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Abstract— Silicon carbide (SiC) MOSFET power modules are 

being used for high power applications because of their superior 

thermal characteristics and high blocking voltage capabilities 

over traditional silicon power modules. This paper explores 

modeling the thermal process of a SiC MOSFET power module 

through a high-order finite element analysis (FEA) based 

thermal model and then reducing the order of the FEA thermal 

model using a Krylov subspace method. The low-order thermal 

model has a significantly reduced computation cost compared to 

the FEA model while preserving the accuracy of the model. The 

proposed method is applied to generate low-order thermal 

models for a SiC MOSFET, which are validated by computer 

simulations with respect to the FEA thermal model.  

Keywords—Krylov subspace projection, metal–oxide–

semiconductor field-effect transistor (MOSFET), model order 

reduction, power module, silicon carbide (SiC), thermal modeling 

I. INTRODUCTION 

Power modules contain power semiconductors which are 
used for high power applications, such as three-phase inverters 
in medium-voltage drives or wind turbines. Recently, silicon 
carbide (SiC) metal–oxide–semiconductor field-effect 
transistor (MOSFET) power modules have been used for their 
efficient thermal conductivity characteristics and high blocking 
voltage capabilities [1]. Factors such as electrical stresses, 
power cycling, and mechanical vibration all contribute to the 
deterioration of the power semiconductors inside power 
modules [2], [3]. The power semiconductors are mounted on 
different layers of materials inside modules, which provide 
efficient thermal dissipation for the semiconductor chips and 
electrical isolation from the mounting baseplate [4], [5]. The 
mismatch of thermal expansion coefficients between the 
different materials used in the semiconductor mounting layers 
causes each layer to expand by a different amount during a 
power cycling event, which creates mechanical stresses at the 
interfaces between mismatched layers. Existing cracks in the 
solder layers grow with each thermal expansion event due to 
these mechanical stresses [6]. Growing cracks can manifest as 
changes in the heat conduction path from the semiconductor 
chip to the baseplate or in bond wire lift-off [7]. These changes 
can result in failure of the device. Changes in the heat 
conduction path of the semiconductor chip to the baseplate heat 

sink can act as a failure indicator for power module. Therefore, 
a high accuracy thermal model of a SiC MOSFET power 
module is needed to monitor for these failure indicators. 

An ideal thermal model has high accuracy and low 
computational complexity. Thermal equivalent circuits [8]-[11] 
are widely used for modeling power modules. This method 
models each layer of a power module as a resistor and 
capacitor pair of thermal resistance and lumped thermal 
capacitance. With only seven layers in a standard power 
module topology, this results in seven resistor and capacitor 
pairs, or a seventh order system of equations. The method 
oversimplifies the capacitances of some thick layers of 
modules such as the baseplate [12]. This results in a less 
accurate temperature estimation during transient heating 
events. Finite element methods can solve for the temperature 
distribution across a discretized power module model with a 
high degree of accuracy for both steady-state and transient 
events. However, this method is computationally complex 
because for a complicated and finely meshed model, there are 
typically more than thousands of degrees of freedom (DoFs) to 
solve for. The order of the model is equal to the total number 
of DoFs at each node. A state-space representation of a finite 
element model can be extracted from simulation software. 
Model order reduction (MOR) techniques can be applied to this 
state-space model to reduce the order of the system while 
preserving the dominant eigenvalues of the system matrices 
thus preserving the behavior of the system with a controllable 
approximation error [13]. Therefore, an accurate low-order 
state-space model from an extracted finite element model can 
be used to monitor the temperature distribution across a SiC 
MOSFET power module. 

There are different ways to approximate large-scale 
dynamic systems using MOR. Hankel singular values measure 
the contribution of each state variable in a system to the input-
output behavior. By discarding low contributing states of a 
system, the input-output behavior can be preserved while 
reducing the computational complexity of the model. The 
system can then be reduced to an order which meets a desired 
approximation error bound. However, the computational 
complexity of this method of MOR grows cubically as the 
initial system order increases [13]. Therefore, this method is 
applicable for low-order systems only. For high-order systems 
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consisting of large sparse matrices, Krylov subspace methods 
can be used for MOR.  

This paper proposes a Krylov subspace based MOR method 
for generating low-order state-space thermal models for SiC 
MOSFET power modules. In the proposed method, the Arnoldi 
iteration algorithm is applied to compute an orthogonal 
projection matrix of lower order, which can be used to project 
the high-order system matrices onto the lower-order Krylov 
subspace. The orthogonal projection matrix is then applied to a 
high-order finite element thermal model of a SiC MOSFET 
power module to extract an accurate low-order state-space 
thermal model for the power module. The proposed MOR 
method uses a mathematical approximation process without 
any heuristic assumptions. The extracted low-order state-space 
thermal model is computational efficient and has a controllable 
error bound with respect to the high-order system. The 
proposed MOR method is validated by thermal modeling 
results for a SiC MOSFET power module. 

II. PROPOSED THERMAL MODEL 

Finite element analysis (FEA) is commonly used to model 
physical phenomenon with a high degree of accuracy. A finite 
element simulation is set up by first importing a geometric 
model. Then, a set of governing equations is chosen for the 
model depending on the physics involved. For a heat transfer 
problem, the following governing equation can be formulated 
to model the thermal process. 
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where qx, qy, and qz are the heat fluxes in each direction, Q is 
the heat generation, ρ is the density, and c is the specific heat 
capacity. 

Next, boundary conditions and initial conditions are applied 
to the model. Using the Galerkin method, the model can be 
discretized into a set of elements called a mesh. Using finite 
element software to implement the Galerkin method, the 
parameters of the fidelity of the meshed model can be 
controlled. The resulting relationship between the material 
properties, the number of discretized nodes, the boundary 
conditions, and initial constraints can be shown in Equation 
(2). 
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where the n  n matrices [C] and [K] are the specific heat 
capacity and thermal conductivity relationships between each 
of the nodes in the finite element model, respectively; n is the 
number of DoFs in the model; the vector {T} represents all the 
nodal temperatures; and the vector {F} is the summation of 
each heat generation, conductive heat flux, and convective heat 
flux boundary conditions applied to the model. For each node, 
there is only one DoF, which is temperature. 

Data comprised in Equation (2) can be rewritten into a 
state-space representation of a linear system relating the inputs, 
outputs, and state variables as follows.  

 

         (3) 

 

where the vector x represents the state variables or the nodal 
temperatures of the model; the vector u represents the time 
varying model inputs such as heat flux or heat generation; the 
vector y represents the time varying output temperatures as a 
result of the input and state characteristics; the mass matrix [M] 
contains information for nodal thermal heat capacity; the 
system matrices [A], [B], [C], and [D] control the effects of the 
state variables to other state variables, the input’s effect on the 
state variables, the state variables influence on the selected 
outputs, and the input’s effect on the selected outputs, 
respectively. The dimensions of each vector and system matrix 
are shown in Table I, where n is the number of DoFs in the 
extracted system, or the system’s order. 

Using the Arnoldi iteration, the extracted full-order state-
space model can be reduced to a chosen system order. The 
Arnoldi iteration finds an approximation of the dominant 
eigenvalues of a matrix by constructing an orthonormal basis 
of the Krylov subspace of the matrix. Starting with the initial 
system matrix of a state-space system and an initial starting 
vector, a Krylov subspace of a specified order can be 
generated. The Arnoldi iteration produces a sequence of 
orthonormal vectors that span the Krylov subspace. Each 
generated vector of the Krylov subspace is normalized using 
the Gram-Schmidt orthogonalization process, which results in 
an orthogonal basis of the Krylov subspace. This resulting 

matrix [V], of n  m dimension, where m (m << n) is the 
desired reduction order, is a projection matrix that can be used 
to project each matrix in a state-space system onto a low-order 
dimensional space. The resulting reduced-order system 
dimensions can be seen in Table 1. The original state vector x 
is equal to the projection matrix [V] multiplied by a lower order 
vector z. The resulting state-space system as seen in Equation 
(4) is a reduced-order system based on the extracted full-order 
finite element model. 
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III. RESULTS AND DISCUSSION 

Computer simulations were carried out for thermal 
modeling of a six-pack SiC MOSFET power module to 
validate the proposed thermal model. The six-pack power 
module consists of six switches and six free-wheeling diodes 
used for three-phase applications. Each semiconductor chip 
and diode are mounted on the baseplate through a series of 

Table I:  State-Space System Dimensions for Full-Order and Reduced-

Order Models. 

Matrix or 
Vector 

Full-Order System 
Dimensions 

Reduced-Order System 
Dimensions 

[A] n  n m  m 

[B] n  Inputs m  Inputs 

[C] Outputs  n Outputs  m 

[D] Outputs  Inputs Outputs  Inputs 

x n  1 m  1 

y Outputs  1 Outputs  1 

u Inputs  1 Inputs  1 

[M] n  n m  m 

  



different material layers. First, the conducting aluminum bond 
wires are mounted to the tops of the SiC semiconductor chips. 
The chips are soldered to an aluminum nitride (AlN) ceramic 
layer surrounded by copper plating. This ceramic layer 
provides electrical isolation of the chip from the baseplate 
while also conducting a large amount of heat from the chip 
while having a small thermal expansion coefficient. The 
bottom copper layer was then soldered to the large copper 
baseplate. The collected geometries and linear material 
properties of the SiC MOSFET power module are compiled in 
Table II. The packaging, terminal busbars, and silicone gel 
were not considered for this model. The silicone gel has a 
much lower thermal conductivity (0.2 W/mΩ*K) than the 
surrounding metals which acts as thermal insulation for the 
semiconductor chips [14]. During module operation, the heat 
generated at the semiconductor chips is conducted through the 
material layers to the baseplate. 

The power loss curves of the SiC MOSFETs and SiC 
diodes were developed from the device characteristics and 
operational parameters of a switch used in a three-phase 
inverter circuit with an induction motor load, which was 
designed in MATLAB/Simulink with the add-on Simscape. 
Device properties such as turn-on and turn-off energies and on-
state resistance were obtained from the CREE 
CCS050M12CM2 datasheet, which is an all SiC six-pack 
power module. A sine-triangle pulse-width modulation 
switching scheme was used with the inverter to drive the 
induction motor load. The inverter used a 400 V DC-link 
voltage, 60 A peak sinusoidal output current, 5 kHz switching 
frequency, and 60 Hz line frequency. Simscape MOSFET and 
diode models were used for the simulation because the power 
loss during operation can be directly extracted from these 
models. The resulting power loss for the MOSFETs and diodes 
are shown in Fig. 1. 

COMSOL Multiphysics was used for FEA. A power 
module in operation has several heat constraints, such as the 
cooling convection force of the mounted heat sink, the heat 
generation from the semiconductor chips and diodes, the 
thermal insulation of the packaging silicone gel, and the 
ambient temperature of the operating environment. The cooling 
convection coefficient was chosen to be a value of 10,000 
W/m2K, which is a standard value for a liquid cooling heat sink 
system [15]. The ambient operational temperature of the device 

was chosen to be 60 °C. The thermal insulation of the 
packaging silicone gel was used as a thermal insulation barrier 
due to the much lower thermal conductivity of the material 
compared to the copper baseplate packaging. The software 
COMSOL LiveLink for MATLAB is an interfacing software 
used to run the COMSOL API within MATLAB. The 
command mphstate was used to extract a full-order state space 
model from COMSOL into a MATLAB object. There were 
twelve input power loss curves, six MOSFETs, two for each 
inverter leg, and six free-wheeling diodes for each MOSFET. 
Each power loss curve was applied as a heat flux constraint to 
the top of the corresponding MOSFET or diode in the model. 
Four temperature plots were output using simulation probes at 
the center of the top and bottom MOSFETs and diodes used for 
the first inverter leg. 

Shown in Fig. 2 is the three-dimensional (3-D) temperature 
plot of the SiC MOSFET power module with time varying heat 
flux loads obtained from a 3-D full-order finite element 
thermal model in COMSOL. Fig. 3 shows the alternating 
temperature profiles of top and bottom MOSFETs obtained 
from the full-order thermal model compared with the low-order 
simulation. The top MOSFET temperature fluctuates in the 
range of 20-25 °C. The magnitude of the temperature change 
decreases over time as the inverter settles to a sinusoidal 
steady-state output. The bottom MOSFET fluctuates in the 
range of 15-20 °C and this fluctuation magnitude increases 

Table II:  Power Module Layer Geometries and Material Properties. 

Power Module 
Material Layer 

Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Thermal Conductivity 
(W/mK) 

Density 
(kg/^3) 

Specific Heat Capacity 
(J/(kg*K)) 

Thermal Resistance 
(W/mK) 

Thermal 
Capacitance (J/K) 

Chip (MOSFET) 5 5 0.18 5 5 0.18 0.06 0.001 

Solder (MOSFET) 5 5 0.05 5 5 0.05 0.04 0.0018 

Chip (Diode) 4.14 6.38 0.38 4.14 6.38 0.38 0.1199 0.0023 

Solder (Diode) 4.14 6.38 0.05 4.14 6.38 0.05 0.0379 0.0019 

Copper (Top) 9.154 14.54 0.28 9.154 14.54 0.28 0.0052 0.1282 

Aluminum Nitride 23.6 31.24 0.68 23.6 31.24 0.68 0.0051 0.1209 

Copper (Bottom) 23.6 31.24 0.05 23.6 31.24 0.05 0.0009 0.71 

Solder (Baseplate) 23.6 31.24 0.05 23.6 31.24 0.05 0.0014 0.0517 

Copper (Baseplate) 107.5 45 3 107.5 45 3 0.0093 49.91 

 

 

 

Fig. 1. Power loss curves for MOSFETs and diodes. 



towards a steady state as well. The peak temperature above the 
initial temperature was about 98 °C, which was 38 °C above 
the ambient temperature. The temperature profile is based on 
the total thermal conductivity, specific heat capacity, linearity 
of the materials used, and the thermal boundary conditions. 
The power loss curves for the MOSFETs and diodes are 
dependent on the switching frequency, the turn-on and turn-off 
energies, the on-state resistance of the semiconductor devices, 
and the operating currents and voltages of the devices. In 
COMSOL, the solved solution is dependent on solver settings 
and mesh quality. Nonlinear material properties that are 
dependent on temperature would improve the accuracy of the 
temperature distribution simulation. The full-order state-space 
model with a system order of 31,026 was reduced to a system 
order of 20 using the proposed method. The low-order model 
was solved for two multiple-input single-output scenarios for 
both the top middle and bottom middle MOSFETs to obtain 
their temperature curves, as shown in Fig. 3.  

The error introduced to the model originates from the 
mathematical approximation error within the Arnoldi iteration 
used to reduce the order of the state-space system. The higher 
the order number, the less approximation error introduced into 
the state-space system. However, increasing the order number 
increases the necessary computation time to solve the model. 
The approximation error between the full-order system and the 

reduced low-order system is less than 2.4% and 1.5% for the 
top and bottom MOSFET, respectively, as shown in Fig. 4. The 
base value for the approximation error calculation was the 
COMSOL solver solution. The reduced-order model took 
seconds to solve compared to the days it took to solve the full-
order state-space system extracted from COMSOL in 
MATLAB.  

The approximation error over time for multiple reduction 
orders can be seen in Fig. 5, where the lowest reduction order 
yields the highest maximum error. The average, maximum, and 
minimum error as the reduction order increases can be seen in 
Fig. 6. Increasing the fidelity of the mesh in COMSOL 
increases the full-order system order. Three different starting 
full-order system orders were compared in Fig. 6: 31026, 
42713, and 91774. The maximum error stays below 2.5% for 
all full-order systems above a reduction order of 15 and rises 
sharply as order tends towards zero. The average error stays 
below 1% for all tested full-order systems above a reduction 
order of 5. 

 
 

Fig. 2. 3-D temperature plot of the SiC MOSFET power module in 

COMSOL. 

 

 
 

Fig. 3. MOSFET chip temperature plots obtained from full-order and reduced 

20-order model. 

 
 

Fig. 4. Approximation error of the reduced 20-order model for top and bottom 

MOSFET chip temperatures. 

 

 
 

Fig. 5. Approximation error of multiple reduction orders. 



IV. CONCLUSIONS 

This study explored the effectiveness of modeling the 
thermal process of a SiC MOSFET power module with a low-
order state-space model created by using a Krylov subspace 
projection method for reducing a high-order state-space model 
generated from the FEA method without any heuristic 
assumptions. The low-order thermal model extracted by using 
the proposed method has a controllable approximation error 
with respect to the most accurate FEA thermal model, which 
depends on the order number chosen for the MOR. The 
modeling parameters and considerations for creating a SiC 
MOSFET power module were considered as well as creating 
the necessary heat generation and cooling constraints for the 
model. The trade-offs of choosing a low system order were 
discussed and verified through simulation. The future work for 
this study lies in developing a mathematical relationship 
between the desired approximation error introduced due to the 
Arnoldi iteration method and the resulting system order. Based 
on the mathematical relationship, a method to determining the 
tradeoff between model order and error will be investigated. 
More simulation studies and experimental tests on a specific 
SiC MOSFET power module will be carried out to further 
verify the low-order thermal model generated by the proposed 
method under various operating conditions. 
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