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Abstract
Sparse learning models are popular in many application areas. Objective functions in sparse
learning models are usually non-smooth, which makes it difficult to solve them numeri-
cally. We develop a fast and convergent two-step iteration scheme for solving a class of
non-differentiable optimization models motivated from sparse learning. To overcome the
difficulty of the non-differentiability of the models, we first present characterizations of their
solutions as fixed-points of mappings involving the proximity operators of the functions
appearing in the objective functions. We then introduce a two-step fixed-point algorithm
to compute the solutions. We establish convergence results of the proposed two-step itera-
tion scheme and compare it with the alternating direction method of multipliers (ADMM).
In particular, we derive specific two-step iteration algorithms for three models in machine
learning: �1-SVM classification, �1-SVM regression, and the SVM classification with the
group LASSO regularizer. Numerical experiments with some synthetic datasets and some
benchmark datasets show that the proposed algorithm outperforms ADMM and the linear
programming method in computational time and memory storage costs.
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1 Introduction

Sparse learning models have received increasing attention in machine learning [2] due to the
fact that models with sparsity usually bring advantages both in estimation and interpretation
[8]. For example, it is well received that the �1-norm regularizer would produce sparse
solutions [29]. Moreover, the LASSO regularized models have shown their great power
in producing sparse solutions [29]. The group LASSO [9,34] regularization is a natural
generalization of the LASSO regularization that can be seen as a group-wise �1-norm. It was
shown in [9,20,34] that the group LASSO regularized model would generate a group sparse
solution and would perform better when the optimal variable has a group sparse structure.

Sparse learning models are often non-smooth, which brings great challenges in solving
them numerically. In particular, when both the fidelity term and the penalty term in the
model are non-smooth, it is often quite challenging to efficiently solve it since no gradient
information is available for these terms due to their non-smoothness. For instance, in the
�1-SVM model both the hinge loss function and the �1 norm penalty are non-differentiable,
whichmake it difficult to solve themodel. A typical treatment of the non-smoothness is to use
smooth (differentiable) approximations of the non-smooth terms involved in the optimization
problems and solve the resulting approximatemodels by using the standard optimization algo-
rithms for smooth functions, see [33] for a survey of the treatment. On the other hand, some
methods consider approximate models of the dual problem [7,19]. However, solutions of the
approximate models might not perform as well as solutions of the original model. We would
focus on developing fast and efficient algorithms for solving a class of non-differentiable
optimization models motivated from sparse learning. In general, both the fidelity term and
the penalty term are non-differentiable in such models.

Difficulty of solving an optimization problem having a non-smooth fidelity term and a
non-smooth penalty term lies in treating simultaneously the two non-smooth terms. The
alternating direction method of multipliers (ADMM) has been used to solve an optimization
problem whose objective function is a sum of two non-smooth convex functions. It provides
a specific way of decoupling the two functions through introducing auxiliary variables such
that at each iteration step one can minimize only a quadratic perturbation of these two
functions alternatively. ADMM has been proved to be a powerful method in solving convex
optimization problems [4,25]. However, ADMM may suffer from non-convergence or slow
convergence for certain problems due to its fixed scheme of splitting the terms in iterations
[13,21].

The goal of this paper is to develop efficient methods for solving the non-smooth opti-
mization models directly rather than working on their smooth approximations. Following a
general idea described in [13,21], we shall design a two step iteration method suitable for
solving the non-smooth optimization models motivated from sparse learning. We shall use
the fixed-point methodology by employing the fixed-point equation of the optimization prob-
lem expressed in terms of the proximity operators of the non-smooth functions involved in
their objective functions. Specifically, we shall first characterize its solutions as fixed-points
of some nonlinear mapping through employing the connection between the sub-differential
and the proximity operator, following the approach developed in [1,12,13,15,21,22]. In other
words, we transform the optimization problem into an equivalent fixed-point problem, and
develop fast algorithms of finding such fixed points numerically. We note that such proximity
operators in the fixed point reformulation would have closed forms that would reduce the
computational costs. However, it turns out that it may not lead to a convergent algorithm by
directly applying iterative fixed-point algorithm on this characterization. To overcome this
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difficulty, we further apply matrix splitting techniques to derive a two-step iteration scheme
of computing the fixed-points that is proved to be convergent. Moreover, the convergence
will speed up due to the usage of the fully updated two-step information. In summary, we
would obtain a fast and convergent direct solver combining two-fold advantages: employ-
ing the closed forms of the proximity operators in the fixed point reformulation and using
two-step information in each iteration through matrix splitting techniques according to the
special structure of the operators in the fixed point reformulation.

We shall demonstrate the advantages of the proposed two-step method by comparing it
with ADMM. We shall show that ADMM could be viewed as a specific way of splitting
that satisfies the proposed general conditions. However, it uses only one-step information in
each iteration, unlike the proposed method that uses two-step information. We remark that a
carefully designed two-step iteration scheme might have a faster convergence than one-step
iteration scheme, such as the seminal Nesterov’s accelerated gradient method [24]. In addi-
tion to providing a more general framework than the specific splitting scheme of ADMM,
the proposed two-step method has also shown superior convergence speed to ADMM. In
particular, we introduce some other specific choices of splitting that is able to use more
(two-step) information at each iteration than that (one-step) of ADMM. Moreover, due to its
flexible choices of splitting, wemight also be able to obtain some optimal splitting strategy to
improve the convergence. We shall confirm the superior convergence performance in numer-
ical experiments on several benchmark datasets. In particular, these numerical experiments
show that the proposed method is 2–8 times faster than ADMM while maintaining the same
prediction accuracy.

This paper is organized in seven sections. In Sect. 2, we shall introduce a non-differentiable
optimization model motivated from sparse learning. We shall also present there three impor-
tant examples in sparse learning that could be formulated in such a general non-differentiable
optimization model. We shall focus on, in Sect. 3, developing fast and efficient numerical
algorithms for solving such a model. Specifically, we shall first characterize its solutions
as the fixed-points of certain non-linear operators and develop a two-step iterative scheme
for computing the fixed points. The convergence results of the proposed two-step iterative
scheme are also shown in the section. In Sect. 4, we shall present some specific two-step
explicit algorithms based on the general two-step iterative scheme.We shall provide in Sect. 5
a detailed comparison of the proposed two-step iteration scheme with ADMM. Section 6 is
devoted to numerical experiments. We shall implement the proposed method on both syn-
thetic datasets and some benchmark real-world datasets. Finally, we draw conclusion remarks
in Sect. 7.

2 A Class of OptimizationModels

In this section,we consider a class of optimizationmodelswhose objective functions are a sum
of two non-differentiable convex functions. The optimization problems have the following
form:

min{ϕ(w) + ψ(Bw) : w ∈ R
n}, (2.1)

where ϕ : Rn → R := R∪{∞} andψ : Rm → R are two non-differential convex functions,
B is a m × n matrix. Here, Rd denotes the usual d-dimensional Euclidean space.

We remark that many optimization models in machine learning could be formulated in
the above general form. We describe a few of them below.
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2.1 �1-SVM Classification

The standard �2-norm support vector machine classification [6,30] aims at finding the best
hyperplane that has the largest distance to the nearest point of any class. It turns out that this
hyperplane is determined by a small fraction of the training points, that is, the support vectors.
For the purpose of decreasing the number of the support vectors, the support vector machines
with the �1 norm regularizer [26,30,36] is put forward. In this subsection, we describe the �1-
SVM classification model and show how it can be reformulated in the general form Eq. (2.1).

We now describe the �1-SVM classification model. Given instances xi ∈ R
n with labels

yi ∈ {1,−1}, i ∈ Nm := {1, 2, . . . ,m}, the standard �1- SVM classification is to solve the
following minimization problem

min

{
‖α‖1 + C

∑
i∈Nm

L(α, xi , yi , b) : α ∈ R
m, b ∈ R

}
, (2.2)

where L is the hinge loss function given by

L(α, xi , yi , b) := max

{
1 − yi

( ∑
j∈Nm

α j K (x j , xi ) + b

)
, 0

}
, (2.3)

K (·, ·) is a given kernel function on Rn × R
n and C > 0 is the regularized parameter.

Below, we present a reformulation of model (2.2) in the general form (2.1). To this end,

for α and b appearing in (2.2), we introduce the vector w :=
(

α

b

)
. We define the matrix

K := [K (xi , x j ) : i, j ∈ Nm] and augment it to K̃ := [K 1], where 1 := (1, 1, . . . , 1)T ∈ R
m .

We further introduce the diagonal matrix Y := diag(yi : i ∈ Nm). Using the above notation,
we define Bc := YK̃. Moreover, for any w ∈ R

m+1 and the m order identity matrix Im , we
let

A :=
[
Im 0
0T 0

]
(m+1)×(m+1)

,

and define

ϕl(w) := ‖Aw‖1. (2.4)

For s ∈ R
m , we define

ψh(s) := C
∑
i∈Nm

(1 − si )+, where (t)+ := max{t, 0} for any t ∈ R. (2.5)

It can be verified that both functions ϕl and ψh are convex but not differentiable.
A direct computation confirms that model (2.2) is equivalent to

min{ϕl(w) + ψh(Bcw) : w ∈ R
m+1}. (2.6)

Clearly, model (2.6) is in the form of (2.1).

2.2 �1-SVM Regression

The regression problem is concerned with a more general setting with the labels yi ∈ R,
comparing to the classification problem which deals with the labels yi ∈ {1,+1}. In this
subsection, we describe the �1-SVM regression model.
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Given instances xi ∈ R
n with labels yi ∈ R, i ∈ Nm , the standard �1- SVM regression

is to solve the minimization problem (2.2), having the same form as for the classification
model, with a different fidelity function L , which depends on the parameter ε > 0. This
fidelity function Lε , called the ε-insensitive loss function [30], has the form

Lε(α, xi , yi , b) := max

{∣∣∣∣
∑
j∈Nm

α j K (xi , x j ) + b − yi

∣∣∣∣ − ε, 0

}
,

where K (·, ·) is a given kernel function on Rn × R
n .

In a way similar to the classification model, we could rewrite the �1-SVM regression
model in the form of (2.1). Specifically, for the given labels y := (y j : j ∈ Nm)T we define

ψε, y(s) := C
∑
i∈Nm

(|si − yi | − ε)+, s ∈ R
m, (2.7)

where C > 0 is a given parameter. Likewise, ψε, y is convex and non-differentiable. For α

and b appearing in (2.2), we let w :=
(

α

b

)
. Moreover, for K := [K (xi , x j ) : i, j ∈ Nm], we

define Br := [K 1]. In this notation, the �1-SVM regression model can be rewritten as

min{ϕl(w) + ψε, y(Brw) : w ∈ R
m+1},

where ϕl is defined by (2.4). This is clearly in the form of (2.1).

2.3 Group LASSO Regularized-SVM Classification

In this subsection, we consider the group LASSO regularized-SVM classification problem.
Selection of groups of a variable is an important problem in statistical learning. Such a
selection process may be efficiently realized by using the group LASSO penalty that is the
sum of the �2-norm of the groups of the variable [34]. It often gives superior performance
over the standard �1-regularization when the underlying model has the prior information of
group sparsity [9].

We now present the group LASSO regularized-SVM classification model. Suppose that
them-dimensional variable can be divided into l disjoint groupsG j , j ∈ Nl . For α ∈ R

m , we
define a variable associated with a group Gi by αGi := (α j : j ∈ Gi ). The group LASSO
regularized-SVM can be written as

min

{∑
i∈Nl

δi‖αGi ‖2 + C
∑
i∈Nm

L(α, xi , yi , b) : α ∈ R
m, b ∈ R

}
, (2.8)

where δi > 0, i ∈ Nl , are prescribed parameters and L is the hinge loss function defined by
(2.3).

The group LASSO regularized-SVM classification model (2.8) can also be reformulated
as a special case of model (2.1). To this end, we define ψh as in (2.5) and let

ϕg(s) :=
∑

i∈Nl+1

δi‖sGi ‖2, s ∈ R
m+1, (2.9)

where we set Gl+1 := {m + 1} and δl+1 := 0. For α, b appearing in (2.8), we let w :=
(

α

b

)
.

It is straightforward to verify that in this notation model (2.8) can be rewritten as

min{ϕg(w) + ψh(Bgw) : w ∈ R
m+1},
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where Bg := Y[K 1] with Y := diag(yi : i ∈ Nm) and K := [K (xi , x j ) : i, j ∈ Nm]. Once
again, this is in the form of (2.1).

2.4 Learning in Reproducing Kernel Banach Spaces

Reproducing kernel Banach spaces (RKBS) [16,18,27,28,32,35] were studied recently for
sparse approximation models in machine learning. In particular, the RKBS with the �1 norm
[27,28] was shown to produce sparse approximation of functions in supervised learning.

Wenext present the learningmodel in suchRKBSand show that it could also be formulated
in the general form (2.1). Suppose that K (·, ·) is a given kernel function and {(xi , yi ) : i ∈
Nm} are given training data. The learning model in the RKBS with the �1 norm is

min{‖Kc− y‖22 + μ‖c‖1 : c ∈ R
m},

where K := [K (xi , x j ) : i, j ∈ Nm] is the kernel matrix, y := (yi : i ∈ Nm)T and
μ > 0 is the prescribed regularization parameter. It is straightforward to observe that the
above model may be reformulated as a special case of the general model (2.1) by identifying
ϕ(w) := ‖Kw − y‖22, ψ(w) := ‖w‖1 and B := I.

We now return to the general case. The difficulty of solving the general optimizationmodel
(2.1) is originated from the non-differentiability of the functionsϕ andψ . A popular approach
is to use differentiable functions to approximate the non-differentiable functions ϕ and ψ

and to solve the approximate models by using existing optimization algorithms designed
for smooth functions (see, for example, [33]). However, their performance depends on the
choices of such smooth functions and the corresponding smoothing parameters. Hence, it
requires extra efforts to determine the appropriate smooth functions and smoothing param-
eters. Moreover, solutions of the smoothing models may not perform as well as solutions of
the original models, since the non-differentiability of the functions ϕ and ψ often character-
izes the sparsity and other desirable features of the solutions of the corresponding models.
We propose to solve the original optimization model (2.1) directly rather than its approxi-
mate models. Specifically, we shall characterize in the next section solutions of the model as
fixed-points of certain nonlinear operators determined by the functions ϕ and ψ and develop
two-step fast iteration algorithms to compute the solutions based on the resulting fixed-point
equation.

3 A Two-Step Fixed-Point Proximity Iterative Algorithm

We develop fast numerical algorithms for solving the general non-differentiable optimiza-
tion model (2.1). As we have pointed out in the last section, the challenge of solving this
model lies in the non-differentiability of both functions involved in its objective function.
To overcome this difficulty, we will first present the characterization of its solutions as fixed
points of certain proximity operators. That is, we will convert the non-smooth minimization
problem to an equivalent fixed point problem such that the extensive literature of fixed point
algorithms could be employed to guide us to design convergent iterative schemes for finding
its approximate solutions. In particular, the fixed-point methodology allows us to develop a
two-step fast algorithm of computing such fixed points through a matrix splitting technique
to improve convergence rate.

The solutions of (2.1) may be characterized as fixed points of certain proximity operators.
We first review the definition of proximity operators. For p ≥ 1, let ‖x‖p = (∑m

i=1 |xi |p
)1/p
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be the �p norm for x ∈ R
m . We denote by �0(R

d) the class of all lower semi-continuous
convex functions f : Rd → (−∞,+∞] such that

dom( f ) := {x ∈ R
d : f (x) < +∞} �= ∅.

The proximity operator of a function f ∈ �0(R
n) is defined by

prox f (z) := argmin

{
1

2
‖x − z‖22 + f (x) : x ∈ R

n
}
, z ∈ R

n .

It follows fromadirect computation through using the relation between the sub-differential
and the proximity operator [21] that a vector w ∈ R

n is a minimizer of (2.1) if and only if
there exists λ, β > 0 and y ∈ R

m such that

w = prox 1
λ
ϕ

(
w − Cβ

λ
BT y

)

y =
(
I − prox 1

Cβ
ψ

)
(Bw + y).

(3.10)

We let v :=
(

w

y

)
∈ R

n+m ,

T (v) :=
(

prox 1
λ
ϕ(w)

I − prox 1
Cβ

ψ( y)

)
, and E :=

[
I −Cβ

λ
BT

B I

]
.

We readily observe that the characterization (3.10) can be reformulated as

v = T 
 E(v). (3.11)

Namely, the solutions of problem (2.1) can be equivalently characterized by the fixed-points
of the non-linear operator T 
E. That is, solving the minimization problem (2.1) is equivalent
to solve the fixed-point problem (3.11). This formulation brings us two advantages. The first
one is that the non-differentiability of the objective functions is no longer a problem if the
proximity operators of the functions φ and ψ are easy to compute. In particular, as we will
show later in Sect. 4, the proximity operators in all the three specific models we presented
in Sect. 2 have closed forms. Moreover, the fixed point reformulation is more convenient
to derive the convergent algorithms that are completely determined by properties of the
non-linear operator T 
 E.

We next consider the numerical algorithms of computing the fixed-point of (3.11). As
pointed out in [14], the Picard iteration directly applied to (3.11) may not be convergent
due to the expansiveness of E. Instead, we shall employ a matrix splitting technique to
obtain a two-step fast convergent iteration scheme. In particular, we shall follow the general
framework of multi-step proximity algorithms in [13] and introduce a specific and efficient
splitting technique. We will justify its numerical performance through its implementation in
many machine learning models later. Specifically, we shall split the expansive matrix E as
follows:

E = (E − M0) + M1 + M2,

where

M0 :=
[
I h Cβ

λ
B�

lB I

]
, M1 :=

[
I h1

Cβ
λ
B�

l1B I

]
, M2 :=

[
0 h2

Cβ
λ
B�

l2B 0

]
, (3.12)
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h, l, h1, h2, l1, l2 are parameters to be specified later. Since we require M0 = M1 + M2, we
see that h = h1 + h2 and l = l1 + l2. These matrices are chosen to ensure that the resulting
iterative scheme not only converges but also has a faster convergence. We could then rewrite
Eq. (3.11) as

v = T 
 ((E − M0)v + M1v + M2v),

and consider the following two-step iteration scheme

vk+1 = T 
 ((E − M0)v
k+1 + M1v

k + M2v
k−1). (3.13)

We point out that the above two-step iteration scheme (3.13) is an implicit scheme in
general. However, we observe that if we chooseM1 andM2 such that E−M0 is strictly block
upper (or lower) triangular, then it will lead to an explicit iterative scheme. In particular,
with the specific choices of M0, M1, and M2 in (3.12), the two-step iteration scheme (3.13)
is equivalent to

wk+1 = prox 1
λ
ϕ

(
−(1 + h)

Cβ

λ
B� yk+1 + wk + h1

Cβ

λ
B� yk + h2

Cβ

λ
B yk−1

)

yk+1 =
(
I − prox 1

Cβ
ψ

) (
(1 − l)Bwk+1 + yk + l1Bwk + l2Bwk−1

)
.

(3.14)

If we choose h := −1 or l := 1, then the above iterative scheme would be an explicit
iteration.

We also remark that both wk+1 and yk+1 use the previous two-step information, which
speed up the overall convergence, as we shall see later in the numerical experiments. Iteration
scheme (3.14) is different from the two-step scheme in [14], where yk+1 uses the previous
two-step information andwk+1 uses only one-step information there. We will also show later
that bothwk+1 and yk+1 in the corresponding ADMM scheme use only one-step information
of previous iterations. That is, the proposed two-step iteration scheme in this paper would be
more efficient in computation. This will be confirmed by numerical experiments in Sect. 6.

The rest of this section is devoted to convergence analysis of the proposed two-step
iteration scheme.

Theorem 3.1 If C, λ, β, h, l, h1, h2, l1, l2 ∈ R satisfy

(i) h = h1 + h2, l = l1 + l2,
(ii) h + h2=l + l2,

(iii)
√

Cβ
λ

|h + h2|‖B‖2 < 1,

(iv)
max{ Cβ

λ
,1}

1−
√

Cβ
λ

|h+h2|‖B‖2
max{|h2|, |l2|}‖B‖2 < 1

2 ,

then the sequence {wk} generated by the two-step iteration scheme (3.14) converges to a
solution of problem (2.1) and has O( 1k ) convergence rate in the ergodic sense.

Proof We employ Theorem 5.2 in [14] to derive the convergence result. Specifically, we need
to show the matrices (RM0, RM1, RM2) satisfy the Condition-M defined in Definition 4.2 in

[14], where R :=
(

λ
Cβ

I 0
0 I

)
. That is, we need to show that

(a) RM0 = RM1 + RM2,
(b) H := RM0 + RM2 is symmetric and positive definite,
(c)

∥∥H−1/2RM2H−1/2
∥∥
2 < 1

2 .
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We shall check the above three conditions separately. The first condition (a) follows
immediately from the definition of M0, M1, and M2 in (3.12) and Assumption (i).

We next show the condition (b) also holds. It follows from a direct computation that

H = R(M0 + M2) =
(

λ
Cβ

I (h + h2)B�
(l + l2)B I

)
.

By Assumption (ii), we see H is symmetric. It follows from Assumption (iii) and Lemma 6.2
(i) in [13] that H is positive definite.

It remains to check the validity of condition (c). We shall prove it by a direct computation.
It follows from Lemma 6.2 (ii) in [13] that

‖H−1‖2 ≤ max{Cβ
λ

, 1}
1 −

√
Cβ
λ

|h + h2|‖B‖2
.

Moreover, since

(RM2)
T (RM2) =

(
l22B

T B 0
0 h22BB

T

)
,

we have that

‖RM2‖2 = max{|h2|, |l2|}‖B‖2.
Condition (c) follows immediately from the above equality and equation combined with
Assumption (iv). Therefore, the desired convergence results follows from Theorem 5.2
in [14]. �

4 Specific Two-Step Algorithms

In this section, we introduce two specific classes of two-step algorithmswith different choices
of the parameters h1, h2, l1, l2. We also provide explicit formulas of the proximity operators
for the three machine learning models discussed in Sect. 2.

As we pointed out in Sect. 3, to obtain an explicit iteration from the general scheme (3.14),
we need to either have h = −1 or l = 1. We next discuss these two cases separately.

We first consider the case that h = −1. It follows from the conditions in Theorem 3.1
that ⎧⎪⎨

⎪⎩
h1 = −2 − l1 − 2l2
h2 = 1 + l1 + 2l2
l = l1 + l2.

Substituting these relations into the general scheme (3.14), we obtain that

wk+1 = prox 1
λ
ϕ

(
wk − Cβ

λ
BT

(
yk + (1 + l1 + 2l2)( yk − yk−1)

))

yk+1 =
(
I − prox 1

Cβ
ψ

) (
yk + B

(
wk+1 − l1(w

k+1 − wk) − l2(w
k+1 − wk−1)

))
.

(4.15)

It is direct to observe that the vectors wk+1 and yk+1 can be explicitly solved from (4.15).
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Likewise, for the case l = 1,we need the following conditions on parameters h1, h2, l1, l2:⎧⎪⎨
⎪⎩
l1 = 2 − h1 − 2h2
l2 = −1 + h1 + 2h2
h = h1 + h2.

The corresponding explicit algorithm is

yk+1 =
(
I − prox 1

Cβ
ψ

) (
yk + B

(
wk + (1 − h1 − 2h2)(w

k − wk−1)
))

wk+1 = prox 1
λ
ϕ

(
wk − Cβ

λ
B� (

yk+1 + h1( yk+1 − yk) + h2( yk+1 − yk−1)
))

.

(4.16)

These two classes of algorithms are both two-step iterative algorithms, which make each
iteration considerably efficient. Moreover, the parameters l1, l2 or h1, h2 may be used to
control the amount of the two-step information to be employed.

The proposed two-step iterative schemes depend on the proximity operators of the func-
tions ϕ and ψ . Efficiency of these schemes pretty much depends on how these operators are
computed. We next provide closed form formulas for the proximity operators of ϕ and ψ in
all the three models introduced in Sect. 2. They lead to fast solvers of the machine learning
problems under consideration.

We first compute the proximity operators for the �1-SVM classificationmodel in Sect. 2.1.

Proposition 4.1 If ϕ(w) := ‖Aw‖1, where A is an n×n diagonal matrix having the diagonal
entries a j ≥ 0, then for any z ∈ R

n and λ > 0,(
prox 1

λ
ϕ(z)

)
j
= max

{
|z j | − a j

λ
, 0

}
sgn (z j ), j ∈ Nn . (4.17)

Proof Since ϕ(z) = ‖Az‖1 and A is a diagonal matrix with all entries a j ≥ 0, we have that

1

λ
ϕ(z) =

n∑
j=1

a j

λ
|z j |.

We modify a result in [22] to prove this proposition. It has been shown in [22] that for any
z ∈ R

n and λ > 0, the proximity operator of 1
λ
‖z‖1 is

prox 1
λ
‖·‖1(z) =

(
prox 1

λ
|z1|, . . . , prox 1

λ
|zn |

)T
,

where

prox 1
λ
|·|(z j ) = max

{
|z j | − 1

λ
, 0

}
sgn (z j ).

The proximity operator of 1
λ
ϕ in (4.17) follows from replacing 1

λ
by

a j
λ
. �

The functionϕl definedby (2.4) for the �1-SVMclassificationmodel in Sect. 2.1 is a special
case of the function ϕ discussed in the last proposition. Below, we consider computing the
proximity operator of ψ defined by (2.5).

Proposition 4.2 If ψ is defined by (2.5), then for any z ∈ R
n and β > 0,

(
prox 1

Cβ
ψ(z)

)
j
=

⎧⎪⎨
⎪⎩
z j , if z j ≥ 1,

1, if 1 − 1
β

≤ z j < 1,

z j + 1
β
, if z j < 1 − 1

β
,

j ∈ Nn .
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Proof The proximity operator of 1
Cβ

ψ can be computed component-wise. For each j ∈ Nn ,
we have that(

prox 1
Cβ

ψ(z)
)
j
= argmin

{
1

2
(x j − z j )

2 + 1

β
(1 − x j )+ : x j ∈ R

}
.

We compute the above minimizer in three cases z j ≥ 1, 1 − 1
β

≤ z j < 1, and z j < 1 − 1
β

separately. Suppose that z j ≥ 1. When x j ≤ 1, we have that the minimal value is 1
2 (1− z j )2

taking at x j = 1. When x j > 1, the minimal value is 0 taking at x j = z j . It is clear that
when z j ≥ 1, the minimizer is z j . The other two cases follow in a similar proof. �

Wenext compute the proximity operators for the �1-SVM regressionmodel in Section 2.2.
Note that ϕl is the same as that in the �1-SVM classification model and its proximity operator
is given in (4.17). The proximity operator of ψε, y in (2.7) is given below:

(i) If ε ≥ C
2β , then for j ∈ Nn

(
prox 1

β
ψε, y

(z)
)
j
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z j − C
β
, if z j ≥ ε + C

β
+ yi

ε + yi , if ε + yi ≤ z j < ε + C
β

+ yi
z j , if ε − C

β
+ yi ≤ z j < ε + yi

z j + C
β
, if − ε + yi ≤ z j < ε − C

β
+ yi

−ε + yi , if − ε − C
β

+ yi ≤ z j < −ε + yi
z j + C

β
, if z j < −ε − C

β
+ yi .

(ii) If ε < C
2β , then for j ∈ Nn

(
prox 1

β
ψε, y

(z)
)
j
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z j − C
β
, if z j ≥ ε + C

β
+ yi

ε + yi , if ε + yi ≤ z j < ε + C
β

+ yi
z j , if − ε + yi ≤ z j < ε + yi
−ε + yi , if − ε − C

β
+ yi ≤ z j < −ε + yi

z j + C
β
, if z j < −ε − C

β
+ yi .

For the group LASSO regularized-SVM classification model in Section 2.3, ψh is the
same as that in the �1-SVM classification model and the proximity operator of ϕg is:

(
prox 1

λ
ϕg

(z)
)
G j

= max

{
‖zG j ‖2 − δ j

λ
, 0

}
zG j

‖zG j ‖2
.

With the formulas developed above for the proximity operators of functions that appear
in the three machine learning models studied in this paper, algorithms (4.15) and (4.16) lead
to fast solvers for these models.

5 Comparison with ADMM

We identify in this section the ADMM method as a special case of the proposed two-step
iteration scheme to understand the insight on what makes an iterative scheme converges fast.

ADMM is a powerful method in solving convex optimization problems [4,25]. It can
also be applied to solve the general optimization model (2.1). In this section, we compare
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the proposed two-step iteration scheme with the ADMM scheme. Specifically, we identify
ADMMas a special case of the proposed schemewhich allows us to see that in updating yk+1

and wk+1, ADMM only uses one-step information, while the proposed scheme in general
uses two-step information.

We first recall the ADMM scheme for solving the optimization model (2.1). The ADMM
scheme for solving (2.1) follows from the augmented Lagrangian and a linearized technique
[25]. For some given positive constants μ, γ , and some initial points w0, z0, u0, the standard
ADMM iteration scheme is given by

zk+1 = proxγψ

(
Bwk + uk

)

uk+1 = uk + Bwk − zk+1

wk+1 = proxμϕ

(
wk − μ

γ
BT

(
Bwk − zk+1 + uk+1

))
.

For convenience of comparing ADMM with the proposed two-step iteration scheme, we
identify ADMM as a special case of (3.14). Let yk = uk , γ = 1

Cβ
and μ = 1

λ
. It follows

from a direct computation that the above linearized ADMM scheme is equivalent to

yk+1 =
(
I − prox 1

Cβ
ψ

) (
Bwk + yk

)

wk+1 = prox 1
λ
ϕ

(
wk − Cβ

λ
B

(
2 yk+1 − yk

))
.

(5.18)

Clearly, we observe that the above iteration scheme is equivalent to (3.14) with the following
choice of parameters:

(i) l = 1, l1 = 1, l2 = 0;
(ii) h = 1, h1 = 1, h2 = 0.

Moreover, since both l2 and h2 are taking 0 in the ADMM scheme, only one-step information
is used in updating yk+1 and wk+1. On the contrary, the proposed two-step iterative scheme
(3.14) in general not only allows more flexible choices of such parameters, but also improves
the convergence through using two-step information and choosing appropriate parameters.
The advantages of the proposed two-step iterative scheme (3.14) over the ADMM scheme
will be confirmed by numerical results on some benchmark datasets in Sect. 6.

6 Numerical Experiments

In this section, we present numerical results to confirm the efficiency of the proposed two-step
iteration scheme. Specifically,we implement it to solve all the three non-differentiablemodels
mentioned in Sect. 2: the �1-SVM classification model, the �1- SVM regression model, and
the group LASSO regularized SVM classification model, on some benchmark datasets. We
compare it with the linear programming method (LPM) and ADMM. For all models tested
in this section, we use the Gaussian kernel due to its universality [23,31]. The comparison
shows the proposed iteration scheme outperforms significantly LPM and ADMM in solving
these three machine learning models in terms of computational time.

The numerical experiments presented in this section except the extremely large dataset
are implemented in a personal computer with an 2.6 GHz Intel Core i5 CPU and 8G RAM
memory.We use a server with an 3.33 GHz Intel Xeon Core 2 CPU and a 96G RAMmemory
to work with the extremely large dataset.
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6.1 �1-SVM Classification

We first implement numerical experiments for solving the �1-SVM classification. As we
mentioned in Sect. 2.1, the �1-norm SVM would generate less support vectors than the
standard �2-normSVM.The �1-SVMis advantageouswhen there are redundant noise features
[36] and usually has shorter training time than the standard �2-SVM [10]. We compare these
two models on a synthetic dataset and a real-world dataset below.

We first generate a synthetic dataset in the following way. We generate a random vector
x ∈ R

30 while each component is uniformly selected from [− 6, 6]. We then assign its label:
if x1 ≥ x2 + · · · + x30 + 1, then we set its label to be {1}; if x1 ≤ x2 + · · · + x30 − 1, we
set its label to be {−1}. We repeat the process until obtaining 1905 instances with labels. We
randomly choose 948 instances as training data and the other 957 instances as test data.

We also use a real-world dataset “Australian” from the benchmark datasets [5], it has 699
instances and each instance has 14 features. We use 400 instances as training data and the
other 299 as testing data.

While algorithms of solving the �2-SVM have been well studied in the literature [3], the
�1-SVM solvers are not fully developed. We point out that the linear programming method
[26,30,36] (LPM) is a popular method of solving the �1-SVM classification model. However,
LPM has relatively higher demands both on the memory storage and computational time for
large size problems. ADMM is another popular method for solving the general optimization
model (2.1). We compare the proposed two-step iteration method with LPM and ADMM on
solving the �1-SVMclassificationmodel. In particular, we compare all of these threemethods
in terms of computational cost, classification accuracy, and storage cost with different sizes
of several benchmark datasets.

Following [26], LPM applied to solving the �1-SVM model (2.2) has the form:

min
α+,α−,ξ∈Rm ,b∈R

{
m∑
i=1

(
α+
i + α−

i

) + C
m∑
i=1

ξ i

}

subject to yi

⎛
⎝ m∑

j=1

(
α+
j − α−

j

)
K (xi , x j ) + b

⎞
⎠ ≥ 1 − ξ i ,

α+
i ,α−

i , ξ i ≥ 0, i = 1, 2, . . . ,m.

The standardpackage linprog in the optimization toolboxof theMATLABcouldbe employed
to solve the above linear programming problem.

We now compare the computational time and classification accuracy of the proposed
two-step fixed-point proximity algorithm (TFP2A), ADMM, and LPM. We consider four
benchmark datasets [5] of different sizes. The first dataset is “Australian” with 699 instances
and each instance has 14 features. We use 400 instances as training data and the other 299
as testing data. The second dataset is “Breast Cancer” with 683 instances and each instance
has 10 features. We set 500 instances as training data and 183 as testing data. The third one
is “diabetes” with 768 instances and each instance has 8 features. We set 500 instances as
training data and 268 as testing data. The last one is “Splice” with 3175 instances and 60
features for each instance.We use 1000 instances as training data and 2175 as testing data.We
use the same Gaussian kernel K (s, t) = e−0.01‖s−t‖22 and the same regularization parameter
C = 3 for all these three algorithms. We remark that the regularization parameter plays an
important role in the prediction accuracy. Since all threemethods are solving the samemodel,
we thus focus on the efficiency comparison and use the same regularization parameter for all
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Table 1 Comparison of LPM, ADMM, and the proposed two-step method for solving �1-SVM classification
in training time (in seconds), the prediction accuracy, and the minimal objective function value

Australian Breast cancer

Time (s) Accuracy (%) Obj. fun. Time (s) Accuracy (%) Obj. fun.

LPSVM 6.34 84.83 118.28 12.15 99.45 35.91

ADMM 1.75 85.86 120.67 0.72 99.45 36.88

TFP2A 0.54 86.90 119.25 0.11 99.45 36.15

Diabetes Splice

Time (s) Accuracy (%) Obj. fun. Time (s) Accuracy (%) Obj. fun.

LPSVM 11.24 80.97 1.203E4 61.07 88.69 730.46

ADMM 10.56 82.09 1.226E4 14.65 86.80 738.85

TFP2A 1.06 82.09 1.218E4 6.52 86.94 736.50

Table 2 Numbers of iterations needed for different stopping tolerance levels

tolerance Australian Breast cancer Diabetes Splice

ADMM TFP2A ADMM TFP2A ADMM TFP2A ADMM TFP2A

10−1 5 4 4 4 449 4 5 4

10−2 11 7 7 10 1990 6 12 7

10−3 17 9 30 21 1992 27 33 17

10−4 63 49 45 31 1992 67 99 45

10−5 293 136 79 127 1993 161 256 120

10−6 979 426 152 184 3615 355 577 256

10−7 1784 620 419 287 3912 615 1410 606

10−8 2261 759 3929 560 7586 2800 3931 1699

10−9 3665 2337 10, 000 1996 10, 000 7965 10, 000 7733

of them. For the proposed two-step method and ADMM, the stopping criterion is set to be the
relative error between the successive iterations less than a given tolerance 10−7. We present
the comparison of computational time for training and classification accuracy in Table 1.

We remark that all the three algorithms have similar prediction accuracy since they are
solving the same model. However, the proposed two-step method has a much less training
time in all the four datasets. Moreover, we present a more detailed comparison between
TFP2A and ADMM. We observe from the iteration scheme (5.18) that both of them have
almost the same computational cost in each iteration. Therefore, we compare the number of
iterations needed to obtain tolerance levels ranging from 10−1 to 10−9 on these four datasets
described above in Table 2. We further visualize the comparison in Fig. 1, from which we
observe that under the same stopping criteria the proposed two-step method converges much
faster than ADMM.

We next compare the memory performance of these three algorithms. We use a large scale
data set “ala” from the UCI machine learning repository [17]. We consider the training data
size N ranging from 800, 1000, 1100, to 3000. The results are reported in Table 3.
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(a) (b)

(c) (d)

Fig. 1 The number of iterations used by ADMM and TFP2A under different tolerance levels

Table 3 Memory performance of
the proposed two-step method,
ADMM, and LPSVM. “No”
means out of memory

Data size 800 1000 1100 3000

LPM Yes Yes No No

ADMM Yes Yes Yes Yes

TFP2A Yes Yes Yes Yes

We observe from the above Table 3 that the proposed two-stepmethod andADMMrequire
less memory storage in the training process. In other words, these two algorithms would be
able to handle larger datasets than LPM.

We further compare the proposed two-step method and ADMM with two larger datasets.
The first dataset “covtype” is from [5] and contains 10,000 instances as training data and
5000 instances as testing data. The second dataset is handwriting digits which is from the
MNIST database [11]. The originalMNIST database of handwriting digits consists of 60,000
training examples and 10,000 testing instances of “0” through “9”. We only use 2 digits of
this dataset (“0” and “1”) to make classification, which results in a dataset containing 12665
training instances and 2115 testing instances of “0” and “1”. We point out that it is beyond
the memory storage limit of our personal computer. We use a server with an 3.33 GHz Intel
Xeon Core 2 CPU and a 96G RAM memory to implement this experiment. The numerical
results are reported in Table 4.

123



938 Journal of Scientific Computing (2019) 81:923–940

Table 4 Comparison ofADMMand the proposed two-stepmethod in training time and the prediction accuracy

Covtype Handwriting

Time (s) Accuracy (%) Iteration Time (s) Accuracy (%) Iteration

ADMM 680.28 81.04 452 1700.50 99.72 656

TFP2A 88.18 81.04 60 896.39 99.72 270

Table 5 Comparison of ADMM and TFP2A in training time, MSE, and iteration numbers

Housing Mg Mg

Time (s) MSE Iteration Time (s) MSE Iteration Time (s) MSE Iteration

ADMM 0.71 50.98 1293 7.61 0.04 716 17.56 13.57 456

TFP2A 0.29 50.91 570 2.42 0.04 238 6.77 13.39 184

We observe from the above table that the proposedmethod consumesmuch less computing
time and requires much fewer iteration numbers than ADMM, while maintaining the same
prediction accuracy.

6.2 SVM Regression with �1-norm Regularization

We next compare the proposed TFP2A with ADMM for solving the �1-SVM regression
problem.

In this computation, we consider three benchmark datasets [5] of different sizes. The
first dataset is “Housing” with 506 instances and each instance has 13 features. We use 300
instances as training data and the other 206 as testing data. The second dataset is “Mg” with
1385 instances and each instance has 6 features. We set 1000 instances as training data and
385 as testing data. The third one is “Abalone” with 4177 instances and each instance has 8
features. We set 2000 instances as training data and 2177 as testing data.

For both the proposed two-step method and ADMM, we use the same Gaussian kernel,
the same regularized parameter C , and the same stopping criterion with the relative error
between the successive iterations less than 10−7. We compare the two competing methods in
terms of the computational time, the mean squared error (MSE), and the iteration numbers.
The numerical results are reported in Table 5.

We remark that both algorithms have similar MSE since they are solving the same model.
However, the proposed two-step method consumes much less training time and requires less
iterations for all the three datasets.

6.3 SVM Classification with Group LASSO Regularization

In this subsection, we present numerical comparison of the proposed two-step method and
ADMM for solving SVM classification with group LASSO regularization.

We use the same datasets “Australian”’, “Breast Cancer”, “Diabetes”, and “Splice” as in
Sect. 6.1. We divide the variables into 10 groups for all these datasets. We use the same
Gaussian kernel and the same regularized parameter C for both algorithms. The stopping
criterion is also set to be the relative error between the successive iterations less than 10−7.
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Table 6 Comparison of ADMM and the proposed two-step method for solving group LASSO regularized
SVM in training time (in seconds) and the prediction accuracy

Australian Breast cancer Diabetes Splice

Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%)

ADMM 1.86 86.21 1.66 99.45 4.81 81.72 16.65 86.62

TFP2A 0.61 86.21 0.51 99.45 1.40 81.72 8.72 89.79

We compare the proposed two-step method and ADMM in computing time for training and
learning accuracy. The numerical results are reported in Table 6.

We observe from Table 6 that the proposed two-step method consumes much less training
time than ADMM for all the four datasets.

7 Conclusion

We have developed a two-step fixed-point proximity algorithm for solving a class of non-
differentiable optimizationmodelsmotivated from sparse learning.Weprove the convergence
results of the proposed method. Moreover, we identify the well-known ADMM as a special
case of the proposed method and show that ADMM uses only one-step information and
the proposed method uses two-step information in each iteration. Numerical experiments
with some benchmark datasets show that the proposed algorithm has advantages in both
convergence speed and memory storage compared to either LPM or ADMM. The proposed
method outperforms LPM or ADMM significantly in terms of computational time.
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