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Abstract—Lifetime data with covariates (e.g., temperature, 

humidity, and electric current) are frequently seen in engineering 

applications. An important example is accelerated life testing 

(ALT) data. In ALT, test units of a product are exposing to 

severer-than-normal conditions to expedite product failure. The 

resulting lifetime and/or censoring data with covariates are often 

modeled by a probability distribution along with a life-stress 

relationship. However, if the probability distribution and the life-

stress relationship selected cannot adequately describe the 

underlying failure process, the resulting reliability prediction will 

be misleading. This paper develops a new method for modeling 

lifetime data with covariates using phase-type (PH) distributions 

and a general life-stress relationship formulation. A numerical 

study is presented to compare the performance of this method 

with a mixture of Weibull distributions model. This general 

method creates a new avenue to modeling and interpreting 

lifetime data with covariates for situations where the data-

generating mechanisms are unknown or difficult to analyze using 

existing statistical tools.  
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I.  INTRODUCTION 

A covariate (e.g., temperature, humidity, and electric 
current) is a variable that is possibly predictive of the outcome 
under study. Data with covariates are frequently seen in 
engineering application. In particular, accelerated life testing 
(ALT) data are usually conducted by exposing test units of a 
product to severer-than-normal conditions to expedite the 
failure process. The resulting lifetime and/or censoring data are 
often modeled by a probability distribution along with a life-
stress relationship. However, if the probability distribution and 
life-stress relationship selected cannot adequately describe the 
underlying failure process, the resulting reliability prediction 
will be misleading. 

In practice, it is natural that there are underlying processes 
going through a series of stages before failures occur, and 
many of these processes are often partially or completely 
unobservable due to technology barriers or lack of 
understanding of failure mechanisms [1]. Despite some model-
selection guidelines [2–4], choosing adequate distributions to 
fit such data is always a challenging task. Although some 
commercial software packages provide several options for 
probability distributions or even a distribution-selection wizard 

based on the likelihood values of a limited number of candidate 
models, no generic model-construction and -selection methods 
have been reported in the related literature. To seek new 
mathematical and statistical tools to facilitate the modeling of 
such data, a critical question to be asked is: Can we find a 
family of versatile probability distributions along with a 
general life-stress relationship to model complex lifetime data 
with covariates? 

A continuous phase-type (PH) distribution describes the 
time to absorption of a continuous-time Markov chain (CTMC) 
defined on a finite-state space. Since the class of PH 
distributions is dense, any distribution defined on [0, ∞), in 
principle, can be approximated arbitrarily closely by a PH 
distribution [5, 6]. In reliability engineering, Ruiz-Castro et al. 
[7] investigated a repairable cold-standby system using a quasi-
birth-and-death process. Jonsson et al. [8] used PH 
distributions to deal with non-exponential lifetime distributions 
in a system. Recently, to model ALT data, Liao and Guo [9] 
explored a new accelerated failure time model [10] based on 
Erlang-Coxian distributions [11] to characterize ALT data. The 
ALT model belongs to an accelerated failure time (AFT) 
model, which incorporates the effect of a covariate on the 
product’s reliability through time scaling. 

In this paper, a more general method is proposed for 
modeling lifetime data with covariates. In this method, a 
general life-stress relationship is introduced into the Coxian 
distribution and a maximum likelihood-based approach is 
utilized to estimate the model parameters and perform model 
selection. A comparison study is conducted to illustrate the 
modeling capability of this method. The unique contribution of 
this work is that it provides a flexible method for modeling and 
interpreting lifetime data with covariates when the underlying 
failure mechanisms are unknown or difficult to analyze using 
the traditional statistical tools.    

The remainder of this paper is organized as follows. Section 
II describes the proposed model based on the Coxian 
distribution and the widely used model based on a mixture of 
Weibull distributions. The corresponding model selection 
aspects are provided on Section III. In Section IV, a numerical 
example is provided to compare the performance of the 
proposed method and the mixture of Weibull distributions 
model. Finally, conclusions are drawn in Section V.  
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II. GENERAL METHODS FOR MODELING LIFETIME DATA WITH 

COVARIATES 

A. Use of a Mixture of Weibull Distributions 

A mixture of Weibull distributions is widely used in 
modeling complex lifetime data that may not be well described 
by a single probability distribution such as the two- or three-
parameter Weibull distribution, lognormal distribution, and 
Gamma distribution. Moreover, it has also been used to 
approximate other probability distributions.  

The probability density function (PDF) ( ; )f t   of a 

mixture of m Weibull distributions can be expressed as: 
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To quantify the effects of a covariate z on the model 
parameters, a general approach is to model each individual 
parameter as a function of the covariate as: 
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For example, a widely used life-stress relationship takes a log-

linear form 
0 1( ; ) exp( )i i i iz z      and assumes a constant 

shape parameter ( ; )i i iz    

B. Use of Coxian Distributions 

We consider a CTMC 
0{ ( )}tX t 
 with finite states {1, 2, …, 

N, N+1}, where state N+1 is the only absorbing state and the 
others are transient states. Let T be the time to absorption of the 
CTMC. The Coxian distribution is a versatile mathematical 
model that describes the absorbing time of a CTMC. Fig. 1 
shows a three-phase Coxian model. 

The infinitesimal generator of 
0{ ( )}tX t 
 is given by: 
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Fig. 1. CTMC for a three-phase Coxian distribution. 

For an acyclic PH distribution (e.g., Coxian), S is an upper 

triangular matrix, q = Se , and [1,1,...,1]'e . For the N-

phase Coxian distribution, we have: 
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Let the process 
0{ ( )}tX t 
 start in the first phase by making 

1 1  . Then, the CDF and PDF of the time to absorption T 

can be expressed as: ( ) 1 exp( )F t t  S e  and ( ) exp( )f t t S q , 

respectively, where exp( )tS  represents matrix exponential. A 

general life-stress relationship can be introduced as follows: 

( ) ( ; ),i i iz z                                          

where each transition rate 
i  is modeled as a function of the 

covariate with parameter 
i . Because all 

i , 1,2,...,i N , are 

positive, a useful candidate is 
0 1( ; ) exp( )i i i iz z     . In 

this paper, this exponential form of life-stress relationship is 
adopted. 

III. MODEL SELECTION AND PARAMETER ESTIMATION 

A. Maximum Likeliood Estimation Method 

To estimate the model parameters   for a mixture of m 

Weibull distributions, the maximum likelihood estimation 
method can be used. Given a set of lifetime data collected 

under J levels of the covariate 
1,2,...,{ , , }jk jk j j Jt z 

, where 

{1,if  is lifetime;  0,otherwise}jk jkt  , the likelihood function 

can be expressed as: 
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where 
jK  is the total number of observations under the jth 

level of covariate. Then, the maximum likelihood estimate of 

  can be obtained by maximizing the log-likelihood function 

ln ( )l   after taking the natural-log of (7). 

Similarly, to estimate the model parameters in a specific 
Coxian-based model, the likelihood function is given by: 

1

1 1

( ) exp( ( )) ( ) exp( ( )) ,

jk
j

jk

KJ

jk j j jk j

j k

l t z z t z







 

        S q S e  (8) 

where matrices ( ))jzS  and ( )jzq  have the forms given in (5) 

with all ( )i z , 1,2,...,i N , as described by (6). In this 

research, an expectation-maximization algorithm is utilized to 
maximize the corresponding log-likelihood function for 
obtaining the maximum likelihood estimates of the model 
parameters. 

B. Likelihood-based Model Selection 

It is worth pointing out that when either the Coxian-based 
model or the mixture of Weibull distributions is used to model 
lifetime data with covariates, the model structures are not 
necessarily pre-determined. Instead, a model selection method 
can be utilized to determine the models that provide the best fit    
to the data. In particular, for the Coxian-based model the 
number of phases can be determined according to the change in 
the value of maximum likelihood as the number of phases is 
increased. Similarly, for the mixture of Weibull distributions 
model the number of Weibull distributions in the model can be 
obtained by investigating the values of maximum likelihood as 
more complex models are considered.  

An alternative for such model selection problems under the 
maximum likelihood estimation framework is the use of 
Akaike Information Criterion (AIC):  

ˆ2 2ln ( ),AIC p l   

where p  is the number of parameters in parameter vector   of 

the corresponding model and ̂  is the maximum likelihood 

estimate of  . The common practice is to choose the model 

that has the lowest AIC value compared to other candidate 
models. 

C. Construction of Confidence Interval 

To quantify the uncertainty in model estimates, a 
nonparametric bootstrap method can be implemented to 
construct the interested confidence intervals (CI). This sample-
reuse method is quite useful when other alternatives, such as 
parametric bootstrap and Fisher-Information-based methods, 
are either intractable or insufficiently accurate. Indeed, this is 
the case for the Coxian-based model presented in this paper. 

In this paper, the nonparametric bootstrap procedure 
developed by Liao et al. [12] is implemented to construct the 

pointwise confidence intervals for the Cdfs estimated under 
different levels of covariate(s). The detailed steps can be 
described as follows: 

1. Each sample (say bootstrap sample i) consisting of nj 

data points for each level zj is obtained by sampling, 

with replacement, from the original lifetime data with 

covariates. 

2. Parameters ˆ
i   are estimated based on each bootstrap 

sample. 

3. Compute the corresponding Cdf at time t using the 

bootstrap estimate ˆ
i . 

4. Repeat Steps 1-3 for B (say 5000) times to obtain a 

set of Cdf estimates at time t as: 

1 2
ˆ ˆ ˆ{ ( ), ( ),..., ( )}BF t F t F t . 

5. Sort the set in an ascending order for each desired 

time t:  

[1] [2] [ ]
ˆ ˆ ˆ{ ( ), ( ),..., ( )}BF t F t F t . 

6. Determine the lower and upper bounds of pointwise 

100(1-α)% confidence interval for the Cdf as: 
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where  / 2v B

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

  .  

IV. NUMERICAL EXAMPLE 

In this section, we use the ALT data reported in [13] to 
illustrate the use of the proposed method for modeling lifetime 
data with a single covariate.  

A. Experimental Setup 

The purpose of this ALT experiment is to estimate the 
reliability of a type of miniature lamps under the use condition: 
2 volts. The highest operating voltage of the lamp is 5 volts. 
Three constant voltage levels were used in the experiment: 5 
volts, 3.5 volts, and 2 volts. After standardization ((volts-2)/3), 

the three voltage levels are: 
1 1z  , 

2 0.5z  , and 
3 0z  . The 

observed lifetimes and censoring times are presented in Table 
1. To avoid making an assumption on the underlying 
distribution, the proposed Coxian-based model as well as the 
mixture of Weibull distributions model are utilized to predict 
the reliability of this type of miniature lamps. 

B. Results of Mixture of Weibull Distributions 

Figs. 2 and 3 show the estimated CDFs using the Kaplan-
Meier estimator, a mixture model of three Weibull 
distributions, and a mixture model of four Weibull 
distributions. Based on (3), the corresponding numbers of 
parameters of the two mixture models are fourteen and 
nineteen, respectively. However, by comparing the result in 
[13] where the lognormal distribution is utilized, the 
performance of the mixture model is inferior. One can see that 
for both models, the estimated Cdfs under the median and low 
voltage levels significantly deviate from the Kaplan-Meier 
estimates. However, from Fig. 4 that illustrates the shape and 
scale parameters in the mixture model of four Weibull 
distributions (the case for the mixture model of three Weibull 



distributions are omitted), the adopted life-stress relationships 
appear to be appropriate. In other words, a more complex 
mixture of Weibull model with more parameters must be 
considered if better estimates are expected.    

TABLE I.  ALT DATA OF A TYPE OF MINIATURE LAMP 

Stress  Lifetimes in hours (“+” censored) 

5 V 
(z1=1) 

20.5 22.3 23.2 24.7 26 34.1 39.6 41.8 

43.6 44.9 47.7 61.6 62.1 65.5 70.8 87.8 

118.3 120.1 145.4 157.4 180.9 187.7 204 206.7 

213.9 215.2 218.7 254.1 262.6 293 304 313.7 

314.1 317.9 337.7 430.2     

3.5 V 
(z2=0.5) 

37.8 43.6 51.1 58.6 65.5 65.9 75.6 82.5 

88.1 89 106.6 113.1 121.1 121.5 128.3 151.8 

171.7 181 202.7 211.7 230.7 249.9 275.6 285 

296.2 358.5 379.8 434.5 493.1 506.1 570 577.7 

876.3 890+ 890+ 922 941+ 941+   

2 V 
(z3=0) 

223.1 254 316.7 560.2 679 737 894.4 930.5+ 

930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 

930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 

 

 

Fig. 2. Statistical fits of the mixture model of three Weibull 
distributions. 

 

Fig. 3. Statistical fits of the mixture model of four Weibull 
distributions. 

C. Results of the Proposed Coxian-based General Method 

To demonstrate the superior performance of the proposed 
Coxian-base method with the general life-stress relationship 
formulation (exponential functions), models with different 
numbers of phases are obtained. Figs. 5 and 6 illustrate the 
estimation performance of the three-phase Coxian-based model 
and the seven-phase alternative. From (5) and (6), the numbers 
of model parameters of the two models are eight and twenty, 
respectively. One can see that the proposed method is able to 
provide quite adequate statistical fits. From Fig. 7, the three-
phase Coxian-based model is suggested based on the AICs. For 
this model, the non-parametric bootstrap method is 
implemented, and the resulting 95% CIs are shown in Fig. 8. 

 

Fig. 4. Shape and scale parameters in a mixture of four Weibull 

distributions. 

 

Fig. 5. Statistical fits of the three-phase Coxian model with general 
life-stress relationship. 

 

Fig. 6. Statistical fits of the seven-phase Coxian model with general 

life-stress relationship 

 

Fig. 7. AIC values for Coxian-based models with different numbers of 
phases. 



 

Fig. 8. 95% CIs for the Cdfs under different voltage levels using the 

three-phase Coxian model with general life-stress relationship. 

V. CONCLUSION 

This research addresses general methods for modeling 
lifetime data with covariates. A Coxian-based method that 
incorporates a flexible life-stress relationship is proposed and 
compared with a mixture of Weibull distributions. The 
advantage of the proposed general data analysis method is that 
an adequate fit to lifetime data can be obtained by gradually 
changing the number of phases of the associated CTMC. 
Without assuming other particular probability distributions for 
the lifetimes, such as extreme-value distributions, lognormal 
distribution, and gamma distributions, this method can well 
represent the underlying lifetime distribution. A maximum 
likelihood-based approach is developed for estimating the 
model parameters and determining the number of phases of the 
model. A non-parametric bootstrap approach is utilized to 
construct the interested confidence intervals. The numerical 
example demonstrates that the proposed general method indeed 
provides practitioners with a convenient statistical tool for 
modeling lifetime data with covariates. Compared with the 
mixture of Weibull distributions model, the proposed method is 
able to provide more accurate estimates with comparable 
model complexity.  
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