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Abstract: Material ordering and allocation are important decisions for manufactures mak-

ing multiple products, because those firms usually possess flexible production systems which

can produce different products based on the same raw material. In this paper, we investigate

the ordering policy (OP) and allocation rule (AR) of the raw materials for a manufacturer

selling multiple products. The manufacturer’s decision-making problem is analyzed under

three scenarios: (1) joint decisions on OP and AR, (2) fixed AR, and (3) predetermined OP.

We show that the latter two are not special cases of the first scenario, and they require differ-

ent solution methods. Our objective is to derive the optimal solutions analytically. For the

first scenario, we obtain the closed-form solution that is indeed optimal for the nonconcave

profit function. For the fixed AR scenario, the products with twice-differentiable demands

are studied, and the exact optimal OP for the raw material is achieved. Finally, if the OP is

predetermined, we prove that the profit function is concave in AR and provide the associated

optimality conditions, for which the optimal AR can be reached numerically. Different from

the pervious heuristic approaches, these mathematically tractable solutions are easy to be

applied by the practitioners.
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1. Introduction

With the development of modern agriculture, the agricultural companies are forced to man-

age their supply chains more efficiently [1]. According to a call for research in agribusiness

problems [2], a particular challenge faced by the food and agribusiness sector is that how to

appropriately assess and respond to the demand and supply variations, which will affect the

agricultural companies’ costs and profits significantly. Evidentally, in the recent years, the

risk of making and selling agricultural products has shown an increasing trend. According to

the report of World Economic Forum 2009, the low efficiency in the food value chain causes

at least a $100 billion annual loss in the U.S. Essentially, the maximization of total profit

considering the uncertainties is the ultimate goal of modern agriculture, in both developed

and developing economies [3].

For agricultural companies, a commonly seen phenomenon is that a firm, who acts as

a processor, orders a raw material (e.g., meat, corn, and potatoes) from its contracted

suppliers (farms) and uses a flexible production system to turn the single material into

multiple products. One can observe that the agricultural economists have established the

analysis for the production flexibility, which is associated with the farm specialization [4].

Though, the production line provides flexibility in making different products, due to the

demand uncertainty, the firm has to tackle the difficulty in making decisions on the material

order quantity and the production quantities of different products. In practice, a typical

example is the production system of dairy products. The system can utilize a single material,

i.e., milk, to process a variety of dairy products, such as butter, nonfat dry milk, and cheese.

A regular problem faced by the process factory is how to satisfy the uncertain demands of

these dairy products. Similar examples can be found in the agricultural sector, e.g., cotton

can be used to make multiple clothing products with different designs and colors and wheat

is a major ingredient to make bread, porridge, biscuits, and doughnuts. In particular, to

maximize the profit, both material procurement and production planning decisions must be

made based on demand forecast and cost estimation for leftovers or unsatisfied demand. By
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taking the procurement and production issues into consideration, we are motivated to study

the “one-material-multi-product” production system for the related agricultural companies.

In this paper, we examine the process system that manufactures multiple non-substitutable

products. For example, the products such as bread, butter, nonfat dry milk, and doughnuts,

are usually belong to different product categories, which have no downstream competition.

The problem is modelled under a single-period multi-product setting. Under these assump-

tions, we mainly focus on the optimal ordering policy (OP) and/or the allocation rule (AR)

of the raw materials for the agricultural companies. Specifically, we consider three scenarios

for the one-material-multi-product system, i.e., (1) joint decisions on OP and AR, (2) fixed

AR, and (3) predetermined OP. Note that there are three scenarios in total, because the

decisions only have two parts (OP and AR).

In the first scenario, the OP and AR are considered simultaneously and the associated

profit function is assumed to be twice differentiable. The main challenge to obtain the ana-

lytical solution for this scenario is that the profit function is generally not concave. Because

of this, traditional concavity analysis is not applicable. However, we are able to propose

an alternative approach, which derives the optimal solution in closed form for this problem;

For the second scenario, we assume the AR is fixed and the firm should determine the OP

accordingly. The proposed single-variable problem is concave, and the optimal OP can be

achieved by traditional concavity analysis. However, when the demands are bounded, the

problem cannot be separated, for which we discuss the optimal OP for the unbounded uni-

form demand case in detail. To model the third scenario, the OP is predetermined before

making a decision on AR. In this scenario, though the profit function is concave in the AR,

the exact solution method has not been reported in the literature. We first introduce a

Lagrangian multiplier to relax our problem to an equivalent unconstrained version. Unlike

previous research, which solves the Lagrangian relaxation problems via heuristic methods,

we present a sufficient condition that can be used to obtain the optimal AR analytically.

Notice that the firm may not process all of the products in one period, we also study the

firm’s preference in production, which may affect the profit significantly due to the unsat-
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isfied demands. Numerical experiments are conducted to analyze the effects of some key

parameters for different scenarios.

The remainder of this paper is organized as follows. Section 2 briefly reviews the related

literature. A modelling framework of the proposed problem is presented in Section 3, and

the analytical and numerical results for different scenarios are provided in Section 4. Finally,

Section 5 concludes the work.

2. Literature Review

Our paper is closely related to two streams of research, i.e., the agriculture supply chain

management and the multi-item newsvendor models.

In the first stream of research, because of the significant impacts of agricultural economy,

the production and operations issues related to agriculture supply chain have attracted

considerable attention from the academia. For examples, Kazaz [5] examines the production

planning problems of a company that produces olive oil. In that problem, randomness exists

in both demand and yield, for which the sale price and the ordering cost will be affected;

Burer et al. [6] analyze the contract design problems between suppliers and retailers in the

agricultural seed industry to deal with the associated tradeoffs. In particular, Sodhi and

Tang [1] provide some typical examples of agriculture supply chain management, which

are mainly focused on developing countries/regions (e.g., Sri Lanka, Malaysia, Afghanistan,

India, Africa, Philippines, and Bangladesh). Chen et al. [3] introduce an innovative business

model, named ‘e-Choupals’ in India, and investigate its impact on the farmers’ production

decisions. Under the framework of Cournot competition models, Tang et al. [7] discuss the

farmers’ incentives to utilize the free demand information provided by the government. They

also consider the risk of demand uncertainty to derive the corresponding optimal ordering

and supply decisions. Recently, Niu et al. [8] presented the contract choice issues in contract

farming. They studied the agricultural companies’ ordering decisions for two scenarios,

i.e., with and without the farmer cooperative. For a more comprehensive review of the
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agribusiness decision-making problems, the readers are referred to Lowe and Preckel [2].

However, the above-mentioned studies merely consider the single-material or/and single-

product problems. Differs from these articles, we propose to characterize a commonly seen

flexible operation mode in the agribusiness, that is, one-material-multiple-product problem.

In this problem, to improve the profitability, we analyze an agricultural company’s material

ordering and allocation decisions, which have been overlooked by the previous literature.

Methodologywise, we also develop approaches that can be used to obtain the optimums

analytically.

On the other hand, for the second related research stream, i.e., multi-item newsvendor

models, the associated study can be dated back to 1960s, when Hadley and Whithin [9]

introduced a Lagrange multiplier technique with a dynamic programming solution proce-

dure to derive the optimal order quantity in a single-constraint and multi-product setting.

Since then, the problem has been extensively studied by the researchers for decades. For

example, the problem is extended to deal with multiple constraints by Lau and Lau [10],

and an efficient approach is developed to handle the case with a large number of products.

Under a budgetary constraint, when the demand uncertainty can be captured by discrete or

interval scenarios, Vairaktarakis [11] proposes robust models for the multi-item newsvendor

problems. Chen et al. [12] consider a risk-averse newsvendor to deliver some useful proper-

ties from a new perspective. They also compare their results with the classical risk-neutral

newsvendor problems to examine the major differences. Zhang and Xu [13] further develop

a multi-item model with carbon cap and trade mechanism. They derive the optimal pro-

duction policy and carbon trading decisions. In the spirit of Nahmias and Schmidt [14],

i.e., using simple and effective techniques, Erlebacher [15] constructs a model with a single

capacity constraint. The work aims at developing easy-to-implement heuristic procedures to

find the optimal order quantity. In the recent literature, considerable and intensive research

has been devoted to analyzing such problems with different constraints. For example, to deal

with possible production capacity shortage, Zhang and Du [16] study a multi-item newsven-

dor system with zero- or nonzero-lead-time production outsourcing. They characterize the

5



structural properties of the problem and develop algorithms to solve the optimization mod-

els. By incorporating the retailer’s pricing decision and supplier’s quantity discount, Shi et

al. [17] extend the multi-product newsvendor problem and a Lagrangian heuristic method is

developed to seek the solution. Zhou et al. [18] present a Genetic-Algorithm-based approach

to solve the multi-product multi-echelon model. Jarrahi and Abdul-Kader [19] measure the

performance of a multi-product unreliable production line. In the model, they assume finite

buffers between workstations and develop an approximation (which generalizes the process-

ing times) to reduce the variations in the system. A detailed review of multi-product models

and their extensions can be found in Choi [20] and Turken et al. [21].

While, in the aforementioned literature, multi-item newsvendor problem is considered as

a natural extension of the single-product case, where the profit function is separable and

concave for different products. In addition, the solutions of the constrained problems are

all solved by heuristics methods. Thus far, little attention has been paid on the material-

sharing (flexibility) issues in the multi-product system of agricultural companies, and most

of the solution techniques rely on heuristics approaches. This motivates us to investigate an

effective solution technique for such problems. Compared to the previous studies, the main

contribution of our work is that we are able to deliver analytical solutions to the proposed

one-material-multi-product problem, which fills a gap in the literature.

3. Problem Description

3.1. Preliminaries

We consider an agricultural firm that makes multiple products based on the same raw mate-

rial (e.g., a processor firm [22]). The problem is analyzed under the newsvendor framework

with a single-period make-to-stock inventory setting [23]. As a multi-product processor,

before the demands are realized, the firm needs to allocate the material to process differ-

ent products through a flexible production system. In particular, the demands of different

products are independent and non-substitutable, because of their heterogenous properties.
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Table 1: Notation
Variable Description
N Number of products
x Order quantity of the raw material
wi Proportion of the material allocated to product i
pi Price of product i
ci Cost of product i
si Salvage value of product i
bi Backorder cost of product i
ξi Demand of product i (a random variable)
fi(·) Probability density function (pdf) of ξi
Fi(·) Cumulative distribution function (CDF) of ξi
αi Overstock cost structure for product i
βi Shortage cost structure for product i
π Total profit

Figure 1 depicts the operations process for the proposed one-material-multi-product pro-

duction system. Suppose the unit cost of product i, denoted by ci, includes both material

ordering cost c and manufacturing cost mi of product i, and the product is sold at a fixed

price pi. In addition, any unsold stock of product i is worth a unit salvage value si, and bi

is the unit back-order cost for the unsatisfied demand (assume pi > ci ≥ si ≥ 0 and bi ≥ 0).

For the processor firm’s one-material-multi-product problem, our objective is to optimize

the decisions on OP and AR under possible scenarios.

Raw Material 

Supplier

Processor

Firm

Process

1

Process

2

Process

N

Product

1

Product

2

Product

N

Figure 1: Flexible one-material-multi-product production process.
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Because both procurement and production decisions are taken into consideration, to

maximize the firm’s total profit, the key decision variables are the OP and the AR of the

raw material. To assist our presentation, we define a+ = max(a, 0) and a ∧ b = min(a, b)

(∀a, b ∈ R and R is the set of real numbers). The demand of product i is denoted by ξi (a

random variable). Let x ≥ 0 be the material order quantity, wi be the proportion of the

material allocated to product i (i ∈ {1, 2, . . . , N}), and π be the firm’s total profit. We

assume the loss from turning the raw material to the finished product can be ignored, i.e.,

the yield rates are 100% (note that fixed yield rates will not change the solution structure

for this problem). Then, given the decision variables x and wi (i ∈ {1, 2, . . . , N}), the profit

function is formulated as

π =
N∑
i=1

(pi(ξi ∧ wix) + si(wix− ξi)
+ − bi(ξi − wix)

+ −miwix)− cx

=
N∑
i=1

(pi(ξi ∧ wix) + si(wix− ξi)
+ − bi(ξi − wix)

+ −miwix)−
N∑
i=1

cwix

=
N∑
i=1

(pi(ξi ∧ wix) + si(wix− ξi)
+ − bi(ξi − wix)

+ −miwix− cwix)

=
N∑
i=1

(pi(ξi ∧ wix) + si(wix− ξi)
+ − bi(ξi − wix)

+ − ciwix) ,

(1)

where the ith indexed term in Equation (1) shows the profit generated from product i.

Figure 2 illustrates the problem faced by the firm, that is, how to determine the optimal

OP (x) and AR (wi, i ∈ {1, 2, . . . , N}) to satisfy the demands of N different products.

Assuming the firm has some knowledge about the probability distribution (with CDF Fi(ξi)

and pdf fi(ξi)) of the demand for product i, the firm’s expected profit can be expressed as

E[π] =
N∑
i=1

∫∞
0

(pi(ξi ∧ wix) + si(wix− ξi)
+ − bi(ξi − wix)

+ − ciwix) fi(ξi)dξi. (2)

The objective of the firm is to maximize the expected total profit by optimizing the

associated OP and/or AR. Because the agricultural raw materials will be expired soon, we

assume all of the ordered material will be consumed in one period. Then, the optimal
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Figure 2: Order quantity and allocated proportions of raw materials for multiple products.

decisions can be obtained by solving the following optimization problem

max
x,W

E[π]

subject to:
N∑
i=1

wi = 1,

x ≥ 0, wi ≥ 0,∀i,

(3)

where W = (w1, w2, . . . , wN). It is clear that the problem reduces to a classic single-product

newsvendor model with N = 1

max
x≥0

E[π] =
∫∞
0

(p1(ξ1 ∧ x) + s1(x− ξ1)
+ − b1(ξ1 − x)+ − c1x) f1(ξ1)dξ1. (4)

Let αi = pi + bi − si ≥ 0 and βi = pi + bi − ci ≥ 0 be the overstock cost structure and

the shortage cost structure for product i, respectively. The ratio βi

αi
is referred to as the

critical fractile, which is also the optimal service level for product i. For Equation (4), it

is well-known that the profit function E[π] is concave in x. Moreover, the optimal solution

of Equation (4) can be achieved as x∗ = F−1
1 (β1/α1) when the inverse of the distribution

function F1(ξ1) exists.
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4. Optimal Solutions for Different Scenarios

In this section, we consider all possible scenarios for the decision-making process in the pro-

posed system. Because the decisions consist of two parts from procurement and production

departments, there are totally three scenarios, i.e., joint decisions on OP and AR, fixed AR,

and predetermined OP (which depends on the management mode of the two departments).

We discuss the optimal solutions for the three scenarios as follows.

4.1. Joint optimal solutions of OP and AR

Gotoh and Takano [24] develop a model to minimize the conditional value-at-risk for multiple

products. In their model, the order quantity for each product is optimized separately, and

different products are not made from the same material. Clearly, the problem is similar

to the single-product case, in which the firm only needs to make the ordering decision for

each product based on a concave profit function. However, when both the material order

quantity x and allocation mechanism W are considered as decision variables, the problem

reveals different features.

The following simple verification indicates that the profit function in Equation (2) may

not necessarily be concave. For example, if E[π] is twice differentiable, its Hessian matrix is

H(x,W ) =



∂2E[π]
∂x2

∂2E[π]
∂x∂w1

∂2E[π]
∂x∂w2

· · · ∂2E[π]
∂x∂wN

∂2E[π]
∂w1∂x

∂2E[π]

∂w2
1

0 · · · 0

∂2E[π]
∂w2∂x

0 ∂2E[π]

∂w2
2

· · · 0

...
...

...
. . .

...

∂2E[π]
∂wN∂x

0 0 · · · ∂2E[π]

∂w2
N


. (5)

Obviously, the structures of E[π] and H(x,W ) cannot guarantee that H(x,W ) is negative

semidefinite. As a result, the traditional concavity analysis cannot be used for this problem.

However, if we treat wix as a single variable, the problem becomes separable. Thus, we
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are able to tackle the problem and derive the optimal solution in closed form. In fact, if

wix is considered as a single variable, we only need to optimize the subproblems in Equation

(3) simultaneously. Suppose the demand distribution functions are invertible. Then, the

following theorem gives the analytical results.

Theorem 1. If Fi(ξi) is invertible, i ∈ {1, 2, . . . , N}, the joint optimal decisions of OP and

AR are 
x∗ =

N∑
i=1

F−1
i ( βi

αi
),

w∗
i =

F−1
i (

βi
αi

)

N∑
i=1

F−1
i (

βi
αi

)

, i = 1, 2, . . . , N.

Proof: Let gi(x,wi) =
∫∞
0

(pi(ξi ∧ wix) + si(wix− ξi)
+ − bi(ξi − wix)

+ − ciwix) fi(ξi)dξi,

Equation (3) can be rewritten as

max

{
N∑
i=1

gi(x,wi) :
N∑
i=1

wi = 1, x, wi ≥ 0,∀i

}
.

If we treat wix as a single variable, the problem becomes separable and is equivalent to

N∑
i=1

max{gi(xi, wi) : xi, wi ≥ 0,∀i}. (6)

It is easy to know that Equation (6) is a separable maximization problem for which the

optimal solution can be obtained by maximizing each subproblem. Thus, the optimal solution

of the ith subproblem max{g(xi, wi) : xi, wi ≥ 0} is similar to that of Equation (4). Hence,

we have the optimality condition of subproblem i as

w∗
i x

∗
i = F−1

i

(
pi + bi − ci
pi + bi − si

)
= F−1

i

(
βi

αi

)
,∀i. (7)
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Since both w∗
i and x∗

i are positive constants, if we choose


x∗
i = x∗ =

N∑
i=1

F−1
i ( βi

αi
) ≥ 0,∀i,

w∗
i =

F−1
i (

βi
αi

)

N∑
i=1

F−1
i (

βi
αi

)

≥ 0,∀i,
(8)

as the optimal solutions, the optimality condition of subproblem i in Equation (7) and the

corresponding equality constraint
∑N

i=1 w
∗
i = 1 can be satisfied with x∗

1 = x∗
2 =, . . . ,= x∗

N =

x∗. Hence, Equation (8) gives the optimal solution to Equation (3). This completes the

proof. �

The analytical result given in Theorem 1 provides an efficient computational approach to

solving the joint decision-making problem. For demonstration purposes, we assume that a

processor firm orders milk from its contracted supplier and allocate it to manufacture three

diary products (e.g., butter, yoghurt, and cheese), and the demand of product i follows the

normal distribution N(µi, σi) with mean µi and standard deviation σi. Table 2 provides the

Table 2: Parameter settings for normally distributed demands
Product Parameters ($/lb) Demand (lbs) ∼ N(µi, σi)

1 p1 = 1.5, b1 = 0.3, s1 = 0.15, c1 = 0.5 µ1 = 900, σ1 = 45
2 p2 = 1.7, b2 = 0.3, s2 = 0.15, c2 = 0.6 µ2 = 300, σ2 = 11
3 p3 = 1.8, b3 = 0.3, s3 = 0.15, c3 = 0.7 µ3 = 540, σ3 = 30

parameters for this sample problem. According to Theorem 1, the optimal OP and AR are

obtained as

x∗ = 1800.9164 lbs, w∗
1 = 0.5197, w∗

2 = 0.1708, w∗
3 = 0.3095, (9)

and the optimal expected profit is E[π]∗ = $1776.3400. The optimal solution suggests

that the firm should order 1800.9164 lbs milk from the contracted supplier, and allocate

x∗w∗
1 = 935.9363 lbs, x∗w∗

2 = 307.5965 lbs, x∗w∗
3 = 557.3836 lbs of it to process products

1, 2, 3, respectively. One can see that the optimally allocated quantities of the milk are all

close to the mean values of the demands.

Thus far, we have examined the joint decisions on the OP and AR. However, in practice,
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the two decisions may be separately made by different departments within the same company.

Technically, we can also show that the latter two are not special cases of the scenario with

joint decisions on the OP and AR. Next we provide the detailed explanations.

4.2. Optimal OP with known AR

In some cases, e.g., fresh food industry, the decisions of strategic souring and operative pro-

curement rely on the information of production planning process [25]. Thus, in this section,

we discuss the scenario when the AR is known, from the production planning decisions,

before making the procurement decision. Suppose at the beginning of each period, the pro-

duction department will design its production plan and make the production decision ahead

of the procurement department, which results in a fixed AR for the problem. Then, the

procurement department will make its ordering decision based on the given AR W . Under

this circumstance, the optimality conditions for all subproblems may not necessarily hold

simultaneously, because the OP x is the only decision variable (i.e., wix may not reach the

optimal value for product i, ∀i). Indeed, the problem becomes an unconstrained newsvendor-

type problem, which has been proved to be concave. However, the optimal OP will vary as

the AR changes, and may be dominated by some product with higher profit. For example,

if N = 2, the AR is that w1 and w2 = 1 − w1 for products 1 and 2, respectively. If the

profit generated from product 1 is much higher than that of product 2, the optimal solution

will show a trend that pushes w1x
∗ towards the optimal point of subproblem 1 while w2x

∗

may be forced to leave the optima of subproblem 2. In the rest of this section, two types of

demand distributions are discussed.

Type I: Unbounded demands when E[π] is twice differentiable

Ideally, when the demand is unbounded, the production quantities will not exceed the

maximum demands, i.e., Pr{ξi ≥ wix} > 0 (i ∈ {1, 2, . . . , N}). For instances, normal,

gamma, log-normal, and Weibull distributions can provide the possibility of infinite demand.

Under this assumption, the profit function is usually twice differentiable with respective to
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x. It is well known that, under newsvendor setting, the profit function is concave in the order

quantity. However, our model provides a new formulation with material sharing property,

for which the subproblems may not achieve optimality conditions when the demands are

bounded. Thus, we would also like to examine the concavity of the unbounded case. The

following lemma shows the concavity of E[π] when the AR is pre-determined.

Lemma 1. Given the AR for unbounded product demands, if the profit function is twice

differentiable, it is concave in x.

Proof: Suppose the profit function is twice differentiable. Then, its first and second

derivatives with respective to x are as follows.


∂E[π]
∂x

=
N∑
i=1

[−αiwiFi(wix) + βiwi] ,

∂2E[π]
∂x2 =

N∑
i=1

[−αiw
2
i fi(wix)] .

(10)

Obviously, ∂2E[π]
∂x2 ≤ 0, as αi ≥ 0, w2

i ≥ 0 and fi(wix) ≥ 0 for all i. Therefore, the profit

function is concave in x. �

Based on Lemma 1, the optimal order quantity x∗ can be obtained by solving ∂E[π]
∂x

= 0,

i.e.,
N∑
i=1

αiwiFi(wix)−
N∑
i=1

βiwi = 0. (11)

For general demand distributions, the equation can be evaluated numerically. For example,

we consider the parameter settings given in Table 2 to study the optimal OP for a given

AR W = (w1, w2, w3). Based on Equation (11), we can obtain the optimal x by solving the

following nonlinear equation

3∑
i=1

αiwi

∫ wix

−∞

1

σi

√
2π

e
(ξi−µi)

2

2σ2
i dξi −

3∑
i=1

βiwi = 0.

Table 3 presents the optimal OP for different combinations of the AR. One can see that,

for the AR given in Equation (9) (with a check mark in Table 3), the resulting optimal OP
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Table 3: Optimal OP for the given AR
Fixed W Optimal OP Optimal Profit

Case w1 w2 w3 x∗ E[π]∗

1 0.5197 0.3095 0.1708 1844.8929 1363.4090
2 0.5197 0.1708 0.3095 1800.9164 1776.3400X
3 0.3095 0.5197 0.1708 2983.2096 1191.5776
4 0.3095 0.1708 0.5197 2701.5497 1190.3211
5 0.1708 0.5197 0.3095 1795.3993 748.0407
6 0.1708 0.3095 0.5197 1087.6032 858.6647

is exact the one given in Equation (9). In this case, the expected profit reaches its maximum

value, compared to all other cases. This is because, for the joint decision scenario, we can

simultaneously change two variables, which must be better than the fixed AR scenario (has

only one variable). In addition, according to the parameter setting, product 1 is recognized

to be the most profitable one. From the table, we can see that, at first, the optimal OP

is dominated by product 1 in Cases 1 − 4. When w1 = 0.5197 or w1 = 0.3095, it is

worth manufacturing around 900 lbs (which is close to 935.9363 lbs) of product 1, and

the quantities of products 2 and 3 are forced to leave 307.5965 lbs and 557.3836 lbs (the

optimums of subproblems), respectively. However, if w1 = 0.1708 (only a small proportion

of the component is allocated to product 1), product 1 is no longer dominant. Because

the firm needs to order a large amount of milk to push w1x
∗ close to 935.9363 lbs, which

significantly reduces the profits from the other two products (the profit generated from

product 1 is not enough to cover the losses of products 2 and 3). Clearly, the predetermined

AR indeed has a strong impact on the firm’s procurement decision. Moreover, if a product

is potentially more profitable, the optimal OP may show a favorite tendency to this product.

When the CDF of the unbounded demand of each product is strictly increasing in x, the

next lemma gives the optimal OP in closed form.

Lemma 2. If Fi(wix) is strictly increasing (i = 1, 2, . . . , N) in x and

G(x) =
N∑
i=1

αiwiFi(wix), (12)
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then the inverse function of G(x) exists and the optimal OP is

x∗ = G−1

(
N∑
i=1

βiwi

)
.

Proof: Because Fi(wix) is strictly increasing in x, αi ≥ 0, and wi ≥ 0, it is easy to see

that G(x) =
N∑
i=1

αiwiFi(wix) is strictly increasing in x as well. Thus, the inverse function of

G(x) exists. Based on ∂E[π]
∂x

= 0, we have

N∑
i=1

[−αiwiFi(wix) + βiwi] = −G(x) +
N∑
i=1

βiwi = 0,

which leads to the optimal solution x∗ = G−1
(∑N

i=1 βiwi

)
. �

Lemma 2 provides the explicit expression for the optimal OP when the AR is prede-

termined. However, it is usually difficult to find the inverse function of G(x) for general

distributions. The following proposition addresses a special case where the optimal OP can

be obtained.

Proposition 1. If all of the demands follow the same distribution F (·) and the raw material

is equally allocated to N products, the optimal OP is

x∗ = NF−1

(
N∑
i=1

βi/

N∑
i=1

αi

)
.

Proof: Assume the AR is set as w1 = w2 = . . . = wN = 1/N . Suppose the demands of

different products follow the same distribution F (·). Then, we have F1(w1x) = F2(w2x) =

. . . = FN(wNx) = F
(

x
N

)
. According to Equation (12), we have

G(x) =
1

N
F
( x

N

) N∑
i=1

αi.
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By applying Lemma 2, the optimal OQ is

x∗ = NF−1
1

(
N∑
i=1

βi/
N∑
i=1

αi

)
.

This completes the proof. �

When the demands of different products follow the same distribution and their profitabil-

ities are similar, e.g., yoghurts with different tastes and fruit mix, it is reasonable for the

production department to apply the AU wi = 1/N, ∀i. In this case, Proposition 1 can be

used to determine the order quantity of the raw material. Hence, the quantity allocated

to each product is simply F−1
1 (
∑N

i=1 βi/
∑N

i=1 αi). Due to the symmetric property of the

demands and the AR, the optimal OP will only be affected by the critical ratio between the

overall shortage cost structure
∑N

i=1 βi and the overall overstock cost structure
∑N

i=1 αi. In

other words, under this situation, the firm can make the optimal procurement decision from

an integrated viewpoint and does not need to consider the marginal contribution of each

product to the firm’s profit.

Type II: Bounded demand with uniform distribution

Practically, the demand of each product is bounded in an interval [11], e.g., ξi ∈ [0, Ui],

where Ui is the upper bound of the corresponding demand. One commonly used assumption

is that the demand of a product follows uniform distribution, which simplifies the profit

function. In this special case, we assume that the demands of all the products follow uniform

distributions, i.e., ξi ∼ U [0, Ui], ∀i (similar analysis can be conducted for bounded demands

with the other distributions, e.g., the triangular and the truncated distributions).

First, we will further examine the expression of E[π]. Suppose ξi follows the uniform

distribution U [0, Ui], we can define an indicator set I1 as

I1 = {i|x < Vi},
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where Vi =
Ui

wi
(i = 1, 2, . . . , N). Then, the profit function can be expressed as

E[π] =
N∑
i=1

[∫ wix∧Ui

0
(piξi + si(wix− ξi))

1
Ui
dξi +

∫ Ui

wix∧Ui
(piwix− bi(ξi − wix))

1
Ui
dξi − ciwix

]
=
∑
i∈I1

−w2
i αi

2Ui
x2 +

(∑
i∈I1

βiwi +
∑
i/∈I1

(βi − αi)wi

)
x−

∑
i∈I1

1
2
biUi +

∑
i/∈I1

1
2
(pi − si)Ui.

(13)

One can see that the demand of product i will not exceed Ui. However, if wi is fixed, the

optimal order quantity x∗ of Equation (13) cannot guarantee wix
∗ ≤ Ui for all products,

which reveals a different profit function structure (pay attention to the term “wix ∧ Ui”)

and may result in certain wastes of low-profit products. From an economic viewpoint, it is

necessary to study the properties of the profit function under this circumstance.

If E[π] is twice differentiable at x ∈ [0,+∞), its first two derivatives can be obtained as


∂E[π]
∂x

=
∑
i∈I1

−w2
i αi

Ui
x+

∑
i∈I1

βiwi +
∑
i/∈I1

(βi − αi)wi,

∂2E[π]
∂x2 =

∑
i∈I1

−w2
i αi

Ui
.

(14)

One can see from Equations (13) and (14), the coefficients of the quadratic function E[π],

the linear function ∂E[π]
∂x

, and the constant ∂2E[π]
∂x2 depend on the set I1. Note that the number

of elements in set I1 decreases as x increases. Let V(0) ≤ V(1) ≤ V(2) ≤ . . . ≤ V(N) < V(N+1)

be the ascending sequence of points {0, V1, V2, . . . , VN ,∞}, where V(0) = 0 and V(N+1) = ∞.

Since E[π] is either a quadratic or a linear function in each subinterval [V(i−1), V(i)), we can

easily seek the closed-form expression for the optimal OP. For the sake of convenience, we

rewrite Equation (13) as

E[π] = A(i)x
2 +B(i)x+ C(i), x ∈ [V(i−1), V(i)), i = 1, 2, . . . , N + 1, (15)

where

A(i) =
N∑
k=i

−
w2

(k)
α(k)

2U(k)
, B(i) =

N∑
k=i

β(k)w(k) +
i−1∑
k=1

(β(k) − α(k))w(k),

C(i) = −
N∑
k=i

1
2
b(k)U(k) +

i−1∑
k=1

1
2
(p(k) − s(k))U(k).
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The following theorem provides a guideline for seeking the optimal x.

Theorem 2. If all the product demands follow uniform distributions, i.e., ξi ∼ U [0, Ui], the

optimal OP belongs to the following set

x∗ ∈
{
0, V(1), V(2), . . . , V(N),

−B(1)

2A(1)

,
−B(2)

2A(2)

, . . . ,
−B(N)

2A(N)

}
.

Proof: Based on Equation (15), we know that, for subdomain [V(i−1), V(i)] (1 ≤ i ≤ N),

the maximum value of E[π] can be achieved either at the endpoints (V(i−1) and/or V(i)) or

its symmetric point
−B(i)

2A(i)
(if V(i−1) ≤

−B(i)

2A(i)
≤ V(i)). In addition, when x > V(N),

E[π] =

(
N∑
k=1

(β(k) − α(k))w(k)

)
x+

N∑
k=1

1

2
(p(k) − s(k))U(k).

Since (β(k) −α(k))w(k) = (s(k) − c(k))w(k) ≤ 0, the profit function is a non-increasing function

in [V(N),+∞), which implies that the maximum value of E[π] is located at V(N) for x ∈

[V(N),+∞). Hence, by comparing all the maximum points obtained in the subintervals, the

global optimum for the entire interval [0,+∞) can be found and it satisfies

x∗ ∈
{
0, V(1), V(2), . . . , V(N),

−B(1)

2A(1)

,
−B(2)

2A(2)

, . . . ,
−B(N)

2A(N)

}
.

This completes the proof. �

Theorem 2 suggests that the exact solution to Equation (13) can be obtained by evalu-

ating the following simplified problem

max

{
E[π] : x ∈

{
0, V(1), V(2), . . . , V(N),

−B(1)

2A(1)

,
−B(2)

2A(2)

, . . . ,
−B(N)

2A(N)

}}
.

To illustrate the above result, we consider the problem setting given in Table 4. In

this example, we assume that the firm processes three different products with uniformly

distributed demands. From the problem setting, we can define V(0) = 0, V(1) = V2, V(2) =

V3, V(3) = V1, V(4) = ∞. We know that E[π] is quadratic in [0, V2), [V2, V3), and [V3, V1),
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Table 4: Parameter settings for uniformly distributed demands
Product Parameters ($/lb) Demand (lbs) ∼ U [0, Ui] AR

1 p1 = 1.5, b1 = 0.3, s1 = 0.15, c1 = 0.5 U1 = 900 w1 = 0.3
2 p2 = 1.7, b2 = 0.3, s2 = 0.15, c2 = 0.6 U2 = 300 w2 = 0.4
3 p3 = 1.8, b3 = 0.3, s3 = 0.15, c3 = 0.7 U3 = 540 w3 = 0.3

V2 = U2
w2

= 750 < V3 = U3
w3

= 1800 < V1 = U1
w1

= 3000

and is linear in [V1,∞). Solving the simplified problem, we obtain the optimal OP as

x∗ = 1285.7142 lbs, and the associated optimal profit is $421.5. To analyze the wastes of

certain products due to the dominance of the high-profit product, we only change the price

of product 1 and fix the other parameters. The study is conducted on four cases shown in

Figure 3. In an extreme case where product 1 is free, i.e., p1 = $0/lb, the firm only makes

profit from products 2 and 3. The corresponding optimal OP ensures no “obvious” waste

of each product (note: if x∗ > Vi, we have wix
∗ > Ui, which implies that at least wix

∗ − Ui

of product i will be wasted). In this case, we have I1 = {1, 2, 3} without certain waste.

As p1 increases to $1.5/lb, because the profit generated by product 1 can cover the loss in

product 2, the optimal x is increased to process more product 1 while resulting in a surplus

of product 2 (I1 = {1, 3}). Once the price of product 1 reaches $6/lb, product 1 shows a

significant dominance over products 2 and 3 in terms of profit. As a result, certain amounts

of products 2 and 3 are forced to be wasted (I1 = {1}). Finally, when p1 → ∞, x∗ becomes

3000 lbs which suggests the firm producing 900 lbs of product 1 (i.e., the upper bound of

the demand).

Consequently, when the demands of the multi-product system are bounded and the AR

decision is made prior to the OP decision, the material waste becomes an inevitable issue.

4.3. Optimal AR with predetermined OP

Besides the scenario with fixed AR, alternatively, the firm may deal with predetermined OP

based on market coverage promise, that is, the procurement department makes the ordering

decision before the AR decision of production department. In this subsection, we assume

that E[π] is twice differentiable and the order quantity x is known prior to planning the
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Figure 3: Profit functions with uniformly distributed demands and different p1.

production process. Similar to the production capacity planning problem studied by Ho and

Fang [26], the firm needs to allocate a favorable proportion of the raw material to different

products with uncertain demands. The following lemma addresses the concavity for this

problem, which allows us to develop an analytically tractable approach to determining the

optimal AR.

Lemma 3. Given the OP x, if E[π] is twice differentiable with respective to wi (i ∈

{1, 2, . . . , N}), E[π] is a concave function of the AR W .

Proof: The first and second derivatives of E[π] with respective to wi (i ∈ {1, 2, . . . , N})

are 
∂E[π]
∂wi

= −αixFi(wix) + βix, ∀i,

∂2E[π]

∂w2
i

= −αix
2fi(wix),∀i.

(16)
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We know that x, αi, and fi(wix) are nonnegative, so the associated Hessian matrix satisfies

H(W ) =


∂2E[π]

∂w2
i

≤ 0, ∀i,

∂2E[π]
∂wi∂wj

= 0, ∀i ̸= j.

Obviously, H(W ) is a diagonal and negative semidefinite matrix. Therefore, E[π] is concave

in W . This completes the proof. �

It is worth pointing out that the firm, depending on its preference, may not manufacture

all the products in one period. Taking this into consideration, the problem becomes

max
W

E[π]

subject to:
N∑
i=1

wi = 1,

wi ≥ 0 (i ∈ I2), wi = 0 (i /∈ I2),

(17)

where I2 = {i : product i is selected to process}. For an extreme case, the firm only pro-

cesses one product in a period, e.g., product 1, the profit function is

E[π] =
∫∞
0

(p1(ξ1 ∧ x) + s1(x− ξ1)
+ − b1(ξ1 − x)+ − c1x) f1(ξ1)dξ1 −

N∑
k=2

bkE[ξk].

Otherwise, more than one product will be produced. Let

L(W,λ) = E[π] + λ

(
N∑
i=1

wi − 1

)
.

Then, Equation (17) can be converted to the following Lagrangian relaxation problem

max
W, λ

L(W,λ)

subject to: wi ≥ 0 (i ∈ I2), wi = 0 (i /∈ I2),

(18)

where λ is the corresponding Lagrangian multiplier. Note that Lagrangian relaxation is

applied to solve constrained multi-item newsvendor problems in previous research, while
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the optimal solutions are usually obtained via heuristic methods (in which the optimality

conditions are not explicitly derived). In this paper, to the best of our knowledge, we make

the first attempt to provide an analytical solution to this type of problem. We show the

equivalency of the problems given in Equations (17) and (18) in the next lemma.

Lemma 4. For Equation (18), if a feasible solution (w∗
1, w

∗
2, . . . , w

∗
N , λ

∗) satisfies the follow-

ing condition 
∂L(W,λ)

∂w1
= ∂L(W,λ)

∂w2
=, . . . ,= ∂L(W,λ)

∂wN
= ∂L(W,λ)

∂λ
= 0,

wi ≥ 0 (i ∈ I2), wi = 0 (i /∈ I2),

(19)

W ∗=(w∗
1, w

∗
2, . . . , w

∗
N) is the optimal AR of Equation (17).

Proof: For Equation (17), E[π] is a concave function of W (see Lemma 3) and the

constraint
∑N

i=1wi− 1 = 0 is a linear equation (which indicates that
∑N

i=1wi− 1 is a convex

function of W ). According to Theorem 8 in Page 664 of Winston [27], the proof of this

lemma is completed. �

As a result, one can obtain the exact optimal AR by simply solving the simultaneous

linear/nonlinear equations in Equation (19), which does not rely on any approximation

algorithm. However, the limitation of our approach is that we have to employ a numerical

method to evaluate the optimal λ∗ before computing the optimal AR. The following theorem

provides the closed-form expressions for the optimal AR.

Theorem 3. Suppose the order quantity x is predetermined and the inverse function of Fi(·)

exists. If products i ∈ I2 are selected, the corresponding optimal AR is

W =


w∗

i =
1
x
F−1
i

(
βix+λ∗

αix

)
, i ∈ I2,

w∗
i = 0, i /∈ I2.

(20)

Proof: If the firm selects a subset I2 ⊂ {1, 2, . . . , N} of products to process, then the

AR is restricted as W = {wi ≥ 0 (i ∈ I2), wi = 0 (i /∈ I2)}. From Equation (19), we know
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the following relationships



−αixFi(wix) + βix+ λ = 0, i ∈ I2,

N∑
i=1

wi − 1 = 0,

wi ≥ 0 (i ∈ I2), wi = 0 (i /∈ I2).

(21)

After some simple algebraic manipulation, one has Fi(wix) =
βix+λ
αix

. If the inverse of Fi(·)

exists, we have

wi =
1

x
F−1
i

(
βix+ λ

αix

)
, i ∈ I2.

In addition, L(W,λ)
∂λ

= 0 gives
∑N

i=1wi =
∑

i∈I2
1
x
F−1
i

(
βi

αi
+ λ

αix

)
= 1. Then, the value of λ∗

can be determined by solving the following single-variable equation numerically

∑
i∈I2

F−1
i

(
βi

αi

+
λ

αix

)
= x.

Finally, the optimal AR can be found by substituting λ∗ into Equation (20) and setting

w∗
i = 0 (i /∈ I2).

This completes the proof. �

Theorem 3 introduces an analytical approach to finding the optimal AR, which is more

advance and accurate than the existing heuristics. For demonstration purposes, we first

study a case where the firm manufactures all the products and the parameters and demand

distributions are the same as that in Table 2. The predetermined x is changed within ±50%

of the optimal one in Equation (9). The five cases in Table 5 (I2 = {1, 2, 3}) illustrate the

impact of the OP on the optimal AR. One can see that w∗
1 increases as the value of x increases,

while the profit increases from $594.8021 to $1776.3400 and then decreases to $1439.9885

(note that Case 3 with check mark also provides the optimal solutions to Equation (9) and

it is always better than the other fixed OP cases). At first, the amount of raw material
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is not enough for product 1 to generate enough profit to compensate the shortage costs of

products 2 and 3. As a result, it is better for the firm to allocate more materials to the other

two products. However, if more materials are ordered, the profit generated from product 1

becomes higher. Thus, the firm will allocate more materials to product 1, which shows its

dominance. An interesting finding is that the ratio between w∗
2 and w∗

3 is around 0.56 for

all these cases. The reason is that products 2 and 3 have similar profit structures, and the

ratio reflects the relative magnitude of their mean demands (µ1

µ2
= 300

540
≈ 0.56).

Table 5: Optimal AR based on the predetermined x and I2 = {1, 2, 3}
Predetermined OP Optimal W Optimal Profit

Case x w∗
1 w∗

2 w∗
3 λ∗ E[π]∗

1 800.9164 0.0344 0.3525 0.6131 -1041.1912 594.8021
2 1300.9164 0.4055 0.2170 0.3775 -1691.1914 1244.8022
3 1800.9164 0.5197 0.1708 0.3095 0.0000 1776.3400 X
4 2300.9164 0.6107 0.1381 0.2512 805.3206 1614.9885
5 2800.9164 0.6802 0.1134 0.2064 980.3206 1439.9885
6 3300.9164 0.7287 0.0962 0.1751 1155.3202 1264.9885
7 3800.9164 0.7643 0.0836 0.1521 1330.3199 1089.9885

Another interesting aspect is to examine the effect of the product price. To conduct

the sensitivity analysis, we assume the three products have the same parameters as that of

product 2 and remain their prices as (p1 = 1.5, p2 = 1.6, p3 = 1.8). The following table shows

the effect of product price on the optimal AR (we simply vary p2 as an illustrative purpose).

From Table 6, one can see that the proportion of raw material allocated to product 2 increases

Table 6: Effect of price on optimal AR with fixed optimal OP x = 921.9238

Case
Change of price Optimal W Optimal Profit

p2 w∗
1 w∗

2 w∗
3 λ∗ E[π]∗

1 1.4 0.3330 0.3324 0.3346 16.8684 851.5938 X
2 1.5 0.3328 0.3328 0.3344 8.1835 881.4095
3 1.6 0.3326 0.3332 0.3342 0.0000 911.2348 X
4 1.7 0.3324 0.3335 0.3340 -7.7391 941.0686
5 1.8 0.3322 0.3339 0.3339 -15.0750 970.9102
6 10.8 0.3272 0.3434 0.3294 -251.2692 3665.2679
7 100.8 0.3219 0.3531 0.3248 -517.1964 30657.1670

as p2 increases. The reason is the profitability of product 2 is improved. Especially, when

p2 = p1 = 1.5 (or p2 = p3 = 1.8), the proportions allocated to products 1 and 2 (or products

2 and 3) are the same, because they have similar profitability. Hence, the optimal AR is

closely linked to the profitability of each product.
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Table 7: Optimal AR based on the predetermined x and I2 ⊂ {1, 2, 3}
Case I2

Predetermined OP Optimal W Optimal Profit

x
[
xi = F−1

i

(
βi
αi

)]
w∗

1 w∗
2 w∗

3 λ∗ E[π]∗

1 {1, 2, 3} 1800.9164 0.5197 0.1708 0.3095 0.0000 1776.3400 X

2 {1, 2}

1800.9164 0.8236 0.1764 0 630.3207 855.4463
1800.9164-x1 0.6736 0.3264 0 -1124.4454 630.2121
1800.9164-x2 0.7873 0.2127 0 522.6415 963.1256
1800.9164-x3 0.7526 0.2474 0 0.0000 1040.1021X

3 {1, 3}

1800.9164 0.6790 0 0.3210 630.3206 1267.2214
1800.9164-x1 0.4323 0 0.5677 -1124.4451 650.2887
1800.9164-x2 0.6268 0 0.3732 0.0000 1362.7126X
1800.9164-x3 0.6051 0 0.3949 -1615.6273 1142.5312

4 {2, 3}

1800.9164 0 0.6730 0.3270 810.4124 215.4312
1800.9164-x1 0 0.3557 0.6443 0.0000 627.8654X
1800.9164-x2 0 0.6056 0.3944 671.9676 353.8760
1800.9164-x3 0 0.5264 0.4736 559.6266 466.2175

5 {1}

1800.9164 1 0 0 630.3208 332.6792
1800.9164-x1-x2 1 0 0 -724.4936 202.4935
1800.9164-x1-x3 1 0 0 -399.9515 -122.0485
1800.9164-x2-x3 1 0 0 0.0000 626.4746X

6 {2}

1800.9164 0 1 0 810.4124 -777.4124
1800.9164-x1-x2 0 1 0 250.7862 -217.7862
1800.9164-x1-x3 0 1 0 0.0000 -108.3725X
1800.9164-x2-x3 0 1 0 421.1814 -388.1814

7 {3}

1800.9164 0 0 1 990.5041 -459.5041
1800.9164-x1-x2 0 0 1 0.0000 214.2380X
1800.9164-x1-x3 0 0 1 -430.7170 -91.2830
1800.9164-x2-x3 0 0 1 514.7773 16.2227

Different from Table 5, the analysis on the firm’s product selection preference is presented

in Table 7. Apparently, if a product is not selected, it will not make any contribution to the

total profit, and the firm may face a shortage of this product. Suppose material procurement

is reasonably scheduled. In the third column of Table 7, we show the predetermined OP for

different cases of I2 (note: the profit with check mark is the maximum one under each

scenario). Because each product can contribute to the total profit, the firm achieves its

highest profit when all of the products are selected (I2 = {1, 2, 3}). If one of the products

is not processed in the period, the profit may be lowered (see Cases 2-4). Especially, when

only products 2 and 3 are selected (i.e., Case 4), the profit reaches a very low level since

product 1 is indeed the most profitable one. The situation gets worse if the firm only makes

one product in one period. The profit may even become negative due to the significant loss

in the other two products. Case 6 indicates that the profit made from product 2 is not able

to cover the losses of products 1 and 3, for which the firm is unable to generate profit.
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5. Conclusions

In this paper, we investigate a flexible one-material-multi-product production system for

agricultural companies. We examine the ordering policy (OP) and allocation rule (AR) of

the raw material for a processor firm making multiple products. Different from the previous

research, which relies on heuristics methods in the solution technique, the exact optimal

solutions are provided for three practical scenarios. The properties of the solutions are also

discussed via numerical experiments.

For the first scenario, the firm needs to simultaneously determine the OP and the AR of

the raw material. Though the profit function is nonconcave, by investigating this problem

from another perspective, we are able to derive a closed-form expression for the optimal

solution. The result is intuitively appealing and computationally simple.

For the scenario where the AR is fixed, two cases are discussed for seeking the optimal

OP. When the demands are unbounded with general distributions, the optimal OP can be

obtained numerically. If the demands are uniformly distributed, the formulation for the profit

function will vary with different OP. To address this problem, we develop an easy-to-follow

procedure to obtain the exact optimal solution. Since the demands are bounded, numerical

results show that the optimal OP may result in material wastage due to the dominance of

the most profitable product.

Finally, in the third scenario, we propose a Lagrangian relaxation approach for the prob-

lem with a predetermined OP. Differing from previous heuristic-based research, we solve the

optimal AR analytically, which fills a gap in the related literature. We first investigate the

change of optimal AR by varying the value of OP or product price. The results indicate that

when the amount of the OP or price increases, the firm should allocate a larger proportion

of raw material to the high-profit product. In addition, if two products have similar profit

structures, their material allocation ratio mainly depends on their mean demands. We also

consider the firm’s preference in product selection when not all the products must be pro-

duced. To study the effect of the AR with preference on the total profit, we consider three
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products as an example to analyze several possible cases. The results illustrate that, if the

firm only produces one of the products, there is a high possibility that the firm will make a

negative profit due to the significant losses of the other products.
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