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Abstract—The problem of ordinal classification occurs in a
large and growing number of areas. Some of the most
common source and applications of ordinal data include
rating scales, medical classification scales, socio-economic
scales, meaningful groupings of continuous data, facial
emotional intensity, facial age estimation, etc. The problem
of predicting ordinal classes is typically addressed by either
performing n-1 binary classification for n ordinal classes or
treating ordinal classes as continuous values for regression.
However, the first strategy doesn’t fully utilize the ordering
information of classes and the second strategy imposes a
strong continuous assumption to ordinal classes. In this
paper, we propose a novel loss function called Ordinal
Hyperplane Loss (OHPL) that is particularly designed for
data with ordinal classes. The proposal of OHPL is a
significant advancement in predicting ordinal class data,
since it enables deep learning techniques to be applied to the
ordinal classification problem on both structured and
unstructured data. By minimizing OHPL, a deep neural
network learns to map data to an optimal space where the
distance between points and their class centroids are
minimized while a nontrivial ordinal relationship among
classes are maintained. Experimental results show that deep
neural network with OHPL not only outperforms the state-
of-the-art alternatives on classification accuracy but also
scales well to large ordinal classification problems.

Keywords—ordinal hyperplane loss, ordinal classification,
ordinal regression, deep learning, loss function, machine
learning

[. INTRODUCTION

The problem of ordinal classification occurs in a large and
growing number of areas. Some of the most common sources
and applications of ordinal data are:

e Ratings scales (e.g. Likert scales), like customer
satisfaction ratings, “promoter” ratings and quality
ratings

e Medical classification scales (e.g. classification of
disease stage/severity) and student performance (i.e.,
letter grades)

e Socio-Economic scale (e.g., high, medium andlow)
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e Meaningful groupings of continuous data (e.g.,
generational age groupings, grouping of noisy sensor
data)

e Facial emotional intensity [1]

e Large storm severity ratings (e.g., Tropical Storms and
Hurricanes)

Historically, data sources like surveys and medical ratings
were relatively small in size, but this digitalized world has
produced more and more truly big ordinal data sources, such as
Amazon’s purchase satisfaction surveys, Yelp’s rating data, and
electronic health records.

Ordinal data differ from nominal (unordered) data by
providing additional information on the order of the classes,
which leads to a different way to evaluate the results of
classification. For instance, misclassifying a value of ‘3” as a
value of ‘4’ should be viewed as a “better” error than
misclassifying it as a ‘5’ for ordinal classification, although
nominal classification treats these two error cases equally.

A popular strategy to address ordinal classification problem
is to reduce the problem of ordinal classification to multiple
binary classifications and then use machine learning methods
such as Support Vector Machines (SVM) [2][3][4][5] or
Gaussian Process [6] to perform those binary classifications.
However, this strategy doesn’t fully utilize the ordering
information of classes. Furthermore, SVM or Gaussian Process
based methods are not easily scalable to bigdata.

Another frequently used strategy for ordinal classification
view ordered classes as integers and regression techniques to
predict a continuous outcome [9]. However, this strategy
assumes that equal “distances” between values have a consistent
numerical meaning (i.e., all one unit differences having the same
“meaning”). But this assumption is rarely true in ordinal data.

In recent years, deep learning has made breakthrough
achievements on complex analytics problems with big data, such
as image classification [23, 24], natural language processing [25,
26], and speech recognition [27]. However, to the best of our
knowledge, there is no existing mechanism by which the
learning power of deep neural network can be applied to ordinal
classification problems.

The research goal of this work is to solve large-scale ordinal
classification problems, such that the classification model can 1)
establish and maintain the ordering of the classes without
making assumption regarding distances among classes, 2) “pull”
like samples together while “pushing” higher samples above the
current class samples and “push” the lower class samples below
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the current class samples, 3) achieve higher classification
accuracy than the state-of-the-art, 4) be scalable to very large
classification problems, and 5) be applied to unstructured data
such as images and text.

To achieve this research goal, we first proposed a novel loss
function that is called Ordinal Hyperplane Loss (OHPL). OHPL
is particularly designed for data with ordinal classes and enables
deep learning techniques to be applied to the ordinal
classification problems. Based on OHPL, we further design a
deep learning strategy, by which a deep neural network learns to
map data to an optimal space where the distance between points
and their class centroids are minimized while a nontrivial ordinal
relationship among classes are maintained. We also conducted
experimental studies that demonstrated the deep learning
strategy based on OHPL outperforms state-of-the-art
alternatives on ordinal classification accuracies and are scalable
to large ordinal classification problems.

The rest of the paper will be organized as follows. In section
II, we report, in detail, our literature study. In section III, we
will describe our proposed method, including Ordinal
Hyperplane Loss (OHPL) and OHPL based deep learning
strategy. Experimental studies on OHPL deep learning strategy
will be provided in section IV. Finally, we conclude our paper
in section V.

II. LITERATURE STUDY

In 2016, Gutierrez, et al published an extensive examination of
solutions to the Ordinal Classification/Regression problem [7],
including benchmark performance metrics versus a set of
standard datasets that were included in the work of Chu and
Ghahramani [6]. In their review Gutierrez, et al grouped the
existing top performing methodologies into three categories
that address the Ordinal Classification problem: 1) Naive
Approaches, 2) Ordinal Binary Decompositions and 3)
Threshold Models.

Naive approaches wuse an appropriate simplifying
assumption to cast the problem in such a manner that existing
methodologies can be applied. For instance, if one assumes that
the difference in classes is “close” to uniform they may
transform the classes into sequential integers and apply
regression analysis like ordinary least squares, neural nets or
SVR. Cost sensitive methodologies which use different weights
for different misclassification types also fall into this category
[2]. For example, SVM with Ordered Partitions (SVMOP) uses
class differences as weights, in an effort to not only provide
correct classification, but to encourage misclassifications that
are close in class number to the actual class [8].

The fundamental basis of binary decomposition is to recast
the problem as a binary classification. The problem may be
posed by comparing pairs of ordinal values with the higher
value being assigned a value of 1 and then using either asingle
or multiple binary classification models. The earliest ordinal
binary decomposition approaches used Ordinal Logistic
Regression [9], which estimates binary probability for class
ordering. More recent binary decomposition strategies using
machine learning approaches like SVM algorithms create
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individual binary classifiers, combined with ensemble strategy
that is based on the output of the binary classifiers. Deep Neural
Nets allow of the output of multiple estimates that may be used
to create class probabilities for all classes. Some researchers
endeavored to use non-parallel hyperplanes in an SVM
framework, but at a high cost of increased model complexity.

Threshold models include a large number of methodologies

including:

1. SVMs: Chu & Keerthi developed two SVM algorithms
that specifically address the ordinal -classification
problem through the estimated multiple hyperplanes that
maintain the sequential ordering of the classes [4].
While successful in application to small datasets, SVMs
are known to become impractical when data sets
increase to above 100K records.

2. Boosting Models: RankBoost [9] attempts to improve a
set of confidence functions, that maximize an ensemble
of binary classifiers. Similarly, ORBoost [10] applies
the same concepts to develop improved performance
from ordinal regression models.

3. Gaussian Process: GPOR [6] uses a Bayesian
framework to model a latent function via Gaussian
Processes. Prior and posterior probabilities for class
membership are estimated for a set of latent functions of
the input features.

In late 2016, Hamsici and Martinez proposed a SVM based
algorithm that attempted to maximize the margins between
adjacent classes [11]. Their algorithm is similar to the one that
was proposed by Keerthi and Chu [4], but with a notable and
meaningful difference that their algorithm doesn’t assume
equal margins between adjacent classes. In addition, their
algorithm includes weight parameters, which enable the
prioritization of one of or more of the individual algorithms
over others. This prioritization weighting allows one to focus
on a specific pair of ordinal classes.

In 2017, Wang, et al used a nonparallel hyperplane
assumption for the development of a specialized SVM
algorithm to address the Ordinal classification problem [12].
For k ordinal classes, their algorithm estimates k-1 hyperplanes.
For each, they include constraints that ensure that like labelled
samples are within a prescribed margin of the hyperplane, while
unlike labelled samples are one or more units away. They also
include constraints to ensure the ordering of the hyperplanes
reflect the ordering of the classes.

These algorithms provide a mixed performance across the
standard test data sets that are used to benchmark performance
of ordinal classifiers. Many are benchmarked using 20 or more
small datasets, with performance that represents modest
improvements. While these incremental improvements are
impressive, they are being benchmarked against current “best
in breed” classifiers, so as a rule, it’s rare to find one that
outperforms best benchmark classifier by 10% or more (in
terms of decline in classification error).

In February 2018, Nguyen et al, incorporated triplet loss
based constraints to what is similar as SVM solution [3]. Their



algorithm employs triplet loss based constraints on local
clusters of data points. The researchers produced both a linear
version of their algorithm and a version that employs the kernel
trick to produce a nonlinear mapping of the data into a higher
dimensional space. Given the researcher’s stated algorithm
compute cost of O(n’), their solution while successful with
relatively small datasets, may not be viable for large datasets.

“Triplet Loss” is a term that was first used in the FaceNet
solution to the re-identification problem [13]. In developing
FaceNet, Schroff et al leveraged the foundational work in Large
Margin Nearest Neighbor (LMNN) Classification published by
of Weinberger and Saul [14]. In [15], a framework of triplet loss
was further proposed to provide a mechanism for applying a
distance comparison between points without requiring the
underlying distance assumptions for regression analysis. This
framework of triplet loss makes it well suited to the ordinal
classification problem, but triplet loss itself cannot be used,
because it doesn’t guarantee the ordering ofclasses.

III. PROPOSED METHOD

Given a data x that is not separable in its original space, we
would like to find a transformation <y(x) to map data to a high-
dimensional feature space that is optimal for ordinal
classification. Traditional kernel machines use a kernel function
that is either pre-defined or pre-selected by the user to implicitly
map the data from its original space to a high- dimensional
feature space. However, this implicit mapping through kernel
function does not guarantee that the mapped space is optimal
for decision making [22]. In this research, we aim to design a
new method that is able to automatically learn a transformation
@(x) towards a learning objective that directly reflects an
optimal distribution of the data in the mapped space with
respect to ordinal classification.

A. Geometric Illustration of an Optimal Data Distribution

Given a data x that is not separable in its original space as
shown in Fig. 1 (a), a transformation <(x) maps data to a
feature space as shown in Fig. 1 (b). Now the question is how
we evaluate the quality of the data distribution in this mapped
space with respect to ordinal classification. For nominal
classification, we can use measures based on intra-class
density/inter-class distance to describe the quality of the data
distribution produced by <p(x). However, this type of measures
does not work well for ordinal classification for the following
reasons. First, increasing the inter-class distance does not
guarantee the ordinal relationship is kept among classes;
second, moving instances closer to the center of their own
classes does not necessarily yield a better ordinal classification
model if the moving is primarily along the dot-lines or dash-
lines as shown in Fig. 1 (c).
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Fig 1(a): Unseparated Fig 1(b): Separated
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Fig. 1 Geometric Illustration of an Optimal Data Distribution

Therefore, in order to describe an optimal data distribution in
the mapped space towards ordinal classification, we propose to
use a group of parallel hyperplanes to represent classes as
shown in Fig. 1 (D). Now, we intuitively call a data distribution
optimal for ordinal classification, if we can find a group of
parallel hyperplanes in the mapped space, such that 1) if class;
< classj, then the hyperplane for class i is lower than the
hyperplane for class j in the mapped space for all i and j;
and 2) an instance is closer to the hyperplane of its class than to
any other hyperplane. If a transformation <y(x) maps the data
to a feature space, where some of the above criteria are not
satisfied, this transformation brings loss. In the following
subsection, we will mathematically define a loss function that
is called Ordinal Hyperplane Loss to quantify such a loss for a
data distribution that is produced by a transformation.

B. Mathematical Definition of Ordinal Hyperplane Loss

As the name implies that Ordinal Hyperplane Loss (OHPL)
uses ordered linear hyperplanes, as the basis for calculating the
loss for data distribution in the mapped space. The loss function
is designed to utilize simple scalar distance calculations,
combined with a standard application of large margin loss. The
loss function enables the use of stochastic gradient descent, in
optimizing data transformations.

A linear hyperplane can be expressed as a simple
mathematical equation of the form: w’x+ ¢ = 0, where wand
xare vector valued and c is a scalar constant. A set of



parallel hyperplanes of this form differ in theiwvalues. As a
direct consequence, the ‘distance’ between two parallel
hyperplanes can be defined to be the absolute value of the
difference in their values divided by /w/. Given w, we

further denote the hyperplane that goes through the ith data
point x;as

wix+a=0 (1)
then bring x; into (1), we have
wixi + ¢ =0 (2a)
a=-wlxi (2)
further bring (2) into (1), we have the expression of the
hyperplane that goes through x;

wix— wix; = 0(3)

Given the hyperplanes going through each data point in a
feature space, we can now represent a class in that feature space
by calculating its Hyperplane Centroid (HC). For instance,
the hyperplane centroid for the kth class, denoted as HCx, can
be expressed as

yi
HC:wix — L wix =0(4)

k e i

yi=k

Given the definition in (4), all ordinal classes are represented
as a group of hyperplane centroids, which are parallel to each
other, in the feature space. Now we define OHPL, such that we
can quantify the loss in a data distribution that is produced by a
data transformation ¢(x) with respect to a given vector w .
According to the intuitive criteria of an optimal data distribution
that are described in section 3.1, OHPL consists two
components, namely Hyperplane Centroid Loss and
Hyperplane Point Loss. Hyperplane Centroid Loss reflects the
loss caused by non-optimal ordering of Hyperplane Centroids
per the ordinal relationship of the classes, while Hyperplane
Point Loss reflects the loss caused by non-optimal relationship
between individual data points and the hyperplane centroids of
their classes.

1) Hyperplane Centroid Loss(HCL)

Hyperplane Centroid Loss (HCL), the first component of
OHPL, ensures that the hyperplane centroids are properly
ordered, per the ordering of the classes. This ordering can be
expressed as a difference in adjacent HCs. If the adjacent HCs
are properly ordered, then the transitive property ensures that
all HC’s are properly ordered. Therefore, we require that the
HCs for adjacent classes k& and k+/ adhere to: HCk
— HCi+1 > 8, for & > 0 This means, if HCx+1is at least 8 from
HCk, then the ordering is correct with sufficient distance between
the adjacent classes. Since the difference is unbounded from
above, this formulation doesn’t introduce a distance
assumption. Given adjacent classes k and k+/, and & > O the
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the k ordinal class problem, the Hyperplane Centroid Loss
(HCL) is defined as:

k-1

HCL=IL.max(HCi—HCi+1+8,0) (5)
i=1

2) Hyperplane-Point Loss (HPL)

s

The second component of OHPL is “Hyperplane-Point Loss’
(HPL). In calculating this loss component, individual data points are
compared to a specific set of Hyperplane Centroids, to access the
point’s contribution to the loss of the data distribution. HPPL is
actually, the sum of two analogous loss functions, that work in
different “directions” a la the formulation of (5).

For the points, in a given class, if we “look” in the “increasing”
direction (direction of larger ordinal class value), we only want the
points that are higher than the HC for the point to potentially contribute
to the loss (those below will be examined later). For points that are
above their HC, but are already sufficiently close to their HC, there
isn’t much benefit in drawing them closer, so we want their loss
contribution to be zero. Therefore, the HPL uses a margin to ensure
that points that do not contribute to loss are closer to their HC than the

midpoint between the HC. In Fig 2 (a), below, the circled points are

higher than the margin above its HC, so they contribute to the total
HPL value. Note that the dotted margin line/threshold is closer to the

Hyperplane Centroid Loss contribution of HCkrelative to HCy+11s
defined as: max(HCix — HCi+1 + 8, 0). Finally, for



HC, than to the adjacent HC.

(a) HPL Increasing Direction

Similarly, when we look in the decreasing direction, points that
are further from their HC than the margin, will contribute to the HPL
total. In Fig 2 (b), below, the three circled points contribute to HPL.

The two components of the HPL (an increasing and a decreasing)
that are summed to arrive at the total HPL. Formally, given a dataset
S, let yto be the proportion of distance between adjacent HCs, HC
be the hyperplane centroid that represents the class that x; € S
belongs to, HC+1 is the higher hyperplane centroid that is adjacent
to HC, and HCL* be the HPL for the point x; € Sin the increasing
direction, then we have:

05<y <10
point margin = y(HCr1 — HC)

HCL* = max((f(x;) — HC) — (HC+1 — HC) + y(HC+1 — HC),
0)

=max(f(x;)) — yHC — (1 — y)HC+1, 0)
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Similarly, in the decreasing direction,
HPL~ = max(yHC — f(xi) + (1 —y)HC 1, 0)
Then, the overall HPL will be the aggregation of (HPL* +
HPL-) over all data points in 5.

HPL = L. HPL+ + HPL- (6)

X;ES

Adjacent
Hyperplane ~
Centroid

(b) HPL Decreasing Direction

Fig. 2 Computing HPL in Two Directions

3) Ordinal Hyperplane Loss (OHPL)

Finally, the Ordinal Hyperplane Loss (OHPL) is defined as
the weighted aggregation of HCL and HPL, as shown below,
where a @1 reflects the importance of HCL in OHPL with
respect to HPL.

OHPL = aHCL + HPL (7)

C. OHPL-Net: OHPL Deep Learning Strategy

Given the definition of OHPL in (17), this section describes
a deep learning strategy for ordinal classification based on
OHPL. Figure 3 shows a simple deep neural network (DNN)
model that represents a non-linear transformation ¢ that maps
input data from their original space to a n-dimensional space.
We further add the last layer w’/</(x) on the top of the
transformation </(x). Then we use the weights of the last layer,

namely w, to define M parallel hyperplanes to represent m
ordinal classes, such that the £t/ class will be represented by the
hyperplane whoes expression is shown in (4).

Based on the hyperplane representations of the ordinal
classes, we can calculate the Ordinal Hyperplane Loss (OHPL)
based on the formula (7). Then the DNN can learn both an
optimal transformation <7/ and an optimal vector w by
minimizing the OHPL (recall that w determines the direction of
those parallel hyperplanes in the feature space that is mapped by

<.

In our practical algorithm design, the HCL component of
OHPL is estimated on the entire dataset, while the HPL
component is applied to batches. To ensure that the ordering
relationship is achieved as early as possible and maintained over
the entire training process, a large weight value o > 10is used
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to prioritize HCL loss over point loss. The algorithmic
description of the OHPL deep learning strategy is given as
follows.

OHPL Deep Learning Algorithm

For parameters: O ordinal classes
h — number of hidden layers
Ir—number of nodes in each layer
w — prioritization wgt for HCL
Ir — learning rate
m — HC margin
¥— point margin proportion
bs — batch size
Input: Rescaled training data {(x; y))/i=1, ..., n}
Parameters A, Iy, wgt, I, {Ic = 1,..., h}
Begin:
1) Randomize node weights (W) and bias (b) values
2) While not converged do
HPPL =0, HCL =0, OHPL =0
Select mini-batch
Calc mini-batch Hyperplane Centroids
Calc HCL
Calc HPPL for batch
Update OHPL
Calc SGD*
Update W and b
Repeat until training sample exhausted
Check convergence
End: Output W and b

* — Stochastic Gradient Descent

input Non-Linear Transformation outpnt
determines the

N\ W direction of the
\MMM"' hyperplanes
7N

m——
~ T =wTo@)

Fig 3: OHPL Deep Learning Strategy Illustration

In order to facilitate the application of OHPL deep learning
strategy on different types of data for ordinal classification, we
further brand this strategy as OHPL-Net, a deep architecture
that users can directly apply to their ordinal classification
problems. An OHPL-Net contains two components. The first
component is called </layers, which are fully connected deep
nets that represents a non-linear transformation of the input
data. The second component is called Hyperplane layer, which
is a one-layer one-output neuron network representing the
direction of Hyperplane Centroids. Again OHPL-Net uses
OHPL to learn optimal </and optimal parallel hyperplanes. If
users’ classification tasks involve unstructured data, such as
medical diagnosis of Alzheimer’s disease (mild, moderate and
severe) based on MRI images or anger level detections based
on tweets, OHPL-Net can be put upon those deep neuron
architectures that are built on specific unstructured data, such



as Convolutional Neuron Network (CNN) [23] [24] on image
data and Recurrent Neural Network (RNN) [25] [26] [27] on
text data.

IV. EXPERIMENTAL RESULTS

OHPL was tested against seven ordinal classification datasets that
are found in a number of related studies, including CPU Small [16],
Census 10 [16], ERA (Employee Rejection/Acceptance) [17], LEV
(Lecturers Evaluation) [18], SWD (Social Worker Decisions) [19],
Cars [20], and Red Wine [20]. Characteristics of the seven data sets
are given in Table 1.

Table 1: Test Dataset Key Characteristics

Dataset |# Records| # Features | # Classes Class Distribution
SPU | 8192 12 10 ~820 per class

Ce;t;us 22,784 16 10 ~2,278 per class
Cars 1,728 6 4 (1,210, 384, 69, 65)
Wine-
Red 1,599 11 6 (10, 53, 681, 638, 199, 18)

(92, 142, 181, 172, 158

ERA 1,000 4 9 118, 88, 3, 18)
LEV 1,000 4 5 (93, 280, 403, 197, 270)
SWD 1,000 10 4 (32,352,399,217)

A. Assessment Measures

Mean Zero-One Error (MZE) is used to test classification of
nominal data. This measure reports the proportion of
misclassifications when scoring the validation samples, which
can be computed as:

1
MZE = EZ(yi # ¥;) =1 — accuracy

As discussed earlier, ordinal data differs from nominal data
and shares some characteristics with continuous data while also
differing from continuous data. One of the key similarities with
continuous data is the concept of being “close” if the prediction
is incorrect. As such, Mean Absolute Error (MAE) may be a
more meaningful way to access model performance. As a
minimum, it’s a powerful way to distinguish among models that
have comparable MZE performance. MAE can be computed as:

1
MAE = 2 Iy =9

Table 1 illustrates the fundamental difference between MAE
and MZE, for the OHPL results when applied to the Social
Work Decisions dataset. A standard methodology to assess
classifier performance is the use of a “confusion” matrix. The
basic principle is to use the classifier to score a dataset that has
known labels, giving each record an actual and a predicted class

2342

value. The actual values correspond to the rows of the matrix
and the predicted classes are represented in the columns. Every
record is an ordered pair that occurs within the matrix. Cells of
the matrix are filled with counts of the corresponding ordered
pairs. Assuming that the row and column sequence is the same,
then the diagonal (darkest colored cells in the matrix below)
represents the correctly classified counts, which sum to the
MZE value, before dividing by the total number of records.

Table 2. Social Work Decisions OHPL Confusion Matrix

Predicted
Actual 2 3 4 5
2 6 15 4 0
3 29 0 100 20
4 6 79 83
5 0 7 79

As you move further from the diagonal of the matrix, the
values get lighter in color (further in color from the diagonal).
This color change represents increasing error, in the
classification and the lighter the color, the higher the error for
points that are represented in the cells. An ideal classifier, that
isn’t a perfect classifier, will have zeros, in the three lightest
colors in Table 2.

B. Benchmark Algorithms

The following benchmark algorithms are included in our
experimental studies: 1) Support Vector Machines with Ordered
Partitions (SVMOP) [8], 2) GPOR (Gaussian Process for Ordinal
Regression) [6], 3) ORBALL (Ordinal Regression Boosting with All
margins) [10], and 4) LODML (linear classifiers using triplet loss
constraints on Mahalanobis distance within an optimization
framework) [3]. To ensure a justifiable benchmark comparison, a 5-
fold cross validation was used when testing OHPL based classifiers.

C. Performance Comparisions

Table 3 shows the comparison results on MZE. As can be
seen, OHPL based classifier has the lowest average MZE across
the 7 data sets. Furthermore, OHPL achieves lowest MZE on 3
out of 7 data sets. Especially on the two largest data sets, CPU
Small and Census 10, OHPL outperforms the second best by
24.8% and 13% respectively. Table 4 shows the comparison
results on MAE. As can be seen, OHPL based classifier has the
lowest average MAE across the 7 data sets. Furthermore, OHPL
achieves lowest MAE on 4 out of 7 data sets. Especially on the
two largest data sets, CPU Small and Census 10, OHPL
outperforms the second best by 25.8% and 40.9% respectively.
Therefore, for these larger datasets, OHPL represents a
significant improvement over the best existing algorithms.

D. Scalling to Big Data

To demonstrate that OHPL can scale to large datasets, a
collection of “synthetic” datasets was created, from the largest
of the standard datasets that are used to benchmark ordinal
classification/regression algorithms.



From the Chu and Ghahramani research [6], Census 10
dataset is among the largest for which benchmark results are
available. A standard benchmark assessment for this dataset is
included in the next section. For the purposes of assessing the
scaling of OHPL, the data set was split, 80:20, into single
training and test datasets. The synthetic datasets were created
by replicating the training data. In each set, the 1* replica is the
original training dataset. For each subsequent, replica a small
amount of random noise was added to each data value. The
original training sample contains just 20K records. The largest
synthetic dataset contains just over 500K records. Time to
algorithm execution times are reported in Figure 6 below.

V. CONCLUSION AND FUTURE REMARKS

OHPL directly addresses the unique requirements of the
ordinal classification by using a point specific large margin loss
function to group classes, while directly adhering to the ordinal
information that are represented in the data. DNN’s built using
OHPL perform on par with existing high performing ordinal
classifiers on small datasets, while demonstrating vastly
improved results on larger standard benchmark large datasets.
Through the application to a very large (500K+ records)
synthetic dataset example, OHPL was demonstrated to
effectively classify ordinal data.

From a technical perspective, immediate plans include
continue to develop the algorithm, to gain an additional insight
into the impact of DNN structure (assess whether or not
guidelines for number of layers and number of nodes per layer
to achieve optimal performance can be established). In addition,
early testing suggests that allowing some “flexibility” regarding
the minimum margin between hyperplane centroids may
provide the benefit of faster convergence to an optimal solution.

As mentioned earlier, OHPL uses a DNN with a loss function
that has been specifically developed for the Ordinal
Classification problem. As such, it can handle large datasets
(200K+ records). Testing against large datasets is critical, but
ideally after some additional work to improve algorithm
efficiency. Experimentation with algorithmdifferent/additional
strategies, to improve algorithm speed would be important
when applying it to large datasets.

Table 3. MZE Comparison

Algorithm
Dataset | SVYMOP | GPOR | ORBALL | LODML | OHPL
CPU
Small 0.631 | 0.588 | 0.654 | 0.569 | 0.428
Census 10 | 0.771 | 0.749 | 0.774 | 0.737 | 0.641
Cars 0.003 | 0.037 | 0.012 | 0.028 | 0.024
Wine-Red | 0.358 | 0.394 | 0.334 | 0.432 | 0.431
ERA 0.745 | 0.712 0.76 0.828 | 0.744
LEV 0.367 | 0.388 | 0.391 0.49 0.399
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SWD 0.424 | 0.422
0.471 0.47

0.439
0.481

0.526
0.516

0.422
0.441

Average

Table 4. MAE Comparison

Algorithm

Dataset | SYMOP | GPOR | ORBALL | LODML| OHPL
CPU
soan | 1:680 | 1565 | 1.590 | 1.656 | 1.161
Census 10 | 2.127 | 2.190 | 1.951 | 2.174 | 1.153
Cars 1 1.081 1 1.053 1
Wine-Red | 1.145 | 1.066 | 1.108 | 1.123 | 1.159
ERA 1.664 | 1.742 | 1.645 | 1.816 | 1.034
LEV 1.090 | 1.082 | 1.100 | 1.097 | 1.098
SWD 1.061 | 1.043 | 1.048 [ 1.062 | 1.158
Average | 1.395 | 1.396 | 1.349 | 1.426 | 1.109

_Q_4D

535

g 30

£ 25

20

15

10

5

0 —
20 100 200 300 400 500

BatchSize=32  .......Batch Size = 64 Batch Size =128

Fig 6: Time to Complete 500 Epochs by Number of Records (K
records)
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