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Abstract: Material ordering and allocation are important decisions for manufactures mak-
ing multiple products, because those firms usually possess flexible production systems which
can produce different products based on the same raw material. In this paper, we investigate
the ordering policy (OP) and allocation rule (AR) of the raw materials for a manufacturer
selling multiple products. The manufacturer’s decision-making problem is analyzed under
three scenarios: (1) joint decisions on OP and AR, (2) fixed AR, and (3) predetermined OP.
We show that the latter two are not special cases of the first scenario, and they require differ-
ent solution methods. Our objective is to derive the optimal solutions analytically. For the
first scenario, we obtain the closed-form solution that is indeed optimal for the nonconcave
profit function. For the fixed AR scenario, the products with twice-differentiable demands
are studied, and the exact optimal OP for the raw material is achieved. Finally, if the OP is
predetermined, we prove that the profit function is concave in AR and provide the associated
optimality conditions, for which the optimal AR can be reached numerically. Different from
the pervious heuristic approaches, these mathematically tractable solutions are easy to be
applied by the practitioners.
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1. Introduction

With the development of modern agriculture, the agricultural companies are forced to man-
age their supply chains more efficiently [1]. According to a call for research in agribusiness
problems [2], a particular challenge faced by the food and agribusiness sector is that how to
appropriately assess and respond to the demand and supply variations, which will affect the
agricultural companies’ costs and profits significantly. Evidentally, in the recent years, the
risk of making and selling agricultural products has shown an increasing trend. According to
the report of World Economic Forum 2009, the low efficiency in the food value chain causes
at least a $100 billion annual loss in the U.S. Essentially, the maximization of total profit
considering the uncertainties is the ultimate goal of modern agriculture, in both developed
and developing economies [3].

For agricultural companies, a commonly seen phenomenon is that a firm, who acts as
a processor, orders a raw material (e.g., meat, corn, and potatoes) from its contracted
suppliers (farms) and uses a flexible production system to turn the single material into
multiple products. One can observe that the agricultural economists have established the
analysis for the production flexibility, which is associated with the farm specialization [4].
Though, the production line provides flexibility in making different products, due to the
demand uncertainty, the firm has to tackle the difficulty in making decisions on the material
order quantity and the production quantities of different products. In practice, a typical
example is the production system of dairy products. The system can utilize a single material,
i.e., milk, to process a variety of dairy products, such as butter, nonfat dry milk, and cheese.
A regular problem faced by the process factory is how to satisfy the uncertain demands of
these dairy products. Similar examples can be found in the agricultural sector, e.g., cotton
can be used to make multiple clothing products with different designs and colors and wheat
is a major ingredient to make bread, porridge, biscuits, and doughnuts. In particular, to
maximize the profit, both material procurement and production planning decisions must be

made based on demand forecast and cost estimation for leftovers or unsatisfied demand. By



taking the procurement and production issues into consideration, we are motivated to study
the “one-material-multi-product” production system for the related agricultural companies.

In this paper, we examine the process system that manufactures multiple non-substitutable
products. For example, the products such as bread, butter, nonfat dry milk, and doughnuts,
are usually belong to different product categories, which have no downstream competition.
The problem is modelled under a single-period multi-product setting. Under these assump-
tions, we mainly focus on the optimal ordering policy (OP) and/or the allocation rule (AR)
of the raw materials for the agricultural companies. Specifically, we consider three scenarios
for the one-material-multi-product system, i.e., (1) joint decisions on OP and AR, (2) fixed
AR, and (3) predetermined OP. Note that there are three scenarios in total, because the
decisions only have two parts (OP and AR).

In the first scenario, the OP and AR are considered simultaneously and the associated
profit function is assumed to be twice differentiable. The main challenge to obtain the ana-
lytical solution for this scenario is that the profit function is generally not concave. Because
of this, traditional concavity analysis is not applicable. However, we are able to propose
an alternative approach, which derives the optimal solution in closed form for this problem;
For the second scenario, we assume the AR is fixed and the firm should determine the OP
accordingly. The proposed single-variable problem is concave, and the optimal OP can be
achieved by traditional concavity analysis. However, when the demands are bounded, the
problem cannot be separated, for which we discuss the optimal OP for the unbounded uni-
form demand case in detail. To model the third scenario, the OP is predetermined before
making a decision on AR. In this scenario, though the profit function is concave in the AR,
the exact solution method has not been reported in the literature. We first introduce a
Lagrangian multiplier to relax our problem to an equivalent unconstrained version. Unlike
previous research, which solves the Lagrangian relaxation problems via heuristic methods,
we present a sufficient condition that can be used to obtain the optimal AR analytically.
Notice that the firm may not process all of the products in one period, we also study the

firm’s preference in production, which may affect the profit significantly due to the unsat-



isfied demands. Numerical experiments are conducted to analyze the effects of some key
parameters for different scenarios.

The remainder of this paper is organized as follows. Section 2 briefly reviews the related
literature. A modelling framework of the proposed problem is presented in Section 3, and
the analytical and numerical results for different scenarios are provided in Section 4. Finally,

Section 5 concludes the work.

2. Literature Review

Our paper is closely related to two streams of research, i.e., the agriculture supply chain
management and the multi-item newsvendor models.

In the first stream of research, because of the significant impacts of agricultural economy,
the production and operations issues related to agriculture supply chain have attracted
considerable attention from the academia. For examples, Kazaz [5] examines the production
planning problems of a company that produces olive oil. In that problem, randomness exists
in both demand and yield, for which the sale price and the ordering cost will be affected;
Burer et al. [6] analyze the contract design problems between suppliers and retailers in the
agricultural seed industry to deal with the associated tradeoffs. In particular, Sodhi and
Tang [1] provide some typical examples of agriculture supply chain management, which
are mainly focused on developing countries/regions (e.g., Sri Lanka, Malaysia, Afghanistan,
India, Africa, Philippines, and Bangladesh). Chen et al. [3] introduce an innovative business
model, named ‘e-Choupals’ in India, and investigate its impact on the farmers’ production
decisions. Under the framework of Cournot competition models, Tang et al. [7] discuss the
farmers’ incentives to utilize the free demand information provided by the government. They
also consider the risk of demand uncertainty to derive the corresponding optimal ordering
and supply decisions. Recently, Niu et al. [8] presented the contract choice issues in contract
farming. They studied the agricultural companies’ ordering decisions for two scenarios,

i.e., with and without the farmer cooperative. For a more comprehensive review of the



agribusiness decision-making problems, the readers are referred to Lowe and Preckel [2].

However, the above-mentioned studies merely consider the single-material or/and single-
product problems. Differs from these articles, we propose to characterize a commonly seen
flexible operation mode in the agribusiness, that is, one-material-multiple-product problem.
In this problem, to improve the profitability, we analyze an agricultural company’s material
ordering and allocation decisions, which have been overlooked by the previous literature.
Methodologywise, we also develop approaches that can be used to obtain the optimums
analytically.

On the other hand, for the second related research stream, i.e., multi-item newsvendor
models, the associated study can be dated back to 1960s, when Hadley and Whithin [9]
introduced a Lagrange multiplier technique with a dynamic programming solution proce-
dure to derive the optimal order quantity in a single-constraint and multi-product setting.
Since then, the problem has been extensively studied by the researchers for decades. For
example, the problem is extended to deal with multiple constraints by Lau and Lau [10],
and an efficient approach is developed to handle the case with a large number of products.
Under a budgetary constraint, when the demand uncertainty can be captured by discrete or
interval scenarios, Vairaktarakis [11] proposes robust models for the multi-item newsvendor
problems. Chen et al. [12] consider a risk-averse newsvendor to deliver some useful proper-
ties from a new perspective. They also compare their results with the classical risk-neutral
newsvendor problems to examine the major differences. Zhang and Xu [13] further develop
a multi-item model with carbon cap and trade mechanism. They derive the optimal pro-
duction policy and carbon trading decisions. In the spirit of Nahmias and Schmidt [14],
i.e., using simple and effective techniques, Erlebacher [15] constructs a model with a single
capacity constraint. The work aims at developing easy-to-implement heuristic procedures to
find the optimal order quantity. In the recent literature, considerable and intensive research
has been devoted to analyzing such problems with different constraints. For example, to deal
with possible production capacity shortage, Zhang and Du [16] study a multi-item newsven-

dor system with zero- or nonzero-lead-time production outsourcing. They characterize the



structural properties of the problem and develop algorithms to solve the optimization mod-
els. By incorporating the retailer’s pricing decision and supplier’s quantity discount, Shi et
al. [17] extend the multi-product newsvendor problem and a Lagrangian heuristic method is
developed to seek the solution. Zhou et al. [18] present a Genetic-Algorithm-based approach
to solve the multi-product multi-echelon model. Jarrahi and Abdul-Kader [19] measure the
performance of a multi-product unreliable production line. In the model, they assume finite
buffers between workstations and develop an approximation (which generalizes the process-
ing times) to reduce the variations in the system. A detailed review of multi-product models
and their extensions can be found in Choi [20] and Turken et al. [21].

While, in the aforementioned literature, multi-item newsvendor problem is considered as
a natural extension of the single-product case, where the profit function is separable and
concave for different products. In addition, the solutions of the constrained problems are
all solved by heuristics methods. Thus far, little attention has been paid on the material-
sharing (flexibility) issues in the multi-product system of agricultural companies, and most
of the solution techniques rely on heuristics approaches. This motivates us to investigate an
effective solution technique for such problems. Compared to the previous studies, the main
contribution of our work is that we are able to deliver analytical solutions to the proposed

one-material-multi-product problem, which fills a gap in the literature.

3. Problem Description

3.1. Preliminaries

We consider an agricultural firm that makes multiple products based on the same raw mate-
rial (e.g., a processor firm [22]). The problem is analyzed under the newsvendor framework
with a single-period make-to-stock inventory setting [23]. As a multi-product processor,
before the demands are realized, the firm needs to allocate the material to process differ-
ent products through a flexible production system. In particular, the demands of different

products are independent and non-substitutable, because of their heterogenous properties.



Table 1: Notation

Variable  Description

N Number of products

x Order quantity of the raw material

w; Proportion of the material allocated to product
i Price of product i

ci Cost of product ¢

Si Salvage value of product 7

b; Backorder cost of product ¢

& Demand of product ¢ (a random variable)
fi(9) Probability density function (pdf) of &;

Fi(+) Cumulative distribution function (CDF) of &;
a; Overstock cost structure for product

Bi Shortage cost structure for product ¢

g Total profit

Figure 1 depicts the operations process for the proposed one-material-multi-product pro-
duction system. Suppose the unit cost of product ¢, denoted by ¢;, includes both material
ordering cost ¢ and manufacturing cost m; of product i, and the product is sold at a fixed
price p;. In addition, any unsold stock of product ¢ is worth a unit salvage value s;, and b;
is the unit back-order cost for the unsatisfied demand (assume p; > ¢; > s; > 0 and b; > 0).
For the processor firm’s one-material-multi-product problem, our objective is to optimize

the decisions on OP and AR under possible scenarios.
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Figure 1: Flexible one-material-multi-product production process.



Because both procurement and production decisions are taken into consideration, to
maximize the firm’s total profit, the key decision variables are the OP and the AR of the
raw material. To assist our presentation, we define a* = max(a,0) and a A b = min(a, b)
(Va,b € R and R is the set of real numbers). The demand of product ¢ is denoted by &; (a
random variable). Let z > 0 be the material order quantity, w; be the proportion of the
material allocated to product i (i € {1,2,...,N}), and 7 be the firm’s total profit. We
assume the loss from turning the raw material to the finished product can be ignored, i.e.,
the yield rates are 100% (note that fixed yield rates will not change the solution structure
for this problem). Then, given the decision variables z and w; (i € {1,2,..., N}), the profit

function is formulated as
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where the ith indexed term in Equation (1) shows the profit generated from product i.
Figure 2 illustrates the problem faced by the firm, that is, how to determine the optimal

OP (z) and AR (w;, i € {1,2,...,N}) to satisfy the demands of N different products.

Assuming the firm has some knowledge about the probability distribution (with CDF F;(&;)

and pdf f;(&;)) of the demand for product 4, the firm’s expected profit can be expressed as

N
= ; fooo (pi(&i N wiz) + si(wix — &) = b(& — wiz)™ — ciwiw) fi(&:)dE;. (2)

The objective of the firm is to maximize the expected total profit by optimizing the
associated OP and/or AR. Because the agricultural raw materials will be expired soon, we

assume all of the ordered material will be consumed in one period. Then, the optimal
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Figure 2: Order quantity and allocated proportions of raw materials for multiple products.
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decisions can be obtained by solving the following optimization problem

max E[n]
W
N
subject to: > w; =1, (3)
i=1

x> 0,w; > 0,Vi,

where W = (wq,ws, ..., wy). It is clear that the problem reduces to a classic single-product

newsvendor model with N =1

max  Blr] = I (& Aa) +si( = &) =i —2)" — ) fi(&)dé. (4)
Let a; = p; +b; —s; > 0 and §; = p; + b; — ¢; > 0 be the overstock cost structure and

the shortage cost structure for product i, respectively. The ratio g— is referred to as the

(3

critical fractile, which is also the optimal service level for product i. For Equation (4), it
is well-known that the profit function E[r] is concave in z. Moreover, the optimal solution
of Equation (4) can be achieved as x* = F; ' (f1/a;) when the inverse of the distribution

function Fy(&) exists.



4. Optimal Solutions for Different Scenarios

In this section, we consider all possible scenarios for the decision-making process in the pro-
posed system. Because the decisions consist of two parts from procurement and production
departments, there are totally three scenarios, i.e., joint decisions on OP and AR, fixed AR,
and predetermined OP (which depends on the management mode of the two departments).

We discuss the optimal solutions for the three scenarios as follows.

4.1. Joint optimal solutions of OP and AR

Gotoh and Takano [24] develop a model to minimize the conditional value-at-risk for multiple
products. In their model, the order quantity for each product is optimized separately, and
different products are not made from the same material. Clearly, the problem is similar
to the single-product case, in which the firm only needs to make the ordering decision for
each product based on a concave profit function. However, when both the material order
quantity x and allocation mechanism W are considered as decision variables, the problem
reveals different features.

The following simple verification indicates that the profit function in Equation (2) may

not necessarily be concave. For example, if E[r| is twice differentiable, its Hessian matrix is

O*Elx] 9%*Elx] 9*Elx] = 9*E[7]
Ox? Orow,  OxOws Ozdwn
9%E[r]  0%Eln]
Ow10x aw% 0 e 0
Aew) = | 28 o 2E g | @
9%En] 0%E[n]
| OwnOx 0 0 o ow?, |

Obviously, the structures of E[r] and H(x, W) cannot guarantee that H(x, W) is negative
semidefinite. As a result, the traditional concavity analysis cannot be used for this problem.

However, if we treat w;x as a single variable, the problem becomes separable. Thus, we

10



are able to tackle the problem and derive the optimal solution in closed form. In fact, if
w;x 1s considered as a single variable, we only need to optimize the subproblems in Equation
(3) simultaneously. Suppose the demand distribution functions are invertible. Then, the

following theorem gives the analytical results.

Theorem 1. If F;(&;) is invertible, i € {1,2,..., N}, the joint optimal decisions of OP and

AR are
N
Tt =3 F1_1(51)7
i ;_1(&
w:: NZ - 72_1727 JN
> FN(EL

PROOF: Let gZ(ZE, wz) = fooo (pz(fz A\ 'lUZfL’) + Si(wix — €Z>+ — bz(éz — wm)* — c,-w,-x) fz(fz>d§,

Equation (3) can be rewritten as
N N
max {Zgi(:c,wi) : Zwi =1,z,w; > O,Vz} )
i=1 i=1
If we treat w;x as a single variable, the problem becomes separable and is equivalent to
N
Zmax{gi(xi, w;) : xp,w; > 0,Vi}. (6)
i=1

It is easy to know that Equation (6) is a separable maximization problem for which the
optimal solution can be obtained by maximizing each subproblem. Thus, the optimal solution
of the ith subproblem max{g(x;, w;) : x;, w; > 0} is similar to that of Equation (4). Hence,

we have the optimality condition of subproblem ¢ as

wiz = Fy (jj—% = j) g (ﬁ) i -

11



Since both w; and z are positive constants, if we choose

)

N

as the optimal solutions, the optimality condition of subproblem i in Equation (7) and the
corresponding equality constraint zlj\il w! =1 can be satisfied with ] =25 =,..., =2y =
x*. Hence, Equation (8) gives the optimal solution to Equation (3). This completes the
proof. [J

The analytical result given in Theorem 1 provides an efficient computational approach to
solving the joint decision-making problem. For demonstration purposes, we assume that a
processor firm orders milk from its contracted supplier and allocate it to manufacture three

diary products (e.g., butter, yoghurt, and cheese), and the demand of product i follows the

normal distribution N (u;, 0;) with mean p; and standard deviation o;. Table 2 provides the

Table 2: Parameter settings for normally distributed demands

Product Parameters ($/1b) Demand (lbs) ~ N (u;,0;)
1 L =151 =03, 5 =015, c1 = 0.5 11 = 900, o1 = 45
2 p2 = 1.7, bo = 0.3, s2 = 0.15, c2 = 0.6 p2 = 300, oo = 11
3 ps =18, by = 0.3, s3 = 0.15, c3 = 0.7 13 = 540, 03 = 30

parameters for this sample problem. According to Theorem 1, the optimal OP and AR are
obtained as

z* = 1800.9164 Ibs, w? = 0.5197, w} = 0.1708, w} = 0.3095, (9)

and the optimal expected profit is E[r|* = $1776.3400. The optimal solution suggests
that the firm should order 1800.9164 lbs milk from the contracted supplier, and allocate
r*w] = 935.9363 lbs, z*w; = 307.5965 lbs, z*w; = 557.3836 lbs of it to process products
1, 2, 3, respectively. One can see that the optimally allocated quantities of the milk are all
close to the mean values of the demands.

Thus far, we have examined the joint decisions on the OP and AR. However, in practice,

12



the two decisions may be separately made by different departments within the same company.
Technically, we can also show that the latter two are not special cases of the scenario with

joint decisions on the OP and AR. Next we provide the detailed explanations.

4.2. Optimal OP with known AR

In some cases, e.g., fresh food industry, the decisions of strategic souring and operative pro-
curement rely on the information of production planning process [25]. Thus, in this section,
we discuss the scenario when the AR is known, from the production planning decisions,
before making the procurement decision. Suppose at the beginning of each period, the pro-
duction department will design its production plan and make the production decision ahead
of the procurement department, which results in a fixed AR for the problem. Then, the
procurement department will make its ordering decision based on the given AR W. Under
this circumstance, the optimality conditions for all subproblems may not necessarily hold
simultaneously, because the OP z is the only decision variable (i.e., w;x may not reach the
optimal value for product 7, V). Indeed, the problem becomes an unconstrained newsvendor-
type problem, which has been proved to be concave. However, the optimal OP will vary as
the AR changes, and may be dominated by some product with higher profit. For example,
if N = 2, the AR is that w; and wy = 1 — w; for products 1 and 2, respectively. If the
profit generated from product 1 is much higher than that of product 2, the optimal solution
will show a trend that pushes wiz* towards the optimal point of subproblem 1 while wox*
may be forced to leave the optima of subproblem 2. In the rest of this section, two types of

demand distributions are discussed.
Type I: Unbounded demands when FE|r]| is twice differentiable

Ideally, when the demand is unbounded, the production quantities will not exceed the
maximum demands, i.e., Pr{§ > w;xz} > 0 (i € {1,2,...,N}). For instances, normal,
gamma, log-normal, and Weibull distributions can provide the possibility of infinite demand.

Under this assumption, the profit function is usually twice differentiable with respective to
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x. It is well known that, under newsvendor setting, the profit function is concave in the order
quantity. However, our model provides a new formulation with material sharing property,
for which the subproblems may not achieve optimality conditions when the demands are
bounded. Thus, we would also like to examine the concavity of the unbounded case. The

following lemma shows the concavity of E[r] when the AR is pre-determined.

Lemma 1. Given the AR for unbounded product demands, if the profit function is twice

differentiable, it is concave in x.

PROOF: Suppose the profit function is twice differentiable. Then, its first and second

derivatives with respective to x are as follows.

8E[7r]

Mz

02E[r :N
am2 Z [—aw? fi(w;x)] .

Obviously, 2 [”] <0,as a; >0, w? > 0 and f;(w;x) > 0 for all .. Therefore, the profit

function is concave in z. [

Based on Lemma 1, the optimal order quantity z* can be obtained by solving ags[cﬂ =0,

ie.,
N N
i=1 i=1

For general demand distributions, the equation can be evaluated numerically. For example,
we consider the parameter settings given in Table 2 to study the optimal OP for a given
AR W = (wy,ws, w3). Based on Equation (11), we can obtain the optimal x by solving the

following nonlinear equation

Zaiwi /wix \;ge@l%? d&; — Zﬁzwz = 0.

Table 3 presents the optimal OP for different combinations of the AR. One can see that,

for the AR given in Equation (9) (with a check mark in Table 3), the resulting optimal OP
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Table 3: Optimal OP for the given AR

Fixed W Optimal OP | Optimal Profit
Case w1 wa w3 x* E[rn]*
1 0.5197 0.3095 0.1708 1844.8929 1363.4090
2 0.5197 0.1708  0.3095 1800.9164 1776.3400v
3 0.3095 0.5197 0.1708 2983.2096 1191.5776
4 0.3095 0.1708 0.5197 2701.5497 1190.3211
5 0.1708 0.5197  0.3095 1795.3993 748.0407
6 0.1708 0.3095 0.5197 1087.6032 858.6647

is exact the one given in Equation (9). In this case, the expected profit reaches its maximum
value, compared to all other cases. This is because, for the joint decision scenario, we can
simultaneously change two variables, which must be better than the fixed AR scenario (has
only one variable). In addition, according to the parameter setting, product 1 is recognized
to be the most profitable one. From the table, we can see that, at first, the optimal OP
is dominated by product 1 in Cases 1 — 4. When w; = 0.5197 or w; = 0.3095, it is
worth manufacturing around 900 lbs (which is close to 935.9363 1bs) of product 1, and
the quantities of products 2 and 3 are forced to leave 307.5965 lbs and 557.3836 lbs (the
optimums of subproblems), respectively. However, if w; = 0.1708 (only a small proportion
of the component is allocated to product 1), product 1 is no longer dominant. Because
the firm needs to order a large amount of milk to push w;z* close to 935.9363 lbs, which
significantly reduces the profits from the other two products (the profit generated from
product 1 is not enough to cover the losses of products 2 and 3). Clearly, the predetermined
AR indeed has a strong impact on the firm’s procurement decision. Moreover, if a product
is potentially more profitable, the optimal OP may show a favorite tendency to this product.

When the CDF of the unbounded demand of each product is strictly increasing in z, the

next lemma gives the optimal OP in closed form.

Lemma 2. If F;(w;x) is strictly increasing (i =1,2,...,N) in x and

G(z) = Z&iwiFi(wix), (12)

15



then the inverse function of G(x) exists and the optimal OP is

PROOF: Because F;(w;x) is strictly increasing in x, o; > 0, and w; > 0, it is easy to see

N
that G(z) = > a;w; Fi(w;z) is strictly increasing in = as well. Thus, the inverse function of
i=1

G(z) exists. Based on ag—iﬂ = 0, we have
N N
Z [—aiw; Fy(wiz) + Biw;] = —G(x) + Zﬁz‘wz‘ =0,
i=1 i=1

which leads to the optimal solution z* = G~* (Zf\il Bl-wl). O

Lemma 2 provides the explicit expression for the optimal OP when the AR is prede-
termined. However, it is usually difficult to find the inverse function of G(z) for general
distributions. The following proposition addresses a special case where the optimal OP can

be obtained.

Proposition 1. If all of the demands follow the same distribution F(-) and the raw material

15 equally allocated to N products, the optimal OP is

N N

PROOF: Assume the AR is set as w; = wy = ... = wy = 1/N. Suppose the demands of
different products follow the same distribution F'(-). Then, we have F}(wiz) = Fy(wyx) =

...= Fy(wyz) = F (£). According to Equation (12), we have

16



By applying Lemma 2, the optimal OQ is

N N
i=1 i=1

This completes the proof. [J

When the demands of different products follow the same distribution and their profitabil-
ities are similar, e.g., yoghurts with different tastes and fruit mix, it is reasonable for the
production department to apply the AU w; = 1/N,Vi. In this case, Proposition 1 can be
used to determine the order quantity of the raw material. Hence, the quantity allocated
to each product is simply Ffl(zi]\il Bi/ Zi\; a;). Due to the symmetric property of the
demands and the AR, the optimal OP will only be affected by the critical ratio between the
overall shortage cost structure Zf\il B; and the overall overstock cost structure Zfil a;. In
other words, under this situation, the firm can make the optimal procurement decision from
an integrated viewpoint and does not need to consider the marginal contribution of each

product to the firm’s profit.
Type II: Bounded demand with uniform distribution

Practically, the demand of each product is bounded in an interval [11], e.g., & € [0, U],
where U; is the upper bound of the corresponding demand. One commonly used assumption
is that the demand of a product follows uniform distribution, which simplifies the profit
function. In this special case, we assume that the demands of all the products follow uniform
distributions, i.e., & ~ UJ0, U;], Vi (similar analysis can be conducted for bounded demands
with the other distributions, e.g., the triangular and the truncated distributions).

First, we will further examine the expression of E[r]. Suppose §; follows the uniform

distribution U[0, U;], we can define an indicator set I; as

Il = {Z|l’ < V;},
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where V; = % (t=1,2,...,N). Then, the profit function can be expressed as

|

— -4 “Z z* + (Z Biw; + > (Bi — o@wi) z =2 %biUi + 2 %(pz = 8:)Us.

el icly i§§]1 icly i§§[1

E[r] =

-

s
Il
i

S (pig + si(wia — &) g-déi + ffwAU (Piwsr — by(& — wix)) - d&s — cowz

(13)
One can see that the demand of product ¢ will not exceed U;. However, if w; is fixed, the
optimal order quantity z* of Equation (13) cannot guarantee w;z* < U; for all products,
which reveals a different profit function structure (pay attention to the term “w;z A U;”)
and may result in certain wastes of low-profit products. From an economic viewpoint, it is
necessary to study the properties of the profit function under this circumstance.

If E[r] is twice differentiable at x € [0, +00), its first two derivatives can be obtained as

8‘3_9[:}:2 x—I—Zﬁzwz"‘Z( ;) wy,

i€ly i€ly ¢ (14)
0%Eln] _ wla;
ox% Z U

el

One can see from Equations (13) and (1 ) the coefficients of the quadratic function E[r],

OE[x]
o

depend on the set ;. Note that the number
of elements in set I; decreases as z increases. Let V(o) < V(1) < Vig) < ... < Vi) < Vinyy
be the ascending sequence of points {0, V3, V5, ..., Vi, 00}, where Vo) = 0 and V(y11) = 00
Since E|n] is either a quadratic or a linear function in each subinterval [V(;_1), V(;)), we can
easily seek the closed-form expression for the optimal OP. For the sake of convenience, we

rewrite Equation (13) as

E[ﬂ'] = A(i)ZL‘Q + B(i)ZL‘ + C(i), T € [‘/(i—l)7 VY(Z-)),Z' =1,2,....,N+1, (15)
where
Y wdyem
Ang—%m’ Z&k Z(m—%>u7
_zN B
Co == X sbwU Z 3(Pw) — 50 Uy-
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The following theorem provides a guideline for seeking the optimal z.

Theorem 2. If all the product demands follow uniform distributions, i.e., & ~ U0, U;], the

optimal OP belongs to the following set

) B, -B By
VNS {07W1)7W2)a"'7WN)7 @ ® ( )}

2A(1) ’ 2A(2) B 2A(N)

PROOF: Based on Equation (15), we know that, for subdomain [V{;_1), Vi3] (1 <7 < N),

the maximum value of E[r] can be achieved either at the endpoints (V{;_1) and/or V{;) or

its symmetric point ;f((:; (if Vii—1) < % < Vi»). In addition, when z > V{y),

DN | —

N N
ﬂﬂ=<ZN%rﬂme>x+Z:@w—mew

k=1 k=1

Since (By — aw)) Wy = (S — cry)way < 0, the profit function is a non-increasing function
in [V(n),4+00), which implies that the maximum value of E[r] is located at V{y) for x €
[Viny, +00). Hence, by comparing all the maximum points obtained in the subintervals, the

global optimum for the entire interval [0, 400) can be found and it satisfies

~Buy —B -B
e {07Vhw‘4ma~~>vi o —Be (N)}‘

Y240 2407 24w

This completes the proof. [J
Theorem 2 suggests that the exact solution to Equation (13) can be obtained by evalu-

ating the following simplified problem

_Bl _BQ _BN
max{Em e {o,wn,wz),...,m), 2A(<1)’, 2A(<2)>,..., QA:N;}}.

To illustrate the above result, we consider the problem setting given in Table 4. In
this example, we assume that the firm processes three different products with uniformly
distributed demands. From the problem setting, we can define Vigy = 0,V(1) = V5, V(9 =
Vi, Vigy = Vi, Vigy = co. We know that E[r] is quadratic in [0,V5), [V, V5), and [V, V7)),
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Table 4: Parameter settings for uniformly distributed demands

Product Parameters ($/1b) Demand (lbs) ~ U|0, U;] AR
1 p1 =1.5,b1 =0.3, 51 =0.15, ¢y = 0.5 U; =900 w1 = 0.3
2 p2 = 1.7, ba = 0.3, s2 = 0.15, co = 0.6 Uz = 300 w2 = 0.4
3 p3s = 1.8, b3 = 0.3, s3 = 0.15, c3 = 0.7 Us = 540 wsz = 0.3
U. U. U
V2=F§=750<V3=w—§=1800<v1=171=3000

and is linear in [V},00). Solving the simplified problem, we obtain the optimal OP as
x* = 1285.7142 lbs, and the associated optimal profit is $421.5. To analyze the wastes of
certain products due to the dominance of the high-profit product, we only change the price
of product 1 and fix the other parameters. The study is conducted on four cases shown in
Figure 3. In an extreme case where product 1 is free, i.e., p; = $0/Ib, the firm only makes
profit from products 2 and 3. The corresponding optimal OP ensures no “obvious” waste
of each product (note: if * > V;, we have w;z* > U;, which implies that at least w;z* — Uj;
of product ¢ will be wasted). In this case, we have I; = {1,2,3} without certain waste.
As p; increases to $1.5/1b, because the profit generated by product 1 can cover the loss in
product 2, the optimal x is increased to process more product 1 while resulting in a surplus
of product 2 (I; = {1,3}). Once the price of product 1 reaches $6/1b, product 1 shows a
significant dominance over products 2 and 3 in terms of profit. As a result, certain amounts
of products 2 and 3 are forced to be wasted (I; = {1}). Finally, when p; — oo, * becomes
3000 1bs which suggests the firm producing 900 lbs of product 1 (i.e., the upper bound of
the demand).

Consequently, when the demands of the multi-product system are bounded and the AR

decision is made prior to the OP decision, the material waste becomes an inevitable issue.

4.3. Optimal AR with predetermined OP

Besides the scenario with fixed AR, alternatively, the firm may deal with predetermined OP
based on market coverage promise, that is, the procurement department makes the ordering
decision before the AR decision of production department. In this subsection, we assume

that E[n] is twice differentiable and the order quantity x is known prior to planning the
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Figure 3: Profit functions with uniformly distributed demands and different p;.

production process. Similar to the production capacity planning problem studied by Ho and
Fang [26], the firm needs to allocate a favorable proportion of the raw material to different
products with uncertain demands. The following lemma addresses the concavity for this
problem, which allows us to develop an analytically tractable approach to determining the

optimal AR.

Lemma 3. Given the OP x, if Elr| is twice differentiable with respective to w; (i €

{1,2,...,N}), E[n] is a concave function of the AR W.

PRrROOF: The first and second derivatives of E[r] with respective to w; (i € {1,2,...,N})

are
85}5”] = —oxFy(wix) + By, Vi,
(16)
823%?] = —o; 7 f;(w;z), Vi.
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We know that z, «;, and f;(w;z) are nonnegative, so the associated Hessian matrix satisfies

2L <0, Vi,
H(E) N aQEZ
awia[ff,]j =0,Vi # j.

Obviously, H(W) is a diagonal and negative semidefinite matrix. Therefore, F[r] is concave
in W. This completes the proof. [J
It is worth pointing out that the firm, depending on its preference, may not manufacture

all the products in one period. Taking this into consideration, the problem becomes

max E[n]
w
N
subject to: > w; =1, (17)
i=1

w; > 0 (i€]2)awi20 (i¢]2)7

where Iy = {i : product i is selected to process}. For an extreme case, the firm only pro-

cesses one product in a period, e.g., product 1, the profit function is

Elr] =[5 (& Az)+si(x—&)T —bi(& — )t — ) f1(6)dE — ébkE[fk]-

Otherwise, more than one product will be produced. Let

L(W,\) = El[x] + X (Zwi - 1) .

Then, Equation (17) can be converted to the following Lagrangian relaxation problem

max LW, \)
W, A (18)

subject to: w; >0 (Z c Ig),wi =0 (l ¢ IQ),

where A is the corresponding Lagrangian multiplier. Note that Lagrangian relaxation is

applied to solve constrained multi-item newsvendor problems in previous research, while
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the optimal solutions are usually obtained via heuristic methods (in which the optimality
conditions are not explicitly derived). In this paper, to the best of our knowledge, we make
the first attempt to provide an analytical solution to this type of problem. We show the

equivalency of the problems given in Equations (17) and (18) in the next lemma.

Lemma 4. For Equation (18), if a feasible solution (w},ws, ..., wy, \*) satisfies the follow-

g condition

OLW,A) _ DLW _ _ AL _ 0LV _

ow1 Ows Yty owpn o\

(19)
w; >0 (i€ l),w;=0 (i ¢ I5),

W*=(wi,ws, ..., wy) is the optimal AR of Equation (17).

Proor: For Equation (17), E[r| is a concave function of W (see Lemma 3) and the
constraint >~ w; —1 = 0 is a linear equation (which indicates that 3%, w; — 1 is a convex
function of W). According to Theorem 8 in Page 664 of Winston [27], the proof of this
lemma is completed. [

As a result, one can obtain the exact optimal AR by simply solving the simultaneous
linear /nonlinear equations in Equation (19), which does not rely on any approximation
algorithm. However, the limitation of our approach is that we have to employ a numerical
method to evaluate the optimal \* before computing the optimal AR. The following theorem

provides the closed-form expressions for the optimal AR.
Theorem 3. Suppose the order quantity x is predetermined and the inverse function of F;(-)
exists. If products i € Iy are selected, the corresponding optimal AR is

Wt — L1 (M) el

7 Tt ;T

W =

(20)

PROOF: If the firm selects a subset Iy C {1,2,..., N} of products to process, then the

AR is restricted as W = {w; > 0 (i € L), w; =0 (i ¢ I5)}. From Equation (19), we know

23



the following relationships

(

—all’E(le') + 5233' + A= 0,2 € [2,

N
$Sw—1=0, (21)
i=1

\

After some simple algebraic manipulation, one has F;(w;x) = % If the inverse of Fj(-)

7

exists, we have

1 ; A
wi:—ﬂil (BZZL"f— >,7:€IQ.
i

;T

In addition, % =0 gives SN jw; = ., 1F (

i€l z7 4

By l) = 1. Then, the value of \*

a; ;T

can be determined by solving the following single-variable equation numerically

ZF;I (&—f— A ) = z.
a; ;T

i€la

Finally, the optimal AR can be found by substituting A* into Equation (20) and setting
w; =0 (i ¢ I).

This completes the proof. [

Theorem 3 introduces an analytical approach to finding the optimal AR, which is more
advance and accurate than the existing heuristics. For demonstration purposes, we first
study a case where the firm manufactures all the products and the parameters and demand
distributions are the same as that in Table 2. The predetermined x is changed within +50%
of the optimal one in Equation (9). The five cases in Table 5 (I; = {1,2,3}) illustrate the
impact of the OP on the optimal AR. One can see that w7} increases as the value of x increases,
while the profit increases from $594.8021 to $1776.3400 and then decreases to $1439.9885
(note that Case 3 with check mark also provides the optimal solutions to Equation (9) and

it is always better than the other fixed OP cases). At first, the amount of raw material
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is not enough for product 1 to generate enough profit to compensate the shortage costs of
products 2 and 3. As a result, it is better for the firm to allocate more materials to the other
two products. However, if more materials are ordered, the profit generated from product 1
becomes higher. Thus, the firm will allocate more materials to product 1, which shows its
dominance. An interesting finding is that the ratio between w; and wj is around 0.56 for

all these cases. The reason is that products 2 and 3 have similar profit structures, and the

ratio reflects the relative magnitude of their mean demands (£

Table 5: Optimal AR based on the predetermined z and I, = {1,2,3}

300~ 0.56).

Predetermined OP Optimal W Optimal Profit
Case x wy w w3 A* Eln]*
1 800.9164 0.0344 0.3525 0.6131 -1041.1912 594.8021
2 1300.9164 0.4055 0.2170 0.3775 -1691.1914 1244.8022
3 1800.9164 0.5197 0.1708  0.3095 0.0000 1776.3400 v/
4 2300.9164 0.6107 0.1381 0.2512 805.3206 1614.9885
5 2800.9164 0.6802 0.1134 0.2064 980.3206 1439.9885
6 3300.9164 0.7287 0.0962 0.1751  1155.3202 1264.9885
7 3800.9164 0.7643 0.0836 0.1521 1330.3199 1089.9885

Another interesting aspect is to examine the effect of the product price. To conduct
the sensitivity analysis, we assume the three products have the same parameters as that of
product 2 and remain their prices as (p; = 1.5, p2 = 1.6, p3 = 1.8). The following table shows
the effect of product price on the optimal AR (we simply vary py as an illustrative purpose).

From Table 6, one can see that the proportion of raw material allocated to product 2 increases

Table 6: Effect of price on optimal AR with fixed optimal OP z = 921.9238

Case Change of price Optimal W Optimal Profit
P2 wi w3 w} A* E[r]*
1 1.4 0.3330 0.3324  0.3346 16.8684 851.5938 v
2 1.5 0.3328 0.3328 0.3344 8.1835 881.4095
3 1.6 0.3326  0.3332  0.3342 0.0000 911.2348 v
4 1.7 0.3324 0.3335 0.3340 -7.7391 941.0686
5 1.8 0.3322 0.3339 0.3339  -15.0750 970.9102
6 10.8 0.3272  0.3434 0.3294 -251.2692 3665.2679
7 100.8 0.3219 0.3531 0.3248 -517.1964 30657.1670

as po increases. The reason is the profitability of product 2 is improved. Especially, when
pe = p1 = 1.5 (or po = p3 = 1.8), the proportions allocated to products 1 and 2 (or products
2 and 3) are the same, because they have similar profitability. Hence, the optimal AR is

closely linked to the profitability of each product.
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Table 7: Optimal AR based on the predetermined x and I, C {1,2,3}

Predetermined OP Optimal W Optimal Profit
Case 12 -1 ( Bi * * * * *
x [a}, =F; a—;)] Tk w3 w3 A E[n]
1 {1,2,3} 1800.9164 0.5197  0.1708  0.3095 0.0000 1776.3400 v/
1800.9164 0.8236  0.1764 0 630.3207 855.4463
9 (1,2} 1800.9164-x1 0.6736  0.3264 0 -1124.4454 630.2121
’ 1800.9164-x2 0.7873  0.2127 0 522.6415 963.1256
1800.9164-x3 0.7526  0.2474 0 0.0000 1040.1021v
1800.9164 0.6790 0 0.3210 630.3206 1267.2214
3 (1,3} 1800.9164-x1 0.4323 0 0.5677  -1124.4451 650.2887
’ 1800.9164-z2 0.6268 0 0.3732 0.0000 1362.7126v
1800.9164-x3 0.6051 0 0.3949  -1615.6273 1142.5312
1800.9164 0 0.6730  0.3270 810.4124 215.4312
4 (2,3} 1800.9164-z1 0 0.3557  0.6443 0.0000 627.8654v
’ 1800.9164-22 0 0.6056  0.3944 671.9676 353.8760
1800.9164-x3 0 0.5264  0.4736 559.6266 466.2175
1800.9164 1 0 0 630.3208 332.6792
5 () 1800.9164-x1-z2 1 0 0 -724.4936 202.4935
1800.9164-x1-z3 1 0 0 -399.9515 -122.0485
1800.9164-x2-z3 1 0 0 0.0000 626.4746v
1800.9164 0 1 0 810.4124 -777.4124
6 2} 1800.9164-x1-z2 0 1 0 250.7862 -217.7862
1800.9164-x1-z3 0 1 0 0.0000 -108.3725v
1800.9164-x2-x3 0 1 0 421.1814 -388.1814
1800.9164 0 0 1 990.5041 -459.5041
7 (3} 1800.9164-x1-z2 0 0 1 0.0000 214.2380v
1800.9164-x1-z3 0 0 1 -430.7170 -91.2830
1800.9164-z2-z3 0 0 1 514.7773 16.2227

Different from Table 5, the analysis on the firm’s product selection preference is presented
in Table 7. Apparently, if a product is not selected, it will not make any contribution to the
total profit, and the firm may face a shortage of this product. Suppose material procurement
is reasonably scheduled. In the third column of Table 7, we show the predetermined OP for
different cases of I (note: the profit with check mark is the maximum one under each
scenario). Because each product can contribute to the total profit, the firm achieves its
highest profit when all of the products are selected (Is = {1,2,3}). If one of the products
is not processed in the period, the profit may be lowered (see Cases 2-4). Especially, when
only products 2 and 3 are selected (i.e., Case 4), the profit reaches a very low level since
product 1 is indeed the most profitable one. The situation gets worse if the firm only makes
one product in one period. The profit may even become negative due to the significant loss
in the other two products. Case 6 indicates that the profit made from product 2 is not able

to cover the losses of products 1 and 3, for which the firm is unable to generate profit.
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5. Conclusions

In this paper, we investigate a flexible one-material-multi-product production system for
agricultural companies. We examine the ordering policy (OP) and allocation rule (AR) of
the raw material for a processor firm making multiple products. Different from the previous
research, which relies on heuristics methods in the solution technique, the exact optimal
solutions are provided for three practical scenarios. The properties of the solutions are also
discussed via numerical experiments.

For the first scenario, the firm needs to simultaneously determine the OP and the AR of
the raw material. Though the profit function is nonconcave, by investigating this problem
from another perspective, we are able to derive a closed-form expression for the optimal
solution. The result is intuitively appealing and computationally simple.

For the scenario where the AR is fixed, two cases are discussed for seeking the optimal
OP. When the demands are unbounded with general distributions, the optimal OP can be
obtained numerically. If the demands are uniformly distributed, the formulation for the profit
function will vary with different OP. To address this problem, we develop an easy-to-follow
procedure to obtain the exact optimal solution. Since the demands are bounded, numerical
results show that the optimal OP may result in material wastage due to the dominance of
the most profitable product.

Finally, in the third scenario, we propose a Lagrangian relaxation approach for the prob-
lem with a predetermined OP. Differing from previous heuristic-based research, we solve the
optimal AR analytically, which fills a gap in the related literature. We first investigate the
change of optimal AR by varying the value of OP or product price. The results indicate that
when the amount of the OP or price increases, the firm should allocate a larger proportion
of raw material to the high-profit product. In addition, if two products have similar profit
structures, their material allocation ratio mainly depends on their mean demands. We also
consider the firm’s preference in product selection when not all the products must be pro-

duced. To study the effect of the AR with preference on the total profit, we consider three
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products as an example to analyze several possible cases. The results illustrate that, if the
firm only produces one of the products, there is a high possibility that the firm will make a

negative profit due to the significant losses of the other products.
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