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Abstract

The RNA interference (RINAI) triggered by short/small interfering RNA
(siRNA) was discovered in nematodes and found to function in most liv-
ing organisms. RINAi has been widely used as a research tool to study gene
functions and has shown great potential for the development of novel pest
management strategies. RINAI is highly efficient and systemic in coleopter-
ans but highly variable or inefficient in many other insects. Differences in
double-stranded RNA (dsRNA) degradation, cellular uptake, inter- and in-
tracellular transports, processing of dsRNA to siRNA, and RNA-induced
silencing complex formation influence RINAI efficiency. The basic dsSRNA
delivery methods include microinjection, feeding, and soaking. To improve
dsRNA delivery, various new technologies, including cationic liposome—
assisted, nanoparticle-enabled, symbiont-mediated, and plant-mediated de-
liveries, have been developed. Major challenges to widespread use of RNAi
in insect pest management include variable RNAI efficiency among insects,
lack of reliable dsRNA delivery methods, off-target and nontarget effects,
and potential development of resistance in insect populations.
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RNA interference
(RNAI):

small RNA-mediated
downregulation of
gene expression

Argonaute (Ago): the
main siRNA-induced
silencing complex
component aiding in
target recognition and
cleavage during RNAi

Short/small
interfering RNA
(siRNA):
double-stranded,
approximately
19-21-base-pair RNA
processed from long
dsRNA by Dicer

MicroRNA
(miRNA):
single-stranded,
approximately
21-24-nucleotide-long
RNA processed from
hairpin RNA
precursors by Dicer

P-element induced
wimpy testis (Piwi):
highly conserved
RNA-binding proteins

Piwi-interacting
RNA (piRNA):
single-stranded,
approximately
23-36-nucleotide-long
RNA processed mainly
from transposons by
Dicer-independent
processes
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INTRODUCTION

RNA interference (RNAI) refers to highly conserved cellular mechanisms in which Argonaute
(Ago) family proteins bind small RNAs to trigger the degradation of longer RNAs (i.e., targets)
through the sequence complementarity between the small and target RNAs (71). RNAi mech-
anisms were first described in the nematode (Caenorbabditis elegans) by Andrew Z. Fire, Craig
C. Mello, and their colleagues (24), who received the 2006 Nobel Prize in Physiology or Medicine.
RNAI has been found in all eukaryotic organisms, including protozoans, invertebrates, vertebrates,
fungi, algae, and plants (1), and is believed to have initially evolved as an antiviral innate immune
response (19). There is compelling evidence to support a key role for RNAI in antiviral immunity
ininsects (51, 112). It has been hypothesized that RINAI efficiency among insects is correlated with
the prevalence of viral infections in them (112).

Since its discovery, RNAi has rapidly emerged as a powerful reverse genetics tool for studying
gene function, regulation, and interaction at the cellular and organismal levels (8, 78, 110). RNAi
has also shown great potential in pest management (6, 91, 98). One breakthrough was the devel-
opment of transgenic maize engineered to express double-stranded RINA (dsRNA) of an essential
insect gene to protect maize roots from damage caused by feeding of the western corn rootworm
(Diabrotica virgifera virgifera) larvae (6). The current rapid pace of target gene identification and
the development of new dsRNA delivery systems will soon lead to an increase in the use of RNAi-
based technologies for the management of insect pests (44, 154).

DIFFERENT RNA INTERFERENCE PATHWAYS IN INSECTS
RNA Interference Pathways and Mechanisms

In insects and other animals, three different classes of small RINAs have been known to trigger
three corresponding RNAi pathways (150). These classes of the small RNAs include short/small
interfering RNAs (siRNAs) that mediate the siRNA pathway, microRNAs (miRNAs) that
mediate the miRNA pathway, and P-element induced wimpy testis (Piwi)-interacting RINAs
(piRNAs) that mediate the piRNA pathway (29, 78) (Figure 1). The siRNAs are dsRNAs
typically 19-21 bp in length, which are processed from long dsRNA molecules that originate
either exogenously or endogenously (Figure 14). Exogenous dsRNAs include viral RNAs and
experimentally introduced dsRNAs, whereas the vast majority of endogenous dsRNAs are derived
from repetitive or transposable elements (e.g., transposon RNAs), structured loci, and overlapping
transcripts (9, 18, 20, 25). Accordingly, siRNAs can be divided into exogenous siRNAs (exo-
siRNAs) and endogenous siRNAs (endo-siRNAs) (14). In contrast, miRNAs are single-stranded
RNAs 21-24 nucleotides (nt) in length (14). They are derived from endogenous primary miRINAs
(pri-miRNAs) that are transcribed by RNA polymerase II from miRINA genes and constitute
a large family of noncoding RNAs (49) (Figure 15). Both siRNAs and miRNAs are generated
by the type III ribonuclease Dicer (Dcr). However, piRNAs are single-stranded RNAs that are
generally approximately 23-36 nt in length (124). At least two mechanisms have been identified
for biogenesis of piRNAs in the fruit fly (Drosophila melanogaster) germline nurse cells, which
include the de novo pathway and the ping-pong cycle (Figure 1c¢). In insects and other arthropods,
different RNAi pathways have been found to play crucial roles, including (#) defenses against viral
infections and transposable elements (transposons) via the siRNA-mediated pathway (9, 75, 113),
(b) regulations of gene expression via the miRNA-mediated pathway (59, 107, 136, 137), and
(¢c) suppression of germline transposon expression via the piRNA-mediated pathway (29, 75, 78,
81, 106, 121).
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Figure 1

Mechanisms of different RNA interference (RNAi) pathways identified in insects. (#) In the short/small interfering RNA (siRNA)-
mediated pathway, long double-stranded RNA (dsRNA) is cleaved by Der2 in association with R2D2 in the exo-siRNA pathway or
Logs in the endo-siRNA pathway (67). After a siRNA duplex is loaded into Ago2, an RNA-induced silencing complex (RISC) is
assembled from Ago2 and other RISC-associated proteins (RP). The degradation of the sense strand of the siRNA in the RISC allows
the antisense strand to guide the cleavage of complementary target RNA (e.g., mRNA) by Ago2 of the RISC (69). (5) In the microRNA
(miRNA) pathway, the dsRINA-specific endoribonuclease (Drosha) and its partner (Pasha) trim the primary miRINA (pri-miRNA) into
hairpins to form precursor miRNA (pre-miRNA). The pre-miRNA is then sliced by Derl to yield a miRINA duplex. The duplex is
unwound by RNA helicase to yield mature single-stranded miRINA, which is subsequently loaded into Agol. After the RISC
components are assembled, the active Agol enzyme within the RISC cleaves complementary target mRNA. (¢) In the piwi-interacting
RNA (piRNA)-mediated pathway, de novo piRINA production begins with the transcription of long single-stranded antisense RINA
called the piRNA precursor by RNA polymerase II from particular genomic sites (piRINA clusters) that contain transposable elements
(106). The piRNA precursor is then cut into primary piRINA by the endonuclease Zucchini (Zuc) (65). The resulting antisense piRINA
is then loaded into the Piwi family proteins, Piwi and Aub (82). The Piwi/Aub complex cleaves a sense transposon transcript, which not
only degrades the target, but also creates new sense piRINA. A different Piwi family protein, Ago3, then uses the new sense piRNA to
guide the cleavage of the complementary antisense transposon transcript to generate more antisense piRNA, which can be loaded into
the Piwi/Aub complex to cleave additional complementary sense transposon transcripts (82).

Core Machinery Genes and Their Variations in Insect RNA Dicer 2 (Der2):

Interference Pathways RNase III nuclease
The core machinery genes of the three RINAi pathways were found to undergo various duplica- itﬂl};snzd};mReNtkito
tions and deletions in insects (23, 83). In the siRNA pathway, gene duplications have been reported  pNnA &

for Ago2, Dcr2, and/or R2D2, which encodes the dsRNA-binding protein (dsRBP) R2D2 for at
least some insect species (27, 52, 76, 120). The only exception is Blattodea; however, only the
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R2D2:

a dsRBP that forms
the Dicer 2/R2D2
complex

dsRNA-binding
protein (dsRBP):

a class of proteins
responsible for
recognizing dsRNA

Dicer 1 (Dcrl):
RNase III nuclease
family enzyme that
cuts precursor
microRNA
(pre-miRNA) to yield
the miRNA duplex

Aubergine (Aub):
a Piwi family protein
that binds RNA

Systemic RNA
interference
defective 2 (Sid2):
transmembrane
protein involved in
cellular uptake or
cell-to-cell transport
of dsRNA in C. elegans
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German cockroach (Blattella germanica) of this order has been examined (57). Specifically, both
the common house mosquito (Culex pipiens) and the house fly (Musca domestica) were reported to
have two Ago2 genes (12, 52), whereas the Tsetse fly (Glossina morsitans) has three Ago2 genes (76).
The red flour beetle (Tribolium castaneum) has two Ago2 and two R2D2 or R2D2-like genes (120).

In the miRNA pathway, two Agol genes in the yellow fever mosquito (Aedes aegypti) and the
Russian wheat aphid (Diuraphis noxia) and two Derl genes in M. domestica have been reported (52,
76). However, the pea aphid (Acyrthosiphon pisunz) appears to have two genes for each of Ago1, Logs,
which encodes the dsRBP Loquacious (Loqs), and Derl, and four genes of Pusha, which encode
Pasha, a partner of the dsRINA-specific endoribonuclease Drosha (15, 23,37, 76).

In the piRNA pathway, two or three Ago3 genes have been reported in A. pisum and
G. morsitans (15,23, 76). Two Aub/Piwi genes, which encode the Piwi family proteins, Aubergine
(Aub) and Piwi, in the African malaria mosquito (Anopheles gambiae) (52, 76), and 2-3 Aub genes
in the jewel wasp (Nasonia vitripennis), the Florida carpenter ant (Camponotus floridanus), and the
Indian jumping ant (Harpegnathbos saltator) have been reported (76). However, 5-8 Piwi genes have
been reported in various insect species, including A. pisum, A. aegypti, A. gambiae, and D. noxia (23,
52, 76). Duplications of core RNAi-related genes may lead to subfunctionalization or neofunc-
tionalization in RNAi pathways, which may increase RNAI efficiency in insects, whereas loss of
these genes may decrease RNAI efficiency in certain insect lineages (18, 23).

CELLULAR UPTAKE AND SYSTEMIC RNA INTERFERENCE
Mechanisms of Double-Stranded RNA Cellular Uptake

The first identified cellular uptake mechanism represents a passive transport of dsRNA through
an intestinal luminal transmembrane protein called systemic RNA interference defective 2 (Sid2),
where it functions as an endocytic receptor for ingested dsRINA in C. elegans (70, 128). Although
no Sid2 homologs have been identified in insects (18, 38, 120), it is possible that the proteins that
function in transport of macromolecules may help in cellular uptake of ingested dsRINAs. In the
D. melanogaster S2 cell line and the desert locust (Schistocerca gregaria), the endocytosis-mediated
pathway was identified as a mechanism for dsRNA uptake (100, 131). In 7. castaneum, studies
using selective endocytosis inhibitors and the RNAi of RINAi strategies showed that clathrin-
dependent endocytosis is a major mechanism of dsRINA cellular uptake (134). Clathrin-dependent
endocytosis has now been identified or implicated as a mechanism for cellular uptake of dsRNA
in other insects or insect cells (13, 54, 86, 130, 140). Also, macropinocytosis has been implicated in
cellular uptake of dsRINA in the boll weevil (Anthonomus grandis) 26). Thus, the cellular uptake of
dsRNA seems to be highly complex in insects not only because different species may have different
mechanisms, but also because the same species may rely on more than one mechanism (13).

Intercellular Transport of Double-Stranded RINA and Systemic
RNA Interference

The highly conserved transmembrane protein Sidl has been known to function as a dsRNA-
selective channel that enables passive bidirectional transport of dsRINA between cells in C. elegans
(103, 127). However, most insect species do not possess Sidl orthologous genes, but rather only
Sid1-like genes (3, 13,45, 62,73, 135). Most studies on insect SidI-/ike genes have mainly focused
on cellular uptake of dsRINA, whereas the uptake of dsRINA into alimentary canal cells is mediated
by the Sid2 gene in C. elegans (128). In T. castaneum, silencing three Sidl-like genes, which share
high sequence identities with another C. elegans gene (Tagl30), did not affect RNAI efficiency
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against other genes, suggesting that these genes do not play any significant role in either cellular
uptake or intercellular transport of dsRNA (120). Nevertheless, research has shown that C. elegans
Sid1 expressed in Drosophila S2 cells can enable the S2 cells to gain passive uptake of dsRNA from
the culture medium (103). However, the migratory locust (Locusta migratoria) Sidl-like protein
expressed in Drosophila S2 cells did not enhance dsRNA uptake (62), suggesting a functional
difference between the C. elegans Sid1 and L. migratoria Sid1-like proteins.

Systemic RNAI refers to the intercellular spreading of RNAI silencing throughout the body
or even into its progeny after dsRINA is delivered into a specific tissue or region. In C. elegans,
systemic RNAi requires Sid1-mediated transport of dsRINA between cells (103, 128). Although
systemic RNAi has been widely documented in different insect species (11, 36, 62, 73, 133),
the mechanism(s) that mediate systemic RNAI in insects are largely unknown (18). However,
nanotube-like structures have been found to mediate systemic RNAi in D. melanogaster by trans-
porting dsRNA and components of the RNAi machinery between adjacent cells (39). In addition,
exosome-like vesicles, which originate in hemocytes and participate in immune priming, have
also been found to transport siRNAs and thereby to mediate the systemic RINAi-based adaptive
antiviral response (116). However, these mechanisms and their roles need to be explored in other
insects.

DELIVERY OF INTERFERING RNA TO INSECTS

Various methods have been tested or applied to deliver dsRINA in insect species (38, 78, 84, 141).
Basic dsRNA delivery methods include microinjection, feeding, and soaking. In recent years, how-
ever, various technologies have been developed and incorporated into these basic methods, includ-
ing cationic liposome-assisted, nanoparticle-enabled, symbiont-mediated, and plant-mediated
deliveries.

Basic Delivery Methods

The most commonly used method for delivery of dsRNAs is microinjection, in which a small
amount of dsRNA in an appropriate solution is directly injected into an insect embryo or in-
sect body (38, 84, 141). The first successful dsSRNA microinjection experiment was reported for
silencing the frizzled and frizzled 2 genes in the wingless pathway by injecting their correspond-
ing dsRNAs into D. melanogaster embryos in 1998 (40). Since then, microinjection has become a
popular technique to deliver dsRNA into the embryos or bodies of various insect species, such
as T. castaneum (58, 120), L. migratoria (53, 142, 145), and B. germanica (33, 68). The advantages
of microinjection include the immediate and direct delivery of a known amount of dsRINA into
the insect body at various developmental stages or even to specific body parts (102, 145). This
method can also avoid the structural barriers, such as the integument, that prevent penetration
of dsRNA and that are encountered by other delivery methods, such as topical applications and
soaking. However, microinjection is more time-consuming and is sometimes challenging due to
the small body size of the insects.

Another basic delivery method is to feed insects a diet containing synthetic or microorganism-
expressed dsRINA (i.e., oral delivery) (141). The microorganisms that have been used to express
dsRNAs for insect RNAI include Escherichia coli (119, 153) and Saccharomyces cerevisiae (77). Oral
delivery of dsRINA is highly effective for RINAi in many coleopterans (6, 42, 84, 94). It is not
laborious, is easy to perform, and is more applicable to insect pest management. However, oral
delivery results in low RNAI efficiency in many other insect species. In L. migratoria, for example,
RNAI efficiency is high if dsRNA is delivered by injection but extremely low if it is delivered
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by feeding (107). Such differential RNAI efficiencies between the two dsRINA delivery methods
appear to be mainly due to dsRNA degradation by double-stranded ribonucleases (dsRNases) in
the insect gut. In addition, supplementing dsRNA into the cell culture medium is a method widely
applied to silence gene expressions in insect cell cultures. Applications of this delivery method have
been extensively reviewed (129).

Cationic Liposome-Assisted Delivery

Cationic liposomes are lipid-based transfection reagents that can provide a simple and efficient
means to transfer dsRNA into animal cells in a process known as lipofection (48). The inter-
actions of positively charged cationic lipids and negatively charged dsRINA can form lipoplexes
through electrostatic interactions (155). Cationic liposomes have been widely used to assist in the
delivery of dsRNA in insect cell cultures (129). However, several studies have also reported an in-
crease in RINAI efficiency after feeding or injecting the RINAi-recalcitrant arthropod species (e.g.,
D. melanogaster, Drosophila suzukii, Rbipicephalus haemaphysaloides) with the lipoplexes (114, 126,
148). However, different cationic liposomes have not been thoroughly evaluated in conjunction
with basic delivery methods.

Nanoparticle-Enabled Delivery

The first proof-of-concept study on nanoparticle-enabled delivery used chitosan/dsRINA nanopar-
ticles to silence two chitin synthase genes in 4. gambiae larvae, for which the naked dsRNAs were
ineffective with feeding as the delivery method (147). Chitosan is made up of highly deacetylated
p-1,4-linked N-acetylglucosamine polymers and can form nanoparticles with dsRNNA based on
the electrostatic interactions between positively charged amino groups of chitosan and negatively
charged phosphate groups of dsRNA. The increase in RNAi efficiency when chitosan/dsRNA
nanoparticles were used is likely due to an increase in dsRNA stability and cellular uptake in insects
(147). Li-Byarlay et al. (56) also developed a unique method to treat a large number of honey bees
(Apis mellifern) quickly and noninvasively by coupling siRNA to perfluorocarbon-nanoparticles
(PFC-NPs) for aerosol application. To date, chitosan and various other nanocarrier-based dsSRNA
nanoparticles have been used to improve RNAi efficiency in other insect species (21, 31, 93, 146).
More recently, guanidine-containing polymers, nanocarrier/dsRNA/detergent formulation, and
branched amphiphilic peptide bilayer conjugated gold nanoparticles have been reported to pro-
tect dsRNA against nucleolytic degradation (115), facilitate dsRINA penetration through the in-
sect body wall (149), and likely improve the cellular uptake and endosomal escape of dsRNA (79),
respectively.

Symbiont-Mediated Delivery

Many insect species frequently harbor culturable symbiotic bacteria in their guts. Whitten &
Dyson (125) used an intriguing strategy to create RNase III-deficient, dsSRNA-producing bacte-
rial strains from the symbionts of the kissing bug (Rbodnius prolixus) and the western flower thrips
(Frankliniella occidentalis). Once ingested by the host insect, the genetically manipulated symbiotic
bacteria can colonize the insect, which allows constitutive synthesis of dsRINA to trigger the RINAi
pathway. Furthermore, the dsSRNA-producing symbionts can be horizontally transmitted to other
individuals via ingestion of feces in R. profixus. The conspecific spread of such dsRNA-producing
symbiont bacteria through an insect colony represents sustained RINAi and can be used to study
gene function and develop new RNAi-based pest management strategies.
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Plant-Mediated Delivery

The first proof-of-concept study on plant-mediated delivery of dsRNA for insect pest manage-
ment was reported by Baum and colleagues in 2007 (6); they developed transgenic maize ex-
pressing an insecticidal V-ATPase A dsRNA to protect maize roots from feeding damage by D. v.
virgifera larvae. Similar studies have also been carried out to generate transgenic plants expressing
dsRNAs targeting insect detoxification genes (e.g., cytochrome P450 genes). The target insects
feeding on these plants demonstrated an increase in susceptibility to phytotoxins (66) or to spi-
der predation (46). In plants, however, most of the expressed long dsRINA can be processed into
siRNAs. This process can reduce RNAI efficiency because insect cells take up siRINAs much less
efficiently than do long dsRINAs (11). To overcome this problem, researchers generated trans-
genic potato plants expressing long dsRINA in the chloroplasts (plastids), where long dsRINA is
accumulated but is not processed into siRNA, as chloroplasts are devoid of the RNAi machinery.
When the Colorado potato beetle (Leptinotarsa decemlineata) ingest transgenic potato plants, the
long dsRNA expressed in the chloroplasts can be taken up by the insect gut cells to initiate the
RNAI process (144).

MECHANISMS AFFECTING RNA INTERFERENCE EFFICIENCY
Variations in RNA Interference Efficiency Among Insect Groups

RNAI efficiency varies considerably among insects. RNAIi is highly efficient and systemic in
coleopterans, especially those belonging to the families Tenebrionidae (e.g., T. castaneum) and
Chrysomelidae (e.g., L. decemlineata and D. v. virgifera). In general, RNAi functions well in bee-
tles; injection or oral delivery of dsRINA has been shown to induce systemic and robust RINAi
response in many economically important coleopterans (10,47, 63, 89, 90, 96, 97). RNAI has been
shown to function efficiently for knockdown of target gene expression after injection of dsRNA
into hemimetabolous insects such as the milkweed bug (Oncopeltus fasciatus) (34), the brown mar-
morated stink bug (Halyomorpha halys) (74), the bed bug (Cimex lectularius) (151), B. germanica
(17), S. gregaria, and L. migratoria (61, 133). RNAI efficiency is variable in insects belonging to the
orders Lepidoptera, Diptera, Hymenoptera, and Hemiptera, which include major pests, disease
vectors, and beneficial insects (15, 28, 72, 104, 117). Furthermore, RNAI efficiency varies among
insects even within the same order. For example, in the order Hemiptera, RNAi has been reported
to be effective in Cimex, Halyomorpha, and Oncopeltus but not highly effective in Acyrthosiphon.

Differences in Stability of Interfering RNA

Nucleases, such as dsRNases produced by host cells, have been identified and shown to degrade
dsRNA (2, 108, 132). In L. migratoria, injected, but not ingested, dsRNA triggers efficient RINAi
(61). dsRNases produced in the alimentary canal and capable of degrading dsRINA have been iden-
tified in this and other insects (108). Degradation of dsRNA by nucleases is a major problem in
hemipterans such as aphids (15). In L. migratoria and L. decemlineata, silencing of genes encoding
dsRNases by injection of dsRNA targeting these genes improved RNAI triggered by orally deliv-
ered dsRINA (108, 109). Also, knockdown in expression of genes coding for dsRNases improved
RNAI in other insects including aphid and whitefly (16, 60). Comparative studies on the degrada-
tion of dsRNA by nucleases in insects that showed variable RNAI efficiency revealed significant
differences in their nuclease activity. In general, lepidopterans and hemipterans showed higher
nuclease activity compared to that in other insects (105, 123). Comparison of dsRNA degrada-
tion by nucleases from L. decernlineata (highly efficient systemic RINAI) and the tobacco budworm
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Figure 2

Comparison of uptake, intracellular transport, and processing of dsRNA in coleopteran (RNAi-efficient) and lepidopteran
(RNAi-inefficient) insects. In coleopterans (/ef?), the ingested dsRINA is taken up by gut epithelial cells through clathrin-dependent
endocytosis and other dsRNA transporters. The dsRNA is then released into the cytoplasm, and there is no major accumulation of
dsRNA in endosomes (104). The dsRNA in the cytoplasm is processed to siRNA to trigger RNAi. Some of the dsRNA is exported to
the hemocoel and taken by tissues such as fat body, where RNAi is induced. In contrast, in lepidopterans, some of the ingested dsRNA
is degraded by dsRNases, and the rest is taken up by gut epithelial cells. Most of the dsRINA is trapped by the endosomes and is
therefore not efficiently processed to siRINA, resulting in inefficient RNAi (138). Some of the dsRINA may also be exported to the
hemocoel, but the dsRNases in the hemocoel degrade most of the dsRINA, resulting in inefficient transport into tissues such as fat body.
In addition, an RNA binding protein, Staufen C, that is involved in processing dsRINA to siRNA for initiating RNAj, has so far been
detected only in coleopterans and not in other insects (139). Abbreviations: dsRINA, double-stranded RNA; RISC, RNA-induced
silencing complex; RNAi, RNA interference; siRNA, short/small interfering RNA.

(Heliothis virescens) (inefficient RNAi) showed that the dsSRNA-degrading nucleases are much more
active in H. virescens than in L. decemlineata (104) (Figure 2).

Differences in Cellular Uptake and Intracellular Transport
of Double-Stranded RNA

As discussed in the section titled Cellular Uptake and Systemic RNA Interference, Sid2 and Sid1
mediate gut cellular uptake and intercellular transport of dsRNA, respectively, in C. elegans. How-
ever, the proteins that function as dsRNA channels and transporters, similar to SID proteins of
C. elegans, have not been identified in insects. Studies on insects showed that clathrin-dependent
endocytosis and macropinocytosis might be involved in dsRNA uptake (100, 131, 134). Differ-
ences in the uptake of dsRINA among tissues in an insect have been reported. For example, in
L. migratoria, the injected dsRINA is not taken up by the follicle cells and oocytes, and thus RNAi
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is not triggered in these tissues (95). The dsRNA taken up by cells through clathrin-dependent
and other endocytic pathways is transported through endosomes to these cytoplasmic sites. In
coleopterans, such as 7. castaneum and L. decemlineata, where RNAI is efficient, the dsRNA is de-
livered to the cytoplasm, where it is converted to siRNA (104). In contrast, in lepidopterans, such
as H. virescens and the fall armyworm (Spodoptera frugiperda), where RNAi does not work efficiently,
the intracellular transport is inefficient, and most of the dsRINA is not able to escape endosomes
and thus is not converted to siRNA (104, 138) (Figure 2).

Differences in Processing of Double-Stranded RNA to Short/Small
Interfering RNA

Upon entering cells, dSRNA is transported into the cytoplasm and processed to siRNA by Dicers
(43, 50, 64, 85, 92). The processing of dsRNA to siRINA varies among insects. For example, in
cells and tissues of L. decemlineata where RNAI is efficient, the *’P-labeled dsRNA is processed
to siRNA (104). In contrast, in cells and tissues of S. frugiperda, the *P-labeled dsRNA is not
efficiently processed to siRNA (104). Comparative analysis of processing of dsRINA to siRNA
in insects belonging to suborder Heteroptera and orders Lepidoptera, Orthoptera, and Diptera
showed that the dsRNA was processed to siRNA but not as efficiently as in coleopterans (105).
Differences in the structure and activity of Dicers and their substrate specificity could contribute
to differences in processing of dsRINA to siRNA among insects. However, further studies are
needed to verify this hypothesis. In addition, recent studies showed that an RNA binding protein,
Staufen C, that is involved in processing dsRNA to siRNA is detected only in coleopterans and
not in other insects (139). The function of RNA binding proteins such as Staufen C also needs
further investigation.

Differences in Argonaute Proteins

Recent studies on the evolution of Ago genes in insects suggest that these genes undergo frequent
evolutionary expansions resulting in their functional divergence (23, 52). The number of Ago genes
varies among insects. For example, four members of Ago genes coding for Agol, Ago2, Ago3, and
Piwi were identified in the silkworm (Bombyx mori) genome (122). In D. melanogaster, five genes
coding for Agol, Ago2, Ago3, Aub, and Piwi were identified (52, 111). Studies in D. melanogaster
showed that Agol and Ago2 participate in siRNA and miRNA pathways, whereas Ago3, Aub,
and Piwi interact with piRNAs (14, 30, 106). B. germanica seems to use both Agol and Ago2 in
the miRNA pathway, but uses only Ago2 in the siRNA pathway (99). Interestingly, silencing of
not only Ago2, but also Agol and Aub genes blocks dsRNA-triggered RNAI in the L. decemlineata
cell line (140). In addition, Ago2 is duplicated in this insect, and both Ago2 genes are required
for dsRNA-triggered RNAi (140). Enhancement of RNAi efficiency after expression of Ago2 in
B. mori suggests that Ago2 may be one of the factors contributing to lower RNAI efficiency in
lepidopterans (55).

Physiological Conditions Affecting RNA Interference Efficiency: Expression
of Genes Coding for RNA Interference Pathway Components

Studies in D. melanogaster showed that feeding naked dsRNA did not trigger RNAI efficiently, but
adding a transfection reagent such as Lipofectamine improved response to fed dsRINA, suggesting
that the fruit fly lacks mechanisms for efficient uptake of dsRNA from the lumen (126). The phys-
iological conditions of the target insect could influence RNAi efficiency. For example, the pH of
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the lumen, especially the highly alkaline pH observed in the lepidopterans, could be detrimental
to successful RNA (22). In some lepidopterans, such as B. mz0ri and the tobacco hornworm (Man-
duca sexta), the dsSRNA triggers RNAi more efficiently during the nonfeeding wandering stage of
the final instar larvae than during the feeding stages of the larvae. This may reflect changes in ex-
pression of genes involved in dsRNA degradation or RNAI response, as well as the physiological
state of target tissues. For example, declines in food intake and digestion and thus in the titers of
the dsRNA-degrading enzymes may enhance RNAI efficiency during the wandering stage.

OPPORTUNITIES AND CHALLENGES OF RNA INTERFERENCE
RNA Interference as a Powerful Research Tool

Before the discovery of RNAI, the analysis of gene function was limited to a few model insects
such as Drosophila. RNAI has helped researchers perform large-scale functional genomics stud-
ies in many model insects, as well as in economically important non-model insects. This led to
significant advances in our understanding of insect biology. Recent studies on genome and tran-
scriptome sequencing and proteomic analyses identified thousands of genes, nRNAs, and proteins
in hundreds of insect species. RNAI played a critical role in uncovering the function of the genes,
RNA, and proteins identified by these studies (7). These advances facilitated an increase in our
understanding of the developmental, physiological, and molecular processes that govern every as-
pect of insect life (32). Indeed, about 1,300 papers published during the past two decades studied
RNAIi or employed RNAI to investigate gene function in Drosophila. In addition, research in other
model insects, such as A. aegypti, A. gambiae, B. mori, Locusta sp., Spodoptera sp., T. castaneum, the
brown planthopper (Nilaparvata lugens), the cotton bollworm (Helicoverpa armigera), and the west-
ern honey bee (Apis mellifera), used RNAi methods to learn about the molecular mechanisms of
physiological processes that are specific to each group of insects. RNAi methods also helped to
identify targets for insecticide discovery and make significant advances in our understanding of the
mode of action of insecticides and molecular mechanisms of insecticide resistance (4, 151, 152).

RNA Interference for Development of Novel Pest Management Methods

Soon after the discovery of RNAi and development of its methods for gene silencing, entomol-
ogists initiated research to apply this technology to pest management. The US Environmental
Protection Agency and other regulatory agencies have approved commercial products based on
RNAI technology to control D. v. virgifera. Products for management of L. decemlineata and canola
flea beetles are under development. Successful knockdown of target gene expression in the insects
feeding on plants expressing dsRNA has been demonstrated in H. armigera (80), L. decemlineata
(144), M. sexta (88), N. lugens (143), the green peach aphid (Myzus persicae) (87), and the silverleaf
whitefly (Bemisia tabaci) (118). Although several publications document successful knockdown in
expression of genes by dsRNA in lepidopterans and hemipterans, whether the knockdown reaches
the levels required for the successful development of commercial products needs further research.
dsRNA targeting house-keeping genes in L. decemlineata produced in E. coli and delivered as a fo-
liar application of heat-killed bacteria causes significant insect mortality (101, 153). This approach
may be further developed for controlling this insect pest in the field.

Challenges in Widespread Use of RNA Interference Products

The major challenges to widespread use of RNAi to manage insect pests include the cost of
dsRNA triggers, efficient delivery of dsRNA to the site of action, off-target and nontarget
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effects of dsRNA, and potential resistance development. Whyard et al. (126) fed in vitro syn-
thesized dsRNA to insects and successfully silenced target genes; this suggests that it is possible to
achieve silencing of target genes by feedings dsRNA. However, achieving insect control by feeding
of dsRNA is challenging due to the lack of cost-effective methods for producing large quantities of
dsRINA. One could produce large quantities of dsRNA using cell-free synthesis methods. Hunter
et al. (35) successfully field-tested dsRINA produced using such methods to control Israeli acute
paralysis virus in A. mellifera. Effective delivery of dsRINA to the site of action is another major
hurdle faced by RNAi applications in agriculture and medicine. The half-life of naked siRNA in
serum ranges from several minutes to about an hour (5). It is difficult to achieve efficient RINAi if
the trigger is degraded rapidly in an organism unless a high dose of dsRNA or siRNA is applied.
Another significant roadblock to RNAI that is preventing aggressive investment in the devel-
opment of dsRINA-based products for pest management is the concern that insects may evolve
resistance to dsRNA-based products, as they do for conventional pesticides. Insects could use sev-
eral different mechanisms to develop resistance to these products. These include mutations of
target genes, mutations of RINAi core machinery genes, enhanced dsRINA degradation, increased
dsRINA excretion, decreased dsRNA uptake and transport, and decreased dsRINA endosomal es-
cape. Some of the resistance mechanisms could be mitigated more easily than the others. For
example, target site mutations could be managed by employing a dsRNA that targets a different
gene. However, if insects develop resistance to dsRNA products through mutations or change in
expression of a critical gene required for RNAi mechanisms, management of resistance could be-
come a difficult task. Recent studies on resistance development in D. v. virgifera to Snf7 dsRNA
(41) and the L. decemlineata cell line to IAP dsRNA (139) showed that the resistance is not due to
mutations in the dsRNA target site. Changes in the expression of proteins involved in uptake and
intracellular transport of dsRINA are thought to be the major mechanisms for the resistance.

1. RNAi is triggered by the siRNA, miRNA, and piRNA pathways in insects.

2. Different cellular uptake mechanisms for dsSRNA have been found or implicated, whereas
the mechanisms of intercellular transport of dsRINA and systemic RINAi are largely un-
known in insects.

3. Basic dsRNA delivery methods include microinjection, feeding, and soaking, but various
new technologies have been developed and incorporated into the basic methods; these
new technologies include cationic liposome-assisted, nanoparticle-enabled, symbiont-
mediated, and plant-mediated deliveries.

4. Mechanisms affecting RNAi efficiency among insects include dsRINA degradation, cellu-
lar uptake and intracellular transport of dsRNA, efficiency in the processing of dsRINA to
siRNA, the difference in RNA-induced silencing complex formation, and various phys-
iological factors.

5. RNAI has provided not only powerful tools to study the developmental, physiological,
and molecular processes that govern every aspect of insect life, but also great opportu-
nities to develop new methods for insect pest management.

6. Major challenges to widespread use of RNAi for insect pest management include variable
RNAI efficiency among insects, lack of reliable dsSRINA delivery methods, off-target and
nontarget effects, and potential resistance development.
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1. What are the mechanisms governing cellular uptake, inter- and intracellular transport
of dsRNA, and systemic RINAi?

2. What are the exact mechanisms causing significant differential RINAi responses among
different taxonomic groups of insects?

3. How do duplication or deletion and upregulation or downregulation of the RINAi core
machinery genes affect RINAi efficiency?

4. What are practical strategies to enhance RNAI efficiency by increasing the stability, cel-
lular uptake, inter- and intracellular transport, and endosomal escape of dsRINA?

5. How can off-target and nontarget effects of dsRNA and potential development of resis-
tance to RNAi be identified and managed?
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