-based cryptog-
raphy has a multitude of convolution theorems and lemmas for discrete Gaussians (e.g., [Reg05,
Pei10, BF11, MP13]), most of which are formally incomparable despite the close similarity of their
statements and proofs. In this section we show all of them can be obtained and generalized solely
via Theorem 3.1 and elementary linear algebra.

First, in Section 4.1 we analyze the joint distribution of a convolution. Then in Section 4.2 we
show how to obtain (and in some cases generalize) all prior discrete Gaussian convolution theorems,
by viewing each convolution as a linear transformation on its joint distribution.
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4.1 Joint Distributions
Here we prove several general theorems on the joint distributions of discrete Gaussian convolutions.

Theorem 4.1. For any ε ∈ [0, 1), cosets A1, A2 of lattices Λ1,Λ2 (respectively), and matrix T such
that span(T) ⊆ span(Λ2) and ηε(Λ2) ≤ 1, we have

J(x1,x2) | x1 ← DA1 , x2 ← DA2+Tx1K
ε̄
≈ DA,

where A = ( I
T I ) · (A1 × A2) and ε̄ = 2ε/(1− ε).

Proof. Let P(x1,x2) = (x1, (x2)⊥Λ2
) be the orthogonal projection on the first n1 coordinates and

the subspace orthogonal to Λ2, and observe that (A2)⊥Λ2
= {a} is a singleton set for some a. For

any fixed x1 ∈ A1, it is straightforward to verify that

J(x1,x2) | x2 ← DA2+Tx1K = Jx | x← DA,P(x) = (x1, a)K.

Therefore, it is enough to show that (DA1 , a)
ε̄
≈ P(DA). Define Λ = ( I

T I ) · (Λ1 × Λ2) and
ΛP = Λ ∩ ker(P) = {0} ⊕ Λ2. Notice that ker(P) = {0} ⊕ span(Λ2) = span(ΛP ) (i.e., ker(P)
is a Λ-subspace), and ηε(ΛP ) = ηε(Λ2) ≤ 1. Therefore, by Theorem 3.1,

P(DA)
ε̄
≈ DP(A) = DA1×{a} = (DA1 , a).

As a corollary, we get the following more symmetric statement, which says essentially that if the
lattices of A1 and A2 are sufficiently smooth, then a pair of δ̄-correlated Gaussian samples over A1

and A2 can be produced in two different ways, depending on which component is sampled first.

Corollary 4.2. For any ε ∈ [0, 1) and δ ∈ (0, 1] with δ′ =
√

1− δ2, and any cosets A1, A2 of
full-rank lattices Λ1,Λ2 ⊂ Rn (respectively) where ηε(Λ1), ηε(Λ2) ≤ δ, define the distributions

X1 = J(x1,x2) | x1 ← DA1 , x2 ← δ′x1 +DA2−δ′x1,δK
X2 = J(x1,x2) | x2 ← DA2 , x1 ← δ′x2 +DA1−δ′x2,δK.

Then X1
ε̄
≈ DA,√Σ

ε̄
≈ X2, where A = A1 × A2, ε̄ = 2ε/(1− ε), and Σ =

(
I δ′I

δ′I I

)
.

Proof. By Lemma 2.3, the conditional distribution of x2 given x1 in X1 is δ′x1 + δD(A2/δ)−(δ′/δ)x1 .
So, X1 can be equivalently expressed as

S · J( x1
x2 ) | x1 ← DA1 ,x2 ← D(A2/δ)−(δ′/δ)x1K, S = ( I

δ′I δI ).

Since ηε(Λ2/δ) = ηε(Λ2)/δ ≤ 1, we can apply Theorem 4.1 with T = −(δ′/δ)I, and get that the
first distribution satisfies X1

ε̄
≈ S · DA′ , where A′ = ( I

T I )(A1 × (A2/δ)). Since S is injective, by
Lemma 2.3 we have

X1
ε̄
≈ S · DA′ = DSA′,S = DA,√Σ

where Σ = SSt =
(

I δ′I
δ′I I

)
. By symmetry, X2

ε̄
≈ DA,√Σ as well.
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Corollary 4.2 also generalizes straightforwardly to the non-spherical case, as follows.

Corollary 4.3. For any ε ∈ [0, 1), cosets A1, A2 of lattices Λ1,Λ2 (respectively), and matrices
R,S1,S2 of full column rank where A1 ⊂ span(S1), span(RS1) ⊆ span(Λ2), and ηε(Λ2) ≤ S2,
we have

X := J(x1,x2) | x1 ← DA1,S1 , x2 ← Rx1 +DA2−Rx1,S2K
ε̄
≈ DA,S,

where A = A1 × A2, ε̄ = 2ε/(1− ε), and S =
(

S1
RS1 S2

)
.

Proof. We proceed similarly to the proof of Corollary 4.2. For simplicity, substitute x1 with S1x1

where x1 ← DS+
1 A1

. Then by Lemma 2.3, the vector x2 in X , conditioned on any value of x1, has
distribution

RS1x1 + S2 · DS+
2 (A2−RS1x1).

So, we can express X equivalently as

S · J( x1
x2 ) | x1 ← DS+

1 A1
, x2 ← DS+

2 (A2−RS1x1)K,

and since ηε(S+
2 · Λ2) ≤ 1, we can apply Theorem 4.1 with lattice cosets A′1 = S+

1 A1, A
′
2 = S+

2 A2

and T = −S+
2 RS1. This yields X

ε̄
≈ S · DA′ = DSA′,S where

A′ = ( I 0
T I )(A′1 × A′2)

and hence SA′ = A, as needed.

The following corollary, which may be useful in cryptography, involves Gaussian distributions
over lattices and uniform distributions over their (finite) quotient groups.

Corollary 4.4. Let Λ,Λ1,Λ2 be full-rank lattices where Λ ⊆ Λ1 ∩ Λ2 and ηε(Λ1), ηε(Λ2) ≤ 1 for
some ε > 0, and define the distributions

X1 = J(x1,x2) | x1 ← U(Λ1/Λ) , x2 ← x1 +DΛ2−x1 mod ΛK,
X2 = J(x1,x2) | x2 ← U(Λ2/Λ) , x1 ← x2 +DΛ1−x2 mod ΛK.

Then X1
ε̄
≈ X2 where ε̄ = 4ε/(1− ε)2.

Proof. We assume the strict inequality ηε(Λ1) < 1; the claim then follows in the limit. Let
δ′ ∈ (ηε(Λ1), 1), δ =

√
1− δ′2, and apply Corollary 4.2 to A1 = (δ/δ′)Λ1 and A2 = δΛ2.

Notice that the hypotheses of Corollary 4.2 are satisfied because ηε(A1) = δηε(Λ1)/δ′ < δ and
ηε(A2) = δηε(Λ2) ≤ δ. So, the distributions

X ′1 = J(x1,x2) | x1 ← DA1 , x2 ← δ′x1 +DA2−δ′x1,δK
X ′2 = J(x1,x2) | x2 ← DA2 , x1 ← δ′x2 +DA1−δ′x2,δK

satisfy X ′1
ε̄
≈ X ′2. Let f : A1 × A2 → (Λ1/Λ,Λ2/Λ) be the function

f(x1,x2) = ((δ′/δ)x1 mod Λ,x2/δ mod Λ).
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It is easy to check, using Lemma 2.3, that

f(X ′1) = J(x1,x2) | x1 ← DΛ1,δ′/δ mod Λ , x2 ← x1 +DΛ2−x1 mod ΛK
f(X ′2) = J(x1,x2) | x2 ← DΛ2,1/δ mod Λ , x1 ← δ′2x2 +DΛ1−δ′2x2,δ′ mod ΛK

and Xi = limδ′→1X ′i for i = 1, 2. Since X ′1
ε̄
≈ X ′2 for all δ′, we have X1

ε̄
≈ X2.

4.2 Convolutions via Linear Transformations
In this subsection we show how the preceding results can be used to easily derive all convolution
theorems from previous works, for both discrete and continuous Gaussians. The main idea through-
out is very simple: first express the statistical experiment as a linear transformation on some joint
distribution, then apply Theorem 3.1. The only nontrivial step is to bound the smoothing parameter
of the intersection of the relevant lattice and the kernel of the transformation, which is done using
elementary linear algebra. The main results of the section are Theorem 4.5 and Theorem 4.6;
following them, we show how they imply prior convolution theorems.

The following theorem is essentially equivalent to [Pei10, Theorem 3.1], modulo the notion of
distance between distributions. (The theorem statement from [Pei10] uses statistical distance, but
the proof actually establishes a bound on the max-log distance, as we do here.) The main difference
is in the modularity of our proof, which proceeds solely via our general tools and linear algebra.

Theorem 4.5. Let ε ∈ (0, 1) define ε̄ = 2ε/(1−ε) and ε′ = 4ε/(1−ε)2, letA1, A2 be cosets of full-
rank lattices Λ1,Λ2 (respectively), let Σ1,Σ2 � 0 be positive definite matrices where ηε(Λ2) ≤

√
Σ2,

and let
X = J(x1,x2) | x1 ← DA1,

√
Σ1
, x2 ← x1 +DA2−x1,

√
Σ2

K.

If ηε(Λ1) ≤
√

Σ3 where Σ−1
3 = Σ−1

1 + Σ−1
2 � 0, then the marginal distribution X2 of x2 in X

satisfies

X2
ε′

≈ DA2,
√

Σ1+Σ2
.

In any case (regardless of ηε(Λ1)), the distribution X x2
1 of x1 conditioned on any x2 ∈ A2 satisfies

X x2
1

ε̄
≈ x′2 +DA1−x′2,

√
Σ3

where x′2 = Σ1(Σ1 + Σ2)−1x2 = Σ3Σ−1
2 x2.

Proof. Clearly, X2 = P · X , where P =
(
0 I

)
. Because ηε(Λ2) ≤

√
Σ2, Corollary 4.3 implies

X
ε̄
≈ DA,√Σ and hence P · X

ε̄
≈ P · DA,√Σ,

where A = A1 × A2 and
√

Σ =
(√

Σ1√
Σ1
√

Σ2

)
. Then, Theorem 3.1 (whose hypotheses we verify

below) implies that
P · DA,√Σ

ε̄
≈ DPA,P

√
Σ = DA2,

√
Σ1+Σ2

,

where the equality follows from the fact that D is insensitive to the choice of square root, and
R = P

√
Σ =

(√
Σ1

√
Σ2

)
is a square root of RRt = Σ1 + Σ2. This proves the claim about X2.
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To apply Theorem 3.1, for Λ = Λ1 × Λ2 we require that ker(P) is a Λ-subspace, and that
ηε(Λ ∩ ker(P)) = ηε(Λ1 × {0}) ≤

√
Σ. For the former, because Λ1 is full rank we have

ker(P) = span(Λ1)× {0} = span(Λ1 × {0}) = span(ker(P) ∩ Λ).

For the latter, by definition we need to show that ηε(Λ′) ≤ 1 where Λ′ =
√

Σ
−1 · (Λ1 × {0}).

Because

√
Σ
−1

=

( √
Σ1
−1

−
√

Σ2
−1 √

Σ2
−1

)
, we have Λ′ = S · Λ1 where S =

( √
Σ1
−1

−
√

Σ2
−1

)
.

Now StS = Σ−1
1 + Σ−1

2 = Σ−1
3 , so ‖Sv‖2 = vtStSv = ‖

√
Σ3
−1
v‖2 for every v. Therefore,

Λ′ = S · Λ1 is isometric to (i.e., a rotation of)
√

Σ3
−1 · Λ1, so ηε(Λ

′) ≤ 1 is equivalent to
ηε(
√

Σ3
−1 · Λ1) ≤ 1, which by definition is equivalent to the hypothesis ηε(Λ1) ≤

√
Σ3.

To prove the claim about X x2
1 for an arbitrary x2 ∈ A2, we work with DA,√Σ using a different

choice of the square root of Σ =
(

Σ1 Σ1
Σ1 Σ1+Σ2

)
, namely,

√
Σ =

(√
Σ3 Σ1

√
Σ1 + Σ2

−t
√

Σ1 + Σ2

)
where

√
Σ
−1

=

(√
Σ3
−1

X√
Σ1 + Σ2

−1

)

for
√

Σ3X = −Σ1(Σ1 + Σ2)−1 = −Σ3Σ−1
2 ; this

√
Σ is valid because

Σ3 + Σ1(Σ1 + Σ2)−1Σ1 = (Σ−1
1 + Σ−1

2 )−1 + Σ1 − Σ2(Σ1 + Σ2)−1Σ1

= Σ1 + (Σ−1
1 + Σ−1

2 )−1 − (Σ−1
1 (Σ1 + Σ2)Σ−1

2 )−1

= Σ1,

and Σ1(Σ1 + Σ2)−1 = Σ3Σ−1
2 by a similar manipulation. Now, the distribution DA,√Σ conditioned

on any x2 ∈ A2 is

DA1×{x2},
√

Σ =
√

Σ · D√
Σ
−1

(A1×{x2})
=
√

Σ · (D√
Σ3
−1
A1+Xx2

,
√

Σ1 + Σ2

−1
x2),

where the last equality follows from the fact that the second component of
√

Σ
−1

(A1 × {x2}) is
fixed because

√
Σ
−1

is block upper-triangular. So, the conditional distribution of x1, which is the
first component of the above distribution, is

Σ1(Σ1 + Σ2)−1x2 +DA1+
√

Σ3Xx2,
√

Σ3
= x′2 +DA1−x′2,

√
Σ3
.

Finally, because X
ε̄
≈ DA,√Σ, the claim on the conditional distribution X x2

1 is established.

There are a number of convolution theorems in the literature that pertain to linear combinations
of Gaussian samples. We now present a theorem that, as shown below, subsumes all of them. The
proof generalizes part of the proof of [MP13, Theorem 3.3] (stated below as Corollary 4.7).
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Theorem 4.6. Let ε ∈ (0, 1), let z ∈ Zm \ {0}, and for i = 1, . . . ,m let Ai = Λi + ai ⊂ Rn be
a lattice coset and Si ∈ Rn×n be such that Λ∩ =

⋂
i Λi is full rank. If ηε(ker(zt ⊗ In) ∩ Λ) ≤ S

where Λ = Λ1 × · · · × Λm and S = diag(S1, . . . ,Sm), then

∆ML(
m∑
i=1

ziDAi,Si
, DA′,S′) ≤ log

1 + ε

1− ε
,

where A′ =
∑m

i=1 ziAi and S′ =
√∑m

i=1 z
2
i SiS

t
i.

In particular, let each Si = siIn for some si > 0 where b̃l(diag(s)−1(ker(zt) ∩ Zm))−1 ≥ ηε(Λ∩),
which is implied by ((zi∗/si∗)

2 + maxi6=i∗(zi/si)
2)−1/2 ≥ ηε(Λ∩) where i∗ minimizes |zi∗/si∗| 6= 0.

Then

∆ML(
m∑
i=1

ziDAi,si , DA′,s′) ≤ log
1 + ε′

1− ε′
,

where s′ =
√∑m

i=1(zisi)2 and 1 + ε′ = (1 + ε)m.

Proof. Let Z = zt ⊗ In and A = A1 × · · · × Am, which is a coset of Λ, and observe that

m∑
i=1

ziDAi,Si
= Z · DA,S.

Also notice that ZA = A′, and R = ZS is a square root of RRt =
∑m

i=1 z
2
i SiS

t
i. So, the first claim

follows immediately by Theorem 3.1, as long as ker(Z) is a Λ-subspace.
To see that this is so, first observe that the lattice Z = ker(zt) ∩ Zm has rank m− 1. Then the

lattice Z ⊗ Λ∩ has rank (m− 1)n and is contained in ker(Z) ∩ Λ, because for any v ∈ Z ⊆ Zm
and w ∈ Λ∩ we have Z(v ⊗w) = (ztv) ⊗w = 0 and (v ⊗w) ∈ Λm

∩ ⊆ Λ. So, because ker(Z)
has dimension (m− 1)n we have ker(Z) = span(Z ⊗ Λ∩) = span(ker(Z) ∩ Λ), as desired.

For the second claim (with the first hypothesis), we need to show that ηε′(ker(Z) ∩ Λ) ≤ S =
diag(s)⊗ In. Because Z ⊗ Λ∩ is a sublattice of ker(Z) ∩ Λ of the same rank, by Lemma 2.9 and
hypothesis, we have

ηε′(S
−1(ker(Z) ∩ Λ)) ≤ ηε′((diag(s)−1 ⊗ In) · (Z ⊗ Λ∩))

≤ ηε′((diag(s)−1Z)⊗ Λ∩)

≤ b̃l(diag(s)−1Z) · ηε(Λ∩) ≤ 1.

Finally, to see that the first hypothesis is implied by the second one, assume without loss of generality
that i∗ = 1, and observe that the vectors

(−z2

s2

,
z1

s1

, 0, . . . , 0)t, (−z3

s3

, 0,
z1

s1

, 0, . . . , 0)t, . . . , (−zm
sm
, 0, . . . , 0,

z1

s1

)t

form a full-rank subset of diag(s)−1Z, and have norms at most r =
√

(zi∗/si∗)2 + maxi6=i∗(zi/si)2.
Therefore, by [MG02, Lemma 7.1] we have b̃l(diag(s)−1Z)−1 ≥ 1/r ≥ ηε(Λ∩), as required.
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Corollary 4.7 ([MP13, Theorem 3.3]). Let z ∈ Zm \ {0}, and for i = 1, . . . ,m = poly(n)
let Λ + ci be cosets of a full-rank n-dimensional lattice Λ and si ≥

√
2‖z‖∞ · ηε(Λ) for some

ε = negl(n). Then
∑m

i=1 ziDΛ+ci,si is within negl(n) statistical distance of DY,s, where Y =
gcd(z)Λ +

∑
i zici and s =

√∑
i(zisi)

2. In particular, if gcd(z) = 1 and
∑

i zici ∈ Λ, then∑
ziDΛ+ci,si is within negl(n) statistical distance of DΛ,s.

Proof. Apply the second part of Theorem 4.6 with the second hypothesis, and use the fact that
(1 + negl(n))poly(n) is 1 + negl(n).

Theorem 4.13 from [BF11] is identical to Corollary 4.7, except it assumes that all the si equal
some s ≥ ‖z‖ · ηε(Λ). This also implies the second hypothesis from the second part of Theorem 4.6,
because ‖z‖ ≥

√
z2
i∗ + maxi6=i∗ z2

i .

Corollary 4.8 ([BF11, Lemma 4.12]). Let Λ1 + t1,Λ2 + t2 be cosets of full-rank integer lattices,
and let s1, s2 > 0 be such that (s−2

1 + s−2
2 )−1/2 ≥ ηε(Λ1 ∩ Λ2) for some ε = negl(n). Then

DΛ1+t1,s1+DΛ2+t2,s2 is within negl(n) statistical distance ofDΛ+t,s, where Λ = Λ1+Λ2, t = t1+t2,
and s2 = s2

1 + s2
2.

Proof. The intersection of full-rank integer lattices always has full rank. So, apply the second part
of Theorem 4.6 with the second hypothesis, for m = 2 and z = (1, 1)t.

Corollary 4.9 ([Reg05, Claim 3.9]). Let ε ∈ (0, 1/2), let Λ + u ⊂ Rn be a coset of a full-rank
lattice, and let r, s > 0 be such that (r−2 +s−2)−1/2 ≥ ηε(Λ). ThenDΛ+u,r+Ds is within statistical
distance 4ε of D√r2+s2 .

Proof. The proof of Corollary 4.8 also works for any full-rank lattices Λ1 ⊆ Λ2. The corollary
follows by taking Λ1 = Λ and Λ2 = limd→∞ d

−1Λ = Rn.

5 LWE Self-Reduction
The LWE problem [Reg05] is one of the foundations of lattice-based cryptography.

Definition 5.1 (LWE distribution). Fix some parameters n, q ∈ Z+ and a distribution χ over Z.
The LWE distribution for a secret s ∈ Znq is Ls = J(a, sta + e mod q) | a← U(Znq ), e← X K.

Givenm samples (ai, bi = stai+ei mod q) fromLs, we often group them as (A,bt = stA+et),
where the ai are the columns of A ∈ Zn×mq and the bi, ei are respectively the corresponding entries
of b ∈ Zmq , e ∈ Zm.

While LWE was originally also defined for continuous error distributions (in particular, the
Gaussian distribution Ds), we restrict the definition to discrete distributions (over Z), since discrete
distributions are the focus of this work, and are much more widely used in cryptography. We refer
to continuous error distributions only in informal discussion.
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Definition 5.2 (LWE Problem). The search problem S-LWEn,q,χ,m is to recover s given m inde-
pendent samples drawn from Ls, where s ← U(Znq ). The decision problem D-LWEn,q,χ,m is to
distinguish m independent samples drawn from Ls, where s← U(Znq ), from m independent and
uniformly random samples from U(Zn+1

q ).

For appropriate parameters, very similar hardness results are known for search and decision
LWEn,q,χ,m with χ ∈ {Ds, bDse,DZ,s}, i.e., continuous, rounded, or discrete Gaussian error.
Notably, the theoretical and empirical hardness of the problem depends mainly on n log q and
the “error rate” α = s/q, and less on m. This weak dependence on m is consistent with the
fact that there is a self-reduction that, given just m = O(n log q) LWE samples from Ls with
(continuous, rounded, or discrete) Gaussian error of parameter s, generates any polynomial number
of samples from a distribution statistically close to Ls with (continuous, rounded, or discrete)
Gaussian error of parameter O(s

√
m) · ηε(Z), for arbitrary negligible ε. Such self-reductions

were described in [GPV08, ACPS09, Pei10] (the latter for discrete Gaussian error), based on
the observation that they are just special cases of Regev’s core reduction [Reg05] from Bounded
Distance Decoding (BDD) to LWE, and that LWE is an average-case BDD variant.

The prior LWE self-reduction for discrete Gaussian error, however, contains an unnatural layer
of indirection: it first generates new LWE samples having continuous error, then randomly rounds,
which by a convolution theorem yields discrete Gaussian error (up to negligible statistical distance).
Below we instead give a direct reduction to LWE with discrete Gaussian error, which is more natural
and slightly tighter, since it avoids the additional rounding that increases the error width somewhat.

Theorem 5.3. Let A ∈ Zn×mq be primitive, let bt = stA + et mod q for some e ∈ Zm, and
let r, r̃ > 0 be such that ηε(Λ⊥q (A)) ≤ ((1/r)2 + (‖e‖/r̃)2)−1/2 ≤ r for some negligible ε. Then
the distribution

J(a = Ax, b = btx + ẽ) | x← DZm,r , ẽ← DZ,r̃K

is within negligible statistical distance of Ls with error χ = DZ,t where t2 = (r‖e‖)2 + r̃2.

Theorem 5.3 is the core of the self-reduction. A full reduction between proper LWE problems
follows from the fact that a uniformly random matrix A ∈ Zn×mq is primitive with overwhelming
probability for sufficiently large m� n, and by choosing r and r̃ appropriately. More specifically,
it is known [GPV08, MP12] that for appropriate parameters, the smoothing parameter of Λ⊥q (A) is
small with very high probability over the choice of A. For example, [MP12, Lemma 2.4] implies
that when m ≥ Cn log q for any constant C > 1 and ε ≈ ε′, we have ηε(Λ⊥q (A)) ≤ 2ηε′(Z) ≤
2
√

ln(2(1 + 1/ε′))/π except with negligible probability. So, we may choose r = O(
√

log(1/ε′))
for some negligible ε′ and r̃ = r‖e‖ to satisfy the conditions of Theorem 5.3 with high probability,
and the resulting error distribution has parameter t =

√
2r‖e‖, which can be bounded with high

probability for any typical LWE error distribution. Finally, there is the subtlety that in the actual
LWE problem, the error distribution should be fixed and known, which is not quite the case here
since ‖e‖ is secret but bounded from above. This can be handled as in [Reg05] by adding different
geometrically increasing amounts of extra error. We omit the details, which are standard.

Proof of Theorem 5.3. Because A is primitive, for any a ∈ Znq there exists an x∗ ∈ Zm such
that Ax∗ = a, and the probability that Ax = a is proportional to ρr(x∗ + Λ⊥q (A)). Because
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ηε(Λ
⊥
q (A)) ≤ r, for each a this probability is the same (up to ≈ε) by Lemma 2.6, and thus the

distribution of Ax is within negligible statistical distance of uniform over Znq .
Next, conditioning on the event Ax = a, the conditional distribution of x is the discrete

Gaussian Dx∗+Λ⊥q (A),r. Because b = (stA + et)x + ẽ = sta + (etx + ẽ), it just remains to analyze
the distribution of etx + ẽ. By Lemma 5.4 below with Λ = Λ⊥q (A) and Λ1 = Z, the distribution
〈e,Dx∗+Λ⊥q (A),r〉+Dr̃ is within negligible statistical distance of DZ,t, as desired.

We now prove (a more general version of) the core statistical lemma needed by Theorem 5.3,
using Theorem 3.1. A similar lemma in which Λ1 is taken to be R = limd→∞ d

−1Z can be proven
using Corollary 4.9; this yields an LWE self-reduction for continuous Gaussian error (as claimed in
prior works).

Lemma 5.4. Let e ∈ Rm, Λ + x ⊂ Rm be a coset of a full-rank lattice, and Λ1 ⊂ R be a lattice
such that 〈e,Λ〉 ⊆ Λ1. Also let r, r̃, ε > 0 be such that ηε(Λ) ≤ s := ((1/r)2 + (‖e‖/r̃)2)−1/2.
Then

∆ML(〈e,DΛ+x,r〉+DΛ1,r̃ , DΛ1+〈e,x〉,t) ≤ log
1 + ε

1− ε
,

where t2 = (r‖e‖)2 + r̃2.

Proof. First observe that

〈e,DΛ+x,r〉+DΛ1,r̃ = [et | 1] · DΛ×Λ1+(x,0),S

where S =
(
rIm

r̃

)
. So, by applying Theorem 3.1 (whose hypotheses we verify below), we get that

the above distribution is within the desired ML-distance of DΛ1+〈e,x〉,[ret|r̃], where rt = [ret | r̃] is a
square root of rtr = (r‖e‖)2 + r̃2 = t2, as desired.

To apply Theorem 3.1, we first need to show that

K = ker([et | 1]) = {(v,−〈e,v〉) | v ∈ Rm}

is a (Λ × Λ1)-subspace. Observe that Λ′ = K ∩ (Λ × Λ1) is exactly the set of vectors (v, v)
where v ∈ Λ and v = −〈e,v〉 ∈ Λ1, i.e., the image Λ under the injective linear transformation
T(v) = (v,−〈e,v〉). So, because Λ is full rank, span(Λ′) = K, as needed.

Finally, we show that sT ≤ S, which by hypothesis and Lemma 2.5 implies that ηε(T · Λ) ≤
sT ≤ S, as desired. Equivalently, we need to show that the matrix

R = SSt − s2TTt =

(
(r2 − s2)Im s2e

s2et r̃2 − s2e2

)
is positive semidefinite, where e = ‖e‖. If r2 = s2 then e = 0 and R is positive semidefinite
by inspection, so from now on assume that r2 > s2. Sylvester’s criterion says that a symmetric
matrix is positive semidefinite if (and only if) all its principal minors are nonnegative.9 First,

9A principal minor of a matrix is the determinant of a square submatrix obtained by removing the rows and columns
having the same index set.
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every principal minor of R obtained by removing the last row and column (and possibly others) is
det((r2 − s2)Ik) > 0 for some k. Now consider a square submatrix of R wherein the last row and
column have not been removed; such a matrix has the form

R =

(
(r2 − s2)Ik s2e

s2et r̃2 − s2e2

)
,

where e is some subvector of e, hence ‖e‖2 ≤ e2. Multiplying the last column by r2 − s2 > 0 and
then subtracting from the last column the product of the first k columns with s2 · e, we obtain a
lower-triangular matrix whose first k diagonal entries are r2 − s2 > 0, and whose last diagonal
entry is

(r̃2 − s2e2)(r2 − s2)− s4‖e‖2 ≥ r̃2r2 − r̃2s2 − e2r2s2 = 0,

where the equality follows from clearing denominators in the hypothesis (1/s)2 = (1/r)2 + (e/r̃)2.
So, every principal minor of R is nonnegative, as desired.

6 Subgaussian Matrices
The concrete parameters for optimized SIS- and LWE-based trapdoor cryptosystems follow-
ing [MP12] (MP12) depend on the largest singular value of a subgaussian random matrix with
independent rows, columns, or entries, which serves as the trapdoor. The cryptosystem designer will
typically need to rely on a singular value concentration bound to determine Gaussian parameters,
set norm thresholds for signatures, estimate concrete security, etc. The current literature does
not provide sufficiently precise concentration bounds for this purpose. For example, commonly
cited bounds contain non-explicit hidden constant factors, e.g., [Ver12, Theorem 5.39] and [Ver18,
Theorems 4.4.5 and 4.6.1].

In Theorem 6.1 (whose proof is in Appendix A) we present a singular value concentration
bound with explicit constants, for random matrices having independent subgaussian rows. We
also report on experiments to determine the singular values for commonly used distributions in
lattice cryptography. Throughout this section, we use σ to denote a distribution’s standard deviation
and m > n > 0 for the dimensions of a random matrix R ∈ Rm×n following some particular
distribution. We call a random vector x ∈ Rn σ-isotropic if E[xxt] = σ2In.

Theorem 6.1. Let R ∈ Rm×n be a random matrix whose rows ri are independent, identically
distributed, zero-mean, σ-isotropic, and subgaussian with parameter s > 0. Then for any t ≥ 0,
with probability at least 1− 2e−t

2
we have

σ(
√
m− C(s2/σ2)(

√
n+ t)) ≤ sn(R) ≤ s1(R) ≤ σ(

√
m+ C(s2/σ2)(

√
n+ t)),

where C = 8e1+2/e
√

ln 9/
√
π < 38.

Comparison. There are two commonly cited concentration bounds for the singular values of
subgaussian matrices. The first is for a random matrix with independent entries.
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X s̄1 σ(
√
m+ CX (s/σ)2

√
n) observed CX Sample Var

P 71.26 71.43 .99/4π .04
U{−1, 1} 100.74 101.01 .99/2π .05
D√2π 100.71 101.01 .99/2π .043
DZ,
√

2π 100.77 101.01 .99/2π .06

X s̄n σ(
√
m− CX (s/σ)2

√
n) observed CX Sample Var

P 39.60 39.43 .99/4π .017
U{−1, 1} 56.00 55.76 .99/2π .043
D√2π 55.92 55.76 .99/2π .036
DZ,
√

2π 56.00 55.76 .99/2π .037

Figure 1: Data from fifty random matrices of dimension 6144× 512 for each distribution X . The
average largest and smallest singular values are respectively denoted s̄1 and s̄n, and we recorded the
sample variance for each distribution’s singular values. The third column is the expected singular
value using each distribution’s calculated CX : 1/2π, 1/2π, and 1/4π for discrete/continuous
gaussians, U{−1, 1}, and P respectively.

Theorem 6.2 ([Ver18, Theorem 4.4.5]). Let R ∈ Rm×n be a random matrix with entries drawn
independently from a subgaussian distribution with parameter s > 0. Then, there exists some
universal constant C > 0 such that for any t ≥ 0, with probability at least 1− 2e−t

2
we have

s1(R) ≤ C · s(
√
m+

√
n+ t).

The second theorem is for a random matrix with independent subgaussian and isotropic rows.

Theorem 6.3 ([Ver18, Theorem 4.6.1]). Let R ∈ Rm×n be a random matrix whose rows ri are
independent, identically distributed, zero-mean, 1-isotropic, and subgaussian with parameter s > 0.
Then there is a universal constant C > 0 such that for any t ≥ 0, with probability at least 1− 2e−t

2

we have √
m− Cs2(

√
n+ t) ≤ sn(R) ≤ s1(R) ≤

√
m+ Cs2(

√
n+ t).

We note that the above theorem is normalized to σ = 1. Our Theorem 6.1 is a more explicit
version of this theorem for arbitrary σ, which scales in the appropriate way in σ, since scaling a
subgaussian distribution simply scales its parameter.

6.1 Experiments
Here we present two experiments10 on the singular values of random matrices with independent
entries drawn from commonly used distributions in lattice cryptography. In the first experiment,
we compare random matrices drawn from the discrete Gaussian over Z, the uniform distribution
over {−1, 1} (denoted as U{−1, 1}), the distribution given by choosing 0 with probability 1/2, ±1

10 Whose code is at https://github.com/ngenise/Subgauss_exp.
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each with probability 1/4, which we denote P , and, as a baseline, the continuous Gaussian. In the
second experiment, we sample random matrices with independent entries drawn from U{−1, 1}
and vary the dimension. Both experiments were done in Sage11.

From these experiments, we conclude the largest and smallest singular values of random matrices
with independent entries from the above distributions are tightly concentrated around σ(

√
m±
√
n),

where m > n are the matrix dimensions and σ is the distribution’s standard deviation. In other
words, the largest and smallest singular values of matrices with independent entries from these
distributions behave like the continuous Gaussian since a random matrix with independent, Gaussian
entries, R← (Dσ√2π)m×n, satisfies

σ(
√
m−

√
n) ≤ E[sn(R)] ≤ E[s1(R)] ≤ σ(

√
m+

√
n)

by Gordon’s Theorem [Ver12, Theorem 5.32].

First experiment. For each distribution, we sampled fifty m-by-n (where m = 6144 by n =
512) random matrices and measured their singular values, and assumed the singular values were
approximately

s1 ≈ σ(
√
m+ CX (s/σ)2

√
n)

sn ≈ σ(
√
m− CX (s/σ)2

√
n)

where CX is a small constant dependent on the distribution X . The results are given in Figure 1.
We observed that CX (s/σ)2 ≈ 1 for each distribution, as detailed next.

Continuous and discrete gaussians. The continuous Gaussian Ds is subgaussian with parameter s,
since E[e2πtX ] = eπt

2s2 where X ∼ Ds. Further, the discrete Gaussian DZ,s is also subgaussian
with parameter s [MP12, Lemma 2.8]. When s exceeds the smoothing parameter ηε(Z) for small ε,
the standard deviation of DZ,s is very close to the standard deviation s/

√
2π of the corresponding

continuous Gaussian Ds. Under this approximation of the standard deviation for the discrete
Gaussian, we observed CGaussian = 1/(2π).

Uniform over {−1, 1}. Here σ = 1 and E[e2πtX ] = cosh 2πt ≤ e2π2t2 , i.e., the subgaussian
parameter is at most

√
2π. We observed that CU{−1,1} = 1/2π in our experiment.

The distribution P . By nearly the same analysis, P is subgaussian with parameter s =
√

2π and has
standard deviation σ = 1/

√
2. We observed that CP = 1/4π.

Second experiment. As a second experiment, we sampled 32n-by-n matrices with independent
entries from U{−1, 1}, and measured the average and variance of the maximum singular value.
Figure 2 shows the results, along with the expected largest singular value according to our heuristic.
We saw the same general behavior for all four distributions.
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Figure 2: The empirical mean of the largest singular value (red squares), along with the expecta-
tion under our heuristic (dashed blue line), for N = 50 random 32n-by-n matrices with entries
drawn independently from the distribution X = U{−1, 1}. For n = 50, 100, 200, 500, 1000, the
measured sample variances were respectively 0.099, 0.064, 0.050, 0.048, 0.031, and the measured
constants CX were 0.92/2π, 0.96/2π, 0.97/2π, 0.99/2π, 0.99/2π. (Observe that they approached
1/(2π) from below as n increased.)

6.2 Applications
Here we compare the concrete security of MP12’s underlying SIS problem using two different
bounds on the trapdoor’s singular values when the trapdoor has independent entries drawn from
P . These two bounds are Theorem 6.2 under the observed constant for discrete Gaussian entries,
C ≤ 1/

√
2π [MP12, Lemma 2.9]12, misapplied to P versus the heuristic in the last subsection:

s1(R) ≈ σ(
√
m′ +

√
n′)

where R ∈ {0,±1}m′×n′ is the trapdoor matrix. These two bounds only differ by a factor of 1/
√

2,
but we show this 1/

√
2-factor difference results in a 7-bit difference in bit security, or a factor of

128 in adversary’s time complexity, for the parameters chosen in [MP12, Figure 2].

Background on MP12 trapdoors. An SIS trapdoor scheme samples a discrete Gaussian over
a q-ary lattice’s coset, DΛ⊥u (A),s where Λ⊥u (A) = {x ∈ Zm : Ax = u ∈ Zmq }. Clearly, the main
hardness parameter for a fixed A is the discrete Gaussian width s > 0. In MP12, the SIS matrix is

11https://www.sagemath.org/
12Note that Theorem 6.2 with this constant for Gaussians matches our heuristic from the previous subsection since

the standard deviation of DZ,s is approximately s/
√

2π.
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Parameters Theorem 6.2 with C = 1/
√

2π applied to P Heuristic in Section 6.1
n 512 512
q 224 224

s 2241 1585
m 24804 24804
Bit Sec. 89 96
δ 1.0048 1.0045
k 304 330

Figure 3: The change in concrete security of the underlying SIS problem when the trapdoor is
drawn from P(m−n log q)×n log q. We give the smallest BKZ block size k achieving the δ needed to
find a vector of length s

√
m in (a subspace of) the lattice Λ⊥q (A).

A = [Ā|G− ĀR] ∈ Zn×mq where Ā ∈ Zn×m−n log q
q is uniformly random, R← P(m−n log q)×n log q

is a random matrix with entries drawn independently from P serving as the trapdoor, and G =
In⊗ (1, 2, 4, . . . , 2log q−1)t =: In⊗gt is the so-called “gadget” matrix for a power-of-two modulus q.

Let s =
√
s2

1(R) + 1 · σg > 0, with σg = ηε(Λ
⊥
q (gt)) ≤

√
5ηε(Zlog q) for some ε > 0, be the

width of the discrete Gaussian. In the estimates below, we used ε = 2−90 and q = 224. This results
in s = 4.5 ·

√
5(s2

1(R) + 1) by setting σg to the bound in Lemma 2.8.

Security estimate. Here we estimate the time complexity of BKZ when it is used to find a vector
of length s

√
m in Λ⊥q (A). Recall, BKZ [SE94] is a family of basis reduction algorithms which

reduces to an SVP oracle of dimension k < r, where r is the input lattice’s rank. We call k
the BKZ block size. BKZ with block size k is expected to return a basis with shortest vector
length δrk det(Λ)1/r where δk is the root Hermite factor. An estimate for the root Hermite factor is,
asymptotically, the following function of the block size [Che13]

δk ≈
(

k

2πe
(πk)1/k

) 1
2(k−1)

.

We used the core SVP hardness model (lower bound) [ADPS16] for BKZ. Here, we assume BKZ
only needs one SVP oracle call. Further, we use [BDGL16] for the best known heuristic SVP time
complexities, 2.292k(1+o(1)) operations on a classical computer. Then, we did the following for each
n ≤ d ≤ m:

1. Let A′ ∈ Zn×dq represent the first d columns of A. We estimated the shortest vector length
of Λ⊥q (A′) with A′ ∼ U(Zn×dq ) as ≈

√
d/(2πe)qn/d [MR09, Section 3] and check that it is

shorter than s
√
m.

2. If so, we record the smallest block size for BKZ applied to Λ⊥q (A′) which results in a vector
of length at most s

√
m.

We took the minimum block size over all n ≤ d ≤ m. If kmin is the resulting block size, then the
scheme has at least .292kmin bits of security. The results are in Figure 3.
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A Precise Subgaussian Matrix Concentration
In this section we prove Theorem 6.1. We remark that the proof is nearly identical to [Ver12,
Theorem 5.39], except here we carefully track the constants.

A.1 Useful Lemmas
We will need the following lemma.

Lemma A.1. Let X be a subgaussian random variable with parameter s > 0, then

E[|X|k]1/k ≤ s
√
k

e−1/e
√

2π
= s ·O(

√
k)

for all k > 0.

Proof. Since |X| is a non-negative random variable, we have

E[|X|k] =

∫ ∞
0

Pr{|X|k > t}dt ≤ 2

∫ ∞
0

exp(−πt2/k/s2)dt.

The inequality is by Lemma 2.11. Next, we perform a change of variables. Let u := πt2/k/s2 so we
have the following:

E[|X|k] ≤
(

s√
π

)k
k

∫ ∞
0

exp(−u)uk/2−1du =

(
s√
π

)k
k · Γ(k/2)1/k.

Now the bounds Γ(k/2) ≤ (k/2)k/2 (from Stirling’s approximation) and k1/k ≤ e1/e (calculus) for
all k > 0 give us

E[|X|k]1/k ≤ s√
2π
e1/e
√
k.
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Claim A.2. LetX be a non-negative random variable. Then, for all i, j ∈ Z+, we have cov(X i, Xj) =
E[X i+j]− E[X i]E[Xj] ≥ 0.

Proof. Recall Jensen’s inequality: ϕ(E[Y ]) ≤ E[ϕ(Y )] for all random variables Y and all convex
functions ϕ. This gives us

E[X i](i+j)/i ≤ E[X i+j], E[Xj](i+j)/j ≤ E[X i+j].

Let us raise the first inequality to the i/(i+ j)-th power and the second by j/(i+ j)-th power. This
gives us

E[X i] ≤ E[X i+j]i/(i+j)

E[Xj] ≤ E[X i+j]j/(i+j)

and we multiply the two inequalities to get the result.

ε-Nets An ε-net on the n-dimensional unit sphere, Sn−1 := {x ∈ Rn : ‖x‖2 = 1}, is a finite set
Nε ⊂ Sn−1 such that for all y ∈ Sn−1, there is a vector x in the net within a Euclidean distance
ε > 0 of y, ‖x − y‖ ≤ ε. We have the following fact on the size of an ε-net on the unit sphere
[Ver12, Lemma 5.2].

Lemma A.3. For all ε > 0, there exists an ε-net Nε on the unit sphere Sn−1 such that

|Nε| ≤
(

2

ε
+ 1

)n
.

When R ∈ Rn×n is symmetric, we can estimate its norm from a net by the following lemma
[Ver12, Lemma 5.4].

Lemma A.4. Let R ∈ Rn×n be a symmetric matrix, Nε ⊂ Sn−1 be an ε-net on the n-dimensional
unit sphere for some ε ∈ (0, 1). Then,

‖R‖ = sup
y∈Sn−1

|〈Ry,y〉| ≤ 1

1− 2ε
max
x∈Nε

|〈Rx,x〉|.

Approximate isometries and isotropy A random vector over Rn is σ−isotropic if E[xxt] =
σ2In. When σ = 1, we simply say the random vector is isotropic. Let x be isotropic and y ∈ Rn be
arbitrary, then E[〈x,y〉2] = ytE[xxt]y = ‖y‖2

2.
Below is a lemma giving a condition which implies a matrix R ∈ Rm×n is an approximate

isometry from Rn to Rm, measured by a small δ > 0 [Ver12, Lemma 5.36].

Lemma A.5. Let R ∈ Rm×n, δ > 0, and ‖RtR− In‖ ≤ max(δ, δ2). Then,

1− δ ≤ sn(R) ≤ s1(R) ≤ 1 + δ.
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A.2 A Berstein-type Bound
Here we prove two lemmas: a bound on (X2 − E[X2])’s moment-generating function for a
subgaussian X , and a Berstein-type concentration lemma needed for the main theorem [Rig15,
Lemma 1.12].

Lemma A.6. Let X be a subgaussian random variable with parameter s > 0. Then, the random
variable Z := X2 − E[X2] satisfies

E[e2πtZ ] ≤ eCB ·πt2s4

for all |t| ≤ 1/(8e2/e+1s2) and CB = 32e4/e+2/π.

Proof. We start with simply expanding the moment generating function and applying Jensen’s
inequality, ϕ(E[X]) ≤ E[ϕ(X)] for any convex function ϕ(·).

E[exp(2πtZ)] = 1 +
∑
k≥2

(2πt)kE[(X2 − E[X2])k]

k!

≤ 1 +
∑
k≥2

2k−1(2πt)k · 2 · E[X2k]

k!
.

The first inequality is given by pairing 2k−1 terms of the form E[X2iX2j]± E[X2i]E[X2j], where
i+ j = k, and each term E[X2iX2j]± E[X2i]E[X2j] is less than 2E[X2k] by Claim A.2. Now, we
can use Lemma A.1 to simplify.

= 1 +
∑
k≥2

(4πt)kE[X2k]

k!

≤ 1 +
∑
k≥2

(4πt)k(se1/e
√

2k/
√

2π)2k

k!

= 1 +
∑
k≥2

(4ts2e2/ek)k

k!
.

Next, we use the bound k! ≥ (k/e)k to get

E[exp(2πtZ)] ≤ 1 +
∑
k≥2

(4ts2e1+2/e)k

= 1 + (4ts2e1+2/e)2
∑
k≥0

(4ts2e1+2/e)k.

And finally, we restrict t ∈ (0, 1
8s2e1+2/e ) to get

E[exp(2πtZ)] ≤ 1 + 2(4ts2e1+2/e)2

≤ exp(CB · πt2s4)

for CB := 32e2+4/e/π (the last inequality uses 1 + x ≤ ex for x ≥ 0).
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Lemma A.7. Let {Xi}n1 be iid subgaussian random variables with parameter s > 0, and let

X̄ :=
1

n

∑
i

(X2
i − E[X2

i ]),

then for all t > 0, we have

Pr{|X̄| > t} ≤ 2 · exp

(
− n

CB
·min

{
t2

s4
,
t

s2

})
for CB := 32e2+4/e

π
.

Proof. We proceed with the usual exponential Markov inequality. Fix CB = 32e4/e+2/π as in the
previous lemma. Let δ ∈ (0, 1/(8e2/e+1s2)] be arbitrary, Zi := X2

i −E[X2
i ], and S = nX̄ =

∑
i Zi.

Pr{S > nt} = Pr{exp(2πδS) > exp(2πδnt)}
≤ exp(−2πδnt) · E[exp(2πδS)]

= exp(−2πδnt) ·
∏
i

E[exp(2πδZi)]

≤ exp(−2πδnt+ nCBπδ
2s4).

The first inequality is Markov’s, and the last inequality is from Lemma A.6. Now we minimize the
exponent as a function of δ. This yields δ = t

CBs4
and in the case t

CBs4
≤ 1

8e1+2/es2
, we have

Pr{X̄ > t} ≤ exp

(
− n

CB

t2

s4

)
by substitution. If t

CBs4
> 1

8e1+2/es2
(equivalently, t > 4e1+2/es2

π
),

Pr{X̄ > t} ≤ exp

(
−n
[

πt

4e1+2/es2
− 1

2

])
by substitution with δ = 1

8e1+2/es2
. The further restriction on t (t > 4e1+2/es2

π
or equivalently

tπ
8e1+2/es2

> 1/2) gives us πt
4e1+2/es2

− 1
2

is always at least πt
8e1+2/es2

, which in-turn is always at least
t

CBs2
. This proves the lemma.

A.3 Proof of Theorem 6.1
Proof. First, we will use a net on the unit sphere to approximate a fixed R’s singular values, then
we will use the Bernstein-like lemma from the previous subsection, Lemma A.7, for a concentration
bound on R’s distribution. And finally, we will use a union bound over the entire net. We define

some constants: Let

• CB := 32e2+4/e

π
as in Lemma A.7,
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• C := 2
√

ln(9) · CB = 8e1+2/e
√

ln 9/
√
π,

• δ :=
(
s
σ

)2
C(
√
n/m+ t/

√
m),

• and ε := max(δ, δ2).

Notice that Lemma A.1’s proof gives us σ < s, or s/σ > 1. When A is symmetric we also
have ‖A‖ = supx6=0 |〈Ax,x〉|/‖x‖2, because s1(A) is the maximum, in absolute value, of the
eigenvalues of A.

Step 1: approximation. Here we will use a net along with Lemma A.5, which allows us to reduce
the proof to showing ‖R′tR′− In‖ ≤ max(δ, δ2) where R′ := 1

σ·
√
m
R. Let N ⊂ Sn−1 be a 1/4-net

on the n-dimensional unit sphere. Lemma A.4 tells us∥∥∥∥ 1

mσ2
RtR− In

∥∥∥∥ ≤ 2 max
x∈N
|〈( 1

mσ2
RtR− In)x,x〉| = 2 max

x∈N

∣∣∣∣ 1

mσ2
‖Rx‖2

2 − 1

∣∣∣∣ .
Next, we show with high probability (over R’s rows), we have

max
x∈N

∣∣∣∣ 1

mσ2
‖Rx‖2

2 − 1

∣∣∣∣ ≤ ε/2.

Step 2: concentration. Here we use the Bernstein-type lemma, Lemma A.7, to get a concentration
bound on

∣∣ 1
mσ2‖Rx‖2

2 − 1
∣∣ for a fixed x in the net. Express ‖Rx‖2

2 as a sum indexed by R’s rows:

‖Rx‖2
2 =

m∑
i=1

〈ri,x〉2.

Now we are concerned with the probability Pr
{∣∣ 1

m

∑
(〈ri,x〉2 − σ2)

∣∣ ≤ σ2ε/2
}

, and we can use
Lemma A.7 since E[〈ri,x〉2] = σ2 by the definition of isotropic. This matrix, R, has independent,
centered, subgaussian rows with parameter s. Then, we have

Pr

{∣∣∣∣ 1

m

∑
(〈ri,x〉2 − σ2)

∣∣∣∣ ≤ σ2ε/2

}
≤ 2 exp

(
− m

CB
min

{
σ2ε

2s2
,
σ4ε2

s44

})
≤ 2 exp

(
− mσ4

4CBs4
min

{
max(δ, δ2),max(δ2, δ4)

})
≤ 2 exp

(
− mσ4

4CBs4
δ2

)
from Lemma A.713. (The min-max argument results in δ2 in both cases δ < 1 and δ ≥ 1.)

Using the inequality (a+ b)2 ≥ a2 + b2 for non-negative a, b gives us

Pr

{∣∣∣∣ 1

m

∑
(〈ri,x〉2 − σ2)

∣∣∣∣ ≤ σ2ε/2

}
≤ 2 exp(− ln(9)n− t2)

since C0 = 2
√

ln 9 · CB.
13We consider δ ≥ 1 and δ < 1 by using Lemma A.7 in this step of the proof.
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Step 3: union bound. Finally, we take a union bound over all x ∈ N and from Lemma A.3 we
have that |N | ≤ 9n. This gives us

Pr

{
∃ x ∈ N :

1

m

∑
〈ri,x〉2 − σ2 > σ2ε/2

}
≤ 9n · 2 exp(− ln(9)n− t2)

= 2 exp(−t2).

The proof is complete by Lemma A.5.
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