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ABSTRACT: The computational cost of describing a general quantum system fully {g,0}

coupled by anharmonic interactions scales exponentially with the system size. Thus, an
efficient basis representation of wave functions is essential, and when it comes to the
large-amplitude motion of high-dimensional systems, the dynamic bases of Gaussian
functions are often employed. The time dependence of such bases is determined from
the variational principle or from classical dynamics; the former is challenging in

~ wavefunction

implementation due to singular matrices, while the latter may not cover the configuration

space relevant to quantum dynamics. Here we describe a method using Quantum Trajectory-guided Adaptable Gaussian
(QTAG) bases “tuned”—including the basis position, phase, and width—to the wave function evolution, thanks to the
continuity of the probability density in the course of the quantum trajectory dynamics. Thus, an efficient basis in configuration
space is generated, bypassing the variational equations on the parameters of the Gaussians. We also propose a time propagator
with basis transformation by projections which lends efficiency and stability to the QTAG dynamics, as demonstrated on

standard tests and the ammonia inversion model.

1. INTRODUCTION

The importance of the quantum-mechanical (QM) effects
associated with nuclei is gaining recognition in chemistry and
physics, as researchers manipulate matter, light, electric, and
magnetic fields at the atomistic level to develop advanced
materials and molecular structures with desired properties. A
few recent examples of experimentally observed nuclear
quantum effects (NQEs) in molecular systems include the
dependence of optoelectronic properties of the poly(3-
hexylthiophene) /phenyl-C61-butyric acid methyl ester hetero-
junction on the hydrogen/deuterium substitution of the
polymer," isotope effects on the proton conductance in low-
dimensional boron nitrides and silicon-based structures” and
on crystallinity of poly(3-hexylthiophene),” polymerization of
benzene under pressure,” and the spin response of aluminum
tris(S-hydroxyquinoline).5 Generally, the NQEs are most
prominent for light nuclei at low temperatures, when the
typical energy of a process is comparable to the separation
between the vibrational energy levels of chemical bonds.

The quantum behavior of the nuclei is governed by the time-
dependent Schrodinger equation (TDSE) with a (possibly
time-dependent) potential,

. P e
Hy(x, t) = th—y(x,t), H=T+V
w(x, t) latW(x ) 1)

For a particle of mass m (descrAibed here for simplicity in one
dimension), the Hamiltonian H is a sum of the kinetic and
potential energy operators, T and V,

o VEVE) @

The potential V will be referred to as the “classical” potential.
The time dependence of V will be omitted, but it is not a
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limitation of the formalism. The gradient symbol will be used
throughout to indicate differentiation with respect to x: Vf :=
Of(x, t)/0x.

Computational efforts of describing a general (ie.,
anharmonic) fully coupled quantum system scale exponentially
with the system size due to the inherent structure of quantum
mechanics (as argued, for example, in ref 6). Therefore, an
efficient basis representation of wave functions is essential for
the studies of high-dimensional molecular systems. There is a
number of established approaches to solve eq 1 for the nuclei
by explicit wave function time propagation, such as the split-
operator/fast Fourier transform (SOFT), the Chebyshev
propagator expansion, or the iterative Hamiltonian diagonal-
ization.” "' Beyond low-dimensional systems, however, there
is no standard approach of generating a wave function
representation which would remain accurate and practical in
the course of dynamics involving large-amplitude motion.

The conventional direct-product finite basis or discrete
variable representations, even with efficient truncation and
contraction schemes, are impractical, if not unfeasible, for exact
full-dimensional descriptions of systems of more than five
atoms (nine spatial dimensions)."* Therefore, general
approaches of generating correlated representations tailored
to the evolving wave function and the desired “outputs” of a
calculation—which may include observables, correlation
functions, and spectra of acceptable accuracy—are highly
sought after. Despite the generally exponential scaling of the
TDSE solutions with the system size, modest-size bases
adapted to the wavepacket time evolution may be adequate for
obtaining, for example, low-lying energy eigenstates or a
medium resolution spectrum.
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Over the years numerous efforts have gone into the
development of exact QM dynamics utilizing the time-
dependent bases, as well as approximate and semiclassical
dynamics methods, which are not reviewed here for brevity.
The most accomplished exact QM dynamics approach,
balancing computational cost and accuracy, is the multi-
configuration time-dependent Hartree method (MCTDH),
which employs contraction of a general basis to single (or a
few) particle functions according to the time-dependent
variational principle."*™"® The Gaussian-based version of the
MCTDH—the variational multiconfiguration Gaussian ap-
proachm_lg—is most similar to the dynamics method
presented here, which employs the quantum-trajectory guided
adaptable Gaussian (QTAG) bases. Other relevant Gaussian-
based approaches are mentioned in the upcoming sections. In
general, Gaussian functions are heavily used in quantum
dynamics, because a Gaussian wave function (or a Gaussian
multiplied by a polynomial) solves the TDSE for a locally
parabolic potential. Moreover, the harmonic oscillator model is
the foundation for the normal-mode analysis of molecular
vibrations, and a time-dependent Gaussian wavepacket is
frequently used to describe a spatially localized nearly-classical
particle. Mathematical properties of Gaussian functions
(localization in coordinate and momentum spaces, analytic
integrals, Gaussian quadrature, etc.) are also appealing from
the practical point of view. The ever-growing efficiency of the
electronic structure calculations and advances in the potential
energy surface (PES) construction (such as the product
representation'”’ and fitting/interpolation methods>"**)
makes evaluation of the potential matrix elements over a
Gaussian basis practical and enables on-the-fly wavepacket
dynamics.>***

In the remainder of this paper, we describe an exact
quantum dynamics approach utilizing flexible Gaussian bases,
specified by adjustable “width” (spatial localization), position,
and linear phase parameters, whose time dependence is guided
by quantum trajectory dynamics, rather than by the variational
principle. The formal connection between the variational
principle and quantum trajectory dynamics is given in Section
2. Details of implementation are given in Section 3, followed
by several numerical examples and discussion in Section 4.
Section S gives a summary and an outlook.

2. ADAPTABLE GAUSSIAN BASES GUIDED BY THE
QUANTUM TRAJECTORIES

To streamline notations, the formalism is presented for a one-
dimensional system using atomic units, ie, A = 1. Its
generalization to many dimensions is given in Appendix D.

2.1. Wave Function Representation in the Time-
Dependent Basis. In order to solve the TDSE 1 in
coordinate space, a wave function y(x, t) is represented in a
generally nonorthogonal basis of N, functions, {g;}, where j €
[1, N,]. At time t, the wave function is expressed as a
superposition of these functions,

N,

plx, t) = D (g (x, 1)

j=1

(©)

with ¢; denoting the expansion coefficients. The latter can be
arranged as a vector ¢ with elements ¢y, ¢,, ..., cy;- The jth basis
function depends on time through N, parameters enumerated
by the index @ € [1, Np]. We will consider the Gaussian basis

functions (GBFs),

. a. 1/4 a.
gj = g}(x, /’l](t)) = (;}) eXP(—;l(x - q]')z
+ lp](x - ‘1;) + lsj) 4)

each specified by a list of parameters, arranged as components
of the vector /,,

Z}(t) = (u]., qi’ Pj; Sj)T (3)

For simplicity, let us assume that N, does not change in time
and that N, is the same for all basis functions. The time
derivative of such a basis function is equal to

6gj N
— = A.,0g.
ot az::l 1a%ja

G
e g

(6)

ag = —
" Ok )

The time dependence of the expansion coeflicients is obtained
by substituting eqs 3 and 6 into the TDSE 1 and minimizing
the error functional ¢,

¢ = / By — 10y /ot dx,
x€ER

(8)
with respect to dc¥*/dt, which yields the matrix equation
dc
1IS— = (H —iD)¢
a =D ©)

Minimization with respect to dc;/dt gives a redundant system
of equations complex-conjugate to eq 9. Above and
throughout, S is the overlap matrix,

Sjl = <g}|g1> (10)
and H is the Hamiltonian matrix,
Hy = (ngHIgl) (11)

The nonhermitian matrix D accounts for the time dependence
of the basis functions,

N,
Dy = Z <gj|/11aag,a>
a=1 (12)

The initial value for ¢ at ¢ = 0 is given by the expansion of y(x,
0) in a basis,

2(0) = ST E@)ly(x, 0))

with the elements of g(x) being the GBFs.

The choice of the time dependence of the basis functions,
i.e,, of the parameters /Ii(t),j € [1, N,] (eq S), determines the
accuracy and conservation properties of the dynamics. As
shown, for example, in ref 25, the normalization of the wave
function evolved according to eq 9 is conserved regardless of
the basis completeness or time dependence. The total energy,

E = (y(x, t)|Hly(x, t)) (14)

is conserved in three cases: (i) for any time-independent
(stationary) basis; (ii) for a time-dependent basis with
parameters determined variationally; and (iii) for a basis with
arbitrary time-dependence, which is complete in a sense of

(13)
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representing w(x, t). Thus, the norm conservation can be used
to monitor the numerical accuracy of propagation, and the
energy conservation indicates the basis completeness.

Out of the variational GBF methods the Gaussian MCTDH,
or the frozen-width Gaussian MCTDH, are the most
developed.14‘26_28 It has been noted, however, that the
variational equations on the Gaussian parameters are ill-
conditioned, and the solutions may become physically
nonintuitive with time and are challenging to converge
numerically.'®*® Overall, the combination of Gaussian
functions representing the spectator modes with the variation-
ally determined contraction of conventional bases (which is
the original MCTDH) describing the active modes has been
found more robust and enabled challenging high-dimensional
applications.'”'%3°

As an alternative to variational GBFs, a number of the
quantum dynamics methods, including nonadiabatic dynamics,
based on nonvariational GBFs have been developed.®' > The
GBF parameters typically come from the positions and
momenta of classical or Ehrenfest-type trajectories. Of
particular relevance here is dynamics based on the coupled
coherent states (CCS),**™>* which follow classical trajectories
sampling the phase space. The advantage of the methods with
predefined time-dependence of the basis functions is that the
variational eq 9 for the expansion coeflicients alone is much
easier to implement numerically compared to the full set of
variational equations. The disadvantage is the usual concern for
quasi- and semiclassical approaches: certain regions of space
relevant to the exact quantum evolution may be inaccessible to
the classical trajectories, as is known to happen in tunneling
processes. The fully variational GBFs interact and “exchange”
energy through the coupled equations of motion, allowing
some of the trajectories to reach the classically forbidden
regions.m39 To address this issue, we therefore consider GBFs
inspired by the quantum trajectory (QT) formulation of the
TDSE,**~* summarized in Appendix A. The most relevant
features of the QT dynamics are: (i) the QT momentum is
defined by the wave function phase evaluated at the QT
position g, p = Varg(y(x, t))|x=qt; (i) the QTs interact via

the quantum potential of eq 60, formally generating all
quantum effects including tunneling and interference; and (iii)
the QT dynamics satisfies the continuity of the probability
density p = ly(x, t)1%,

b _ W

dt m (15)

Equation 15 implies that an ensemble of the QT positions can
be interpreted as an “optimal” time-dependent grid whose
points follow the flow of the probability density in time.

2.2. Time Dependence of the GBF Parameters. Now
let us turn to the variation of the error functional with respect
to the GBF parameters (loosely following the notations of ref
30). For simplicity, for each GBF the variational procedure
here includes the first three parameters from eq 5,

ﬂjl = ﬂj, /1]2 = q}, 213 = pj, ] S [1, Nb] (16)
arranged into a single vector K,
A= (alr qI; Pl; ay, ‘12; Pz; s aNb’ qNb) PNh)T (17)

Each GBF is centered at the trajectory position q;; p; specifies
the linear-in-x phase. Note that, generally, p; # mg; All

20

parameters, including the GBF width, a; are real functions of
time. Going back to the definition of the GBF, the last element
in 4; of eq S is an x-independent phase, s, which can be
combined with ¢, Therefore, its time dependence cannot be
derived from the variational principle. The role of s; is to
reduce the temporal oscillations of ¢, which improves stability
of the time propagation as shown, for example, in ref 39. In the
QTAG dynamics s; naturally emerges from the equations of
motion as the action function along a trajectory. )

Given d¢/dt of eq 9, minimization of eq 8 with respect to 4,
for j € [1, N,] leads to the following equations of motion:

Ry

dt (18)

The size of the matrix B and vector Y is equal to the total
number of the GBF parameters included in the variational
procedure; in this presentation, this size is 3 X N The
elements of the matrix B and vector Y are

B, = Rpy (S — [8“Vs7's)))

(19)
Yja =7 Z pjl(H}(IaO) _ [s(ao)s—lH]ﬂ)
] (20)
where
%
Ppi=6a (21)

The use of R and 7 seen in eqs 19 and 20 and throughout the
remainder of this work refer to the real and imaginary
components, respectively, of the relevant arguments. The
remaining matrices are the counterparts to S and H with the
parameter derivatives dgj, replacing some of the GBFs:

(a0) ,_ 3
Hji™ = (g, [Hg)) (22)

a aff
S\ = (og Jg),  S§P = (og log,)

To emphasize the physical meaning of the solutions to eq 18,
we will rewrite B and Y using the resolution of identity in the
basis, i.e., the operator [,

(23)

1:=1g)s7'(gl (24)
and the unit matrix I:
By = R(P,-,[(ai, QI-II® 02,;)1;1) (25)
Y, = 1| ). pl(G, ® L -1l ® Hg),
1 (26)

The formal solution to the variational eq 18 depends on the
structure of the operator I — | which defines the subspace of
functions complementary to that covered by the given basis.
Thus, the system of eqs 18 is numerically ill-defined/singular
when the GBF is large/complete in a sense of representing
w(x, t) or, in other words, when the error functional 8 is
insensitive to the GBF variations. The problems and some
ways to mitigate them are reviewed in ref 30. We will, however,
focus on another solution to eq 18, when each g approaches
the exact solution to the TDSE,

1 Z angl,, = Hg
p (27)
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ie, in the regime when g is localized on the scale of the
anharmonicity of V(x) and of the wave function amplitude.
The time dependence of such functions has a physical
interpretation in terms of the quantum trajectory dynamics,
as argued below.

Consider a normalized GBF (a, > 0),

a 1/4 a
glx, t) = (;’] exp[—?t(x -q)" +18(q,)
S//
18— q) + S g

(28)

which approximately solves the TDSE for the classical
potential V(x). The phase of g(x, t) is the quadratic expansion
of the wave function phase,

S(x, t) = arg(y(x, t)) (29)

S"(q,)

S(x, t) » S(q,) + S'(q)(x — q,) + (x—q)
(30)

The GBF parameters in eq 28 are real functions of time

indicated by the subscript. Substitution of eq 28 into

N o
g_l(Hg - z—g] =0
ot (1)
gives a complex equation whose imaginary part yields the
following equations of motion for g; and a,,

S'(q,) 28"(q,)

q, = r A= a

m m (32)

As shown in Appendix B, in the Lagrangian frame-of-reference

(d/dt = 9/0t + 4,V), for any V(x), the real part of eq 31 can
be recast as

ds _ (VS
— = -V - U
dt 2m () = Gl (33)
where the potential-like term U,
2 2
a;(x—q) g
U = -4 —
b ) 2m 2m (34)

is consistent with the quantum potential (eq 60) associated
with a Gaussian wave function of the form of eq 28. Thus,
identifying the phase gradient with the QT momentum,
VSIx:q‘ =p (eq 63), eq 33 is equivalent to the quantum

Hamilton—Jacobi eq 66. The ensuing trajectory equations of
motion,

t

K

o B= V(U + V)Ix=qt (35)
define the quantum (or Bohmian) trajectory {q, p.}.
Therefore, we argue that the “locally optimal” GBF parameters
are consistent with the QT dynamics.

The time-dependent GBF discussed above is related to the
well-known thawed Gaussian wavepacket (TGWP).* The
TGWP, which is an exact solution to the TDSE for a locally
parabolic V(«), is a Gaussian of the form given by eq 28, except
that its phase is quadratic in x, effectively making its width
parameter complex. The evolution equations for the TGWP
parameters form a closed set involving the Hessian of V(x)."*

21

The TGWP center moves classically; its overall phase S,
however, has a contribution due to the quantum potential
through the last RHS term of the evolution equation,

dS(q) p’

at

2m (36)

At the Gaussian center, g, the quantum potential (U, of eq 34)
generates zero quantum force and is reduced to the time-
dependent constant Ug(qt) = a,/(2m). Even though the TGWP
describes exact QM dynamics in a parabolic potential, use of
multiple thawed Gaussians as basis functions has been found to
be impractical due to their complex “width” parameters;
depending on the Hessian, a, may become negative, resulting
in a non-normalizable GBF. Moreover, the integration of
Gaussians with quadratic phase requires careful sign tracking.
Consequently, most exact or semiclassical Gaussian-based
dynamics methods utilize frozen Gaussians with a time-
independent real width parameter.45’46 In QTAG dynamics we
employ Gaussian basis functions of real width whose evolution
depends on the wave function rather than on the Hessian of
V(x) directly. The GBF phase is restricted to be a linear
function of x; thus, the GBF overlaps and other matrix
elements are straightforwardly computed. The linear phase and
time dependent width are both optional; bases consisting of
real frozen GBFs guided by the quantum trajectories provide a
more numerically robust (at the expense of a larger basis size)
option.47

To summarize, the equations of motion for the parameters
of the adaptable GBFs of eq 4 are

dt 2m

V(q,

P’
5= ﬁ - V(g) - U(q)
(37)

and the multidimensional generalization is given in Appendix
D. The right-hand sides in eqs 37 are given by the log-
derivative of y(x, t), z;

2a
, a

2 .
J =

Vi (x, t)
-

=
x, t
vio ) by (38)
and its gradient. The real and imaginary components of z;
define the classical and nonclassical momenta p; and r,
respectively,

p=VS(g) =I(z) 1= VI(A)) = R(z)

(39)
Note that while Vp, defines the evolution of 4; and Vr; is
needed to evolve the phase s; (through eq 62 defining U)), only
p; is required to evolve the main parameter, which is the GBF
center ¢;. (Recall that s, introduced to reduce oscillations of
the expansion coeflicients, is altogether redundant and can be
set to zero or taken as the classical action function.) Moreover,
use of an approximate z; does not introduce approximations
into the formalism, although the resulting basis is not
guaranteed to be as efficient as the one tracking the probability
density flow along the exact QTs. In fact, when describing
dynamics with interference, the exact QT's are known to be
numerically unstable; however, since a superposition of GBFs
captures such behavior, one simply needs to get the GBFs to
the “right place at the right time” to maintain an accurate
description of the system. Therefore, in practice we use a
modified z; (employing a low-order polynomial fitting or
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Gaussian convolution to act as low-pass filters) to evolve the
GBF parameters according to eqs 37, generating guiding
trajectories that are smoother and more stable then the exact

QTs (Section 3.2).

3. NUMERICAL IMPLEMENTATION

In this section we describe the time propagation algorithm and
procedures essential to the implementation of the QTAG
dynamics.

3.1. Propagation Employing Basis Orthogonaliza-
tion/Basis Transformation. The time evolution of the
expansion coeflicients, governed by eq 9, involves analytic time
derivatives of the GBF parameters and the nonhermitian
matrix in the right-hand side. To solve the coupled eqs 9 and
37 we have adopted the following time propagation scheme,
which combines wave function time evolution in the energy
eigenstate representation with basis transformations. A time-
dependent wave function represented in a static nonorthogonal
basis (eqs 3 and 4) is constructed from solutions to the
generalized eigenvalue problem:

HZ = SZ&E

The elements of the Hamiltonian (H) and overlap (S)
matrices—both hermitian—are given by eqs 11 and 10,
respectively. The diagonal matrix & contains the energy
eigenvalues, 81-}- =g, while the columns of the matrix Z give

(40)

the Hamiltonian eigenvectors in a basis g. The eigenvectors
satisfy the following relationships:
77 =§7!

7'sz =1, (41)

For the sake of derivation, let us divide the total propagation
time into equal time intervals of length 7. The use of variable
time intervals does not change this propagation algorithm. To
describe the GBF time dependence, we will use the superscript
(k) to label the basis (and any object evaluated in that basis)
corresponding to the kth time interval. For example, the GBF
of eq 4 at t = kr is

g = g(x L (ke))

and so forth. The superscript (0) will denote the initial basis
and related objects at time ¢ = 0. The time evolution over the
kth time interval, i.e,, t = [z(k — 1),7k], is comprised of two
conceptual operations: (i) propagation of a wave function in
the energy eigenstates defined in the “old” basis g and (ii)
an update of the GBF positions and, possibly, other parameters

(42)

in A according to the local behavior of the wave function y/(x,
k).

(i) For a wave function y(x, t) represented in the basis g
according to eq 3, the expansion coefficients _E(k)(t) are related
to the projection vector b(k)(t) as

20 = sy 50,

where E(k)(t) = (§(k)(x)|ll/(x; t)) (43)

Starting with t = 0, i.e,, k = 0, the updated wave function y(x,
’l'() )in the old basis g© is given by the expansion coefficients
“(z),

2O() = k5"

(0)

where K denotes the propagator matrix and its subscript
indicates the time increment 7,

(44)

22

K =29 exp(—1807)(2) (45)

The exponential term in eq 45 is a diagonal matrix with
nonzero elements exp(—iel-r) for j = [1, N,]. The superscripts
T and T throughout indicate the transpose and conjugate
transpose, respectively.

(i) Given w(x, 7), the new momenta p; are computed
according to eq 39 at qj(o) , and the GBF positions are updated
(in the simplest way) as g") = g + p;t/m. These GBFs form
the new basis g'". To complete the first time interval, ie.,
evolution from ¢ = 0 to t = 7, the basis change is incorporated
via the transformation matrix T("*) with elements

1

T,(ll’o) = (g].( )lgl(o)) (46)
The expansion coefficients ¢V)(7) in the new basis, minimizing
the basis representation error of y(x, 7), are

E(l)(r) — (s(l))—lT(LO)g(O)(T)

where _E(O)(T) are given by eq 44. After propagation over K time
intervals the wave function at t = Kz becomes

K
w(x, Kr) = (g’(K—l))T[H K(Tk—l)T(k—l,k—Z)
k=2

(47)

K5(0)

(48)
The flow of the propagation algorithm is sketched in the right-
hand side loop in Figure 1. Additional details are given in
Appendix C.

Calculate
D) (L) ()
Project ¥’ /
onto new basis *\ \
Solve :
17 o sze Update A**V
from A
Determine PROPAGATION
new A
(RE)EXPANSION
Calculate ¢(¥) Update A from
Blace new atnew ¢ = (k+1)r new ¥(z,(k+1)7)
basis

;KT

\ Determine

bounds on v

Figure 1. Time evolution algorithm: (left) steps of the expansion, or
reexpansion, of a wave function in a basis; (right) time propagation
with basis orthogonalization and transformations (BOT). A
simulation begins at the t = 0 label, completes the left (red) loop,
and propagates along the right (black) loop until a reexpansion
criterion is met—at which point the (re)expansion branch is again
taken—or the simulation completes. See text for the reexpansion
criteria.

The primary advantage to the diagonalization step (i) is that
use of the energy eigenstates enables much larger time steps
compared to straightforward integration of eq 9 via Runge—
Kutta-type methods as has been done previously.” Another
advantage is that the wave function can be reconstructed at any
moment of time within the intervals 7 and used to compute
desired output, e.g, correlation functions, or assess basis
completeness on a time scale shorter than 7. To achieve the
latter and adjust 7 accordingly one can also monitor the wave

DOI: 10.1021/acs.jctc.9b00844
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function energy and norm conservation upon the basis
transformation at the end of each propagation cycle.
Conservation of the wave function normalization, N = (yiy),
and total energy, E = = (ylHly), depends on the basis
completeness at the transformation step. Over each time
interval 7, i.e., for each k, the wave function norm and energy
are obviously conserved since the GBFs are static. Employlng

eqs 47 and 46, N and E represented within the bases g and
3V after a single time step are
N = (E(l))’f(s(l))—lg(l) = (¢ (0))T<->(0)
1 ® §(0)>€(0) ~ (TOf sz = N(O) (49)
D — (3(0))+<§(0) ® VY @ §(0)>€(0)
~ (E’(O))TH(O)E'(O) — E(O) (50)

The operator 10" denotes the resolution of identity in the
basis g! ) defined by eq 24. The norm, energy, and expansion
coefficients in eqs 49 and 50 are evaluated at t = 7. The
approximate equality in both eqs 49 and S0 becomes exact in

the complete basis limit, i.e., as IV 1, where I is the unit
matrix of the size N§". By extrapolatlng the relationships above
to all time slices, it is evident that both the energy and the wave
function norm are conserved to the extent that the chosen
basis yields an accurate representation of the true wave
function. The error associated with the basis incompleteness

depends on the closeness of 14D ¢ the unit matrix I of the

ﬂ(k+l) _ I>

same size, specifically, as ( for the wave function

norm, and as (1Y — 1)?) for its energy.

Finally, at the basis transformation step (ii) the wave
function can be reexpanded in a new basis (Section 3.3) that
has been changed discontinuously, including all the GBF
parameters and the basis size as sketched in the left-hand-side
loop in Figure 1.

3.2. Updating the GBF Basis. The main challenge
inherent to the GBF evolution as defined by eqs 37 is the
numerical stability of the trajectories upon which the basis
functions are centered. Conceptually, these QT are tied to the
shape of the wave function: the density of Bohmian paths is
high where the wave function density is high and
correspondingly lower where the wave function density is
lower. In the former case, the close proximity of the paths can
cause the basis overlap matrix S to become singular. Another
problematic scenario arises when considering the nodes of the
wave function: the QT's passing close to the nodal regions will
have large, rapidly changing instantaneous momenta leading to
propagation errors and breakdown. At the same time, if one
considers quantum motion which is largely confined within a
limited region of space, a static basis is likely to provide the
best practical representation despite significant interference
exhibited by the wave function.

In both cases, to preserve the essence of the QTs—updating
the GBFs according to the probability flow—while addressing
the instances of numerical instability, we define the trajectory
momenta at g, using w(x, t) and its derivatives over the region
of space centered at g, rather than simply using their values at
qr There are several options for this modification. The
momenta can be defined from a wave function (eq 3) or
convoluted with a Gaussian as in ref 47. Alternatively, they can
be computed at the GBF centers and fitted to a low-order
polynomial function or convoluted with the Gaussian kernel.

23

The output of either procedure is then used to advance the
GBF center and other parameters in time. The convolution
acts as a low-pass filter of the Bohmian momenta, specified by
the parameter S, and controls the propagation stability. The
order of the polynomial is the counterpart to # when fitting
(which can be performed on the entire space or on the
trajectory centered subspaces) is used.

For a Gaussian convolution, the log-derivative z; (eq 38) is
computed from y(x, t) defined in a basis, and the result is
averaged with a window function wg,

Wgjp += eXP(_ﬁ(ql - ‘1]-)2) (51)
The resulting modified classical and nonclassical momenta, P
and 7 are

Zl I(Zl)wﬁjl = Zl R(Zl)w/}jl
Yoy P (52)

The trajectory is updated as q;(t + 7) = q;(t) + pjz/m. The
quantum potential in eq 37 is determined by using 7 in eq 62.
We estimate the remaining term (Vr;), the linear GBF phase
(p;), and the time increment of g; (dependent on Vp,) from the
global least squares fit (LSF) to V(ln w). The hnear -in-x fit is
exact for a Gaussian wave function. A few other fitting schemes
have been considered, e.g., defining the momentum from a
convoluted wave function and performing the linear fit
localized by a Gaussian window function of eq 51. In both
cases, for a Gaussian wave function characterized by the width
7, the relative error in the fitting coefficients is ~(y/f + 1)™". In
our experience so far, these schemes did not offer numerical
advantages or superior accuracy for the dynamics, but this
result may be application-dependent.

3.3. Wave Function Reexpansion. As mentioned
previously, the basis description of the wave function—
including all parameters listed in eq S and their total number
N,—can be instantaneously modified during any basis
transformation step (ii) of Section 3.1. These reexpansion
processes are used to extend the accuracy and efficiency of the
basis representation to longer simulation times and can be
initiated whenever the current basis becomes an inadequate
representation of the total wave function. Conceptually, these
situations can occur because the trajectories upon which the
GBFs travel are not exactly quantum (see eq 52, for example)
but merely QT-inspired. In addition to this, the basis can also
become incomplete if the wave function becomes very disperse
relative to the basis width parameter—which is itself somewhat
width-limited by the harmonic approximation to the
potential—and a larger total number of GBFs is needed to
fill in the “holes”.

There are three main questions that accompany the wave
function reexpansion procedure, and the manner in which each
is addressed can vary with the system that is being studied.
These questions are, in the order they are encountered in a
simulation: (i) when to initiate reexpansion, (ii) how to place
the new basis functions, and (iii) what criteria are used to
determine when the wave function is sufficiently represented in
the new basis (i.e., when to stop the reexpansion process).

The simplest solution to (i) is to perform reexpansions
regularly at predefined time intervals and to test sensitivity of
the results to the frequency of reexpansions. However, because
this approach is inherently insensitive to the underlying wave
function dynamics, time may be wasted performing needless
reexpansions if the simulation is already stable. Alternatively,

f}=
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Table 1. System, Initial Wavefunction, and Basis Parameters”

system
potential m
harmonic oscillator: V = kx*/2
k=1 1.0

anharmonic bath: V = Ei:mD(exp(—C(xx -x)) - 1)+ KE}. qu (% = %) (% — %)

D =0.1743, x, = 1.4, ¢ = 1.0435, k = 0.1
. 4 2 N 2
Wu—Batista model: V = bx,' + bx + 21:2 (/2 + xxp;_)

925.0

by = 0.0461459, b, = —0.5, k = 0.2 10
NH; double well: V = by + ba’+ by

by = 0.008566, b, = —0.03139, b, = 0.02875 5508.0
NH; coupled mode: V, = kxy + ky*/2

b, = —0.03139, b, = 0.0287S, k = 0.1893, k = 0.007181 3671.0

wavepacket basis
Y X, P, N, aly Pe
0.8 1.0 1.0 15 8 10712
9.16 1.3, 1.4, 1.4 0.0 7, 107, 843 7 1073
0.5 -2.5, 0.0 0.0 17 x 2N 4,23 107°
24.8 0.7 0.0 19 8 10710
12.0 0.0 0.0 11 7.5 1071

“All quantities are listed in the atomic units. In the anharmonic bath model the three values of X, refer to the wavepacket centers in dimensions 1,
2, and 3, respectively; the three values of N, refer to one-, two-, and three-dimensional calculations.
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Figure 2. QTAG dynamics of the harmonic oscillator: GBF (a) widths, {a,}, and (b) positions, {qj}, are given in atomic units; times of the largest
wave function spreading are marked with dashed vertical lines over the first period of motion in each panel. (c) The real parts of the expansion
coefficients for two selected GBFs with the overall phase factor s; included (black solid line, vertical scale on left) and excluded (red dashed line,
vertical scale on right) from the GBF definition; (d) total energy for several combinations of the adjustable GBF parameters specified in the legend.

the wave function energy throughout the dynamics may be
monitored, as deviations indicate basis incompleteness. The
total energy is an easily computed global criterion, although a
more sensitive marker for system stability, which we find highly
useful in NH; tunneling (Section 4.4), is to monitor the energy
change, dE/ dq]-, due to displacements of the fringe trajectories.
This parametric derivative, which is a force acting on the GBF
center,

dE _ dE/dt
dq}, dq]_/dt

(83)

can be computed numerically throughout the simulation (we
use the third-order backward finite difference method).
Conceptually, when this value is large, the total energy is
sensitive to the movement of the jth GBF; we interpret this to
mean that the regions near the edge of the GBF-populated
space (specifically, near the jth GBF) are becoming important
to the description of the system, and additional GBFs may be
needed to ensure a sufficient density of GBFs in the relevant
area.

(ii) Several reexpansion strategies have been proposed in the
literature, such as Matching Pursuit®® and Basis Expansion
Leaping,”” based on the reduction of the residual error in the
new basis from the detailed analysis of the target wave function
or its residual. In another two methods, namely, the short-time
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trajectories’’ and the moving grid boundary method,”" the
basis is adjusted according to the anticipated motion of the
wave function. The first three schemes have been developed
for the GBF dynamics, while the latter adjusts the conventional
equidistant grid according to the Bohmian momentum at the
grid edges. In this work, we propose a simpler approach for
high-dimensionality systems: new GBF positions, {q;}, are
generated through some quasirandom sampling method and
are accepted/rejected depending on the probability density at a
point, which should exceed a predetermined cutoff density, p,,

ly (g, OF > p (s4)
This approach does not involve optimization of the GBF
parameters and can incorporate importance sampling
techniques” or recently developed quasi-regular grids.”” The
width parameters {a;} can be taken equal to the original GBF
value or be commensurate with the density of {qi}, provided
the local harmonic approximation to V remains accurate. The
GBF momenta {pi}, if used, are defined from the wave function
as described in Section 3.2. The initial phases {sj} are set to
zero. This random sampling of the wave function has been
shown to exhibit good scaling in ref 54 for time-independent
bound problems; it is applied in this work to the anharmonic
bath model of Section 4.2. In the future we intend to combine
information about existing GBF positions, probability density,
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and the wave function flux analysis, ie., the Bohmian
momenta, and quasi-regular grids to generate new bases
without loss of the wave function norm due to poor old/new
basis overlaps, an issue of concern in high-dimensional
applications.

(iii) The sampling is finished when the norm and the kinetic
energy of the reexpanded wave function match the old values
within certain tolerances. Checking for norm conservation
alone is insufficient, and comparing the total energies of the
two wave functions is more computationally expensive due to
the potential matrix evaluation. Numerical comparison of the
local wave function gradients can also be used as a check for
completeness; this criterion is likely to be more accurate but
also more computationally expensive.

4. APPLICATIONS AND DISCUSSION

To illustrate the QTAG method, we consider wave function
dynamics in several model potentials. The initial wave function
is taken as a Gaussian wavepacket in each case,

1/4
v, 0) = (2] explpto = X + s = %)
(83)

or, in multiple dimensions, as a product of such wavepackets.
Parameters of the potentials, initial wave functions, and bases
are summarized in Table 1.

4.1. Dynamics with Fully Adaptable Gaussian Bases.
First, we consider dynamics of the harmonic oscillator. For the
conditions specified in Table 1, the initially displaced
noncoherent Gaussian wavepacket exhibits both oscillatory
and breathing motions. The wavepacket is represented by 15
GBFs, equally spaced within the range of ly(x, 0)I* exceeding
the threshold value p, = 107! The GBF parameters are
evolved according to eqs 37 with the time step of 7 = 0.01 au.
The adaptable GBFs have up to four parameters {a;, g; p;, s;}
for j € [1, N,], representing the width, center position, linear
phase, and overall phase, respectively. The time dependence of
the GBF widths and positions is shown in Figure 2. For a
Gaussian wavepacket characterized by the quadratic-in-x phase,
the momentum is linear in x and its gradient is constant. Thus,
the GBF widths {a;}, shown in Figure 2a, exhibit the same time
dependence for all functions; in this example {a;} changes by a
factor of 4. The GBF centers {%} (Figure 2b) change their
spacing following the expansion and contraction of the
probability density and are updated according to the momenta
determined by the fit of z (eq 38) to linear functions—a
procedure which is exact for a Gaussian wavepacket. Note that,
for fully converged simulations, this means the {g;} are
identical to the quantum trajectories regardless of whether {a;}
and {p;} are kept constant or adapted to the evolving wave
function. The overall GBF phases {s}-} do not affect the basis
completeness; their role is to reduce the oscillatory behavior of
the expansion coefficients {c;}, which enables larger time steps
during propagation. This effect is seen in Figure 2¢, which
displays the real part of ¢; for two selected trajectories.

The effect of the “QT-optimized” GBF parameters on the
basis completeness is assessed from the system energy, shown
in Figure 2d for four combinations of the time-dependent GBF
parameters. All four calculations employ identical bases of 15
GBFs at t = 0 and are shown for up to 20 au of time (about
three oscillation periods). The most accurate energy
conservation is achieved by employing GBFs with time-
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dependent {a; g; p; s;} (black curve). Inclusion of the linear-
in-x phase p;(x — ¢;) in the GBFs improves the representation
of the high-energy components of w(x, t), which is especially
useful in describing the overall translational motion. Its impact
is seen by comparing calculations performed with (black
curve) and without (red curve) this phase; in the latter case the
energy quickly drops and never recovers, signaling inadequate
basis representation. Similar behavior is seen when the GBF
width is subsequently frozen (blue curve). Interestingly, the
calculation with adjustable width and without the linear GBF
phase yields oscillatory total energy (green curve). This
behavior is explained by the “holes” between the GBFs
developing as the QT's reach their maximal spread. To better
illustrate this behavior, we have examined the effect of the basis
parameters on the basis completeness through the energy time
dependence and its correlation with the nearest-neighbor GBF
overlap, shown in Figure 3. The energy conservation (Figure

—— (15,051, a(1)

a) i (15,0.51,6.4)

= (19,039,64) & —0.57
i o (19,0.51,64)
(15,0.51,4.8)

energy [E, ]

time [a.u.]

Figure 3. QTAG dynamics of the harmonic oscillator: (a) total
energy and (b) the nearest neighbor GBF overlap as functions of time
for the bases specified in the legend. The number of basis functions
N,, the initial GBF spacing Aq = g;,; — ¢, and width g; are listed as
(N, Ag, a;). The GBF widths are frozen except for the curves labeled
“a(t)” in the legend (thin black lines): for these results the time
dependence of a(t) is given by eq 37 for a(0) = 6.4a,7%

3a) is worst at the maximal separation of the GBF centers,
which correlates with the drop in the GBF overlap shown in
Figure 3. GBFs that are wider (magenta dashed line) or more
densely spaced (green dashed line) improve the energy
conservation, while adaptable a; (black line, same time
dependence as in Figure 2a) compensates for the trajectory
spreading altogether.

The effect of various combinations of time-dependent
parameters on the simulation stability is evaluated via the
conservation of the wave function normalization for prop-
agations implemented using both the Runge—Kutta-type
integration of eq 9 and the basis orthogonalization/trans-
formation (BOT) algorithm of Section 3.1. The standard
deviation of the wave function normalization over time t = [0,
10] au for the propagation time step of 7 = 0.001 au is listed in
Table 2, using the system parameters given in Table 1. In seven
out of eight cases the BOT propagation is more accurate; the
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Table 2. Standard Deviation in the Wavefunction
Normalization during the Dynamics Performed by
Integration of Equation 9 and Using the Basis
Orthogonalization/Transformation Procedure”

H0) integration time slicing
(a,9,p,5) 1.13 x 107* 9.09 X 1077
(a, g, 5) 9.74 x 107* 6.73 x 107*
(g 3) 5.19 x 107° 2.74 X 1074
(g 9) 324 x 107* 5.406 x 107
(a, 9 p) 423 x 107 7.07 x 1077
(a4 q) 3.67 x 1073 1.62 x 107*
(¢ p) 432 x 1073 273 x 107*
() 4.18 X 1073 2.501 x 107*

“The final propagation time is 10 a.u. with a time step 0.001 a.u. for
all calculations of the harmonic oscillator system specified in Table 1.
The time-dependent GBF parameters, A(t), are listed in the first
column.

largest improvement (by a factor of over 100) is seen for the
fully converged basis with time-dependent {aj, 95 pj}. We also
note that inclusion of {s]-} improves the conventional
integration scheme (the standard deviation is reduced by a
factor of S), rather than the BOT scheme. The reason is that,
within the latter, the overall phase effect is included analytically
over each time slice.

The basis completeness for the four combinations of time-
dependent GBF parameters, namely, {aj, 9y p]}, {qj, pj}, {aj, qj},
and {g;}, has been tested for the Morse oscillator mimicking
the H, stretch (the parameters are the same as those of the first
coordinate of the “anharmonic bath” entry in Table 1). For the
system initially displaced from equilibrium by 0.1 4, the best
energy and norm conservation during the dynamics with seven
basis functions was obtained for real GBFs with adaptable
width ({aj, q}}). This result is consistent with our general
observation that, while the GBFs with QT-consistent width
and linear phase yield more efficient wave function
representation, (i) for realistic potentials the variations in
{a} will be limited by the accuracy of the local harmonic
approximation invoked to compute the potential energy matrix
elements, and that, overall, (ii) propagation with real frozen
Gaussians is numerically more robust, due to the real nature of
their overlap and Hamiltonian matrices.

4.2. Model Anharmonic Bath. The scalability of the
QTAG method in higher-dimensional systems is investigated
using systems of coupled and uncoupled Morse oscillators in
one, two, and three dimensions. The oscillator parameters are
listed in Table 1 under the “anharmonic bath” entry. The initial
wave function is a Gaussian of appropriate dimensionality
centered at the minimum of the well with the exception of the
first dimension, which is displaced by 0.1 a, toward the
repulsive wall. The initial basis functions are distributed
uniformly according to the appropriately scaled quasirandom
Sobol sequence. An accept—reject criterion based on the wave
function density then determines whether a basis placement is
accepted; the parameter N, is thus determined on-the-fly by
stopping placement when a normalization condition is met.
The initial displacement X, is taken to be exclusively in one
dimension for all systems presented; coupling between the
dimensions (in the coupled scenarios) is of the form
V(x,, xj) = KZ], ZK]. (x, — xe)(x]- — x,), where k¥ = 0.1 E,a5%

The simulation durations of t = 1300 au capture about two
periods of motion. The bases are of frozen width and fully real,
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with initial sizes N}, = 7, 107, and 843 for one, two, and three
dimensions, respectively. Ultimately, no reexpansions were
necessary in any of the systems.

Simulation accuracy can be tracked through the energy
eigenvalues; the time-averaged values of the first four levels in
each system are presented in Table 3. For the uncoupled cases,

Table 3. Average Energies of the First Four States for the
One-, Two-, and Three-Dimensional Morse Oscillator
Systems®

exact [E,]
level uncoupled ~ QTAG [E,] uncoupled ~ QTAG [E;] coupled
1D
0 —0.16619 —0.16613 + 3 X 1075 —
1 —0.14742 —0.1467 + 0.0005 —
2 —0.12977 —0.126 + 0.003 —
3 —0.11325 —0.102 =+ 0.007 —
2D
0,0 —0.33238 —0.33233 £ 3 X 1075 —0.33240 = 2 X 10™°
L0 —0.31361 —0.31354 + 6 X 1075 —0.3162 + 0.0002
0,1 —0.31361 —0.3133 + 0.0004 —0.3108 + 0.0002
L1 —0.29484 —0.2956 + 0.0003 —0.2998 + 0.0006
3D
0,0,0 —0.49858 —0.49853 + 2 X 1075 —0.49873 + 4 X 107°
,0,0 —0.47980 —0.47976 + 2 X 1075 —0.48260 + 4 x 10~°
0,1,0 —0.47980 —047973 £ 3 X 1075 —0.48252 + 7 X 10~°
0,0, 1 —0.47980 —0.47964 + 0.0002 —0.47512 + 6 X 107°

“The uncertainty terms reflect the standard deviation of each quantity
throughout the course of the simulations. The listed exact QM values
are the analytic solutions to the uncoupled oscillator problem.

the agreement between the QT AG and analytic values extends
to two or three decimal places in each entry. In the scenarios
with coupled degrees of freedom, we also track the energy as it
flows between dimensions, as seen in Figure 4. This type of
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Figure 4. (a) Average positions (au) and (b) mode energies as
functions of time for the three coupled Morse oscillators described in
Table 1. The legend applies to both panels: “QTAG” labels results
obtained using 843 GBFs; “SOFT” labels results for modes 2 and 3,
obtained using 262 X 10° equidistant grid points, which are
indistinguishable on the graph.
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behavior is typical in describing molecular vibrations, as a
vibration that becomes excited through some external process
can dissipate its energy into other appropriately coupled
modes. The basis scaling is similar to that of a static basis/grid
description of an anharmonic system. As mentioned in Section
4.1, adding a time-dependent basis width improved the overall
simulation stability in one dimension; however, because no
reexpansions were triggered in the frozen cases, its inclusion
would not reduce the number of basis functions needed
throughout the propagation. Thus, we have used real frozen
GBFs for the two- and three-dimensional calculations.

4.3. Multidimensional Dynamics with Tunneling. In
the anharmonic bath model of Section 4.2, the basis size scales
essentially as a fixed-grid basis because the wave function
remains rather localized in space. The target systems for the
time-dependent bases, however, are those exhibiting large-
amplitude motion coupled to bath modes representing a
molecular environment. Usually, such systems are modeled by
one (or a few) challenging mode(s) coupled to multiple
harmonic bath modes.

Therefore, the scaling of a quantum dynamics method with
system size is typically tested on a condensed-phase model
comprised of a double well potential coupled in some fashion
to a bath of harmonic oscillators; see, for example, models I
and II of refs 55 and 56 and models I-III of ref 50. To gauge
the performance of the QTAG approach in this regime, we
examine model I of Wu and Batista (referred to as “Wu—
Batista” in this work), which consists of a wide double well
linearly coupled to a chain of harmonic oscillators (see Table
1). This model has been used to illustrate both classically
driven GBF dynamics and the basis expansion leaping
approach®**** for systems containing up to N = 20 degrees
of freedom.

We find that, within our current QTAG implementation, the
bath modes can be represented by two frozen basis functions
per dimension, thanks to their coherent wavepacket character.
Based on dynamics for N = 2, 4, and 6, the basis scaling is N, =
n,2N"! where n, is the number of basis functions used for the
double-well dimension and N — 1 the total number of bath
modes. We anticipate—and plan to test in the future—that
even larger bath sizes can be treated if the GBF positions in the
bath modes are updated according to the classical force, which
is correct for Gaussian wavepacket dynamics in a quadratic
potential.

Figure S shows the “reactant/product” correlation functions
C(t) = (w(—=x, 0)ly(x, t)), computed for the Wu—Batista
model with one, three, and five bath modes (N = 2, 4, and 6,
respectively). The total simulation times of 100 au capture the
wave function transfer from the left to the right well in each
case. A visual comparison of the top panel of Figure 5 with the
bottom panel of Figure 1 in ref 55 shows qualitatively similar
frequencies in R(C(t)) and magnitudes in C(t). Figure S also
shows that the 2D system becomes less stable than its 4D and
6D counterparts as the simulations progress. This trend is
typically attributed to the more pronounced quenching of
quantum coherences due to energy redistribution across the
modes of larger bath models. However, this instability seems to
have only a minimal impact on the quality of the computed
tunneling correlation function; the microstructure of IC(¢)l
presented in Figure 5 deviates from exact SOFT values, but the
overall tunneling is captured qualitatively. Furthermore,
because the 2D system is still relatively small, a calculation
using a larger basis in the bath dimension is also feasible. To
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Figure 5. Tunneling correlation functions for the Wu—Batista systems
in two (top), four (middle), and six (bottom) dimensions. The solid
black lines show the magnitudes IC(t)| of the correlation functions,
while the red dashes represent their real components R(C(t)). Also
shown for the 2D case are QTAG results using a larger basis (n, = 11)
in the bath dimension (green circles) and exact QM values computed
using the SOFT method (blue squares).

this end, results using a 17 X 11 grid of basis functions are also
presented in Figure S and are in better agreement with the
exact values, as is expected. These simulations have been
performed using the BOT algorithm; their propagation
stability is illustrated in Figure 8.

4.4. Inversion of Ammonia and Vibrational Mode
Dynamics. The inversion mode of ammonia, a vibration in
which the three hydrogen atoms undergo a synchronous
wagging motion across the nitrogen center, is both well-known
and well-studied.”*~" The source of this phenomenon resides
with the quantum nature of the hydrogen nuclei themselves;
due to their relatively light masses, they are able to tunnel
between the equilibrium Cj;, geometries, through the energy
barrier of about 22.5 kJ/mol corresponding to the planar
transition state. The simplest PES describing this motion can
be represented by a one-dimensional double-well potential
along the tunneling coordinate, which, combined with the
coordinate-dependent mass, successfully reproduces both the
gap between and splittings of the ground and the first excited
state energy levels to within fractions of a wavenumber.’’ This
model is thus both chemically relevant and challenging for the
trajectory-based dynamics methods, despite its one-dimen-
sional character. We use V(x) represented by a quartic
polynomial®® and compare the QTAG calculations to the
conventional time-dependent quantum calculations obtained
with the SOFT method""** on an equidistant grid. The energy
spectrum is calculated via the Fourier transform of the
autocorrelation function C(t), which for an initially real wave
function is computed as C(t) = {y*(x, t/2)ly(x, t/2)). At time
t = 0, the wave function is taken as a Gaussian wavepacket of
eq SS.

The system and wave function parameters are listed in Table
1. At t = 0 the wave function is localized in the right-hand-side
well, and its energy of 2.88 X 107> E, is about 1/3 of the
barrier height, meaning that the classical motion over the
barrier top is indeed suppressed. The energy level splitting for
the lowest and second lowest pairs of eigenstates are around 3
and 150 microhartree.

The QTAG calculations are performed with real frozen
Gaussians, so the only time-dependent parameters of eq 5 are
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Figure 6. NH, inversion model. (a) GBF positions over the course of dynamics beginning with 19 functions. The initial wave function is localized
in the right well (positive y values) and tunnels to the left. The dashed and dotted-dashed lines indicate the edge trajectories. (b) Probability
density lyl* at t = 2000 au obtained from the fixed-grid/SOFT and QTAG propagations. Zoomed-in view of the left well and barrier regions is
shown in the inset. The potential scaled along the vertical axis is shown as the dashed line in panel (b).

the basis positions {q)-}. As mentioned earlier, this choice trades
efficiency in the basis for numerical stability. Multiple
simulations were initialized with 15—19 basis functions to
represent the starting wave function and propagated for ¢t = 800
au with the time step 7 = 1 au. The wave function
reexpansions, employing a uniform grid of GBFs, were
performed by tracking the quantity JE; = dE/dg; for the left-
most and right-most trajectories, as seen in eq 53. When JE; for
either trajectory exceeded a predefined value f, the
reexpansion process was initiated. In the case of ammonia
tunneling, we prefer tracking the energetics relative to these
edge trajectories because they are more sensitive to the wave
function time evolution than the total energy alone. The
number of reexpansions somewhat varied between simulations,
although by t = 600 au the basis size invariably grew to N, &
60 in each case. As evident from the top panel of Figure 6, this
increase is necessary for the NH; system—particularly when
using frozen Gaussians—as the wave function becomes highly
dispersed relative to its initial state. The total energy is used to
monitor basis completeness and numerical stability during the
dynamics and reexpansions; this quantity was conserved within
20 microhartree for the numerical value f, = 0.001 chosen by
trial.

The use of the BOT algorithm seen in Section 3.1 has been
essential in generating C(t) of sufficient accuracy and length to
resolve the tunneling splittings. The time evolution according
to eq 9 using a popular Runge—Kutta integrator used for the
QT-guided dynamics previously’’ required a 1000-times
smaller time step and, for stability reasons, fewer GBFs. Still,
the accuracy of the wave function in the left well was lower; the
tunneling splittings could not be resolved, even with the
harmonic inversion of the signal, though the ground state
energy itself was quite accurate. The energy levels obtained
with the new propagator and with SOFT QM calculations,
given in Table 4, are in excellent agreement. A comparison of
the probability density at the final time ¢ = 2000 au is displayed
in Figure 6b: the low amplitude features outside the right well,
shown in the inset, are essential to capture tunneling. In this
regard, the challenge in the QTAG scheme is to generate
trajectory dynamics which takes basis functions across the
barrier despite their low initial energy. The propagation with a
starting basis consisting of 19 GBFs is quite stable through ¢ =
2000 au, as evidenced by the conservation of total energy to
within 1%. By the final time, the basis size increased to 81

28

Table 4. Inversion Mode of Ammonia”

level fixed-grid [E;] QTAG [E,;]
0* 2295 x 1073 2295 x 1073
0” 2298 X 1073 2297 X 1073
1" 6.348 x 1073 6.348 x 1073
1- 6.504 x 1073 6.503 x 1073

“The ground and excited state energies were obtained from the SOFT
and QTAG (19 GBFs) methods.

GBFs, although we note that for this system the basis could
have been kept static past t = 800 au (N, = 74), when the wave
function became delocalized over both wells.

Finally, we have implemented a two-dimensional model
where the tunneling coordinate is linearly coupled to a
harmonic oscillator with a force constant derived from the
frequency of the H-N—H bending motion and an effective
mass of approximately twice the reduced mass of NH (see
Table 1). The wave function in the oscillator direction is
centered in the quadratic well and is essentially coherent.
Initially, the density threshold p, for basis placement is taken to
be the same as in the 1D simulations; p, is increased by S
orders of magnitude in the subsequent reexpansions. This
prevents an explosion in the number of basis functions used
because of the increased dimensionality, while having little
impact on the accuracy of the calculation at large. In fact, the
initial p_ is taken so small in order to have reasonable spacing
between the basis functions during reexpansions of the
delocalized wave function at later times (the grid-based
reexpansion procedure used preserves the initial basis function
spacing). Propagation for t = 800 au is achieved with seven
grid-based reexpansions occurring at 100 au intervals, and the
basis size has changed from 103 to 269 GBFs; the resultant
wave function, shown in Figure 7, is in good agreement with

the SOFT result.

5. CONCLUSIONS

In this paper we have presented an approach to quantum
dynamics built upon the coevolution of a wave function in a
basis comprised of time-dependent Gaussian functions and the
underlying Bohmian-like trajectories upon which they are
placed. Unlike methods based on the variational definition of
the GBF parameters or on the classical motion of the GBF
centers, we argue that efficient representation of a time-
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1

Harmonic Coordinate (ag)

Tunneling Coordinate (a,)

Figure 7. Heat map of the 2D NHj system computed for the QTAG (top) and SOFT (bottom) methods. The values shown on the contours in the
top panel apply to the bottom panel as well and represent the relevant probability densities; note that they must be scaled nonlinearly to map the
full range of Iy?l in one image. The underlying color coding is a visual aid to interpolate between the contours and ranges from black (lyl = 0.0) to
red (ly?l = 6.0). The resolution in the bottom panel is restricted by the number of points used to compute the wave function in the fixed grid

method.

dependent wave function is achieved when the GBF dynamics
is linked to the conservation of the probability density in
coordinate space, which is the central feature of the quantum
trajectory formulation of the TDSE.

Indeed, the connection between the wave function and
GBFs is apparent by considering the time dependence of the
GBF parameters; their positions and widths change according
to their momenta and its gradient, respectively, which in turn
are determined by the wave function phase. Furthermore, an
overall “quantum” phase may also be assigned to each GBF
which reduces oscillatory behavior of the basis expansion
coefficients and improves stability of the numerical imple-
mentation. Altogether, this describes exact quantum dynamics
which employs QT-guided Adaptable Gaussian (QTAG)
bases. The conceptual advantages of the proposed method
are that (i) it does not rely on the variational equations of
motion for the GBF parameters, known to be singular in the
complete basis limit; (ii) the proposed formulation couples the
guiding trajectories through the evolving wave function, which
in principle, unlike classical trajectories, reaches all regions of
space relevant to quantum processes, including tunneling
processes; and (iii) the time-dependent GBF width reduces the
basis size required to describe dynamics of dispersing wave
functions compared to popular frozen GBF methods. We also
note that dynamics is essential to keep the GBF width real, i.e,,
to limit the GBF phase to be linear in coordinates; this in turn
avoids the known problems of thawed GBF dynamics.

The QTAG dynamics shares certain problems with the
Gaussian MCTDH and Coupled Coherent Gaussians
methods, including the numerical stability issues related to
solving the coupled equations of motion for the GBF
parameters and expansion coeflicients, the expense of
evaluation of the potential energy matrix elements, and the
sensitivity to sampling of initial wave functions in high
dimensionality. Fortunately, the commonality of these
problems suggests that the QTAG method can both take
advantage of and contribute to the solutions developed in the
dynamics community. To alleviate the numerical stability issue,
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we have developed the basis orthogonalization/transformation
(BOT) algorithm, based on the eigenstates of the Hamiltonian
expressed in a static nonorthogonal basis paired with
transformations describing the basis “adaptation” over time.
The latter may include the basis time dependence driven by
the QT dynamics, as well as wave function reexpansions to
augment or prune the basis according to changes in the
underlying probability density. Ultimately, this propagation
scheme has been very useful for describing strongly
anharmonic motion and tunneling dynamics in a double
well; however, traditional integrators are likely to be more
efficient in the nearly classical regime of translational motion.
We note that the QTAG method could be further tuned by an
adaptable time step for more robust basis/wave function
coevolution and made more efficient by implementing
correlated GBFs for high-dimensional systems. Other
applications of the QTAG method we intend to pursue
include nonadiabatic and mixed quantum/semiclassical
dynamics, which is efficient for chemical processes involving
a large-amplitude motion of system fragments coupled to a
molecular environment, or even time-dependent external
potentials.

B APPENDIX A: QUANTUM TRAJECTORY
DYNAMICS

The Madelung—de Broglie—Bohm, also referred to as the
hydrodynamic or QT formulation of the TDSE,****** is based
on the polar representation of a complex wave function,
expressed in terms of real amplitude A(x, t) and phase

S(x, t),

wix, t) = Alx, t) exp(éS(x, t)) (56)

Substitution of the ansatz 56 into the TDSE 1 leads to the
following time dependence of the wave function phase S and
the probability density p:
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px, t) = ly(x, ) = A* (57)
9% _ Llvs_v-vu

ot 2m (58)
dp VS V'S

=TV - =

ot m m P (59)

The time-dependent function U = U(x, t) denotes the
quantum potential, as opposed to the classical potential V,
B v
2m A

For convenience, we also give an equivalent form of U in terms
of the nonclassical component of the momentum operator,

(60)

VA
r(x, t) = — (61)
e hz 2
U:=— - (r* + Vr) (62)

Equation 62 expresses U in terms of r(x, t), which can be
estimated from fitting, interpolation, etc. on par with p(x, t) in
numerical implementation schemes.

To highlight the physical meaning of eqs 58 and 59, we
define the momentum function

P(x; t) = VS(xl t) (63)

Evaluated at the trajectory position g, the latter gives the
trajectory momentum p,,

dg, 1
=VSl,_,, —=-—
AT Ty T (64)
Switching to the Lagrangian frame-of-reference,
d o B
—=—+—=V
d ot m (63)

one obtains the quantum Hamilton—Jacobi equation for S,
and the continuity equation for p, along the QT:
2

as, _

=— —(V+U)l_
dt 2m ( )x‘qr (66)
d __n
— = 2 Vp(x, t) _
i G (67)

The time evolution equation for the momentum of the
trajectory g, completing Newton’s equations of a QT, is
derivable from transforming the gradient of eq S8 into the
Lagrangian frame-of-reference according to eq 65,

dp

=-V(V+ V)l

As seen from eq 66, in the QT formulation all quantum effects
in dynamics of y(x, t) come from the quantum potential U
given by eq 60. On one hand, U = U(x, t) is, in general, a
nonlocal time-dependent function responsible for the
exponential scaling of quantum mechanics in the QT
formulation of TDSE.*> On the other hand, U vanishes in
the classical limit of infinite mass or 7 — 0, which suggests that
the QT dynamics of the nuclei (which are heavy quantum
particles) may be interpreted as classical dynamics with
quantum corrections.’>®’
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The efficiency of the QT description of a wave function
follows from eq 67, according to which p within the volume
element Sx of each trajectory is conserved,®®

(q,)8q, = p(q,)d4q, (68)

Thus, a single QT ensemble accurately representing w(x, 0)
will provide an adequate representation of y/(x, t) at all times.
The catch is that the numerical implementation of eq 66 is, in
general, impractical: U becomes singular as y(x, t) — 0.
Another interpretation of exact QT's is that they define a time-
dependent grid, self-adjusting for optimal representation of a
specific w(x, t).

Bl APPENDIX B: QUANTUM HAMILTON—-JACOBI
EQUATION FOR A QTAG FUNCTION

Substituting a Gaussian g(x, t) of eq 28 with real parameters a,,
gy Py S into the TDSE and dividing by g(x, ) (eq 31) gives a
complex equation whose imaginary part results in the following
relationship:

_ S'(q) _ 25%(q)
%= m %= m & (69)
The real part of eq 31 can be written as
(S8(q))  (S"(g)x—-q)) .
Ux) + Vix) — 2 2 PE T 50)
§ 2m 2m t
) S"(q)
+8()x - g) + —x—q)
where
a; (x — qt)z a,
U - _
() o om ()

Equation 71 is consistent with the general definition of the
quantum potential (eq 60) applied to a Gaussian g(x, t). The
S-containing terms in eq 70 can be simplified using the time

derivative of the Taylor-expanded S(x, t) (eq 30),

X . . S” 2
% - 8(g) + S0 — )+ B
- thS(x, t) (72)
where
VG 1) = S (81(0) + 87 - )
4V S(x, £) = — q, q)(x — q, (73)

Using eqs 72 and 73 and switching to the Lagrangian frame-of-
reference, d/dt = d/0t + ¢,V, eq 70 becomes

) + v 4 05 4 8@+ @6 - a))
o g ot Py
g + v + B - T

dt 2m (74)

Expression 74 is equivalent to the quantum Hamilton—
Jacobi equation,

ds(q) P’

=Lt _(U+V)l_
2m ( )x_ql

dt (75)
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Table S. Wavefunction Propagation Procedure with Basis Transformations®

operation
start solve HZ = SZ&
(i) propagate by ©
(ii) define new basis
(iii) solve HZ = SZ&
(iv) transform to g,
v) “observables”
(vi) relabel new as old and t + 7 as t

Ny
i=1

“Definitions: w(x, t) = Y.

input output
HS ¢t diagonal &, Z, §7! = Z.Z7
bt Z(t+ 1) = 2 ZB(1), b(t) = SE(t)
Zoid Ziew Huew Snew
Hoewr Suew S

br ?; §nm éﬂld
g HS

new &, Z, new

buew = Ty znew=5n_eivbmw
w(x, £), (wHiy) = THE etc.
continue to (i) or stop

c(t)g,(x), b= @y, ¢ = S5, where § = (¢®¢). The basis transformation matrix T = (g,,,,,&¢,4)- The time increment

7 does not need to be small, as long as g adequately represents y throughout 7.

once the trajectory momentum is identified as the QT
momentum (eq 63), as

p=VSl_, =51q) (76)

Equation 75 defines the time evolution of the wave function
phase along the quantum (or Bohmian) trajectory {q, p.},
evolving according to

k
D

m

p=-V({U+ V)Ixzqt

qt t (77)

Therefore, we argue that the locally variational GBF
parameters are defined by the dynamics of the QT attributes
summarized by eq 39.

B APPENDIX C: PROPAGATOR FOR THE
NONORTHOGONAL BASIS

The wave function propagator in a static nonorthogonal basis
(egs 3 and 4), is constructed from solutions to the generalized
eigenvalue problem

HZ = SZ& (78)

The elements of the Hamiltonian H and of the overlap matrix
S are given by egs 11 and 10, respectively. The diagonal matrix
& contains the energy eigenvalues, 8}-]- =g, while the columns

of the matrix Z give the Hamiltonian eigenvectors in a basis g.
The eigenvectors satisfy the following relationships:

7Z'sz=1 1277 =s§" (79)

Propagation within the static basis g by ¢ updates the expansion
coefficients as

() = ye(o) (80)
where the matrix
U, = Ze9Z's (81)

is the nonorthogonal basis propagator. Using properties 79,
propagation over t; followed by propagation over t, is

U, U, = Ze ¢ 7isz2¢7007fs = 2,780tz = ¢
t, ot ——

ttt,
1
(82)
A forward/backward propagation over t is a unit matrix,
U_ U =2782:797's = 228 = 1
N—— ——
I s (83)

Notice that the Hamiltonian is assumed to be unchanging
across the interval t; + t,.
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Using superscripts to label distinct bases, the basis
transformation from g%~V to §*) is described by the matrix,

T](lk,k—l) _ (gj(k)lgl(k—l)>

(84)
The expansion coefficients are transformed accordingly:
7® = (W) tpkk-De(-1) (85)
Combined with the time propagation by 7,
Ot + 7) = v
= 708z ® 1 plk=Dz(=1) 1)
K (86)

from which eq 48 follows. The matrix K® is the propagator of
eq 45 in Section 3.1. The steps of the propagation algorithm
are summarized in Tables S and 6.

Table 6. Basis Propagation Procedure as a Supplement to
Entry (ii) of Table 5

operation input output eq
(a)  calculate trajectory  ¢(t + 7), z(t) z~ Vy/y 38
momentum
(b)  update positions q(t),d = I(z)/m q(t +7) 37
(c)  update widths a(t), a(t+ 1) 37
a=-2V(I(2))/m
(d)  update overall s(t), s(t + 1) 37,
phases V(q), R(z), V(R(z)) 62
(e)  define linear phases z p(t+7):= 39
1(2)

“The sets of parameters A(t) and A(t + 7) correspond to the bases g,y
and g, respectively. The log-derivative z is a smoothed “fit” to Vy/
¥, w computed in a basis. The linear GBF phase is equal to p(x — q).
Entries (b—e) may be performed in any order.

Note that this style of propagation is equivalent to trajectory
dynamics with a standard integrator in the limit of increasingly
frequent projections; this equivalence, coupled with the
statements contained in the concluding paragraph of Section
3.2, indicates that the degree of basis overlap throughout a
QTAG simulation is a two-component issue related to both
the time step taken between projections and the quality of the
trajectories themselves. To this end, we monitor the normal-
ization of the wave functions used across multiple simulations
in various dimensionalities and find that—for the model
problems presented—the QT character of the trajectories is
sufficient to preserve basis overlap even with increasing
dimensionality (see the top panel of Figure 8). The degree
to which the normalization decays is instead largely a function
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Figure 8. Normalization conservation as a function of the first 30 au
of simulation time for the high-dimensionality Wu—Batista model 1
systems. The black line with filled circles is the same across both
panels. Top: Normalization as a function of increasing number of
degrees of freedom. The rationale for the somewhat poor
conservation in the 2D case is discussed in the text (Section 4.3).
Bottom: Normalization as a function of time step for the largest-
dimensionality system.

of the time step taken between projections, as demonstrated in
the bottom panel of Figure 8. Thus, the remedy for the
decaying basis overlap is, in the systems presented here, the
same as for the standard dynamics case.

Bl APPENDIX D: MULTIDIMENSIONAL
GENERALIZATION OF QTAG DYNAMICS

In d Cartesian dimensions the mass becomes a diagonal matrix

M, the coordinates are given by a vector %, and V denotes a

vector. The GBF function is

ﬂ'd/4

g (% 4(1) = (@eta) exp

1. \raf= =
(-1E-graG -1
>T /= -
+1p; € q}.) + lsj) (&)

The center and linear phase parameters for each jth GBF
generalize to vectors g; and p; and are updated/assigned as

dz

q' — - - - - -1
d_t} =M 1I(z}-), ;i =1E), Z=y 1Vl//|3—c»:qj
(88)
The width a; becomes a real symmetric matrix A
dA.
j = 1>
— ==-2V M A
d ® (M54, (89)

where ® denotes the tensor product. The GBF phase s; evolves
according to

ds, 1
i lory s _u
& MR-V -y (90)
where Uj is the quantum contribution,
1 R, R
U= _E(7J.TM lri +VM 11}), T V(lnh//l)lg:q,
(o1)
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The basis expansion coefficients of y evolve according to eq 9
with the integrals in all matrix elements evaluated over the full
coordinate space.
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