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ABSTRACT
Knowledge tracing is an essential and challenging task in
intelligent tutoring systems, whose goal is to estimate stu-
dents’ knowledge state based on their responses to questions.
Although many models for knowledge tracing task are de-
veloped, most of them depend on either concepts or items as
input and ignore the hierarchical structure of items, which
provides valuable information for the prediction of student
learning results. In this paper, we propose a novel deep hier-
archical knowledge tracing (DHKT) model exploiting the hi-
erarchical structure of items. In the proposed DHKT model,
the hierarchical relations between concepts and items are
modeled by the hinge loss on the inner product between the
learned concept embeddings and item embeddings. Then
the learned embeddings are fed into a neural network to
model the learning process of students, which is used to
make predictions. The prediction loss and the hinge loss are
minimized simultaneously during training process.

Keywords
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1. INTRODUCTION
Knowledge tracing is an essential and challenging task in
intelligent tutoring systems. The goal of knowledge tracing
task is to estimate the mastery state of a specific knowledge
component based on students’ responses to items. In other
words, knowledge tracing aims to predict the correctness of
a student’s response to the next item according to all the
previous response records.

In order for a student to answer an item correctly, he/she
needs to master the concepts related to this item first. For
example, a student can provide correct responses to both
“1 + 1” and “28 + 36”, which illustrates that this student
may master the general concept of addition. Some existing
knowledge tracing models [1, 8, 9] are proposed to predict
the students’ performance only based on general concept in-
formation of items. A common drawback of such models is

that they ignore the differences among different items even
under the same general concept. In fact, if a student knows
how to solve the items related to the concept “Addition of
Two Integers”, this student may correctly answer “28 + 36”
but make a mistake when answering a harder item “285 +
361”. In addition, the learning gains of answering differ-
ent items related to the same concept are different. Cor-
rectly solving a more complex item indicates a higher gain
towards the desired knowledge states than that obtained by
solving an easier one. To distinguish and model the dif-
ferences among items, Item Response Theory model [10] is
proposed, which directly uses items as the input to estimate
a student’s ability. However, students may visit these online
platforms very infrequently and only attempt on a small sub-
set of items. Therefore, for each item in the dataset, only a
small number of attempts are made, which leads to the issue
of data sparsity. On such sparse data, existing knowledge
tracing models, for example, Item Response Theroy [10],
that takes items as input may have limited performance.
Deep knowledge tracing [9], which applies RNN to predict
the performance of students, has shown improved prediction
performance in knowledge tracing, but it requires a large
amount of data for training. Such models would suffer more
from the data sparsity issue.

To handle the data sparsity issue and better distinguish
items, we propose a novel deep hierarchical knowledge trac-
ing (DHKT) model, which can leverage the hierarchical in-
formation between items and concepts. Specially, DHKT
learns the embeddings of items and concepts and models
the relations among items and concepts by calculating the
hinge loss of the inner product of the embeddings. The main
contribution of this work can be summarized as follows: We
propose a novel DHKT model by leveraging the hierarchi-
cal structure between items and concepts into the state-of-
the-art deep knowledge tracing model. Experimental results
show that the DHKT model learns meaningful representa-
tions and outperforms the state-of-the-art baselines.

2. METHODOLOGY
In this section, we first introduce how to model the students’
learning process using a deep learning framework, and then
illustrate how to incorporate the concept-item graph into
the model.

2.1 Problem Formulation
We denote the set of students as K. For a student k ∈ K
interacting with the system t times, the interactions are de-
noted as Xk = {xk,1, xk,2, ..., xk,t}. In this work, the inter-
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actions specifically refer to the students’ responses to corre-
sponding items. xk,t = (ik,t, yk,t) is a tuple representing the
item ik,t ∈ I attempted by student k at time t, where I rep-
resents the set of all items, and yk,t ∈ {0, 1} represents the
correctness of the response. yk,t = 0 indicates an incorrect
response and yk,t = 1 represents a correct one.

These items are related to different knowledge concepts,
which are the more general representations of the items. The
set of knowledge concepts is denoted as C in this work. The
relations between items and concepts are annotated by ex-
perts. We denote the mapping matrix, i.e., the concept-item
graph, as Q ∈ {0, 1}|C|×|I|. If qm,n = 1, which means the
item n is related to the concept m; otherwise, qm,n = 0.

With the above definitions, the knowledge tracing task can
be formulated as a binary sequence prediction problem:
Given a series of interactions Xk = {xk,1, xk,2, ..., xk,t},
xk,t = (ik,t, yk,t) of a student k, the next item ik,t+1 ∈ I
and the concept-item mapping matrix Q, our goal is to pre-
dict the value of yk,t+1 representing if student k will answer
the new given item ik,t+1 correctly based on the current
knowledge state hk,t of the student.

2.2 Model Student Learning
We use dense embeddings instead of one-hot encoding as
the input of the DHKT model. These dense embeddings
can be automatically learned from the training dataset. To
distinguish the difference among items related to the same
concept and preserve the concept-level information, the con-
catenation of item embedding and concept level embedding
is employed to represent an item in the DHKT model.

Let eik,t ∈ Rd denote the embedding of the item ik,t, where
d is the dimension of the embedding. Since one item ik,t can
be related to more than one concept, we use the average em-
beddings of all the concepts related to ik,t as its concept-level
embedding eck,t . Mathematically, the concept-level embed-
ding for the item ik,t is defined as:

eck,t =
1

|Ck,t|
∑

cm∈Ck,t

ecm , (1)

where Ck,t denotes the set of concepts related to item ik,t,
|Ck,t| is the number of such concepts, cm represents a con-
cept in Ck,t, and ecm is the embedding of the concept cm.

The new hierarchical representation of the item ik,t can be
described as the concatenation of item and concept embed-
dings:

vk,t = eik,t ⊕ eck,t , (2)

where vk,t ∈ R2d and ⊕ denotes vector concatenation.

To jointly represent the item and the correctness of student
k’s response, we introduce ak,t ∈ R4d as:

ak,t =

{
vk,t ⊕ 0 yk,t = 1
0⊕ vk,t yk,t = 0

, (3)

where 0 ∈ {0}2d is the zero-vector. ak,t is the input when
we model the process of student learning.

In the student learning process, the current knowledge state
of a student is highly correlated with the previous knowledge
state and the learning gains from the new materials. Thus,
the student learning process can be modeled by Long Short-

Term Memory network [3] as:

gk,t = σ(Wiak,t + Uihk,t−1 + bi),

fk,t = σ(Wfak,t + Ufhk,t−1 + bf ),

ok,t = σ(Woak,t + Uohk,t−1 + bo),

rk,t = fk,t ⊗ rk,t−1

+ gk,t ⊗ tanh(Wcak,t + Uchk,t−1 + bc),

hk,t = ok,t ⊗ tanh(rk,t),

(4)

where h denotes the dimensionality of hidden state vec-
tor. gk,t, fk,t,ok,t, rk,t,hk,t ∈ Rh are the activation vec-
tor of the input gate, forget gate, output gate, the mem-
ory cell and the hidden state vector of student k at time t.
Wi,Wf ,Wo,Wc ∈ Rh×2d and Ui,Uf ,Uo,Uc ∈ Rh×h are
weight matrices, bi,bf ,bo,bc ∈ Rh is the bias vector which
need to be learned during training. ⊗ denotes element-wise
product. The σ(·) and tanh(·) denote the Sigmoid and Hy-
perbolic Tangent function seperately.

The correctness of a student’s response to an item is depen-
dent on both the current knowledge state of the student and
the characteristics of the item. Thus we use the concatena-
tion of student k’s current knowledge state hk,t outputted
by the LSTM and the representation of item ik,t+1 that de-
notes the characteristics of the item, i.e., vk,t+1, to make
prediction. The concatenated vector is fed into a fully con-
nected layer to obtain a summary vector sk,t, and then this
vector is fed into a Sigmoid activation layer to calculate the
probability of correctly answering item ik,t+1 by student k.
The process can be represented as:

sk,t = tanh(Wfc(hk,t ⊕ vk,t+1) + bfc),

pk,t+1 = σ(Wssk,t + bs),
(5)

where Wfc ∈ Rds×(h+2d), Ws ∈ Rds , bfc ∈ Rds and bs ∈
R1 are the weight matrices and biases to be learned, and ds
denotes the dimension of the summary vector. pk,t+1 is the
probability that student k can answer item k + 1 correctly.

2.3 Hierarchical Structure Constraint
In fact, there exists a concept-item graph between items
and concepts. The concept-item graph provides us with the
grouping information of the items. The items related to the
same concept can be considered as belonging to the same
group. They should be similar with other items within the
same group, while dissimilar with items in other groups. At
the same time, the concept should capture the characteris-
tics of all items related to it and can approximately represent
all these items.

Based on the above analysis, we introduce a hinge loss which
tries to maximize the margins among different groups to
model the hierarchical structure of items. We apply the
embeddings of concepts to represent the general group char-
acteristics of all the items related to the concept. When
deriving the representations of items and concepts, we keep
the item similar to its corresponding concepts, and on the
contrary, make it far away from other concepts. Thus, the
hinge loss between an item n and a concept m is defined as

lm,n
h =

{
max{0, 1− eT

inecm} qm,n = 1
max{0, 1 + eT

inecm} qm,n = 0
, (6)

where ein and ecm are the embeddings of the item in and
concept cm, and qm,n is an indicator in the item to concept
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mapping matrix Q indicating whether the item n is related
to concept m. qm,n = 1 indicates that item n is related to
concept m, while qm,n = 0 means that item n is not related
to concept m.

2.4 Loss Function
The objectives of the proposed model are two folds: One is
to make accurate predictions of students’ responses, and the
other is to learn meaningful embeddings of items. Based on
these two objectives, in the training stage, we need to mini-
mize the prediction loss and the hinge loss simultaneously.

For student k answering item ik,t at time t, the prediction
loss lk,t can be modeled with the binary cross-entropy:

lk,t = −(yk,t log(pk,t) + (1− yk,t) log(1− pk,t)), (7)

where pk,t is the probability that student k can answer item
ik,t correctly and yk,t is the correctness of the response of
student k at time t.

The total loss can be represented as the weighted sum of the
total prediction loss and the total hinge loss:

L =

|K|∑
k=1

tk∑
t=1

lk,t + α

|C|∑
m=1

|I|∑
n=1

lm,n
h , (8)

where tk is the total number of questions that a student k
attempted, and |K| is the number of students. |I| and |C| are
the number of items and concepts in I and C respectively.
lm,n
h is the hinge loss defined in Eq. 6. α is a hyper-parameter

to balance the weight of prediction loss and hinge loss.

3. EXPERIMENTS
In this section, we present the experiments that evaluate the
proposed DHKT model on knowledge tracing task. These
experiments are performed on three real-world datasets.

3.1 Datasets
The ASSIST091 and ASSIT122 datasets were collected from
the ASSISTments tutoring system [2]. In the experiment,
we use skill builder dataset. In the preprocessing, we remove
all duplicated records and the records without a skill id or
without a skill name and the records without a {0, 1} value of
the “correctness” attribute. In addition, we also remove the
students with a sequence length less than three. After pre-
processing, there are 3,991 students, 227,156 records, 13,876
items and 96 concepts in the ASSIST09 dataset. The AS-
SIST12 dataset contains 270,66 students, 2,541,201 records,
45,716 items and 245 concepts after preprocessing.

The Statics dataset3 was collected from a college-level engi-
neering statics course [5]. This dataset includes transactions
from two different modes: tutor mode and assessment mode.
Since the transactions from assessment mode for the same
student have the same timestamp, we cannot determine the
order of these transactions. Thus, only the transactions from
tutor mode are included in the experiment. Also, we remove
the students with less than three transactions. After prepro-
cessing, there are 317 students, 137,711 records, 987 items

1https://sites.google.com/site/assistmentsdata/
home/assistment-2009-2010-data
2https://sites.google.com/site/assistmentsdata/
home/2012-13-school-data-with-affect
3https://pslcdatashop.web.cmu.edu/DatasetInfo?
datasetId=507

Table 1: Overview of the Three Datasets.
ASSIST09 ASSIST12 Statics

# of students 3,991 27,066 317
# of items 13,876 45,716 987

# of concepts 96 245 280
# of records 227,156 2,541,201 137,711

attempts per student 57 94 434
items per concept 145 187 4
attempts per item 16 56 140

attempts per concept 2,366 10,372 492

and 280 concepts. The statistics of the three datasets are
shown in Table 1.

3.2 Baselines and Experimental Settings
To evaluate the effectiveness of the DHKT model, we com-
pare the DHKT model with the state-of-the-art knowledge
tracing models, including Item Response Theory (IRT) [10],
Hierarchical Item Response Theory (HIRT) [10], Perfor-
mance Factor Analysis (PFA) [8], Bayesian Knowledge Trac-
ing (BKT) [1] and Deep Knowledge Tracing (DKT) [9]. IRT,
HIRT, which is a Bayesian extension of IRT by considering
the hierarchical structures between concepts and items, and
PFA make predictions based on the logit function. BKT
models the sequence of responses and makes predictions
based on the Hidden Marcov Model. DKT applies RNN to
model the response sequence and make predictions. To eval-
uate the effect of incorporating concept-item graph in deep
knowledge tracing, the variations of the proposed DHKT
model: EDKT, Fine-grained EDKT and DHKT-, are also
compared. These variations share the same network struc-
ture with DHKT, but they are different in terms of the in-
put and the value of α. EDKT and Fine-grained EDKT
use the item embedding and the concept embedding as the
input seperately and α = 0. DHKT- is the reduced model
of DHKT where only the item embedding is used as input
in Eq. (2). In the ASSIST datasets the skill id is consid-
ered as the concept and the problem id is considered as the
item. In the Statics dataset, the problem name is the con-
cept and the step name is the item. The PFA, BKT, DKT
and EDKT take concepts as input while IRT, Fine-grained
EDKT and DHKT- take items as input. The concept-item
graphs are constructed according to the relations between
items and concepts and are used by HIRT and DHKT.

We split each of these datasets into training and testing
datasets on student level. For each dataset, we randomly
select 20% of the students as the testing dataset and keep
80% of the students as the training dataset to learn the
parameters. We randomly select 20% of the training stu-
dents for validation. The training and testing datasets for
all the models are the same. For training the DHKT model,
batch size is set to 32, and the number of epochs is set to
100. The hidden state dimensionality h is set to 100. The
hyper-parameters are tuned on the validation datasets. We
tune the embedding dimensinality and the balance param-
eter α using grid search. The candidate values for embed-
ding dimensinality d are {25, 50, 100}, and α’s in Eq. (8) are
{0.001, 0.01, 0.1, 1}. The loss function is optimized by Adam
algorithm [4], which is a gradient-based optimization algo-
rithm based on adaptive estimates of lower-order moments.
We set the learning rate to 0.01. To avoid the expload-
ing gradient problem, gradient norm clipping strategy [7] is
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Table 2: AUC Values on the Three Datasets.
Model ASSIST09 ASSIST12 Statics
IRT 0.6891 0.7317 0.8249

HIRT 0.6912 0.7234 0.8251
PFA 0.7040 0.6706 0.7705
BKT 0.6722 0.6141 0.7318
DKT 0.7483 0.7346 0.7736

EDKT 0.7513 0.7310 0.7823
Fine-grained EDKT 0.7342 0.7428 0.8251

DHKT- 0.7780 0.7677 0.8311
DHKT 0.7866 0.7747 0.8333

adopted at the threshold of 20. We use dropout with a prob-
ability of 0.6 to alleviate the overfitting issue.

The Area Under ROC Curve (AUC) is used to evaluate the
performance of all the models, in which ROC curve plots
true positive rate versus false positive rate in a binary clas-
sification task. For each model, we run five times with ran-
dom initialization and report the average AUC. The AUC
of the testing dataset is calculated using the model with the
highest validation AUC value among 100 epochs.

3.3 Results
The AUC values for different models on all three datasets
are shown in Table 2. The proposed DHKT model achieves
the highest AUC on all the three datasets. The reduced
model DHKT- cannot beat DHKT, but it still outperforms
all other baselines on the three datasets. The improvement
from Fine-grained EDKT to DHKT- demonstrates the ef-
fectiveness of incorporating the concept-item graph. The
difference in the performance between DHKT and DHKT-
indicates that exploiting general level information is useful
in deep knowledge tracing.

3.4 Embedding Visualization
We use t-SNE [6] to visualize the learned embeddings of
items by DHKT in a 2-D space to qualitatively assess the
intepretability of the representations. For comparison, we
also plot the learned item embeddings on the three datasets
of the Fine-grained EDKT. The color of the dots represents
the concept related to the items.

The learned embeddings are shown in Figure 1. Fig-
ure 11(a), 1 1(b) and 11(c) show the learned item repre-
sentations of DHKT on ASSIST09, ASSIST12 and Stat-
ics, and Figure 11(d), 1 1(e) and 11(f) show the learned
item representations of the Fine-grained EDKT model on
corresponding datasets. Compared with the items mixed
together learned by Fine-grained EDKT, the item embed-
dings learned by DHKT are well separated and more con-
sistent with the hierarchical structures on the ASSIST09
and ASSIST12 datasets. On the Statics dataset, although
some clusters are mixed with each other, the representa-
tions learned by DHKT are much better than that learned
by Fine-grained EDKT. In addition, the prediction perfor-
mance of DHKT is better than that of Fine-grained EDKT
on the three datasets, which demonstrates the importance
of meaningful item representations for knowledge tracing.

4. CONCLUSIONS AND FUTURE WORK
In this work, we propose a novel deep hierarchical knowl-
edge tracing model by incorporating the hierarchical struc-
ture of items. The proposed model not only improves the
performance of knowledge tracing task, but also provides

(a) (b) (c)

(d) (e) (f)
Figure 1: Item representations learned by DHKT
and Fine-grained EDKT.

meaningful representations of items. The item representa-
tions learned by the proposed model are consistent with the
hierarchical structure of the items. The superior predic-
tion performance indicates that the hierarchical structure
of items plays an important role in deep knowledge trac-
ing, and meaningful representations can help improve deep
knowledge tracing performance.

We plan to investigate how to apply multi-level hierarchi-
cal structures in knowledge tracing and how to recommend
learning materials and items to students based on their
knowledge state in the future.
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