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Abstract—Lifetime data with covariates (e.g., temperature,
humidity, and electric current) are frequently seen in engineering
applications. An important example is accelerated life testing
(ALT) data. In ALT, test units of a product are exposing to
severer-than-normal conditions to expedite product failure. The
resulting lifetime and/or censoring data with covariates are often
modeled by a probability distribution along with a life-stress
relationship. However, if the probability distribution and the life-
stress relationship selected cannot adequately describe the
underlying failure process, the resulting reliability prediction will
be misleading. This paper develops a new method for modeling
lifetime data with covariates using phase-type (PH) distributions
and a general life-stress relationship formulation. A numerical
study is presented to compare the performance of this method
with a mixture of Weibull distributions model. This general
method creates a new avenue to modeling and interpreting
lifetime data with covariates for situations where the data-
generating mechanisms are unknown or difficult to analyze using
existing statistical tools.
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I. INTRODUCTION

A covariate (e.g., temperature, humidity, and electric
current) is a variable that is possibly predictive of the outcome
under study. Data with covariates are frequently seen in
engineering application. In particular, accelerated life testing
(ALT) data are usually conducted by exposing test units of a
product to severer-than-normal conditions to expedite the
failure process. The resulting lifetime and/or censoring data are
often modeled by a probability distribution along with a life-
stress relationship. However, if the probability distribution and
life-stress relationship selected cannot adequately describe the
underlying failure process, the resulting reliability prediction
will be misleading.

In practice, it is natural that there are underlying processes
going through a series of stages before failures occur, and
many of these processes are often partially or completely
unobservable due to technology barriers or lack of
understanding of failure mechanisms [1]. Despite some model-
selection guidelines [2—4], choosing adequate distributions to
fit such data is always a challenging task. Although some
commercial software packages provide several options for
probability distributions or even a distribution-selection wizard
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based on the likelihood values of a limited number of candidate
models, no generic model-construction and -selection methods
have been reported in the related literature. To seek new
mathematical and statistical tools to facilitate the modeling of
such data, a critical question to be asked is: Can we find a
family of versatile probability distributions along with a
general life-stress relationship to model complex lifetime data
with covariates?

A continuous phase-type (PH) distribution describes the
time to absorption of a continuous-time Markov chain (CTMC)
defined on a finite-state space. Since the class of PH
distributions is dense, any distribution defined on [0, ), in
principle, can be approximated arbitrarily closely by a PH
distribution [5, 6]. In reliability engineering, Ruiz-Castro et al.
[7] investigated a repairable cold-standby system using a quasi-
birth-and-death process. Jonsson et al. [8] used PH
distributions to deal with non-exponential lifetime distributions
in a system. Recently, to model ALT data, Liao and Guo [9]
explored a new accelerated failure time model [10] based on
Erlang-Coxian distributions [11] to characterize ALT data. The
ALT model belongs to an accelerated failure time (AFT)
model, which incorporates the effect of a covariate on the
product’s reliability through time scaling.

In this paper, a more general method is proposed for
modeling lifetime data with covariates. In this method, a
general life-stress relationship is introduced into the Coxian
distribution and a maximum likelihood-based approach is
utilized to estimate the model parameters and perform model
selection. A comparison study is conducted to illustrate the
modeling capability of this method. The unique contribution of
this work is that it provides a flexible method for modeling and
interpreting lifetime data with covariates when the underlying
failure mechanisms are unknown or difficult to analyze using
the traditional statistical tools.

The remainder of this paper is organized as follows. Section
IT describes the proposed model based on the Coxian
distribution and the widely used model based on a mixture of
Weibull distributions. The corresponding model selection
aspects are provided on Section III. In Section IV, a numerical
example is provided to compare the performance of the
proposed method and the mixture of Weibull distributions
model. Finally, conclusions are drawn in Section V.



II. GENERAL METHODS FOR MODELING LIFETIME DATA WITH
COVARIATES

A.  Use of a Mixture of Weibull Distributions

A mixture of Weibull distributions is widely used in
modeling complex lifetime data that may not be well described
by a single probability distribution such as the two- or three-
parameter Weibull distribution, lognormal distribution, and
Gamma distribution. Moreover, it has also been used to
approximate other probability distributions.

The probability density function (PDF) f(#,6) of a
mixture of m Weibull distributions can be expressed as:
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where Z p;, =1, B and n, are the shape and scale parameters
i=l1
of the individual Weibull distribution, and @ represent a vector

containing all the model parameters. The corresponding
cumulative distribution function (CDF) F(¢;60) is:
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To quantify the effects of a covariate z on the model
parameters, a general approach is to model each individual
parameter as a function of the covariate as:
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For example, a widely used life-stress relationship takes a log-
linear form 7,(z;¢,) = exp(«,, +@,;z) and assumes a constant

shape parameter f3,(z;7,) =4,

B.  Use of Coxian Distributions

We consider a CTMC {X(¥)},,, with finite states {1, 2, ...,

N, N+1}, where state N+1 is the only absorbing state and the
others are transient states. Let 7 be the time to absorption of the
CTMC. The Coxian distribution is a versatile mathematical
model that describes the absorbing time of a CTMC. Fig. 1
shows a three-phase Coxian model.

The infinitesimal generator of {X(¢)},., is given by:
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Fig. 1. CTMC for a three-phase Coxian distribution.

For an acyclic PH distribution (e.g., Coxian), S is an upper
triangular matrix, ¢ =-Se, and e=[L1,...,1]'. For the N-
phase Coxian distribution, we have:
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Let the process {X(¢)}., start in the first phase by making
7, =1. Then, the CDF and PDF of the time to absorption T’
can be expressed as: F(¢) =1—exp(zS)e and f(¢) =exp(tS)q,
respectively, where exp(sS) represents matrix exponential. A

S:

general life-stress relationship can be introduced as follows:

A4(2) =¥,z X)), (6)

where each transition rate 4, is modeled as a function of the
covariate with parameter Y,.Becauseall 4,, i=L2,...,N, are
positive, a useful candidate is ¥,(z;Y,) =exp(Y,, + Y,;z) . In

this paper, this exponential form of life-stress relationship is
adopted.

III. MODEL SELECTION AND PARAMETER ESTIMATION

A.  Maximum Likeliood Estimation Method

To estimate the model parameters ¢ for a mixture of m

Weibull distributions, the maximum likelihood estimation
method can be used. Given a set of lifetime data collected
under J levels of the covariate {¢,,5,,z;},,, ,, Where

0, =1Lif 7, islifetime; 0,otherwise} , the likelihood function
can be expressed as:
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where K is the total number of observations under the jth
level of covariate. Then, the maximum likelihood estimate of
t_N can be obtained by maximizing the log-likelihood function

In/ (£ , after taking the natural-log of (7).

Similarly, to estimate the model parameters in a specific
Coxian-based model, the likelihood function is given by:
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where matrices S(z,)) and ¢(z;) have the forms given in (5)
with all A(z), i=12,...,N, as described by (6). In this
research, an expectation-maximization algorithm is utilized to
maximize the corresponding log-likelihood function for

obtaining the maximum likelihood estimates of the model
parameters.

B. Likelihood-based Model Selection

It is worth pointing out that when either the Coxian-based
model or the mixture of Weibull distributions is used to model
lifetime data with covariates, the model structures are not
necessarily pre-determined. Instead, a model selection method
can be utilized to determine the models that provide the best fit
to the data. In particular, for the Coxian-based model the
number of phases can be determined according to the change in
the value of maximum likelihood as the number of phases is
increased. Similarly, for the mixture of Weibull distributions
model the number of Weibull distributions in the model can be
obtained by investigating the values of maximum likelihood as
more complex models are considered.

An alternative for such model selection problems under the
maximum likelihood estimation framework is the use of
Akaike Information Criterion (AIC):

AIC =2p—-21nl(6), )

where p is the number of parameters in parameter vector 6 of

the corresponding model and é is the maximum likelihood
estimate of ¢. The common practice is to choose the model

that has the lowest AIC value compared to other candidate
models.

C. Construction of Confidence Interval

To quantify the uncertainty in model estimates, a
nonparametric bootstrap method can be implemented to
construct the interested confidence intervals (CI). This sample-
reuse method is quite useful when other alternatives, such as
parametric bootstrap and Fisher-Information-based methods,
are either intractable or insufficiently accurate. Indeed, this is
the case for the Coxian-based model presented in this paper.

In this paper, the nonparametric bootstrap procedure
developed by Liao et al. [12] is implemented to construct the

pointwise confidence intervals for the Cdfs estimated under
different levels of covariate(s). The detailed steps can be
described as follows:

1. Each sample (say bootstrap sample i) consisting of ;
data points for each level z; is obtained by sampling,
with replacement, from the original lifetime data with
covariates.

2. Parameters é are estimated based on each bootstrap

sample.
3. Compute the corresponding Cdf at time ¢ using the

bootstrap estimate Q: .

4. Repeat Steps 1-3 for B (say 5000) times to obtain a
set of Cdf estimates at time ¢ as:

(O, F,(0),... F, (D} .

5. Sort the set in an ascending order for each desired
time #:

LBy (0, Fpy (D) F (D}
6. Determine the lower and upper bounds of pointwise
100(1-a)% confidence interval for the Cdf as:

(£, (0.5,
where v=[aB/2] and u=[(1-a/2)B] .

IV. NUMERICAL EXAMPLE

In this section, we use the ALT data reported in [13] to
illustrate the use of the proposed method for modeling lifetime
data with a single covariate.

A. Experimental Setup

The purpose of this ALT experiment is to estimate the
reliability of a type of miniature lamps under the use condition:
2 volts. The highest operating voltage of the lamp is 5 volts.
Three constant voltage levels were used in the experiment: 5
volts, 3.5 volts, and 2 volts. After standardization ((volts-2)/3),
the three voltage levels are: z =1, z, =0.5, and z, =0. The

observed lifetimes and censoring times are presented in Table
1. To avoid making an assumption on the underlying
distribution, the proposed Coxian-based model as well as the
mixture of Weibull distributions model are utilized to predict
the reliability of this type of miniature lamps.

B.  Results of Mixture of Weibull Distributions

Figs. 2 and 3 show the estimated CDFs using the Kaplan-
Meier estimator, a mixture model of three Weibull
distributions, and a mixture model of four Weibull
distributions. Based on (3), the corresponding numbers of
parameters of the two mixture models are fourteen and
nineteen, respectively. However, by comparing the result in
[13] where the lognormal distribution is utilized, the
performance of the mixture model is inferior. One can see that
for both models, the estimated Cdfs under the median and low
voltage levels significantly deviate from the Kaplan-Meier
estimates. However, from Fig. 4 that illustrates the shape and
scale parameters in the mixture model of four Weibull
distributions (the case for the mixture model of three Weibull
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Fig. 2. Statistical fits of the mixture model of three Weibull
distributions.
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Fig. 3. Statistical fits of the mixture model of four Weibull
distributions.

C. Results of the Proposed Coxian-based General Method

To demonstrate the superior performance of the proposed
Coxian-base method with the general life-stress relationship
formulation (exponential functions), models with different
numbers of phases are obtained. Figs. 5 and 6 illustrate the
estimation performance of the three-phase Coxian-based model
and the seven-phase alternative. From (5) and (6), the numbers
of model parameters of the two models are eight and twenty,
respectively. One can see that the proposed method is able to
provide quite adequate statistical fits. From Fig. 7, the three-
phase Coxian-based model is suggested based on the AICs. For
this model, the non-parametric bootstrap method is
implemented, and the resulting 95% Cls are shown in Fig. 8.

Fig. 5. Statistical fits of the three-phase Coxian model with general

Probability of failure

life-stress relationship.

1 T T T
o8t £ = S g
>~ - —k— KMz,
_i COXIEH»Z‘
0.6 B 1
5 —-—-— KMz,
Cuxian-zz
0.4 —— KMz, 1
Cn:uxian-z3
0.2
0%
0 200 400 600 800 1000
Time

Fig. 6. Statistical fits of the seven-phase Coxian model with general

AIC

life-stress relationship

o AIC vs. Number of Phases

-200

-400

-600

-800

-1000

e ’*/!.

-1200
1

3 4 5 6 7
N: Number of phases

Fig. 7. AIC values for Coxian-based models with different numbers of

phases.
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Fig. 8. 95% ClIs for the Cdfs under different voltage levels using the
three-phase Coxian model with general life-stress relationship.

V. CONCLUSION

This research addresses general methods for modeling
lifetime data with covariates. A Coxian-based method that
incorporates a flexible life-stress relationship is proposed and
compared with a mixture of Weibull distributions. The
advantage of the proposed general data analysis method is that
an adequate fit to lifetime data can be obtained by gradually
changing the number of phases of the associated CTMC.
Without assuming other particular probability distributions for
the lifetimes, such as extreme-value distributions, lognormal
distribution, and gamma distributions, this method can well
represent the underlying lifetime distribution. A maximum
likelihood-based approach is developed for estimating the
model parameters and determining the number of phases of the
model. A non-parametric bootstrap approach is utilized to
construct the interested confidence intervals. The numerical
example demonstrates that the proposed general method indeed
provides practitioners with a convenient statistical tool for
modeling lifetime data with covariates. Compared with the
mixture of Weibull distributions model, the proposed method is
able to provide more accurate estimates with comparable
model complexity.
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