
Machine-Learned or Expert-Engineered Features?
Exploring Feature Engineering Methods in Detectors of

Student Behavior and Affect

Anthony F. Botelho
Worcester Polytechnic Institute

Worcester, MA 01605
abotelho@wpi.edu

Ryan S. Baker
University of Pennsylvania

Philadelphia, PA 19104
ryanshaunbaker@gmail.com

Neil T. Heffernan
Worcester Polytechnic Institute

Worcester, MA 01605
nth@wpi.edu

ABSTRACT
There is a long history of research on the development of
models to detect and study student behavior and affect.
Developing computer-based models has allowed the study of
learning constructs at fine levels of granularity and over long
periods of time. For many years, these models were devel-
oped using features based on previous educational research
from the raw log data. More recently, however, the applica-
tion of deep learning models has often skipped this feature -
engineering step by allowing the algorithm to learn features
from the fine-grained raw log data. As many of these deep
learning models have led to promising results, researchers
have asked which situations may lead to machine-learned
features performing better than expert-generated features.
This work addresses this question by comparing the use
of machine-learned and expert-engineered features for three
previously-developed models of student affect, off-task be-
havior, and gaming the system. In addition, we propose a
third feature-engineering method that combines expert fea-
tures with machine learning to explore the strengths and
weaknesses of these approaches to build detectors of student
affect and unproductive behaviors.

Keywords
feature engineering, student affect, disengaged behavior, deep
learning

1. INTRODUCTION
The educational data mining community has developed nu-
merous models to detect unproductive student behaviors
and affective states and study how these measures corre-
late with short- and long-term learning outcomes. Estimates
produced by detectors of student affective states and un-
productive behavior, for example, have been found to pre-
dict student standardized test scores [15], whether a student
chooses to attend college [16], and whether they pursue a
degree in STEM [17], and even later pursue a STEM career

[11], from estimates produced from interaction logs collected
as they worked on mathematics problems in seventh grade.
The predictive power of these detectors along with a gen-
eral desire to understand and improve the student learning
process has led to a significant amount of research around
developing these models.

The primary goal of this paper is to compare the two meth-
ods of generating features to predict student affect and un-
productive behaviors. It is also important to consider whether
some models perform better for certain types of features.
Conversely, other simpler models such as a decision tree or
logistic regression require feature engineering or aggregation
in order to incorporate labeled and unlabeled data. Ad-
ditionally, these models would be unable to easily observe
unlabeled data in a semi-supervised learning manner [19].

In this work we re-develop detectors of student affective state
[5], off-task behavior [15], and gaming the system [13], com-
paring new models to previously-developed models, to ad-
dress the following research questions: 1) Which leads to
better model performance (AUC ROC and Kappa), expert-
engineered features or machine-learned features, for detec-
tors of affect and unproductive behaviors? 2) Does combin-
ing expert-engineered features and machine learning-based
feature generation improve model performance for detectors
of affect and unproductive behaviors? 3) Does incorporating
unlabeled data improve model performance for detectors of
affect and unproductive behaviors?

The development of affect detectors within ASSISTments
has improved in recent years. Initial work has explored the
use of expert-engineered features to develop and evaluate de-
tectors through a population validity study [12]. Recently,
a deep learning approach was applied [5], utilizing the engi-
neered features within a recurrent neural network to predict
the four labels of affective state simultaneously over time.

This work utilizes two datasets1 consisting of student inter-
action log data collected within the ASSISTments computer-
based learning platform. The content within the system
consists primarily of mathematics problems for students in
grades 6-8. Students working in the system receive immedi-
ate correctness feedback on each problem with the ability to
make multiple attempts, and have the ability to ask for on-

1All data used in this work is made openly available at the
following link: http://tiny.cc/ML_or_Expert

Anthony F. Botelho, Ryan S. Baker and Neil T. Heffernan
"Machine-Learned or Expert-Engineered Features? Exploring
Feature Engineering Methods in Detectors of Disengaged
Behavior and Affect" In: Proceedings of The 12th International
Conference on Educational Data Mining (EDM 2019), Collin F.
Lynch, Agathe Merceron, Michel Desmarais, & Roger Nkambou
(eds.) 2019, pp. 508 - 511

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 508



demand computer-provided aid in the form of hints or scaf-
folded problems. These interactions and timing information
are the data used to construct most of the expert-engineered
features utilized in this work. The ground-truth labels of
both student affect and off-task behavior were collected us-
ing quantitative field observations following the Baker Ro-
drigo Ocumpaugh Monitoring Protocol (BROMP) [1].

We analyze gaming the system using a data set collected via
text replays [2]. The ground-truth labels of student gaming
were collected using post-hoc examinations of sequences of
student data following a set of criteria outlined in [2].

2. METHODOLOGY
Jiang et al. [10] compared two feature engineering meth-
ods, expert-generated and deep learning-based, for the de-
velopment of affect and off-task behavior detectors within
the Betty’s Brain learning system. This work will test the
generalizability of their findings, explore the strengths and
weaknesses of each method, and explore the incorporation
of unlabeled data during model training.

Each of the models described next were trained and eval-
uated using stratified 10-fold student-level cross validation.
We stratified each fold based on the number of occurrences
of positive labels of each outcome label at the student level
to generate the folds of the cross validation.

2.1 Utilizing Expert-Engineered Features
The first set of models use expert-engineered features to de-
tect each label of student affect, off-task behavior, and gam-
ing the system using methods similar to those implemented
in previous works. The expert features are first generated
using the the raw action-level log data; 92 features are cre-
ated for the affect and off-task data while 33 are generated
for the gaming detectors in alignment with the features used
in previous works. The features are generated to describe
the actions that occur in 20 seconds of observation but also
include neighboring actions that go beyond those 20 seconds
to capture the full context. We apply a Naive Bayes classi-
fier, a REP tree classifier and a Long-Short Term Memory
(LSTM) deep learning network [9] for the gaming, off-task
behavior, and affect detection tasks as these were found to
work well in previous works [13][15][5].

2.2 Deep Learning Models
Unlike the expert-engineered features, the machine learned
feature set uses the raw action logs of each student, ignor-
ing the clips and clip-level features described in the previous
section. For this feature set, a LSTM model is applied over
the raw data to predict each outcome using a set of unin-
terpretable features learned within the hidden layer of the
network. One potential drawback of using a LSTM model
in this way is that it assumes that each timestep in the
given sequence occurs at regular intervals which, of course,
is not the case. Therefore, to reduce the variance of this
interval, a similar practice as was applied to the affect de-
tector model using expert-engineered features. This allows
the model to divide sequences of student actions where long
intervals may occur between subsequent actions; where the
amount of time between two subsequent actions of the same
student is greater than 5 minutes, the sequence is divided
into two smaller sequences to be input into the model.

Each model utilized the same raw action-level log data that
was used to generate the expert-engineered features described
in the previous section. In addition to the interaction de-
scriptors such as response correctness and whether the stu-
dent requested a hint, the knowledge component associated
with each problem was also included as a large 1-hot en-
coded vector in an effort to supply these LSTM models with
the same information with which the expert-generated fea-
tures had access. In addition to these described action logs,
the set of features supplied to the gaming model included an
additional field corresponding to the computed Levenshtein
distance of each students sequence of incorrect responses
(where such sequences of incorrect responses existed) within
each problem as was computed for the expert-engineered
features of this detector. We incorporated this feature to
provide consistency in the information that is exposed to
both the machine learning model and the expert feature-
engineering process, although we acknowledge that the fea-
ture itself is a transformation of the raw responses (i.e. can
be described as an expert feature) and was only found to be
predictive of gaming the system through prior work explor-
ing the development of expert features for this task [14].

Each of the three LSTM models created for each label of
student affect, off-task behavior, and gaming the system fol-
lowed the same general structure comprised of an input layer
feeding into a fully-connected recurrent hidden layer of 200
LSTM nodes, and then feeding into an output layer of ei-
ther 2 nodes (corresponding to a 1-hot encoded positive and
negative indicator of either off-task behavior or gaming the
system) or 4 nodes (corresponding to a 1-hot encoded vector
with one value per observed affective state). The purpose
of the hidden layer is to learn a set of 200 features from the
raw action logs that are predictive of each outcome label.
The commonly applied technique of dropout [18] is applied
between the hidden and output layers of the network in an
attempt to reduce overfitting. In all cases, a softmax acti-
vation function is applied to the output of each model and
trained using multiclass cross entropy.

2.3 Machine-Learned Expert-Inspired
Features

The third feature set proposed for comparison combines as-
pects of both expert-engineered features and machine learn-
ing. Expert features may be able to help guide a machine
learning model to learn better sets of features than either
method individually. In addition, since each set of expert
features were presumably developed with a particular set of
outcome measures in mind, such labels may also be able to
help guide a machine learning model to produce meaning-
ful, albeit uninterpretable, sets of features to detect such
behaviors and affective states.

Specifically, this method utilizes a 2-step training process for
a machine learning model. First, an LSTM model is built
to use the raw action-level logs as input (just as was done in
the previous section for the models utilizing machine learned
features), but in addition to predicting each label, the model
is trained to predict the set of expert-engineered features as
a multi-task learning problem [7]. As the affect and off-task
behavior detectors utilize the same set of action logs and
expert-engineered features, we build one model to read the
interaction logs. This model will predict each of the set of

509 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



Table 1: Comparison of feature sets across each of the detector models with and without co-training.

Outcome Feature Set Model AUC Kappa
Co-Trained*

AUC
Co-Trained*

Kappa

Off-Task
Expert REP Tree .734 .352 .796 .369
Machine Learned* LSTM .657 .073 .657 .073
Machine Learned Expert REP Tree .753 .400 .781 .405

Gaming
Expert Naive Bayes .774 .362 .856 .180
Machine Learned* LSTM .542 -.005 .542 -.005
Machine Learned Expert Naive Bayes .774 .290 .847 .327

Affect
(Collectively)

Expert LSTM .760 .172 .777 .112
Machine Learned* LSTM .695 .041 .695 .041
Machine Learned Expert LSTM .662 .043 .607 .037

Confusion
Expert LSTM .730 .042 .762 .059
Machine Learned* LSTM .666 .042 .666 .042
Machine Learned Expert LSTM .609 .01 .596 .018

Engaged
Concentration

Expert LSTM .775 .281 .791 .289
Machine Learned* LSTM .713 .210 .713 .210
Machine Learned Expert LSTM .671 .188 .611 .090

Boredom
Expert LSTM .775 .148 .783 .178
Machine Learned* LSTM .690 .137 .690 .137
Machine Learned Expert LSTM .677 .041 .613 .005

Frustration
Expert LSTM .761 .054 .772 .050
Machine Learned* LSTM .713 .060 .713 .060
Machine Learned Expert LSTM .689 .019 .609 .026

*All co-training used an LSTM model. Models using the machine learned features all used co-training.

expert-engineered features corresponding with the given set
of actions, the affective state label, and the off-task behavior
label simultaneously. Similarly, for the gaming detector, the
raw actions are supplied as input to a LSTM model that
predicts both the set of expert-engineered features and the
gaming labels. In this way, the hidden layer of the respective
models is regularized to learn a set of features that is both
able to construct the set of expert features (although likely
with some error) as well as predict the outcome labels for
which the features are intended.

Once these LSTM models are trained, the hidden layer is
extracted and used as the third and final set of features com-
pared in this work. This feature set, referred to as“machine-
learned expert-inspired” features, is then supplied as input
to each of the respective models used in previous work.

2.4 Exploring the use of Co-Training
In this work, we use the term “co-training” to describe the
use of both labeled and unlabeled data to inform model es-
timates and the methods differ from that of other works
describing co-trained models [3]. Given the nature of the
observation-based label collection procedure, not all exam-
ples in our data (whether considering actions or clips) has
an associated affect or behavior label. While there are sev-
eral modeling methods that exist to incorporate this unla-
beled data into each model, the already-described LSTM
model inherently allows for this co-training to occur given
its sequential structure. The model uses the current sup-
plied timestep along with a learned-aggregation of previous
time steps in order to better inform each prediction.

3. RESULTS AND DISCUSSION
We compare the results of each set of models within each
of the three outcome measures of affect, off-task behavior,

and gaming behavior using the metrics of AUC ROC and
Cohen’s Kappa. In the case of affect, AUC ROC is cal-
culated using a multi-class variant of the metric [8], while
Kappa is calculated as multi-class Cohen’s Kappa, while the
models of off-task behavior and gaming use an optimized
form of Kappa by learning an optimal decision (0,1) thresh-
old using the training set of each respective fold within the
cross validation. Higher values of either metric are indica-
tive of higher model performance with AUC values at 0.5
and Kappa values at 0 indicating chance performance.

The results of each model is reported in Table 1. Com-
pared to the models utilizing machine learned features, the
expert-engineered features lead to notably higher perfor-
mance across all the outcome labels in regard to both AUC
and Kappa. When comparing the performance of the mod-
els using the machine-learned expert features (our proposed
third feature set), the difference in performance is not as
dramatic, but leans in favor of the expert-engineered fea-
tures leading to superior models. By contrast, the machine
learned expert features led to models that outperform those
using expert-engineered features in regard to off-task behav-
ior in terms of both AUC and kappa and is equal in regard to
detecting gaming in terms of AUC, but appears to perform
less well in detecting student affect.

Despite the small number of cases where the models trained
from expert-engineered features did not outperform the oth-
ers in either AUC or Kappa, these models exhibited consis-
tently high performance in both metrics across all outcomes.
It can further be concluded that co-training led to higher
AUC than the non-co-trained variant of each detector. This,
however, was not always the case in regard to Kappa, where
the co-trained models of gaming and affect using expert-
engineered features exhibited notably lower values.

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 510



4. FUTURE WORK
Among the detectors, it was found in some cases that there
was disagreement between the metrics used; the co-trained
model of affect exhibited higher AUC than the non-co-trained
model, but a lower value of Kappa. Previous work has ex-
plored this case across several commonly-applied metrics [4],
but further work is needed to further explore and leverage
modeling techniques to produce detectors that exhibit high
performance across all these metrics.

The use of the highest-performing models across each of
these detectors can also be used in future research to study
other aspects of student learning. This extends beyond the
already-discussed application in predicting student longer-
term outcomes, and includes the study of other aspects such
as the dynamics and chronometry, studied using affect de-
tectors in prior work [6].

5. CONCLUSIONS
This work investigates whether expert-engineered features
lead to higher performing detectors of student affect and
disengaged behavior as compared to using automatically-
distilled features learned through a machine-learning ap-
proach. We found that the use of expert features led to
the most consistently high-performing models. Using co-
training led to even better models in most cases.

The use of expert-engineering to develop features, while per-
haps more difficult in regard to time, effort, and likely cost,
does appear to lead to greater benefits than simply applying
a machine learning model to automatically distill features
from the raw data, based on the results found in this work.

6. ACKNOWLEDGMENTS
We thank multiple current NSF grants (ACI-1440753, DRL-
1252297, DRL-1109483, DRL-1316736, DGE-1535428, OAC-
1724889,OAC-1636782 & DRL-1031398) , the US Dept. of
Ed (IES R305A180401, R305A120125 & R305C100024 and
GAANN), and the ONR.

7. REFERENCES
[1] R. Baker, J. Ocumpaugh, and J. Andres. Bromp

quantitative field observations: A review. R. Feldman
(Ed.) Learning Science: Theory, Research, and
Practice, In Press.

[2] R. S. Baker, A. T. Corbett, and A. Z. Wagner. Human
classification of low-fidelity replays of student actions.
In Proceedings of the Educational Data Mining
Workshop at the 8th International Conference on
Intelligent Tutoring Systems, volume 2002, pages
29–36, 2006.

[3] A. Blum and T. Mitchell. Combining labeled and
unlabeled data with co-training. In Proceedings of the
eleventh annual conference on Computational learning
theory, pages 92–100. ACM, 1998.

[4] N. Bosch and L. Paquette. Metrics for discrete student
models: Chance levels, comparisons, and use cases.
Journal of Learning Analytics, 5(2):86–104, 2018.

[5] A. F. Botelho, R. S. Baker, and N. T. Heffernan.
Improving sensor-free affect detection using deep
learning. In International Conference on Artificial
Intelligence in Education, pages 40–51. Springer, 2017.

[6] A. F. Botelho, R. S. Baker, J. Ocumpaugh, and N. T.
Heffernan. Studying affect dynamics and chronometry
using sensor-free detectors. pages 157–166, 2018.

[7] R. Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[8] D. J. Hand and R. J. Till. A simple generalisation of
the area under the roc curve for multiple class
classification problems. Machine learning,
45(2):171–186, 2001.

[9] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[10] Y. Jiang, N. Bosch, R. S. Baker, L. Paquette,
J. Ocumpaugh, J. M. A. L. Andres, A. L. Moore, and
G. Biswas. Expert feature-engineering vs. deep neural
networks: Which is better for sensor-free affect
detection? In International Conference on Artificial
Intelligence in Education, pages 198–211. Springer,
2018.

[11] J. Makhlouf and T. Mine. Predicting if students will
pursue a stem career using school-aggregated data
from their usage of an intelligent tutoring system. In
Educational Data Mining 2018, pages 533–536, 2018.

[12] J. Ocumpaugh, R. Baker, S. Gowda, N. Heffernan,
and C. Heffernan. Population validity for educational
data mining models: A case study in affect detection.
British Journal of Educational Technology,
45(3):487–501, 2014.

[13] L. Paquette, R. S. Baker, A. de Carvalho, and
J. Ocumpaugh. Cross-system transfer of machine
learned and knowledge engineered models of gaming
the system. In International Conference on User
Modeling, Adaptation, and Personalization, pages
183–194. Springer, 2015.

[14] L. Paquette, A. de Carvahlo, R. Baker, and
J. Ocumpaugh. Reengineering the feature distillation
process: A case study in detection of gaming the
system. In Educational data mining 2014. Citeseer,
2014.

[15] Z. A. Pardos, R. S. Baker, M. O. San Pedro, S. M.
Gowda, and S. M. Gowda. Affective states and state
tests: Investigating how affect throughout the school
year predicts end of year learning outcomes. In
Proceedings of the Third International Conference on
Learning Analytics and Knowledge, pages 117–124.
ACM, 2013.

[16] M. O. Pedro, R. Baker, A. Bowers, and N. Heffernan.
Predicting college enrollment from student interaction
with an intelligent tutoring system in middle school.
In Educational Data Mining 2013, 2013.

[17] M. O. San Pedro, J. Ocumpaugh, R. S. Baker, and
N. T. Heffernan. Predicting stem and non-stem college
major enrollment from middle school interaction with
mathematics educational software. In Educational
Data Mining 2014, pages 276–279, 2014.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

[19] R. J. Williams and D. Zipser. A learning algorithm for
continually running fully recurrent neural networks.
Neural computation, 1(2):270–280, 1989.

511 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)


