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 

Abstract—A high-fidelity battery model capable of accurately 

predicting real-time battery behavior for various operating 

conditions is crucial for the design and operation of 

battery-powered systems. Based upon a prior work of the authors, 

this paper proposes an enhanced hybrid battery model to provide 

accurate predictions for the runtime behaviors of rechargeable 

electrochemical battery cells under various ambient temperatures 

and charge/discharge current conditions. The proposed battery 

model is validated by simulation and experimental studies for 

lithium-ion battery cells in various current and temperature 

conditions. The proposed battery model is computationally 

effective for design, simulation, condition monitoring, and power 

management of various battery systems. 

 
Index Terms—Battery model, nonlinear capacity effect, 

nonlinear open circuit voltage (OCV), state of charge (SOC), 

temperature effect 

I. INTRODUCTION 

ECHARGEABLE electrochemical batteries, such as 

lithium-ion batteries, have been used in various electrical 

systems, e.g., renewable energy systems, electric-drive vehicles, 

commercial electronics, etc. A battery-powered system requires 

a properly designed battery management system (BMS) to 

ensure the safety, reliability, and optimal performance of the 

battery. The performance of a BMS relies on a high-fidelity 

battery model to monitor the conditions, such as the state of 

charge (SOC), state of health (SOH), and state of power (SOP), 

of the battery in real time and optimally control the charge and 

discharge of the battery to prolong the battery life and usage 

and reduce the risk of overcharge and over-discharge [1]. 

Battery models have been used for various applications [2] 

such as battery health monitoring [1], optimal sizing of battery 

energy storage systems for electric vehicles [3], and stability 

analysis and dynamic simulation for microgrids [4]. To meet 

the requirements of these applications, the battery model 

should be able to accurately capture various nonlinear capacity 

effects, such as the rate capacity and recovery effects, and 

dynamic current-voltage (I-V) characteristics of the battery. 

The nonlinear capacity effects and dynamic I-V characteristics 

strongly depend on runtime factors, such as the temperature, 

the current rate (i.e., C-rate), and the direction of the current. In 
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addition, a balance between the accuracy and complexity of the 

battery model should be considered for real-time execution.  

The widely used battery models characterizing the runtime 

behaviors of electrochemical batteries can be classified into 

two categories: electrochemical models and electrical circuit 

models. The electrochemical models use complex nonlinear 

partial differential equations (PDEs) to describe the 

electrochemical physics of batteries, such as the concentration 

of ions in the electrodes and electrolyte [5]. The 

electrochemical models are the most accurate models. However, 

establishing these models requires the detailed knowledge of 

the battery chemical processes and the identification of a large 

number of parameters, which makes the models difficult to 

configure. Moreover, it is difficult to use electrochemical 

models for real-time applications due to the high complexity 

and intensive computation requirement. Therefore, the 

electrochemical models are more feasible for offline battery 

design and analysis. Some recently developed electrochemical 

models used many approximations and linearization methods to 

reduce the computational complexity [6]-[10]. However, they 

are still too complex for real-time BMS applications and efforts 

are needed to further reduce their computational complexity.  

The electrical circuit models use equivalent electrical circuits 

to capture the I-V characteristics of batteries and have lower 

computational cost than electrochemical models. The structure 

and order (i.e., the number of resistor, capacitor, and inductor 

components) of an electrical circuit model depends on the 

desired model accuracy and the available test equipment used 

to extract the model parameters [11]. An electrical circuit 

model can be constructed as a frequency-domain model (e.g., 

the Randle’s circuit model [12]) whose parameters can be 

obtained using an electrochemical impedance spectroscopy, or 

a time-domain model [13] whose parameters can be obtained 

by fitting the measured pulsed-current discharge/charge 

behaviors of the battery. 

A comparison of various electrical circuit models was 

presented in [14]. The traditional electrical circuit models did 

not integrate the battery nonlinear capacity behaviors, leading 

to an inaccurate prediction of the runtime SOC [15]. The 

fidelity of the traditional electrical circuit models can be 

improved by making the model parameters dependent on 

several factors, such as SOC, C-rate [16], temperature and 

aging [17] of the battery. For example, an enhanced electrical 

circuit model was introduced in [15] by using the Rakhmatov’s 

diffusion model [18] to characterize the nonlinear capacity 

effect. Recently, the authors developed a hybrid battery model 

[19] by replacing the Rakhmatov’s diffusion model with a 

kinetic battery model (KiBaM) [20], which has a lower 
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computational cost and the feature of simple implementation 

and, therefore, is more suitable for real-time BMS. However, 

the existing electrical circuit battery models with the nonlinear 

capacity effects only considered the discharge mode at a certain 

ambient temperature, e.g., the room temperature. 

This paper extends the work of [19] to propose an enhanced 

hybrid battery model, which is capable of capturing accurate 

runtime SOC and I-V dynamics of batteries in both charge and 

discharge modes of operation and various ambient temperature 

conditions. On the contrary, the prior model in [19] was only 

developed for the discharge mode operation at the room 

temperature. Moreover, the proposed battery model includes a 

new runtime SOC estimation module, which requires less 

information, has a lower computational cost, and can be more 

easily implemented in a digital system or a simulation platform 

such as MATLAB/Simulink than that in [19]. Compared to the 

KiBaM in [20], the nonlinear open circuit voltage (OCV) effect 

is considered and temperature/current-dependent parameters 

are used in the proposed battery model. The model is effective 

for design, simulation, condition monitoring, and power 

management of various battery systems due to the good balance 

between accuracy and complexity among the existing battery 

models as well as a simple model extraction method. The 

proposed battery model is validated by extensive simulation and 

experimental studies for cylindrical lithium-ion battery cells. 

The remainder of the paper is organized as follows. Section 

II presents the relationship between the nonlinear capacity and 

OCV effects and the KiBaM as the related work. Section III 

presents the proposed enhanced hybrid battery model. Section 

IV presents the model extraction method for the proposed 

battery model. Section V provides simulation and experimental 

results to validate the proposed battery model. Finally, Section 

VI concludes the paper and briefly discusses the future work. 

II. RELATED WORK 

A. Nonlinear Capacity and OCV Effects 

A rechargeable electrochemical battery cell consists of an 

anode and a cathode placed in an electrolyte medium. The 

current through the cell is generated by the electrochemical 

reactions at the electrode-electrolyte interface. The battery 

capacity depends nonlinearly on its current profile due to two 

nonlinear capacity effects: the rate capacity effect and the 

recovery effect. The rate capacity effect is that less charge can 

be drawn from a battery as the current rate of discharge 

increases due to a higher concentration gradient caused by the 

slow diffusion process at the active reaction site. This results in 

a lower capacity compared with the battery discharged with a 

lower current rate [19]. However, the unavailable charge due to 

the high gradient of concentration still remains in the battery if 

the thermal dissipation and self-discharge are neglected [19]. 

The unavailable charge will become available after a period 

with no or a low current due to the reduced gradient of 

concentration. This is the recovery effect.  

The nonlinear capacity effects were originally defined and 

observed in the discharge process. This paper assumes that the 

rate capacity effect in the charge mode is that less charge can be 

stored into a battery as the current rate of charge increases due 

to a higher concentration gradient, which results in a lower 

charge acceptance compared with the battery charged with a 

lower current rate. The charge acceptance is the ability of the 

battery to accept charge [21]. During charging there is a 

limitation of lithium-ion insertion into the graphite layers of the 

anode (i.e., intercalation) due to the low ion conductivity and 

slow diffusion process in a lithium-ion battery cell. The 

limitation of lithium-ion intercalation deteriorates charge 

acceptance. However, the charge acceptance will be recovered if 

the battery relaxes. This can be explained as the recovery effect 

in the charge mode. If the charge current through the battery is 

too high in the high SOC region (e.g., SOC > 80%), it will cause 

surplus ions being deposited on the anode in the form of lithium 

metal. This phenomenon is called lithium plating [22] and will 

result in a loss of charge and heat dissipation. A part of the 

charge lost in the lithium plating process is irreversible. The 

lithium plating will become more significant at a lower 

temperature [22], causing a lower charge acceptance. 

The nonlinear capacity effects cause a nonlinear OCV 

response (or effect). The time-domain responses of the terminal 

voltage (Vcell), OCV (Voc), and equilibrium OCV (Voceq) of a 

lithium-ion battery cell discharged and charged using a pulsed 

current profile are shown in Fig. 1, where Voceq is the 

steady-state terminal voltage of the battery cell; while Voc 

depends on the history of the battery usage due to the slow, 

long-term diffusion process during the operation. These 

voltage responses clearly show the nonlinear OCV effect as a 

consequence of the nonlinear capacity effects, namely, the Voc 
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Fig. 1.  Time-domain responses of the terminal voltage, OCV, and equilibrium 

OCV showing the nonlinear capacity and OCV effects of a lithium-ion battery 

cell with a pulsed current in the (a) discharge mode and (b) charge mode. 
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is smaller/larger than the Voceq due to the rate capacity effect in 

the discharge/charge process, and then rises up/falls down to 

converge to the Voceq slowly due to the recovery effect.  

B. Simple Expression of the KiBaM  

This paper utilizes two forms of the SOC: a transient SOC 

(SOCT) and an equilibrium SOC (SOCE). The SOCT is the state 

of available capacity; and the SOCE is the state of usable 

capacity. The usable capacity is the charge stored in the battery 

and can be calculated by using the Coulomb counting method 

while neglecting the nonlinear capacity effects. The available 

capacity is the charge that can be supplied by the battery [19], 

which depends on the current and nonlinear capacity effects of 

the battery. Both SOCs offer useful information in this paper. 

The SOCT is the actual real-time SOC and can be used for 

runtime prediction (e.g., the remaining end of discharge time 

and end of charge time) of the battery. The SOCE is used to 

estimate the maximum capacity of the battery [23]. 

The KiBaM is a model well suited for capturing the 

nonlinear capacity effects of batteries. A detailed description of 

the KiBaM can be found in [19] and [20]. In the KiBaM [20], it 

is assumed that a battery has two charge wells, and the charge is 

distributed with a capacity ratio c (0 < c < 1) between the two 

wells, as shown in Fig. 2. In the discharge mode, the available 

charge well delivers charge directly to the load; while the 

bound charge well supplies charge only to the available charge 

well through a valve v. The rate of charge flowing from the 

bound charge well to the available charge well depends on v 

and the difference in the heights of the two wells, h1 and h2, 

where h1 is related to the SOCT of the battery. h1,max and h2,max 

are the maximum heights of the available and bound charge 

wells, respectively. The battery is fully discharged when h1 

becomes zero. The changes of the total charges y1 in the 

available charge well and y2 in the bound charge well are 

expressed as [20]: 
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where iB(t) is the battery current, which is positive if the battery 

is operated in the discharge mode. The height difference, δ = h2 

− h1, between the two wells plays an important role in obtaining 

the nonlinear capacity variation in the discharge mode.  

Based on the KiBaM, an enhanced Coulomb counting 

algorithm was derived in [19] for SOCT prediction:  
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where t0 is the beginning time of the SOCT prediction, k' (= 

v/[c(1–c)]) is a constant diffusion rate; Cmax, Cavailable and 

Cunavailable are the maximum, available and unavailable 

capacities of the battery, respectively.  

SOCE can be calculated by omitting the term Cunavailable in (2): 
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where Cusable is the usable capacity.  

In this paper, the formula of the KiBaM regarding the SOCs 

is derived. First, dy1(t)/dt in (1) can be expressed as: 
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where y1= c·h1 and y2= (1-c)·h2. By using SOCE = (y1+y2)/Cmax, 

(4) can be reformulated as follows: 
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Since y1 = c·Cmax·SOCT, the following can be obtained from (5):  
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By combining (6) and the differential equation of (3), the 

KiBaM regarding the two SOCs can be expressed as: 
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    (7) 

It should be noted that the KiBaM used in this paper focuses 

on battery capacity, which is a measure of the charge stored by 

the battery; while energy-focused KiBaMs can be found in [24], 

[25].  

III. THE PROPOSED ENHANCED HYBRID BATTERY MODEL 

The proposed enhanced hybrid model consists of two parts: a 

runtime SOC prediction module and an electrical circuit, as 

seen in Fig. 3. The runtime SOC prediction module is designed 

based on (7) to capture the nonlinear capacity variation; while 

the electrical circuit is designed to capture the I-V 

characteristics of batteries. The parameters of the proposed 

battery model are functions of the current direction D, SOCT, 

SOCE, C-rate I, and ambient temperature T of the battery and 

updated online during battery operation. Thus, the proposed 

battery model is capable of capturing the comprehensive 

runtime behavior of a battery under any operating conditions. 

To facilitate real-time system applications, a discrete-time 

version of the model is developed.  

A. The Proposed Runtime SOC Prediction Module  

Using the first-order forward Euler method, the discrete-time 

form of (7) is given below: 
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(a)                                                         (b) 

Fig. 2.  The KiBaM in the: (a) discharge mode and (b) charge mode. 
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where k denotes the time index and TS is the sampling period. In 

[19], SOCT was used to represent the actual real-time SOC in 

the discharge mode. However, it will be inappropriate to use 

SOCT in the charge mode because the SOCT (or Cavailable) 

calculated by (2) will be larger than the SOCE (or Cusable) 

calculated by (3); while by definition, SOCT should always be 

smaller than or equal to SOCE. Therefore, using SOCT in the 

charge mode will inaccurately indicate that the charge stored in 

the battery is more than that actually stored. To solve this 

problem, a runtime SOC, SOCrun, is proposed. The SOCrun is 

the same as SOCT when SOCT is smaller than SOCE in the 

discharge mode; while the SOCrun is the same as SOCE when 

SOCT is larger than SOCE, which usually happens in the charge 

mode. In addition, considering the limit of the charge 

acceptance in the charge mode, the SOCrun should be limited to 

1. This issue was not considered in the original KiBaM in [20]. 

Therefore, the SOCrun is expressed as: 

                      min[ , ,1]run T ESOC SOC SOC                              (9) 

In this paper, the influence of the ambient temperature on the 

KiBaM is investigated more explicitly than that in [19] and [20]. 

According to the Arrhenius equation and experiments, the 

parameters of KiBaM are expressed as the following empirical 

functions of the ambient temperature T in Kelvin (K): 
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where Tref_L is equal to 273.15 K (i.e., 0 °C) and a0, ∙∙∙, a8 are 

coefficients. 

B. The Proposed Electrical Circuit 

The electrical circuit describes the I-V characteristics and 

transient response of a battery, where a temperature-dependent 

voltage-controlled voltage source, Voceq(SOCT, T), i.e., Voc in 

Fig. 1, is used to bridge the SOCT to the nonlinear OCV and 

characterizes the long-term diffusion effect of the battery; the 

series resistance Rs characterizes the instantaneous voltage 

drop/rising response Vs at the beginning and end of the 

discharge/charge process of the battery due to the resistances of 

the electrode, electrolyte, separator, contact, etc.; other 

resistances and capacitances characterize the transient 

responses of the battery, including the charge transfer voltage 

response Vct due to the double-layer capacitance Cd and charge 

transfer resistance Rct as well as the short-term diffusion 

voltage response Vsd due to the short-term diffusion capacitance 

Csd and resistance Rsd; and Vcell represents the terminal voltage 

of the battery. All of the sources contributing to the voltage 

response of the battery are shown in Fig. 1. A discrete-time 

version of the electrical circuit model is expressed as follows: 
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where KVOC is a correction coefficient for the temperature 

effect; τS = Rct·Cd; and τL = Rsd·Csd.  

The resistor-capacitor (RC) network parameters in Fig. 3 are 

functions of SOCE, C-rate I, current direction D, and ambient 

temperature T. The formulas of the RC parameters will be given 

in Section IV. 

IV. MODEL EXTRACTION 

Numerous experiments have been conducted for Samsung’s 

ICR18650-28A cylindrical lithium-ion battery cells to validate 

the proposed model. The ICR18650-28A is a 2.8-Ah LiMn2O4 

battery cell with the nominal voltage of 3.75 V. In the 

experiments, four battery cells are randomly chosen and tested 

in a Sun Electronic System EC12 temperature chamber. The 

voltages and currents of the four test cells are measured by a 

CADEX C8000 battery tester simultaneously. The parameters 

of the proposed battery model (i.e., Cdelivered, Cmax, c, k΄, Voceq, 

Rs, Rct, Cd, Rsd, and Csd) are extracted from the test results of 

each cell. Then, the average values of each parameter (e.g., 

Cmax) extracted from the test results of the four cells are used to 

determine the coefficients of the corresponding empirical 

equation such as (10) via curve fitting. The coefficients of the 

empirical equations are influenced by many factors, such as the 

C-rate, current direction, and ambient temperature. These 

coefficients are identified using curve fitting through constant 

discharge current and pulsed discharge/charge current tests at 

three different ambient temperature conditions: low 

temperature (0 °C or 273.15 K, which is the lowest operating 

temperature of the battery), room temperature (23 °C or 296.15 

K), and high temperature (40 °C or 313.15 K). Before the tests, 

the battery cells are fully charged using the constant current 

constant voltage (CCCV) charge method, where the charge 

cutoff voltage in the constant current mode is 4.3 V and the 

charge cutoff current in the constant voltage mode is 0.01C (i.e., 

iB = 0.028 A). In each test, the fully charged battery cells are 

placed in the temperature chamber for four hours for the cells to 

reach a thermal equilibrium (i.e., the internal temperature is the 

same as the ambient temperature) before testing the cells.  
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Fig. 3.  The proposed hybrid battery model. 
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A. Parameters of the Runtime SOC Prediction Module 

The parameters of the runtime SOC prediction module are 

identified using constant discharge current tests. Specifically, 

the maximum capacity, Cmax, is extracted by discharging the 

fully-charged cell with a small constant current (e.g., 0.05C) 

until it is fully discharged, where the cell voltage reaches the 

discharge cutoff voltage of 3 V. Then, the parameters c and k΄ 

are obtained by curve fitting using the following equation [26]:  

       max

( ) ( )

( )
( )

(1 ( ( ) 1 )
delivered k L I k L I

C k cL I
C I

e c k L I e
  




    
         (14) 

where I is a vector of constant discharge current rate (i.e., 

C-rate) from 0.1C to 1.8C with an increment of 0.2C; 

Cdelivered(I) and L(I) are the vectors of the delivered capacity and 

the end of discharge time corresponding to I, respectively, 

where Cdelivered is the maximum capacity that can be delivered 

by a fully-charged cell, i.e., the maximum available capacity. 

The value of Cdelivered at a certain constant discharge current iB 

(iB  I) is obtained by discharging the fully-charged cell with iB 

until the cell voltage reaches the discharge cutoff voltage of 3 V 

and using the following equation.  

( )delivered B BC i L i         (15) 

Fig. 4(a) shows the values of Cdelivered calculated using (15) 

and the corresponding fitted Cdelivered curves using (14) at three 

different ambient temperature conditions. The extracted 

average values of Cmax, c and k΄ from the four battery cells for 

the three different ambient temperature conditions and the 

fitted curves of these parameters as functions of the ambient 

temperature are plotted in Fig. 4(b)-(d), respectively. The 

values of the coefficients a0−a8 in (10) obtained from the curve 

fitting are listed in Table I. It is observed that the values of k' and 

Cmax increase with ambient temperature since most chemical 

processes in the cell are sped up at higher temperatures. 

However, the temperature effect on the parameter c is not 

consistent with the other two parameters. The parameter c has 

the highest value at the room temperature.  

B. Electrical Circuit Parameters 

The electrical circuit parameters (Voc and RC parameters) of 

the proposed battery model are extracted by using a pulsed 

current discharge and charge test cycle under the three ambient 

temperature conditions, where the pulsed current discharge test 

is firstly conducted and followed by the pulsed current charge 

test once the cell voltage reaches the discharge cutoff voltage. 

Each current pulse lasts for a period during which the SOCE of 

the battery cell decreases or increases by 5% in the discharge or 

charge mode, respectively. Before the test, the value of Cmax has 

been extracted for accurate SOCE calculation to account for the 

change in Cmax caused by the ambient temperature variation.  

The discharge and charge equilibrium OCVs are the terminal 

voltage measured at the end of the rest period of each current 

pulse during the pulsed current discharge and charge test, 

respectively, where the rest period should be long enough, e.g., 

3 hours at 40 °C, 6 hours at 23 °C, and 9 hours at 0 °C. The 

pulsed current discharge and charge test cycle is conducted 

with a cell current of 0.6C (i.e., 1.68 A) to extract the 

equilibrium OCVs. Fig. 5(a) shows the Voceq, which is the 

average value of the discharge and charge equilibrium OCVs, 
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Fig. 5.  Measured average values and fitted curves obtained from the four 

battery cells at the ambient temperatures of 0 °C, 23 °C, and 40 °C: (a) Voceq 

and (b) KVOC vs. SOCE.  

 

TABLE I 

THE COEFFICIENTS OF THE EMPIRICAL EQUATIONS OF THE RUNTIME SOC 

PREDICTION MODULE PARAMETERS AND OCV FOR THE TEST BATTERY CELLS 

a0 9801 a1 36.49 a2 479.9 a3 4.463e-6 

a4 0.1768 a5 6.226e-4 a6 0.8819 a7 292.6 

a8 28.27 a9 -0.1364 a10 61.94 a11 3.616 

a12 1.095 a13 -2.949 a14 4.295 a15 -1.765 

a16 150.8 a17 33.17 a18 8.67e-5 a19 1.025 
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Fig. 4.  The measured or estimated values and corresponding fitted curves of 

(a) Cdelivered as a function of L(I) at three different ambient temperature 

conditions from a battery cell as well as averaged (b) Cmax, (c) k΄, and (d) c as 

functions of temperature from the four battery cells. 
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versus SOCE for the test cell under the ambient temperatures of 

0 °C, 23 °C, and 40 °C. The Voceq strongly depends on SOC 

and temperature when the SOC is less than 10%. In addition, 

the difference between the discharge and charge equilibrium 

OCVs is less than 5 mV. Therefore, the hysteresis effect [27] 

can be ignored.  

The empirical equation of the Voceq at the room temperature 

Tref, which is called the reference Voceq, can be obtained using 

the following equation [19]: 
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where Tref  = 296.15 K and a9, ∙∙∙, a15 are coefficients. Then, the 

correction coefficient for the temperature effect, KVOC shown in 

Fig. 5(b), can be obtained as follows from the Voceq values 

measured at the low and high ambient temperatures and the 

measured reference Voceq values: 
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The empirical equation of KVOC is then formulated as:  
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The coefficients a9−a18 in (16) and (18) are obtained from 

curve fitting and listed in Table I.  

As described by (16)-(18), the SOCE is used to facilitate the 

characterization of the Voceq at Tref and KVOC in the offline 

model extraction process by neglecting the nonlinear OCV 

effect. Then, when using the proposed battery model, the Voc is 

estimated by using (11), where the SOCE in (16) and (18) is 

replaced with the SOCT to consider the nonlinear OCV effect. 

Then, all of the RC parameters are extracted from the 

impedance voltage response (i.e., Vimpedance = |Vcell − Voceq(SOCT, 

T)|) measured in each pulse of the pulsed current discharge and 

charge test cycle. Fig. 6 depicts a typical curve of the Vimpedance 

response in one discharge current pulse during which the SOCE 

of the battery cell decreases by 5%, where the window contains 

the data in a certain interval of the rest period used for the 

extraction of the RC parameters via curve fitting. In this paper, 

a 10-minute fitting window is used by assuming that the RC 

parameters related to the charge transfer and short-term 

diffusion can be observed within a 10-minute rest period. The 

RC parameters are expressed as functions of SOCE so that the 

nonlinear capacity effect mainly influences the nonlinear OCV 

effect as discussed in Section II.A. 

According to (12), the instantaneous voltage drop/rise when 

the discharge/charge completed is related with Rs, which can be 

expressed by the following equation: 
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where V0 and V1 are obtained from Fig. 6. Based on (8) and (9), 

the following equation is obtained to estimate the RC 

parameters: 

             eeceakVkV kdkb

sdct  )()(                 (20) 

where k = 1, ∙∙∙, 600; and e = V2 in Fig. 6. The coefficients a, b, 

c and d are determined by using nonlinear least-square curve 

fitting. The RC parameters are then calculated as [19]: 

/ , 1/( ), / , 1/( )ct B d ct sd B sd sdR a i C R b R c i C R d        (21) 

Since the RC parameters depend on the C-rate I, SOCE, 

ambient temperature T, and current direction of the battery cell, 

numerous experiments are conducted to extract the RC 

parameters using the pulsed current discharge and charge test 

cycle with different values of I and T. Then, the empirical 

equations of the RC parameters are derived by combining 

polynomial and exponential curve fitting. First, the empirical 

equations as functions of SOCE and I for the discharge mode 

are derived at three different I values of 0.2C, 0.6C, and 1C at 

the room temperature (i.e., the reference temperature).  

2

2

2

, 0 1 3 4

2 3

5 6 7

, 0 1 3 4 5

, 0 1 3 4 5

2

, 0 1 2

( , ) ( )

( , ) ( )

( , ) ( )

( , )

d E

d E

d E

a SOC

s d E d d d d

d E d E d E

b SOC

ct d E d d d d d E

c SOC

sd d E d d d d d E

d d E d E d E d

R SOC I a a I e a a I

a SOC a SOC a SOC

R SOC I b b I e b b I b SOC

R SOC I c c I e c c I c SOC

C SOC I d SOC d SOC d







   

  

    

    

  

1

3

3

2

, 0 2 3 4( , ) d E

E d

e SOC

sd d E d d d d

SOC d

C SOC I e e e e I e I












    

                                                                                                

(22) 

where the subscript d of each RC parameter indicates the 

discharge mode. Then, the temperature dependency is added to 

the expression of each RC parameter based on the Arrhenius 

equation, which changes (22) to:  
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where 
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Fig. 6.  The curve of a typical impedance voltage response in the condition of 

0.6C pulsed current discharge and 0 °C ambient temperature for the extraction 

of the RC parameters of the proposed battery model. 
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Due to the increase in the fitting error at low temperatures, an 

additional correction factor KLV is added to the expression of 

Rs,d. All of the coefficients of the empirical equations of the RC 

parameter (22)-(24) are listed in Table II. The extracted values 

and the corresponding fitted curves of the RC parameters are 

shown in Fig. 7, where Fig. 7(a) illustrates the C-rate and SOCE 

dependency of the RC parameters expressed by (22) and Fig. 

7(b)-(f) shows the temperature dependency of the RC 

parameters expressed by (23)-(24) at the reference C-rate 0.6C. 

The fitting error of Rsd,d with respect to the measurement at 0 °C 

increases significantly as the SOC exceeds about 0.6, as shown 

in Fig. 7(e). It indicates that the Arrhenius equation, which is 

commonly used to represent the dependence of the rate 

constant of a chemical reaction on the absolute temperature, 

may not be effective to represent the temperature dependence 

of some RC parameters of the battery at 0 °C due to the highly 

unexpected nonlinearity of the battery cell at the lowest 

operating temperature. However, since the fitting result of the 

series resistance Rs,d at 0 °C is accurate over the entire SOC 

range, as shown in Fig. 7(b), and Rs,d is the dominant resistance 

of the battery model, particularly at 0 °C, the relatively large 

fitting errors of Rsd,d in the high SOC range at 0 °C will not 

significantly affect the accuracy of the proposed model for 

capturing the runtime behaviors of battery cells.  

The empirical equations of the RC parameters and their 

coefficients for the charge mode are obtained from a similar 

process and are given in the Appendix. 

V. VALIDATION 

The proposed battery model is constructed in 

MATLAB/Simulink by using the standard components from 

the Simulink toolbox. In the Simulink model, a “runtime SOC 

module” calculates the values of SOCT, SOCE, and SOCrun of 

the battery cell by taking into account its nonlinear capacity 

variation during the operation, and an “I detector” module 

tracks the change of the battery cell current iB and converts it to 

the C-rate I. When the C-rate I or temperature exceeds the 

extreme values used to obtain the model, the Simulink model 

can still predict the runtime behaviors of the battery cell.   

The parameters of the battery model are obtained from four 

ICR18650-28A LiMn2O4 battery cells by using the model 

extraction method described in Section IV. Simulation results 

obtained from the proposed battery model are compared with 

the experimental data for a randomly selected new 

ICR18650-28A cell in the low (0 °C), room (23 °C), and high 

(40 °C) temperature conditions using pulsed and random 

discharge and charge current profiles to validate the proposed 

battery model. 

Fig. 8(b), (d) and (f) compare the terminal voltage responses 

obtained from simulations with the experimental results for the 

pulsed discharge/charge current profile shown in Fig. 8(a). The 

proposed model captures the dynamic voltage responses of the 

battery cell accurately in all current and temperature conditions. 

The maximum root mean square error (RMSE) of the cell 

terminal voltage predicted by the proposed model in the middle 

and entire SOC ranges during the test are only 23 mV or 1.77% 

and 31 mV or 2.4%, respectively, of the nominal terminal 

voltage variation range of 1.3 V (= 4.3−3 V), which occurs in 

the 0 °C condition, as shown in Fig 9(b). The maximum error of 

the cell terminal voltage predicted by the proposed model in the 

middle and entire SOC ranges are about 14.2 mV or 1.1% and 

92 mV or 7.1%, respectively, of the nominal terminal voltage 

variation range, which occurs at 40 °C, as shown in Fig. 8(f). 

This is caused by relatively large fitting errors on the 

OCV-SOC curve for the SOC around 0.1 at 40 °C, as shown in 

Fig. 5(a). Moreover, by capturing the variations of the 

nonlinear capacity effects, the proposed model is able to 

TABLE II 

THE COEFFICIENTS OF THE RC PARAMETER EXPRESSIONS FOR THE TEST 

CYLINDRICAL LITHIUM-ION CELLS IN THE DISCHARGE MODE 

ad0 0.2904 ad1 0.2521 ad2 9.485 ad3 0.1674 

ad4 -0.0100 ad5 -0.1726 ad6 0.1553 ad7 -0.02982 

bd0 0.0664 bd1 0.0558 bd2 13.44 bd3 0.01358 

bd4 5.48E4 bd5 0.0134 cd0 0.6882 cd1 80.89 

cd2 0.0196 cd3 7.354 cd4 0.0841 cd5 -6.686 

dd0 5528 dd1 -10850 dd2 6044 dd3 550.5 

ed0 -3112 ed1
 17.1 ed2 8058 ed3

 -9560 

ed4 14300 fd0 0.0419 fd1 0.0163 fd2 0.25 

fd3 1554 fd4 1835 fd5 -771 fd6 -1421 

fd7 39.85 fd8 0.2993 fd9 1.91e-3 fd10 0.0022 
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Fig. 7.  The measurements and corresponding fitted curves of: (a) Rs,d (SOCE, I) 

at 23 °C, (b) Rs,d (SOCE, T) at 0.6C, (c) Rct,d (SOCE, T) at 0.6C, (d) Cd,d (SOCE, T) 

at 0.6C, (e) Rsd,d (SOCE, T) at 0.6C, and (f) Csd,d (SOCE, T) at 0.6C. 
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accurately capture the remaining end of discharge time until 

SOCrun = 0 and the end of charge time until SOCrun = 1 of the 

single battery cell in different current and temperature 

conditions, as shown in Fig. 8(c), (e) and (g). 

In contrast, the error bands of the state-of-the-art battery 

model presented in [17] are ±20 mV in the middle SOC range 

but increased to ±171 mV in the entire SOC range, which is 

much larger than the errors of the proposed battery model under 

different temperature conditions in the entire SOC range. 

The proposed enhanced hybrid battery model is further 

validated by comparing with the hybrid battery model in [19] 

and experimental results for a randomly varied discharge and 

charge current profile, as shown in Fig. 9(a). The parameters of 

the hybrid battery model are listed in Table V in Appendix. Fig. 

9(b)-(d) compares the corresponding terminal voltage 

responses of the cell obtained from the simulation models and 

experiment. The voltage responses predicted by the proposed 

model are always better than those predicted by the hybrid 

battery model in [19] at various temperature conditions, 

particularly at the low temperature condition. Table III 

compares the RMSE results of the two battery models with 

respect to the experimental results at the three different 

temperature conditions. In the worst case at 0 °C, the RMSE of 

the voltage predicted by the proposed model is about 49.9 mV 

 

(a) 

 
                                (b)                                                       (c) 

 
                                (d)                                                       (e) 

  
                                (f)                                                       (g) 
 

Fig. 8.  Comparison of simulation and experimental results of the test battery 

cell with pulsed discharge and charge currents: (a) the pulsed current profiles, 

(b) the voltage response at 0 °C, (c) the estimated SOCs at 0 °C, (d) the voltage 

response at 23 °C, (e) the estimated SOCs at 23 °C, (f) the voltage response at 

40 °C, and (g) the estimated SOCs at 40 °C.  
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(d) 

Fig. 9.  Comparison of simulation results of the hybrid battery model in [19] 

and the proposed enhanced hybrid battery model with experimental results with 

(a) a randomly varied current profile at (b) 0 °C, (c) 23 °C, and (d) 40 °C. 
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or 3.8% of the nominal terminal voltage variation range, which 

is only 26% of the RMSE of the hybrid battery model in [19]. 

Although the RMSE values of the hybrid battery model are 

reduced significantly at 23 °C and 40 °C, they are still 

approximately 93.6% and 34.7% larger than the RMSE values 

of about 14.1 mV (or 1.08%) and 14.4 mV (or 1.1%) of the 

proposed model, respectively. These results show that the 

proposed model can capture the nonlinear capacity variations 

and dynamic I-V characteristics of lithium-ion batteries more 

accurately than the hybrid battery model in [19] under various 

currents and ambient temperatures. 

It is expected that the proposed battery model can increase 

the accuracy of the electrical circuit models by only adding a 

discrete-time state-space equation (8) and several polynomial 

equations to the electrical circuit models. This indicates that 

once the model parameters are extracted, the computational 

complexity of the proposed battery model is similar to the 

electrical circuit models. Therefore, the proposed battery model 

has achieved a good balance between the electrical circuit 

models and the electrochemical models in terms of accuracy 

and computational cost. 

VI. CONCLUSION AND FUTURE WORK 

This paper has presented an enhanced hybrid battery model, 

which is capable of capturing dynamic I-V characteristics and 

nonlinear capacity variations of battery cells under various 

runtime operating conditions. The proposed battery model has 

been implemented in MATLAB/Simulink for a cylindrical 

lithium-ion cell. Simulation results of the proposed battery 

model have been compared with those of the hybrid battery 

model in [19] and experimental results. Results have validated 

that the proposed model can accurately capture the runtime 

behaviors of the battery cells under various temperature and 

charge/discharge current conditions.  

In practical applications that use a battery pack with multiple 

cells, the proposed battery model can be copied with each copy 

representing a single cell if the user is interested in the runtime 

behaviors of individual cells that may have state imbalance, or 

the proposed battery model can be used to represent the entire 

battery pack if the state imbalance between different cells is 

neglected and the user is only interested in the terminal 

behavior of the battery pack for the co-simulation with other 

electrical circuits. In the future work, the low temperature 

effect, aging effect, and model complexity will be investigated 

to develop empirical equations with better fitting accuracy and 

minimum degree-of-freedom for the proposed battery model.  

VII. APPENDIX 

The empirical equations of the RC parameters of the proposed 

battery model for the charge mode are the following:  
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(25) 

The coefficients of the proposed battery model in the charge 

mode and the hybrid battery model are given in Table IV and V, 

respectively, for the test battery cells. 
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