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Abstract—The problem of ordinal classification occurs in a 

large and growing number of areas. Some of the most 

common source and applications of ordinal data include 

rating scales, medical classification scales, socio-economic 

scales, meaningful groupings of continuous data, facial 

emotional intensity, facial age estimation, etc. The problem 

of predicting ordinal classes is typically addressed by either 

performing n-1 binary classification for n ordinal classes or 

treating ordinal classes as continuous values for regression. 

However, the first strategy doesn’t fully utilize the ordering 

information of classes and the second strategy imposes a 

strong continuous assumption to ordinal classes. In this 

paper, we propose a novel loss function called Ordinal 

Hyperplane Loss (OHPL) that is particularly designed for 

data with ordinal classes. The proposal of OHPL is a 

significant advancement in predicting ordinal class data, 

since it enables deep learning techniques to be applied to the 

ordinal classification problem on both structured and 

unstructured data. By minimizing OHPL, a deep neural 

network learns to map data to an optimal space where the 

distance between points and their class centroids are 

minimized while a nontrivial ordinal relationship among 

classes are maintained. Experimental results show that deep 

neural network with OHPL not only outperforms the state-

of-the-art alternatives on classification accuracy but also 

scales well to large ordinal classification problems. 
 

Keywords—ordinal hyperplane loss, ordinal classification, 

ordinal regression, deep learning, loss function, machine 
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I. INTRODUCTION 

The problem of ordinal classification occurs in a large and 

growing number of areas. Some of the most common sources 

and applications of ordinal data are: 

 Ratings scales (e.g. Likert scales), like customer 
satisfaction ratings, “promoter” ratings and quality 
ratings 

 Medical classification scales (e.g. classification of 
disease stage/severity) and student performance (i.e., 
letter grades) 

 Socio-Economic scale (e.g., high, medium and low) 

 Meaningful groupings of continuous data (e.g., 
generational age groupings, grouping of noisy sensor 
data) 

 Facial emotional intensity [1] 

 Large storm severity ratings (e.g., Tropical Storms and 
Hurricanes) 

Historically, data sources like surveys and medical ratings 
were relatively small in size, but this digitalized world has 
produced more and more truly big ordinal data sources, such as 
Amazon’s purchase satisfaction surveys, Yelp’s rating data, and 
electronic health records. 

Ordinal data differ from nominal (unordered) data by 
providing additional information on the order of the classes, 
which leads to a different way to evaluate the results of 
classification. For instance, misclassifying a value of ‘3’ as a 
value of ‘4’ should be viewed as a “better” error than 
misclassifying it as a ‘5’ for ordinal classification, although 
nominal classification treats these two error cases equally. 

A popular strategy to address ordinal classification problem 
is to reduce the problem of ordinal classification to multiple 
binary classifications and then use machine learning methods 
such as Support Vector Machines (SVM) [2][3][4][5] or 
Gaussian Process [6] to perform those binary classifications. 
However, this strategy doesn’t fully utilize the ordering 
information of classes. Furthermore, SVM or Gaussian Process 
based methods are not easily scalable to big data. 

Another frequently used strategy for ordinal classification 
view ordered classes as integers and regression techniques to 
predict a continuous outcome [9]. However, this strategy 
assumes that equal “distances” between values have a consistent 
numerical meaning (i.e., all one unit differences having the same 
“meaning”). But this assumption is rarely true in ordinal data. 

In recent years, deep learning has made breakthrough 
achievements on complex analytics problems with big data, such 
as image classification [23, 24], natural language processing [25, 
26], and speech recognition [27]. However, to the best of our 
knowledge, there is no existing mechanism by which the 
learning power of deep neural network can be applied to ordinal 
classification problems. 

The research goal of this work is to solve large-scale ordinal 
classification problems, such that the classification model can 1) 
establish and maintain the ordering of the classes without 
making assumption regarding distances among classes, 2) “pull” 
like samples together while “pushing” higher samples above the 
current class samples and “push” the lower class samples below 
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the current class samples, 3) achieve higher classification 
accuracy than the state-of-the-art, 4) be scalable to very large 
classification problems, and 5) be applied to unstructured data 
such as images and text. 

To achieve this research goal, we first proposed a novel loss 
function that is called Ordinal Hyperplane Loss (OHPL). OHPL 
is particularly designed for data with ordinal classes and enables 
deep learning techniques to be applied to the ordinal 
classification problems. Based on OHPL, we further design a 
deep learning strategy, by which a deep neural network learns to 
map data to an optimal space where the distance between points 
and their class centroids are minimized while a nontrivial ordinal 
relationship among classes are maintained. We also conducted 
experimental studies that demonstrated the deep learning 
strategy based on OHPL outperforms state-of-the-art 
alternatives on ordinal classification accuracies and are scalable 
to large ordinal classification problems. 

The rest of the paper will be organized as follows. In section 
II, we report, in detail, our literature study. In section III, we 
will describe our proposed method, including Ordinal 
Hyperplane Loss (OHPL) and OHPL based deep learning 
strategy. Experimental studies on OHPL deep learning strategy 
will be provided in section IV. Finally, we conclude our paper 
in section V. 

 
II. LITERATURE STUDY 

In 2016, Gutierrez, et al published an extensive examination of 

solutions to the Ordinal Classification/Regression problem [7], 

including benchmark performance metrics versus a set of 

standard datasets that were included in the work of Chu and 

Ghahramani [6]. In their review Gutierrez, et al grouped the 

existing top performing methodologies into three categories 

that address the Ordinal Classification problem: 1) Naïve 

Approaches, 2) Ordinal Binary Decompositions and 3) 

Threshold Models. 

Naïve approaches use an appropriate simplifying 

assumption to cast the problem in such a manner that existing 

methodologies can be applied. For instance, if one assumes that 

the difference in classes is “close” to uniform they may 

transform the classes into sequential integers and apply 

regression analysis like ordinary least squares, neural nets or 

SVR. Cost sensitive methodologies which use different weights 

for different misclassification types also fall into this category 

[2]. For example, SVM with Ordered Partitions (SVMOP) uses 

class differences as weights, in an effort to not only provide 

correct classification, but to encourage misclassifications that 

are close in class number to the actual class [8]. 

The fundamental basis of binary decomposition is to recast 

the problem as a binary classification. The problem may be 

posed by comparing pairs of ordinal values with the higher 

value being assigned a value of 1 and then using either a single 

or multiple binary classification models. The earliest ordinal 

binary decomposition approaches used Ordinal Logistic 

Regression [9], which estimates binary probability for class 

ordering. More recent binary decomposition strategies using 

machine learning approaches like SVM algorithms create 

individual binary classifiers, combined with ensemble strategy 

that is based on the output of the binary classifiers. Deep Neural 

Nets allow of the output of multiple estimates that may be used 

to create class probabilities for all classes. Some researchers 

endeavored to use non-parallel hyperplanes in an SVM 

framework, but at a high cost of increased model complexity. 

Threshold models include a large number of methodologies 

including: 

1. SVMs: Chu & Keerthi developed two SVM algorithms 

that specifically address the ordinal classification 

problem through the estimated multiple hyperplanes that 

maintain the sequential ordering of the classes [4]. 

While successful in application to small datasets, SVMs 

are known to become impractical when data sets 

increase to above 100K records. 

2. Boosting Models: RankBoost [9] attempts to improve a 

set of confidence functions, that maximize an ensemble 

of binary classifiers. Similarly, ORBoost [10] applies 

the same concepts to develop improved performance 

from ordinal regression models. 

3. Gaussian Process: GPOR [6] uses a Bayesian 

framework to model a latent function via Gaussian 

Processes. Prior and posterior probabilities for class 

membership are estimated for a set of latent functions of 

the input features. 

In late 2016, Hamsici and Martinez proposed a SVM based 

algorithm that attempted to maximize the margins between 

adjacent classes [11]. Their algorithm is similar to the one that 

was proposed by Keerthi and Chu [4], but with a notable and 

meaningful difference that their algorithm doesn’t assume 

equal margins between adjacent classes. In addition, their 

algorithm includes weight parameters, which enable the 

prioritization of one of or more of the individual algorithms 

over others. This prioritization weighting allows one to focus 

on a specific pair of ordinal classes. 

In 2017, Wang, et al used a nonparallel hyperplane 

assumption for the development of a specialized SVM 

algorithm to address the Ordinal classification problem [12]. 

For k ordinal classes, their algorithm estimates k-1 hyperplanes. 

For each, they include constraints that ensure that like labelled 

samples are within a prescribed margin of the hyperplane, while 

unlike labelled samples are one or more units away. They also 

include constraints to ensure the ordering of the hyperplanes 

reflect the ordering of the classes. 

These algorithms provide a mixed performance across the 

standard test data sets that are used to benchmark performance 

of ordinal classifiers. Many are benchmarked using 20 or more 

small datasets, with performance that represents modest 

improvements. While these incremental improvements are 

impressive, they are being benchmarked against current “best 

in breed” classifiers, so as a rule, it’s rare to find one that 

outperforms best benchmark classifier by 10% or more (in 

terms of decline in classification error). 

In February 2018, Nguyen et al, incorporated triplet loss 

based constraints to what is similar as SVM solution [3]. Their 
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algorithm employs triplet loss based constraints on local 

clusters of data points. The researchers produced both a linear 

version of their algorithm and a version that employs the kernel 

trick to produce a nonlinear mapping of the data into a higher 

dimensional space. Given the researcher’s stated algorithm 

compute cost of O(n3), their solution while successful with 

relatively small datasets, may not be viable for large datasets. 

“Triplet Loss” is a term that was first used in the FaceNet 

solution to the re-identification problem [13]. In developing 

FaceNet, Schroff et al leveraged the foundational work in Large 

Margin Nearest Neighbor (LMNN) Classification published by 

of Weinberger and Saul [14]. In [15], a framework of triplet loss 

was further proposed to provide a mechanism for applying a 

distance comparison between points without requiring the 

underlying distance assumptions for regression analysis. This 

framework of triplet loss makes it well suited to the ordinal 

classification problem, but triplet loss itself cannot be used, 

because it doesn’t guarantee the ordering of classes. 

III. PROPOSED METHOD 

Given a data  that is not separable in its original space, we 

would like to find a transformation <p(x) to map data to a high- 

dimensional feature space that is optimal for ordinal 

classification. Traditional kernel machines use a kernel function 

that is either pre-defined or pre-selected by the user to implicitly 

map the data from its original space to a high- dimensional 

feature space. However, this implicit mapping through kernel 

function does not guarantee that the mapped space is optimal 

for decision making [22]. In this research, we aim to design a 

new method that is able to automatically learn a transformation 

 towards a learning objective that directly reflects an 

optimal distribution of the data in the mapped space with 

respect to ordinal classification. 

 
A. Geometric Illustration of an Optimal Data Distribution 

Given a data  that is not separable in its original space as 

shown  in  Fig.  1  (a),  a  transformation <p(x)  maps  data  to  a 

feature space as shown in Fig. 1 (b). Now the question is how 

we evaluate the quality of the data distribution in this mapped 

space with respect to ordinal classification. For nominal 

classification, we can use measures based on intra-class 

density/inter-class distance to describe the quality of the data 

distribution produced by <p(x).  However, this type of measures 

does not work well for ordinal classification for the following 

reasons. First, increasing the inter-class distance does not 

guarantee the ordinal relationship is kept among classes; 

second, moving instances closer to the center of their own 

classes does not necessarily yield a better ordinal classification 

model if the moving is primarily along the dot-lines or dash- 

lines as shown in Fig. 1 (c). 

 

 
Fig. 1 Geometric Illustration of an Optimal Data Distribution 

 

Therefore, in order to describe an optimal data distribution in 

the mapped space towards ordinal classification, we propose to 

use a group of parallel hyperplanes to represent classes as 

shown in Fig. 1 (D). Now, we intuitively call a data distribution 

optimal for ordinal classification, if we can find a group of 

parallel hyperplanes in the mapped space, such that 1) if  classi  
< classj,  then the  hyperplane  for  class  is lower than the 

hyperplane for class  in the mapped space for all  and ; 

and 2) an instance is closer to the hyperplane of its class than to 

any other hyperplane.  If a transformation <p(x) maps the data 

to a feature space, where some of the above criteria are not 

satisfied, this transformation brings loss. In the following 

subsection, we will mathematically define a loss function that 

is called Ordinal Hyperplane Loss to quantify such a loss for a 

data distribution that is produced by a transformation. 

 
 

B. Mathematical Definition of Ordinal Hyperplane Loss 

As the name implies that Ordinal Hyperplane Loss (OHPL) 

uses ordered linear hyperplanes, as the basis for calculating the 

loss for data distribution in the mapped space. The loss function 

is designed to utilize simple scalar distance calculations, 

combined with a standard application of large margin loss. The 

loss function enables the use of stochastic gradient descent, in 

optimizing data transformations. 

A linear hyperplane can be expressed as a simple 

mathematical equation of the form: wTx+ c = 0 , where w and 

x are  vector  valued  and  is a scalar constant. A set of 
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parallel hyperplanes of this form differ in their values. As a 

direct consequence, the ‘distance’ between two parallel 
hyperplanes can be defined to be the absolute value of the 

difference in their values divided by |w| . Given w , we 

the k ordinal class problem, the Hyperplane Centroid Loss 

(HCL) is defined as: 

 
k-1 

further denote the hyperplane that goes through the ith data 

point xi as 
HCL = L max(HCi − HCi+1 + 8, 0) 

i=1 

(5) 

wTx+ ci = 0 (1) 

then bring into (1), we have 

wTxi + ci = 0 (2a) 

ci = −wTxi (2) 

further bring (2) into (1), we have the expression of the 

hyperplane that goes through 

wTx− wTxi = 0 (3) 

Given the hyperplanes going through each data point in a 

feature space, we can now represent a class in that feature space 

by calculating its Hyperplane Centroid (HC). For instance, 

the hyperplane centroid for the kth class, denoted as HCk, can 

be expressed as 

 

2) Hyperplane-Point Loss (HPL) 

 
The second component of OHPL is “Hyperplane-Point Loss” 

(HPL). In calculating this loss component, individual data points are 

compared to a specific set of Hyperplane Centroids, to access the 

point’s contribution to the loss of the data distribution. HPPL is 

actually, the sum of two analogous loss functions, that work in 

different “directions” a la the formulation of (5). 

For the points, in a given class, if we “look” in the “increasing” 

direction (direction of larger ordinal class value), we only want the 

points that are higher than the HC for the point to potentially contribute 

to the loss (those below will be examined later). For points that are 

above their HC, but are already sufficiently close to their HC, there 

isn’t much benefit in drawing them closer, so we want their loss 

contribution to be zero. Therefore, the HPL uses a margin to ensure 

that points that do not contribute to loss are closer to their HC than the 

HC : wTx − 
1

 L wTx = 0 (4) midpoint between the HC. In Fig 2 (a), below, the circled points are 

k nk
 i 

yi=k 

higher than the margin above its HC, so they contribute to the total 

HPL value. Note that the dotted margin line/threshold is closer to the 

Given the definition in (4), all ordinal classes are represented 

as a group of hyperplane centroids, which are parallel to each 

other, in the feature space. Now we define OHPL, such that we 

can quantify the loss in a data distribution that is produced by a 

data  transformation <p(x)  with  respect  to  a  given  vector  w  . 

According to the intuitive criteria of an optimal data distribution 

that are described in section 3.1, OHPL consists two 

components, namely Hyperplane Centroid Loss and 

Hyperplane Point Loss. Hyperplane Centroid Loss reflects the 

loss caused by non-optimal ordering of Hyperplane Centroids 

per the ordinal relationship of the classes, while Hyperplane 

Point Loss reflects the loss caused by non-optimal relationship 

between individual data points and the hyperplane centroids of 

their classes. 

 
1) Hyperplane Centroid Loss(HCL) 

 

Hyperplane Centroid Loss (HCL), the first component of 

OHPL, ensures that the hyperplane centroids are properly 

ordered, per the ordering of the classes. This ordering can be 

expressed as a difference in adjacent HCs. If the adjacent HCs 

are properly ordered, then the transitive property ensures that 

all HC’s are properly ordered. Therefore, we require that the 

HCs   for   adjacent   classes   k   and   k+1    adhere    to:    HCk 
− HCk+1  >  8, for δ >  0  This means, if HCk+1is at least 8 from 

HCk, then the ordering is correct with sufficient distance between 

the adjacent classes. Since the difference is unbounded from 

above, this formulation doesn’t introduce a distance 

assumption. Given adjacent classes k and k+1, and δ > 0 the 

Hyperplane Centroid Loss contribution of HCk relative to HCk+1 is 

defined as: max(HCk − HCk+1 + 8, 0). Finally, for 
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HC, than to the adjacent HC. 

 

 
(a) HPL Increasing Direction 

 

Similarly, when we look in the decreasing direction, points that 

are further from their HC than the margin, will contribute to the HPL 

total. In Fig 2 (b), below, the three circled points contribute to HPL. 

The two components of the HPL (an increasing and a decreasing) 
that are summed to arrive at the total HPL. Formally, given a dataset 

S, let γ to be the proportion of distance between adjacent HCs, HC 

be the hyperplane centroid that represents the class that xi ∈ S 
belongs to, HC+1 is the higher hyperplane centroid that is adjacent 

to HC, and HCL+ be the HPL for the point xi ∈ S in the increasing 
direction, then we have: 

0.5 < y  < 1.0 

point margin = y(HC+1 − HC) 

HCL+ = max((f(xi) − HC) − (HC+1 − HC) + y(HC+1 − HC), 
0) 

= max(f(xi) − yHC − (1 − y)HC+1, 0) 
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Similarly, in the decreasing direction, 

HPL-  = max(yHC − f(xi) + (1 − y)HC-1, 0) 

Then, the overall HPL will be the aggregation of (HPL+ + 

HPL−) over all data points in . 

HPL = L HPL+ + HPL− (6) 
xi∈S 

 
 

(b) HPL Decreasing Direction 

Fig. 2 Computing HPL in Two Directions 

3) Ordinal Hyperplane Loss (OHPL) 

Finally, the Ordinal Hyperplane Loss (OHPL) is defined as 
the weighted aggregation of HCL and HPL, as shown below, 
where a � 1 reflects the importance of HCL in OHPL with 
respect to HPL. 

OHPL = aHCL + HPL (7) 

to prioritize HCL loss over point loss. The algorithmic 

description of the OHPL deep learning strategy is given as 

follows. 

 
OHPL Deep Learning Algorithm 

For parameters: O ordinal classes 
h – number of hidden layers 
lk– number of nodes in each layer 
w – prioritization wgt for HCL 
lr – learning rate 
m – HC margin 

 point margin proportion 
bs – batch size 
Input: Rescaled training data {(xi, yi)| i = 1, … , n} 
Parameters h, lk, wgt, lr, {lk = 1,…, h} 
Begin: 
1) Randomize node weights (W) and bias (b) values 
2) While not converged do 

HPPL = 0, HCL = 0, OHPL = 0 
Select mini-batch 

Calc mini-batch Hyperplane Centroids 
Calc HCL 
Calc HPPL for batch 
Update OHPL 
Calc SGD* 
Update W and b 

Repeat until training sample exhausted 
Check convergence 
End: Output W and b 

* – Stochastic Gradient Descent 

 

C. OHPL-Net: OHPL Deep Learning Strategy 

Given the definition of OHPL in (17), this section describes 

a deep learning strategy for ordinal classification based on 
OHPL. Figure 3 shows a simple deep neural network (DNN) 

model that represents a non-linear transformation ϕ that maps 

input data from their original space to a n-dimensional space. 

We further add the last layer wT</(x) on the top of the 

transformation </(x). Then we use the weights of the last layer, 

namely w,  to  define  parallel hyperplanes to represent m 

ordinal classes, such that the kth class will be represented by the 

hyperplane whoes expression is shown in (4). 

Based on the hyperplane representations of the ordinal 

classes, we can calculate the Ordinal Hyperplane Loss (OHPL) 

based on the formula (7). Then the DNN can learn both an 

optimal transformation <I and an optimal vector w by 

minimizing the OHPL (recall that w determines the direction of 

those parallel hyperplanes in the feature space that is mapped by 

<I). 

In our practical algorithm design, the HCL component of 

OHPL is estimated on the entire dataset, while the HPL 

component is applied to batches. To ensure that the ordering 

relationship is achieved as early as possible and maintained over 

the entire training process, a large weight value α > 10 is used 

 

 

Fig 3: OHPL Deep Learning Strategy Illustration 

 

In order to facilitate the application of OHPL deep learning 

strategy on different types of data for ordinal classification, we 

further brand this strategy as OHPL-Net, a deep architecture 

that users can directly apply to their ordinal classification 

problems. An OHPL-Net contains two components. The first 

component is called </ layers, which are fully connected deep 

nets that represents a non-linear transformation of the input 

data. The second component is called Hyperplane layer, which 

is a one-layer one-output neuron network representing the 

direction of Hyperplane Centroids. Again OHPL-Net uses 

OHPL to learn optimal </ and optimal parallel hyperplanes. If 

users’ classification tasks involve unstructured data, such as 

medical diagnosis of Alzheimer’s disease (mild, moderate and 

severe) based on MRI images or anger level detections based 

on tweets, OHPL-Net can be put upon those deep neuron 

architectures that are built on specific unstructured data, such 
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as Convolutional Neuron Network (CNN) [23] [24] on image 

data and Recurrent Neural Network (RNN) [25] [26] [27] on 

text data. 

 

 
IV. EXPERIMENTAL RESULTS 

OHPL was tested against seven ordinal classification datasets that 

are found in a number of related studies, including CPU Small [16], 

Census 10 [16], ERA (Employee Rejection/Acceptance) [17], LEV 

(Lecturers Evaluation) [18], SWD (Social Worker Decisions) [19], 

Cars [20], and Red Wine [20]. Characteristics of the seven data sets 

are given in Table 1. 

 
 

Table 1: Test Dataset Key Characteristics 
 

Dataset # Records # Features # Classes Class Distribution 

CPU 
Small 

8,192 12 10 ~820 per class 

Census 

10 
22,784 16 10 ~2,278 per class 

Cars 1,728 6 4 (1,210, 384, 69, 65) 

Wine- 

Red 
1,599 11 6 (10, 53, 681, 638, 199, 18) 

ERA 1,000 4 9 
(92, 142, 181, 172, 158, 

118, 88, 3, 18) 

LEV 1,000 4 5 (93, 280, 403, 197, 270) 

SWD 1,000 10 4 (32, 352, 399, 217) 

 
 

A. Assessment Measures 

Mean Zero-One Error (MZE) is used to test classification of 

nominal data. This measure reports the proportion of 

misclassifications when scoring the validation samples, which 

can be computed as: 
 

As discussed earlier, ordinal data differs from nominal data 

and shares some characteristics with continuous data while also 

differing from continuous data. One of the key similarities with 

continuous data is the concept of being “close” if the prediction 

is incorrect. As such, Mean Absolute Error (MAE) may be a 

more meaningful way to access model performance. As a 

minimum, it’s a powerful way to distinguish among models that 

have comparable MZE performance. MAE can be computed as: 

 

Table 1 illustrates the fundamental difference between MAE 

and MZE, for the OHPL results when applied to the Social 

Work Decisions dataset. A standard methodology to assess 

classifier performance is the use of a “confusion” matrix. The 

basic principle is to use the classifier to score a dataset that has 

known labels, giving each record an actual and a predicted class 

value. The actual values correspond to the rows of the matrix 

and the predicted classes are represented in the columns. Every 

record is an ordered pair that occurs within the matrix. Cells of 

the matrix are filled with counts of the corresponding ordered 

pairs. Assuming that the row and column sequence is the same, 

then the diagonal (darkest colored cells in the matrix below) 

represents the correctly classified counts, which sum to the 

MZE value, before dividing by the total number of records. 

 

Table 2. Social Work Decisions OHPL Confusion Matrix 

Predicted 

Actual 2 3 4 5 

2 16 15 4 0 

3 29 202 100 20 

4 6 79 237 83 

5 0 7 79 123 

 
As you move further from the diagonal of the matrix, the 

values get lighter in color (further in color from the diagonal). 

This color change represents increasing error, in the 

classification and the lighter the color, the higher the error for 

points that are represented in the cells. An ideal classifier, that 

isn’t a perfect classifier, will have zeros, in the three lightest 

colors in Table 2. 

 

B. Benchmark Algorithms 

The following benchmark algorithms are included in our 

experimental studies: 1) Support Vector Machines with Ordered 

Partitions (SVMOP) [8], 2) GPOR (Gaussian Process for Ordinal 

Regression) [6], 3) ORBALL (Ordinal Regression Boosting with All 

margins) [10], and 4) LODML (linear classifiers using triplet loss 

constraints on Mahalanobis distance within an optimization 

framework) [3]. To ensure a justifiable benchmark comparison, a 5- 

fold cross validation was used when testing OHPL based classifiers. 

 

C. Performance Comparisions 

Table 3 shows the comparison results on MZE. As can be 

seen, OHPL based classifier has the lowest average MZE across 

the 7 data sets. Furthermore, OHPL achieves lowest MZE on 3 

out of 7 data sets. Especially on the two largest data sets, CPU 

Small and Census 10, OHPL outperforms the second best by 

24.8% and 13% respectively. Table 4 shows the comparison 

results on MAE. As can be seen, OHPL based classifier has the 

lowest average MAE across the 7 data sets. Furthermore, OHPL 

achieves lowest MAE on 4 out of 7 data sets. Especially on the 

two largest data sets, CPU Small and Census 10, OHPL 

outperforms the second best by 25.8% and 40.9% respectively. 

Therefore, for these larger datasets, OHPL represents a 

significant improvement over the best existing algorithms. 

 

D. Scalling to Big Data 

To demonstrate that OHPL can scale to large datasets, a 

collection of “synthetic” datasets was created, from the largest 

of the standard datasets that are used to benchmark ordinal 

classification/regression algorithms. 
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From the Chu and Ghahramani research [6], Census 10 

dataset is among the largest for which benchmark results are 

available. A standard benchmark assessment for this dataset is 

included in the next section. For the purposes of assessing the 

scaling of OHPL, the data set was split, 80:20, into single 

training and test datasets. The synthetic datasets were created 

by replicating the training data. In each set, the 1st replica is the 

original training dataset. For each subsequent, replica a small 

amount of random noise was added to each data value. The 

original training sample contains just 20K records. The largest 

synthetic dataset contains just over 500K records. Time to 

algorithm execution times are reported in Figure 6 below. 

 

 
V. CONCLUSION AND FUTURE REMARKS 

OHPL directly addresses the unique requirements of the 

ordinal classification by using a point specific large margin loss 

function to group classes, while directly adhering to the ordinal 

information that are represented in the data. DNN’s built using 

OHPL perform on par with existing high performing ordinal 

classifiers on small datasets, while demonstrating vastly 

improved results on larger standard benchmark large datasets. 

Through the application to a very large (500K+ records) 

synthetic dataset example, OHPL was demonstrated to 

effectively classify ordinal data. 

From a technical perspective, immediate plans include 

continue to develop the algorithm, to gain an additional insight 

into the impact of DNN structure (assess whether or not 

guidelines for number of layers and number of nodes per layer 

to achieve optimal performance can be established). In addition, 

early testing suggests that allowing some “flexibility” regarding 

the minimum margin between hyperplane centroids may 

provide the benefit of faster convergence to an optimal solution. 

As mentioned earlier, OHPL uses a DNN with a loss function 

that has been specifically developed for the Ordinal 

Classification problem. As such, it can handle large datasets 

(200K+ records). Testing against large datasets is critical, but 

ideally after some additional work to improve algorithm 

efficiency. Experimentation with algorithm different/additional 

strategies, to improve algorithm speed would be important 

when applying it to large datasets. 

Table 3. MZE Comparison 

 

SWD 0.424 0.422 0.439 0.526 0.422 

Average 0.471 0.47 0.481 0.516 0.441 

 
Table 4. MAE Comparison 

 

 Algorithm 

Dataset SVMOP GPOR ORBALL LODML OHPL 

CPU 
Small 

1.680 1.565 1.590 1.656 1.161 

Census 10 2.127 2.190 1.951 2.174 1.153 

Cars 1 1.081 1 1.053 1 

Wine-Red 1.145 1.066 1.108 1.123 1.159 

ERA 1.664 1.742 1.645 1.816 1.034 

LEV 1.090 1.082 1.100 1.097 1.098 

SWD 1.061 1.043 1.048 1.062 1.158 

Average 1.395 1.396 1.349 1.426 1.109 

 

 

Fig 6: Time to Complete 500 Epochs by Number of Records (K 

records) 
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