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Abstract—A high-fidelity battery model capable of accurately
predicting real-time battery behavior for various operating
conditions is crucial for the design and operation of
battery-powered systems. Based upon a prior work of the authors,
this paper proposes an enhanced hybrid battery model to provide
accurate predictions for the runtime behaviors of rechargeable
electrochemical battery cells under various ambient temperatures
and charge/discharge current conditions. The proposed battery
model is validated by simulation and experimental studies for
lithium-ion battery cells in various current and temperature
conditions. The proposed battery model is computationally
effective for design, simulation, condition monitoring, and power
management of various battery systems.

Index Terms—Battery model, nonlinear capacity effect,
nonlinear open circuit voltage (OCV), state of charge (SOC),
temperature effect

1. INTRODUCTION

ECHARGEABLE electrochemical batteries, such as

lithium-ion batteries, have been used in various electrical
systems, e.g., renewable energy systems, electric-drive vehicles,
commercial electronics, etc. A battery-powered system requires
a properly designed battery management system (BMS) to
ensure the safety, reliability, and optimal performance of the
battery. The performance of a BMS relies on a high-fidelity
battery model to monitor the conditions, such as the state of
charge (SOC), state of health (SOH), and state of power (SOP),
of the battery in real time and optimally control the charge and
discharge of the battery to prolong the battery life and usage
and reduce the risk of overcharge and over-discharge [1].
Battery models have been used for various applications [2]
such as battery health monitoring [1], optimal sizing of battery
energy storage systems for electric vehicles [3], and stability
analysis and dynamic simulation for microgrids [4]. To meet
the requirements of these applications, the battery model
should be able to accurately capture various nonlinear capacity
effects, such as the rate capacity and recovery effects, and
dynamic current-voltage (I-V) characteristics of the battery.
The nonlinear capacity effects and dynamic I-V characteristics
strongly depend on runtime factors, such as the temperature,
the current rate (i.e., C-rate), and the direction of the current. In
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addition, a balance between the accuracy and complexity of the
battery model should be considered for real-time execution.

The widely used battery models characterizing the runtime
behaviors of electrochemical batteries can be classified into
two categories: electrochemical models and electrical circuit
models. The electrochemical models use complex nonlinear
partial differential equations (PDEs) to describe the
electrochemical physics of batteries, such as the concentration
of ions in the electrodes and electrolyte [5]. The
electrochemical models are the most accurate models. However,
establishing these models requires the detailed knowledge of
the battery chemical processes and the identification of a large
number of parameters, which makes the models difficult to
configure. Moreover, it is difficult to use electrochemical
models for real-time applications due to the high complexity
and intensive computation requirement. Therefore, the
electrochemical models are more feasible for offline battery
design and analysis. Some recently developed electrochemical
models used many approximations and linearization methods to
reduce the computational complexity [6]-[10]. However, they
are still too complex for real-time BMS applications and efforts
are needed to further reduce their computational complexity.

The electrical circuit models use equivalent electrical circuits
to capture the I-V characteristics of batteries and have lower
computational cost than electrochemical models. The structure
and order (i.e., the number of resistor, capacitor, and inductor
components) of an electrical circuit model depends on the
desired model accuracy and the available test equipment used
to extract the model parameters [11]. An electrical circuit
model can be constructed as a frequency-domain model (e.g.,
the Randle’s circuit model [12]) whose parameters can be
obtained using an electrochemical impedance spectroscopy, or
a time-domain model [13] whose parameters can be obtained
by fitting the measured pulsed-current discharge/charge
behaviors of the battery.

A comparison of various electrical circuit models was
presented in [14]. The traditional electrical circuit models did
not integrate the battery nonlinear capacity behaviors, leading
to an inaccurate prediction of the runtime SOC [15]. The
fidelity of the traditional electrical circuit models can be
improved by making the model parameters dependent on
several factors, such as SOC, C-rate [16], temperature and
aging [17] of the battery. For example, an enhanced electrical
circuit model was introduced in [15] by using the Rakhmatov’s
diffusion model [18] to characterize the nonlinear capacity
effect. Recently, the authors developed a hybrid battery model
[19] by replacing the Rakhmatov’s diffusion model with a
kinetic battery model (KiBaM) [20], which has a lower
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computational cost and the feature of simple implementation
and, therefore, is more suitable for real-time BMS. However,
the existing electrical circuit battery models with the nonlinear
capacity effects only considered the discharge mode at a certain
ambient temperature, e.g., the room temperature.

This paper extends the work of [19] to propose an enhanced
hybrid battery model, which is capable of capturing accurate
runtime SOC and I-V dynamics of batteries in both charge and
discharge modes of operation and various ambient temperature
conditions. On the contrary, the prior model in [19] was only
developed for the discharge mode operation at the room
temperature. Moreover, the proposed battery model includes a
new runtime SOC estimation module, which requires less
information, has a lower computational cost, and can be more
easily implemented in a digital system or a simulation platform
such as MATLAB/Simulink than that in [19]. Compared to the
KiBaM in [20], the nonlinear open circuit voltage (OCV) effect
is considered and temperature/current-dependent parameters
are used in the proposed battery model. The model is effective
for design, simulation, condition monitoring, and power
management of various battery systems due to the good balance
between accuracy and complexity among the existing battery
models as well as a simple model extraction method. The
proposed battery model is validated by extensive simulation and
experimental studies for cylindrical lithium-ion battery cells.

The remainder of the paper is organized as follows. Section
II presents the relationship between the nonlinear capacity and
OCV effects and the KiBaM as the related work. Section III
presents the proposed enhanced hybrid battery model. Section
IV presents the model extraction method for the proposed
battery model. Section V provides simulation and experimental
results to validate the proposed battery model. Finally, Section
VI concludes the paper and briefly discusses the future work.

II. RELATED WORK

A. Nonlinear Capacity and OCV Effects

A rechargeable electrochemical battery cell consists of an
anode and a cathode placed in an electrolyte medium. The
current through the cell is generated by the electrochemical
reactions at the electrode-electrolyte interface. The battery
capacity depends nonlinearly on its current profile due to two
nonlinear capacity effects: the rate capacity effect and the
recovery effect. The rate capacity effect is that less charge can
be drawn from a battery as the current rate of discharge
increases due to a higher concentration gradient caused by the
slow diffusion process at the active reaction site. This results in
a lower capacity compared with the battery discharged with a
lower current rate [ 19]. However, the unavailable charge due to
the high gradient of concentration still remains in the battery if
the thermal dissipation and self-discharge are neglected [19].
The unavailable charge will become available after a period
with no or a low current due to the reduced gradient of
concentration. This is the recovery effect.

The nonlinear capacity effects were originally defined and
observed in the discharge process. This paper assumes that the

rate capacity effect in the charge mode is that less charge can be
stored into a battery as the current rate of charge increases due
to a higher concentration gradient, which results in a lower
charge acceptance compared with the battery charged with a
lower current rate. The charge acceptance is the ability of the
battery to accept charge [21]. During charging there is a
limitation of lithium-ion insertion into the graphite layers of the
anode (i.e., intercalation) due to the low ion conductivity and
slow diffusion process in a lithium-ion battery cell. The
limitation of lithium-ion intercalation deteriorates charge
acceptance. However, the charge acceptance will be recovered if
the battery relaxes. This can be explained as the recovery effect
in the charge mode. If the charge current through the battery is
too high in the high SOC region (e.g., SOC > 80%), it will cause
surplus ions being deposited on the anode in the form of lithium
metal. This phenomenon is called lithium plating [22] and will
result in a loss of charge and heat dissipation. A part of the
charge lost in the lithium plating process is irreversible. The
lithium plating will become more significant at a lower
temperature [22], causing a lower charge acceptance.

The nonlinear capacity effects cause a nonlinear OCV
response (or effect). The time-domain responses of the terminal
voltage (Veen), OCV (Voc), and equilibrium OCV (Voc,,) of a
lithium-ion battery cell discharged and charged using a pulsed
current profile are shown in Fig. 1, where Voc,, is the
steady-state terminal voltage of the battery cell; while Voc
depends on the history of the battery usage due to the slow,
long-term diffusion process during the operation. These
voltage responses clearly show the nonlinear OCV effect as a
consequence of the nonlinear capacity effects, namely, the Voc
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Fig. 1. Time-domain responses of the terminal voltage, OCV, and equilibrium
OCV showing the nonlinear capacity and OCV effects of a lithium-ion battery
cell with a pulsed current in the (a) discharge mode and (b) charge mode.
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is smaller/larger than the Voc,, due to the rate capacity effect in
the discharge/charge process, and then rises up/falls down to
converge to the Voc,, slowly due to the recovery effect.

B. Simple Expression of the KiBaM

This paper utilizes two forms of the SOC: a transient SOC
(SOC7) and an equilibrium SOC (SOCp). The SOCr is the state
of available capacity; and the SOCg is the state of usable
capacity. The usable capacity is the charge stored in the battery
and can be calculated by using the Coulomb counting method
while neglecting the nonlinear capacity effects. The available
capacity is the charge that can be supplied by the battery [19],
which depends on the current and nonlinear capacity effects of
the battery. Both SOCs offer useful information in this paper.
The SOC; is the actual real-time SOC and can be used for
runtime prediction (e.g., the remaining end of discharge time
and end of charge time) of the battery. The SOCy is used to
estimate the maximum capacity of the battery [23].

The KiBaM is a model well suited for capturing the
nonlinear capacity effects of batteries. A detailed description of
the KiBaM can be found in [19] and [20]. In the KiBaM [20], it
is assumed that a battery has two charge wells, and the charge is
distributed with a capacity ratio ¢ (0 < ¢ < 1) between the two
wells, as shown in Fig. 2. In the discharge mode, the available
charge well delivers charge directly to the load; while the
bound charge well supplies charge only to the available charge
well through a valve v. The rate of charge flowing from the
bound charge well to the available charge well depends on v
and the difference in the heights of the two wells, 4, and #,,
where £, is related to the SOCy of the battery. A} o and Az ax
are the maximum heights of the available and bound charge
wells, respectively. The battery is fully discharged when 7,
becomes zero. The changes of the total charges y; in the
available charge well and y, in the bound charge well are
expressed as [20]:

ay(®) _

it =1y (0) + V[, (1) = Iy (1)] )

DD by 1) - )
where ig(?) is the battery current, which is positive if the battery
is operated in the discharge mode. The height difference, J = 4,
— hy, between the two wells plays an important role in obtaining
the nonlinear capacity variation in the discharge mode.
Based on the KiBaM, an enhanced Coulomb counting
algorithm was derived in [19] for SOCr prediction:

J.iB (t)dt + szavailable (t)

c
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' i, (k) 1= Ftt) )
Cunavailable (t) = (1 - C) : |:5(t0 )eik (t=h) + B T:|
C

where 1, is the beginning time of the SOC; prediction, k (=
vi[e(1-c)]) is a constant diffusion rate; Cpax, Cogitane and
Cnavailabie  are the maximum, available and unavailable
capacities of the battery, respectively.
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Fig. 2. The KiBaM in the: (a) discharge mode and (b) charge mode.
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SOCy can be calculated by omitting the term C,avairape i (2):

i ()dt
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where C,.. is the usable capacity.
In this paper, the formula of the KiBaM regarding the SOCs
is derived. First, dy(¢)/dtin (1) can be expressed as:

% = k- +k c-n,O-i,0) @)

where y;= c*h; and y,= (1-¢)*h,. By using SOCr= (112)/Cinaxs
(4) can be reformulated as follows:

%z—k’yl(t)Jrk’-aCmaxSOCE —i,(?) (5)
Since y; = ¢* Chax' SOCr, the following can be obtained from (5):
dSOC.,.(t (1
450G _ isoc, —ksoc, -2 (6)
dt c-C

By combining (6) and the differential equation of (3), the
KiBaM regarding the two SOCs can be expressed as:

dsoC, (1) -l

dt {O, ,O]{SOCEU)}L Croe Lo O
dSOC,(t) | |k —k' || SOC,(2) -1

dt c-C

It should be noted that the KiBaM used in this paper focuses
on battery capacity, which is a measure of the charge stored by
the battery; while energy-focused KiBaMs can be found in [24],
[25].

III. THE PROPOSED ENHANCED HYBRID BATTERY MODEL

The proposed enhanced hybrid model consists of two parts: a
runtime SOC prediction module and an electrical circuit, as
seen in Fig. 3. The runtime SOC prediction module is designed
based on (7) to capture the nonlinear capacity variation; while
the electrical circuit is designed to capture the I-V
characteristics of batteries. The parameters of the proposed
battery model are functions of the current direction D, SOCr,
SOCy, C-rate I, and ambient temperature 7 of the battery and
updated online during battery operation. Thus, the proposed
battery model is capable of capturing the comprehensive
runtime behavior of a battery under any operating conditions.
To facilitate real-time system applications, a discrete-time
version of the model is developed.

A. The Proposed Runtime SOC Prediction Module

Using the first-order forward Euler method, the discrete-time
form of (7) is given below:
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Fig. 3. The proposed hybrid battery model.
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where k denotes the time index and 7 is the sampling period. In
[19], SOCr was used to represent the actual real-time SOC in
the discharge mode. However, it will be inappropriate to use
SOCy in the charge mode because the SOCr (or Ciuiapie)
calculated by (2) will be larger than the SOCg (or Cupie)
calculated by (3); while by definition, SOC7 should always be
smaller than or equal to SOCg. Therefore, using SOCr in the
charge mode will inaccurately indicate that the charge stored in
the battery is more than that actually stored. To solve this
problem, a runtime SOC, SOC,,,, is proposed. The SOC,,, is
the same as SOCy when SOCr is smaller than SOCy in the
discharge mode; while the SOC,,, is the same as SOC; when
SOCr is larger than SOCy, which usually happens in the charge
mode. In addition, considering the limit of the charge
acceptance in the charge mode, the SOC,,,, should be limited to
1. This issue was not considered in the original KiBaM in [20].
Therefore, the SOC,,,, is expressed as:

SOC,, =min[SOC,, SOC,, 1] (9)

run

In this paper, the influence of the ambient temperature on the
KiBaM is investigated more explicitly than that in [19] and [20].
According to the Arrhenius equation and experiments, the
parameters of KiBaM are expressed as the following empirical
functions of the ambient temperature 7 in Kelvin (K):

)
Cmax (T) = a()e e e

a(T=Ty ;)
K(T)=ae™" " +a,

(10)

c(T)= aéei[%y

where T, is equal to 273.15 K (i.e., 0 °C) and ay, -, ag are
coefficients.

B. The Proposed Electrical Circuit

The electrical circuit describes the I-V characteristics and
transient response of a battery, where a temperature-dependent
voltage-controlled voltage source, Voc.(SOCr, T), i.e., Voc in
Fig. 1, is used to bridge the SOCr to the nonlinear OCV and
characterizes the long-term diffusion effect of the battery; the
series resistance R, characterizes the instantaneous voltage
drop/rising response V; at the beginning and end of the
discharge/charge process of the battery due to the resistances of

the electrode, electrolyte, separator, contact, etc.; other
resistances and capacitances characterize the transient
responses of the battery, including the charge transfer voltage
response V., due to the double-layer capacitance C,; and charge
transfer resistance R, as well as the short-term diffusion
voltage response V; due to the short-term diffusion capacitance
C,, and resistance Ry; and V., represents the terminal voltage
of the battery. All of the sources contributing to the voltage
response of the battery are shown in Fig. 1. A discrete-time
version of the electrical circuit model is expressed as follows:

Voc = Voc,, (SOC,,T) =Voc,, (SOC,, T, ) Ky (SOC,,T) (1)

Ve (k) = VOCeq (SOC,,T)=R, -iy(k)-V, (k)-V_ (k) (12)
{Vd(k)} e 0 {Vdac—l)} Ra-e)|

= " . B o B(k) (13)
V] g oo [Pt e

where Kyoc is a correction coefficient for the temperature
effect; 7= R, Cy; and 7, = R,y Cyy.

The resistor-capacitor (RC) network parameters in Fig. 3 are
functions of SOCy, C-rate I, current direction D, and ambient
temperature 7. The formulas of the RC parameters will be given
in Section IV.

IV. MODEL EXTRACTION

Numerous experiments have been conducted for Samsung’s
ICR18650-28A cylindrical lithium-ion battery cells to validate
the proposed model. The ICR18650-28A is a 2.8-Ah LiMn,0,
battery cell with the nominal voltage of 3.75 V. In the
experiments, four battery cells are randomly chosen and tested
in a Sun Electronic System EC12 temperature chamber. The
voltages and currents of the four test cells are measured by a
CADEX C8000 battery tester simultaneously. The parameters
of the proposed battery model (i.e., Cyeiivered> Cmaxs €, k', Voce,
Ry, R, C4, Ry, and C,,) are extracted from the test results of
each cell. Then, the average values of each parameter (e.g.,
Chax) extracted from the test results of the four cells are used to
determine the coefficients of the corresponding empirical
equation such as (10) via curve fitting. The coefficients of the
empirical equations are influenced by many factors, such as the
C-rate, current direction, and ambient temperature. These
coefficients are identified using curve fitting through constant
discharge current and pulsed discharge/charge current tests at
three different ambient temperature conditions: low
temperature (0 °C or 273.15 K, which is the lowest operating
temperature of the battery), room temperature (23 °C or 296.15
K), and high temperature (40 °C or 313.15 K). Before the tests,
the battery cells are fully charged using the constant current
constant voltage (CCCV) charge method, where the charge
cutoff voltage in the constant current mode is 4.3 V and the
charge cutoff current in the constant voltage mode is 0.01C (i.e.,
iz = 0.028 A). In each test, the fully charged battery cells are
placed in the temperature chamber for four hours for the cells to
reach a thermal equilibrium (i.e., the internal temperature is the
same as the ambient temperature) before testing the cells.
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A. Parameters of the Runtime SOC Prediction Module

The parameters of the runtime SOC prediction module are
identified using constant discharge current tests. Specifically,
the maximum capacity, Cp.y, is extracted by discharging the
fully-charged cell with a small constant current (e.g., 0.05C)
until it is fully discharged, where the cell voltage reaches the
discharge cutoff voltage of 3 V. Then, the parameters ¢ and £’
are obtained by curve fitting using the following equation [26]:

- C o k'cL(I) _ (14)
(=™ Dt e (KLY -1+
where 7 is a vector of constant discharge current rate (i.e.,
C-rate) from 0.1C to 1.8C with an increment of 0.2C;
Cleliverea(l) and L(J) are the vectors of the delivered capacity and
the end of discharge time corresponding to I, respectively,
where Cgeiveres 18 the maximum capacity that can be delivered
by a fully-charged cell, i.e., the maximum available capacity.
The value of Cgevereq at @ certain constant discharge current i
(ip € I) is obtained by discharging the fully-charged cell with i
until the cell voltage reaches the discharge cutoff voltage of 3 V
and using the following equation.

Cdelt’vered = lBL(lB ) (1 5)

Fig. 4(a) shows the values of Cgereq calculated using (15)
and the corresponding fitted Ciejivereq curves using (14) at three
different ambient temperature conditions. The extracted
average values of C.x, ¢ and £” from the four battery cells for

Cdelivered (I ) =

TABLEI
THE COEFFICIENTS OF THE EMPIRICAL EQUATIONS OF THE RUNTIME SOC
PREDICTION MODULE PARAMETERS AND OCV FOR THE TEST BATTERY CELLS

ap 9801 a 36.49 a 479.9 as | 4.463e-6
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Fig. 4. The measured or estimated values and corresponding fitted curves of
(@) Cueiiverea as a function of L() at three different ambient temperature
conditions from a battery cell as well as averaged (b) Cyux, (¢) £, and (d) ¢ as
functions of temperature from the four battery cells.

the three different ambient temperature conditions and the
fitted curves of these parameters as functions of the ambient
temperature are plotted in Fig. 4(b)-(d), respectively. The
values of the coefficients ay—ag in (10) obtained from the curve
fitting are listed in Table I. It is observed that the values of k and
Cmax increase with ambient temperature since most chemical
processes in the cell are sped up at higher temperatures.
However, the temperature effect on the parameter ¢ is not
consistent with the other two parameters. The parameter ¢ has
the highest value at the room temperature.

B. Electrical Circuit Parameters

The electrical circuit parameters (Voc and RC parameters) of
the proposed battery model are extracted by using a pulsed
current discharge and charge test cycle under the three ambient
temperature conditions, where the pulsed current discharge test
is firstly conducted and followed by the pulsed current charge
test once the cell voltage reaches the discharge cutoff voltage.
Each current pulse lasts for a period during which the SOCy, of
the battery cell decreases or increases by 5% in the discharge or
charge mode, respectively. Before the test, the value of C,,,x has
been extracted for accurate SOCy, calculation to account for the
change in Cy,,, caused by the ambient temperature variation.

The discharge and charge equilibrium OCVs are the terminal
voltage measured at the end of the rest period of each current
pulse during the pulsed current discharge and charge test,
respectively, where the rest period should be long enough, e.g.,
3 hours at 40 °C, 6 hours at 23 °C, and 9 hours at 0 °C. The
pulsed current discharge and charge test cycle is conducted
with a cell current of 0.6C (i.e., 1.68 A) to extract the
equilibrium OCVs. Fig. 5(a) shows the Voc,,, which is the
average value of the discharge and charge equilibrium OCVs,
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Fig. 5. Measured average values and fitted curves obtained from the four
battery cells at the ambient temperatures of 0 °C, 23 °C, and 40 °C: (a) Voc,,
and (b) KV()(; VS. SOCE
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versus SOC, for the test cell under the ambient temperatures of
0 °C, 23 °C, and 40 °C. The Voc,, strongly depends on SOC
and temperature when the SOC is less than 10%. In addition,
the difference between the discharge and charge equilibrium
OCVs is less than 5 mV. Therefore, the hysteresis effect [27]
can be ignored.

The empirical equation of the Voc,, at the room temperature
T, which is called the reference Voc,,, can be obtained using
the following equation [19]:

Voc, (SOC,,T,,) = a,e ™% +a,, +a,,SOC,

+a,,80C,” +a,,SOC,’ +a,,SOC,*
where T,,s =296.15 K and ay, -, a5 are coefficients. Then, the
correction coefficient for the temperature effect, Kyoc shown in
Fig. 5(b), can be obtained as follows from the Voc,, values
measured at the low and high ambient temperatures and the
measured reference Voc,, values:
Voc,,(SOC.,T)

Voc, (SOC;.T,,,)

The empirical equation of Kyoc is then formulated as:

(16)

Koo (SOC,,T) = 17)

K,,-(SOC,,T) =a, (% - LJ e %% —q . T+a, (18)

ref

The coefficients aq—a;g in (16) and (18) are obtained from
curve fitting and listed in Table I.

As described by (16)-(18), the SOCj, is used to facilitate the
characterization of the Voc,, at T, and Kyoc in the offline
model extraction process by neglecting the nonlinear OCV
effect. Then, when using the proposed battery model, the Voc is
estimated by using (11), where the SOCr in (16) and (18) is
replaced with the SOCr to consider the nonlinear OCV effect.

Then, all of the RC parameters are extracted from the
impedance voltage response (i.€., Vimpedance = |Veen = V0Cey(SOCr,
T)|) measured in each pulse of the pulsed current discharge and
charge test cycle. Fig. 6 depicts a typical curve of the Vipedance
response in one discharge current pulse during which the SOCg
of the battery cell decreases by 5%, where the window contains
the data in a certain interval of the rest period used for the
extraction of the RC parameters via curve fitting. In this paper,
a 10-minute fitting window is used by assuming that the RC
parameters related to the charge transfer and short-term
diffusion can be observed within a 10-minute rest period. The
RC parameters are expressed as functions of SOCp, so that the
nonlinear capacity effect mainly influences the nonlinear OCV
effect as discussed in Section II.A.

According to (12), the instantaneous voltage drop/rise when
the discharge/charge completed is related with R, which can be
expressed by the following equation:

Vv _
PN

=r5= (19)
lial s
where V0 and V1 are obtained from Fig. 6. Based on (8) and (9),
the following equation is obtained to estimate the RC
parameters:

V.(k)y+V, (k)=a- ey ye (20)
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Fig. 6. The curve of a typical impedance voltage response in the condition of

0.6C pulsed current discharge and 0 °C ambient temperature for the extraction

of the RC parameters of the proposed battery model.

where k=1, -, 600; and e = V2 in Fig. 6. The coefficients a, b,
c and d are determined by using nonlinear least-square curve
fitting. The RC parameters are then calculated as [19]:

R, =alliy|,C, =1/R,-b), R, =c/|is|,C,, =1/(R,-d) (21)

Since the RC parameters depend on the C-rate I, SOCp,
ambient temperature 7, and current direction of the battery cell,
numerous experiments are conducted to extract the RC
parameters using the pulsed current discharge and charge test
cycle with different values of / and 7. Then, the empirical
equations of the RC parameters are derived by combining
polynomial and exponential curve fitting. First, the empirical
equations as functions of SOCy and [ for the discharge mode
are derived at three different / values of 0.2C, 0.6C, and 1C at
the room temperature (i.e., the reference temperature).

R ,(SOC,.I)=(a,,—a,e " +a, +a,,l
+a,,SO0C, +a,SOC,” +a,,SOC,’

R, (SOC,,I) = (b, — b, D)e"**F +b,,+b,,] +b,,SOC,

R, (SOC,, 1) =(cyy—cul)e %+, +cyd +¢,580C,

c, (soc,,1y=d,SOC, +d,SOC,” +d,,SOC,’ +d,,

—e;,S0C 2
Cvd,d (SOCEal) = edoe far £ +ed2 +€d31+€d41

(22)
where the subscript d of each RC parameter indicates the
discharge mode. Then, the temperature dependency is added to
the expression of each RC parameter based on the Arrhenius
equation, which changes (22) to:

R ,(SOC.,1,T)=R ,(SOC,,I)-
(e—fLmAT +fdlSOCE.f;/z AT)+KLV

d3
T T,

P
R, ,(SOC,,I,T)=R, ,(SOC,,I)-e [ ]

T T,

fd{i—i
RSd’d (SOCE ’ I’ T) = de,d (SOCE ,[) e "9 ]

T T,

Jus| 2=
Cd’d(SOCE,I,T)=Cd,d(SOCE,I)-e [ ]

1 1
fdﬁ o
C,,(8SOC,1,T)=C,, ,(SOC,,I)-e { ’J

where
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KLV (SOCE,I, T) — f;”e—ﬁ/x(r—rye/‘,L)(e*fdosocs _ Ifdl()) (24)

Due to the increase in the fitting error at low temperatures, an
additional correction factor K is added to the expression of
R, 4. All of the coefficients of the empirical equations of the RC
parameter (22)-(24) are listed in Table II. The extracted values
and the corresponding fitted curves of the RC parameters are
shown in Fig. 7, where Fig. 7(a) illustrates the C-rate and SOCp,
dependency of the RC parameters expressed by (22) and Fig.
7(b)-(f) shows the temperature dependency of the RC
parameters expressed by (23)-(24) at the reference C-rate 0.6C.
The fitting error of R, ; with respect to the measurement at 0 °C
increases significantly as the SOC exceeds about 0.6, as shown
in Fig. 7(e). It indicates that the Arrhenius equation, which is
commonly used to represent the dependence of the rate
constant of a chemical reaction on the absolute temperature,
may not be effective to represent the temperature dependence
of some RC parameters of the battery at 0 °C due to the highly
unexpected nonlinearity of the battery cell at the lowest
operating temperature. However, since the fitting result of the
series resistance Ry, at 0 °C is accurate over the entire SOC
range, as shown in Fig. 7(b), and R, is the dominant resistance
of the battery model, particularly at 0 °C, the relatively large
fitting errors of R,;, in the high SOC range at 0 °C will not
significantly affect the accuracy of the proposed model for
capturing the runtime behaviors of battery cells.

The empirical equations of the RC parameters and their
coefficients for the charge mode are obtained from a similar
process and are given in the Appendix.

V. VALIDATION

The proposed battery model is constructed in
MATLAB/Simulink by using the standard components from
the Simulink toolbox. In the Simulink model, a “runtime SOC
module” calculates the values of SOCr, SOCg, and SOC,,,, of
the battery cell by taking into account its nonlinear capacity
variation during the operation, and an “/ detector” module
tracks the change of the battery cell current iz and converts it to
the C-rate /. When the C-rate / or temperature exceeds the
extreme values used to obtain the model, the Simulink model
can still predict the runtime behaviors of the battery cell.

The parameters of the battery model are obtained from four
ICR18650-28A LiMn,0,4 battery cells by using the model
extraction method described in Section IV. Simulation results
obtained from the proposed battery model are compared with
the experimental data for a randomly selected new
ICR18650-28A cell in the low (0 °C), room (23 °C), and high
(40 °C) temperature conditions using pulsed and random
discharge and charge current profiles to validate the proposed
battery model.

Fig. 8(b), (d) and (f) compare the terminal voltage responses
obtained from simulations with the experimental results for the
pulsed discharge/charge current profile shown in Fig. 8(a). The
proposed model captures the dynamic voltage responses of the
battery cell accurately in all current and temperature conditions.
The maximum root mean square error (RMSE) of the cell

TABLEII
THE COEFFICIENTS OF THE RC PARAMETER EXPRESSIONS FOR THE TEST
CYLINDRICAL LITHIUM-ION CELLS IN THE DISCHARGE MODE

aqn | 0.2904 an 0.2521 an 9.485 an 0.1674
aqu | -0.0100 | ags | -0.1726 | au 0.1553 an -0.02982
by | 0.0664 ba 0.0558 ba 13.44 bas 0.01358
bd4 5.48E4 de 0.0134 Cao 0.6882 Cal 80.89
Ca 0.0196 Ca3 7.354 Ca4 0.0841 Cis -6.686
dao 5528 da -10850 | dn 6044 dg 550.5
eq -3112 ea 17.1 en 8058 es -9560
eus 14300 fao 0.0419 | fa 0.0163 | fa 0.25
fo | 1554 | fu | 1835 | g | 0 | e | -1421
fo | 3985 | fi | 02993 | fi | 1.91e3 | fuo | 0.0022
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Fig. 7. The measurements and corresponding fitted curves of: (a) R, (SOC, 1)
at 23 °C, (b) R, 4 (SOCy, T) at 0.6C, (c) R.,a (SOCp, T) at 0.6C, (d) C4a(SOCy, T)
at 0.6C, (e) R4 (SOC, T) at 0.6C, and (f) C,q4 (SOCy, T) at 0.6C.

terminal voltage predicted by the proposed model in the middle
and entire SOC ranges during the test are only 23 mV or 1.77%
and 31 mV or 2.4%, respectively, of the nominal terminal
voltage variation range of 1.3 V (= 4.3—3 V), which occurs in
the 0 °C condition, as shown in Fig 9(b). The maximum error of
the cell terminal voltage predicted by the proposed model in the
middle and entire SOC ranges are about 14.2 mV or 1.1% and
92 mV or 7.1%, respectively, of the nominal terminal voltage
variation range, which occurs at 40 °C, as shown in Fig. 8(f).
This is caused by relatively large fitting errors on the
OCV-SOC curve for the SOC around 0.1 at 40 °C, as shown in
Fig. 5(a). Moreover, by capturing the variations of the
nonlinear capacity effects, the proposed model is able to
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Fig. 8. Comparison of simulation and experimental results of the test battery
cell with pulsed discharge and charge currents: (a) the pulsed current profiles,
(b) the voltage response at 0 °C, (c) the estimated SOCs at 0 °C, (d) the voltage
response at 23 °C, (e) the estimated SOCs at 23 °C, (f) the voltage response at
40 °C, and (g) the estimated SOCs at 40 °C.

accurately capture the remaining end of discharge time until
SOC,,, = 0 and the end of charge time until SOC,,, = 1 of the
single battery cell in different current and temperature
conditions, as shown in Fig. 8(c), (e) and (g).

In contrast, the error bands of the state-of-the-art battery
model presented in [17] are £20 mV in the middle SOC range
but increased to £171 mV in the entire SOC range, which is
much larger than the errors of the proposed battery model under
different temperature conditions in the entire SOC range.

The proposed enhanced hybrid battery model is further
validated by comparing with the hybrid battery model in [19]
and experimental results for a randomly varied discharge and
charge current profile, as shown in Fig. 9(a). The parameters of
the hybrid battery model are listed in Table V in Appendix. Fig.
9(b)-(d) compares the corresponding terminal voltage
responses of the cell obtained from the simulation models and
experiment. The voltage responses predicted by the proposed
model are always better than those predicted by the hybrid
battery model in [19] at various temperature conditions,
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Fig. 9. Comparison of simulation results of the hybrid battery model in [19]
and the proposed enhanced hybrid battery model with experimental results with
(a) a randomly varied current profile at (b) 0 °C, (¢) 23 °C, and (d) 40 °C.

particularly at the low temperature condition. Table III
compares the RMSE results of the two battery models with
respect to the experimental results at the three different
temperature conditions. In the worst case at 0 °C, the RMSE of
the voltage predicted by the proposed model is about 49.9 mV
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TABLE III
RMSE RESULTS OF THE BATTERY MODELS IN FIG. 9
Temperature (°C) 0 23 40

Hybrid Battery Model [19] (mV) 188.9 | 27.3 | 19.4
Proposed Enhanced Hybrid Battery Model (mV) | 49.9 | 14.1 | 144

or 3.8% of the nominal terminal voltage variation range, which
is only 26% of the RMSE of the hybrid battery model in [19].
Although the RMSE values of the hybrid battery model are
reduced significantly at 23 °C and 40 °C, they are still
approximately 93.6% and 34.7% larger than the RMSE values
of about 14.1 mV (or 1.08%) and 14.4 mV (or 1.1%) of the
proposed model, respectively. These results show that the
proposed model can capture the nonlinear capacity variations
and dynamic I-V characteristics of lithium-ion batteries more
accurately than the hybrid battery model in [19] under various
currents and ambient temperatures.

It is expected that the proposed battery model can increase
the accuracy of the electrical circuit models by only adding a
discrete-time state-space equation (8) and several polynomial
equations to the electrical circuit models. This indicates that
once the model parameters are extracted, the computational
complexity of the proposed battery model is similar to the
electrical circuit models. Therefore, the proposed battery model
has achieved a good balance between the electrical circuit
models and the electrochemical models in terms of accuracy
and computational cost.

VI. CONCLUSION AND FUTURE WORK

This paper has presented an enhanced hybrid battery model,
which is capable of capturing dynamic I-V characteristics and
nonlinear capacity variations of battery cells under various
runtime operating conditions. The proposed battery model has
been implemented in MATLAB/Simulink for a cylindrical
lithium-ion cell. Simulation results of the proposed battery
model have been compared with those of the hybrid battery
model in [19] and experimental results. Results have validated
that the proposed model can accurately capture the runtime
behaviors of the battery cells under various temperature and
charge/discharge current conditions.

In practical applications that use a battery pack with multiple
cells, the proposed battery model can be copied with each copy
representing a single cell if the user is interested in the runtime
behaviors of individual cells that may have state imbalance, or
the proposed battery model can be used to represent the entire
battery pack if the state imbalance between different cells is
neglected and the user is only interested in the terminal
behavior of the battery pack for the co-simulation with other
electrical circuits. In the future work, the low temperature
effect, aging effect, and model complexity will be investigated
to develop empirical equations with better fitting accuracy and
minimum degree-of-freedom for the proposed battery model.

VII. APPENDIX

The empirical equations of the RC parameters of the proposed
battery model for the charge mode are the following:

TABLE IV
THE COEFFICIENTS OF THE RC PARAMETER EXPRESSIONS FOR THE TEST
CYLINDRICAL LITHIUM-ION CELLS IN THE CHARGE MODE

ae | -0.1233 | agu 0.191 agn [-0.1295| as | 0.1556
ag | 04472 | acs | 0.1515 | ae | 0.3407 | ae | 0.03541
aeg | -0.0577 | aew | -0.0412 | by |2.68e-5| be | -5.007
b | 0.0230 | b | -1.16e-3 | by |-0.0312| bes | 0.6319
co | 1.14e-5 Cel -8.112 ¢ | 0.0122 | ¢c3 | 0.5869
c | 07105 | cs | 04211 Ces 3098 dy | -4788
dy | 0.0202 | do 5965 e | -246.9 | e 3
(253 9856 e 1338

TABLE V

THE COEFFICIENTS OF THE HYBRID BATTERY MODEL IN [19] FOR THE
TEST CYLINDRICAL LITHIUM-ION CELLS

ano -0.1364 [iN 61.94 dap 3.616 an3 1.095
ans | 2.949 | ays 4.295 ans | -1.765 | bno 32.73
biy 207 by, | 0.2382 | bu3 | -0.5495 | bns | -0.7608
bns [ -0.3408 | cno | 0.0782 | cw 14.95 e | 0.0309
dno -900 dni 8.378 di 1069 ey | 0.05672
€h1 19.37 €n2 0.01851 ﬁ,[) -9052 _fh[ 6.73
fro | 22440 c 0.8681 k' 0.0006541

R (SOC,,I1,T)=(a,,SOC, +a,SOC,’ +a,SOC,’ +a,,)
(a0 +ay) (e +aSOC,“ AT)
R, (SOC,,1,T)= (b e "% +b,) (e +b,50C, " AT)

T T,

. 6[1 1 J
de.c (SOC;,1,T) = (Ccoe_cdsoc’; +¢.,) (053[_% +es)-e .
€, (SOC,1.T) = d ye " 1,

)
de,c (SOCE,],T) — (evoefedsocE +eC2) e T T,

(25)
The coefficients of the proposed battery model in the charge
mode and the hybrid battery model are given in Table IV and V,
respectively, for the test battery cells.
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